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Abstract
The empirical literature on the impacts of weather shocks
on agricultural prices typically explores post-harvest
price dynamics rather than pre-harvest ones. Inspired by
the intra-annual competitive storage theory, we empirically
investigate the role of weather news in traders’ anticipations
on pre-harvest price fluctuations in India’s local markets.
Using a panel of district-level monthly wholesale food prices
from 2004 to 2017, we leverage the time lag between a
weather anomaly and the corresponding supply shock to
isolate price reactions caused by changes in expectations.
We find that drought conditions significantly increase
food prices during the growing period, that is before any
harvest failure has materialized. These results suggest that
markets respond immediately to expected supply shortfalls
by updating their beliefs and adapting accordingly and that
the expectation channel accounts for a substantial share of
supply-side food price shocks. A direct comparison with the
effects of the same weather anomalies on the prices of the
first harvest month reveals that expectations anticipate more
than 80% of the total price impact.
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Weather conditions affect agricultural production and, hence, prices. This assertion follows from the
established influence of weather patterns on crop yields (Schlenker & Roberts, 2009). But can
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weather shocks also affect crop prices through expectations on future production, before the biophys-
ical effect materializes? In this paper, we conduct an ad hoc empirical test to answer this question.

The impact of weather conditions on plant growth is well documented in the literature. However,
as Osborne (2004) showed conceptually and Adjemian (2012) demonstrated empirically, advance
information is important in agricultural commodity markets, more so in certain months of the crop
year, when stocks are at their annual low and the market is thinner.

Our analysis is a further empirical attempt to grasp the subtle relationship between weather anoma-
lies and food prices in one of the most important agricultural markets in the world, India. Indian agri-
culture is the backbone of the Indian economy, engaging more than 40% of the national workforce
(ILO, 2021). However, it is still largely rain dependent, a lot of storage and distribution facilities are out-
dated, and markets are organized in a system of local Agricultural Produce Market Committees
(APMCs) that supervise the functioning of the markets (called mandis), constraining the market choice
of farmers to licensed traders. In this framework, a consistent narrative looks at Indian traders as being
able to exploit farmers while promptly adjusting to external shocks, including weather ones. The Indian
government implemented a recent set of measures to enhance competition in Indian agricultural mar-
kets through an extensive reform of the APMC mandi system with the aim to modernize and liberalize
the regulatory environment of the Indian agricultural system.1 These interventions are expected to
accelerate changes (in terms of weather forecasting, storage facilities, market access, etc.) that will fur-
ther emphasize the role of anticipatory news of pre-harvest weather in contemporaneous market prices.

By exploiting the time lag between weather shocks and supply shocks, we investigate the role of
news in traders’ expectations in primary wholesale Indian crop markets (the closest to producers). The
intuition is that, as traders can observe present weather conditions and take immediate action, their
weather-based predictions on future availability are likely to affect contemporaneous prices even before
the new harvest can reach the market. We focus our attention on three crops: maize, rice and wheat.
These are the three most important staple grain crops produced in India, and jointly account for more
than 80% of foodgrain production in the country.2 They are also highly storable commodities, which
makes intertemporal arbitrage an essential feature of their price formation mechanism. We start by
conceptually separating the expectation channel from other channels. Then we provide empirical evi-
dence for its relevance in Indian crop wholesale market dynamics. To this end, in the spirit of the
intra-annual competitive storage model (Osborne, 2004), we provide a separate treatment of news in
the process of adapting expectations based on updated sets of weather information.

Our identification strategy relies on the presence of intra-annual time lags between weather
shocks and supply shocks. We thus exploit time lags to identify current price reactions due to
changes in traders’ future price expectations that occur entirely outside the physical market channel.
This exercise is done in a context where traders are key actors of the price formation process. Unlike
smallholder farmers, traders are less likely to be credit constrained, they often own storage facilities,
and thus can implement a full-market intertemporal arbitrage solution by setting current prices
equal to discounted expected future prices, conditional on storage and available “news” to maximize
expected Marshallian surplus.3 The notion of “news” here extends to contemporaneous weather and
biophysical conditions. To avoid potential confounders that might affect secondary and final mar-
kets, we focus on the wholesale markets closest to crop production. Finally, we focus on short-time
(monthly) variations, assuming that demand is fully inelastic to intraseasonal price variations.

With regard to the empirical strategy, we construct a panel dataset of monthly food prices and
weather variables at the district level for the period between 2004 and 2017. Crop prices for maize,

1The reform includes the promotion of barrier-free interstate and intrastate trade in agricultural produce, and allows farmers to engage directly
with processors, aggregators, wholesalers, large retailers, and exporters in the form of contract farming (Beriya, 2021).
2http://agricoop.gov.in/sites/default/files/agristatglance2018.pdf
3There is a consensus in the literature that the “buy low” and “sell high” guiding principles, at the core of the competitive storage model, are
unattainable for farmers whose liquidity comes from grain sales (Stephens & Barrett, 2011). This is because farmers’ decisions to sell or store
grain are subject to liquidity constraints and heterogeneous price expectations. For an adaptation of the competitive storage model to analyze
the role of farm storage on price volatility see Maître d’Hôtel and Le Cotty (2018).
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rice, and wheat are obtained from the AgMarkNet price information platform. Results from district-
level pooled regressions show that weather shocks affect market prices via traders’ expectations in
addition to the supply shock channel. Specifically, we find a significant and non-linear effect of
cumulative weather anomalies on food prices. A back-of-the-envelope test based on the discontinuity
between the growing and harvest seasons reveals that the expectation mechanism we have isolated
accounts for about 85% of the total price impact of growing-season droughts.

We contribute to the theoretical and empirical literature on weather and crop prices, and the
substantive literature on Indian commodity markets. First and foremost, the existence of an intra-
seasonal short-run connection between weather and food markets, channeled by economic agents’
expectations, extends the range of determinants of crop price fluctuations driven by climatic factors
and paves the way for a better and more timely design of early warning systems in food security poli-
cies. In this respect, the paper also highlights the opportunity to promote further research on the
drivers of food market resilience to weather shocks during the pre-harvest season.

Second, the finding that weather anomalies enter the expectation function of traders emphasizes
the need to account for appropriate short-run modeling of weather ex-ante/pre-harvest effects on
intraseasonal changes in agricultural prices by drawing on the well-established strand of the theoretical
literature on competitive storage markets.

Third, we contribute to the study of price dynamics in Indian wholesale commodity markets by
shedding light on the often neglected role played by traders’ expectations in the current mandi sys-
tem and on the relevance of the anticipatory channels, which has been further enhanced by the new
set of reforms implemented by the Indian government. Uncovering the empirical aspects of
pre-harvest dynamics is of particular importance for policymaking, especially in countries and
developing contexts where large subpopulations are employed in the agricultural sector, and many
poor households remain vulnerable to price fluctuations stemming from agricultural dynamics
(Stephens et al., 2012).

Finally, we show that market forces take into account not only the risk represented by slow,
distant, or gradual changes in climate but also readily respond to immediate disruptions caused by
unusual weather events, thus complementing the recent literature on market anticipations of possible
future losses brought about by climate change (Schlenker & Taylor, 2019; Severen et al., 2018).

1 | LITERATURE ON WEATHER AND FOOD PRICES

The extreme sensitivity of agricultural commodity prices to weather anomalies and fluctuations is
well known. A substantive strand of empirical research has investigated this linkage and has shown
that the causal chain can act either indirectly via the role played by crop yields and production
volumes or through consumption choices (D’Agostino & Schlenker, 2016; Dercon, 2004;
Hirvonen, 2016; Parker & Meretsky, 2004; Schlenker & Roberts, 2006; Schlenker & Roberts, 2009) or
directly through spatial price transmission induced by factors such as market integration, network-
ing, and trade arbitrage (Baffes et al., 2017; Brown & Kshirsagar, 2015; Gilbert et al., 2017; Haile
et al., 2015; Hatzenbuehler et al., 2019; Mawejje, 2016; Minot, 2010; Stephens et al., 2012). The dis-
ruptive consequences of weather extremes on international prices (Algieri, 2014; Chatzopoulos
et al., 2019; Headey & Fan, 2008; Piesse & Thirtle, 2009) and regional conflicts (Klomp &
Bulte, 2013; Maystadt & Ecker, 2014) have also been studied extensively.

Such literature pointed out the presence of different price elasticities as a function of the specific
crop-country combination, the sensitivity of the local food system to domestic production, and the
degree of openness to international markets. Much less investigated, yet, is the crucial role of infor-
mation flows in influencing spatial price adjustment across seasons, with the only exceptions of Ste-
phens et al. (2012) and Hatzenbuehler et al. (2019). Furthermore, this body of empirical research on
the weather-price relationship typically explores post-harvest price dynamics rather than pre-harvest
ones. Our choice to investigate price responsiveness to weather information and study the role of
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pre-harvest dynamics in agricultural commodity markets thus enables a departure from previous
work and fills a gap in this large but still incomplete literature.

Unpredictable news leads to similarly unpredictable price changes, as already argued by Work-
ing (1958) in his anticipatory market model. If that is the case, then weather-related news matters
most during the sowing and growing period preceding harvest, when stocks are at their annual low.
After the harvest period, in fact, their influence diminishes progressively and the price becomes more
affected by variations in consumption demand. Such seasonality (i.e., “normal” fluctuation) drives a
wedge between prices before and after the harvest, as highlighted by Gilbert et al. (2017). Further-
more, price seasonality depends not only on storage costs and intertemporal arbitrage, but also on
the sell-low and buy-high behavior of liquidity- and credit-constrained farmers (Burke et al., 2019;
Stephens & Barrett, 2011). Our empirical analysis is informed from the insights provided by these
studies on price seasonality in that we choose to focus solely on the pre-harvest period and sheds
more light on traders’ behavior regarding inter-temporal arbitrage.

News plays an important role in commodity price formation. In the context of this paper, news
is any new information advancing knowledge on future production or consumption, relevant to
forward-looking agents.4 Several studies have underlined that news and access to information play a
critical role in engendering agri-food commodity price formation mechanisms (Aker, 2010;
Goyal, 2010; Jensen, 2007). As a consequence, information lies at the core of competitive storage
models and has been progressively incorporated in this strand of the literature on the theoretical
modeling of price formation. Wright and Williams (1982) introduced a crude representation of
weather variation news and other exogenous shocks by using serially uncorrelated production distur-
bances, but they made no distinction between current and future excess supply or demand. Subse-
quently, Deaton and Laroque (1992), Deaton and Laroque (1996), and Chambers and Bailey (1996)
enhanced the model by introducing time-dependent equilibrium price functions. In turn, this led to
anticipations constructed from periodic conditional expectations, more suited to model intra-annual
price variations. Building on this more flexible specification, a seminal paper by Osborne (2004)
modeled news and information on the approaching harvest in the decision function of Ethiopian
storers. The distinctive features of this iteration of the model are the importance of seasonal equilib-
rium price functions, and the presence of conditional expectation of future price based on cumula-
tive weather information and realized harvest. In this paper, we draw on Osborne’s seasonal
competitive storage model with cumulative news to set up a reduced empirical form and analyze
short-run price reactions to weather disruptions in Indian wholesale markets.

2 | WEATHER NEWS IN THE COMPETITIVE STORAGE MODEL

To investigate the formation of traders’ anticipations, we consider a simple version of the competi-
tive storage model where risk-neutral inventory holders, facing an interest rate5 r and a commodity
depreciation rate δ > 0, leading to the real cost of carrying a positive inventory across time equal to:
θ = (1 � δ)/(1+r) < 1.6 At the start of every period, traders observe current availability and any accu-
mulated information about the coming harvests, ht, including the current period’s cumulative news.

4Consumer demand is usually considered inelastic with respect to prices in the competitive storage model literature. For an attempt to relax the
inelasticity assumption of demand in the long run, see Deaton and Laroque (2003).
5The standard assumption of the neoclassical competitive storage model is the presence of a perfect capital market to ensure an efficient
outcome. Depreciation rate and interest rate are assumed to be fixed for simplicity (Osborne, 2004; Wright & Williams, 1982). All prices and
costs are expressed in real terms.
6As in Osborne (2004), we use here a simplified analysis of storage that does not include financial carrying costs. This is a widespread
assumption when examining aggregate market behavior, because it avoids a more complicated cost structure (Deaton & Laroque, 1992).
Furthermore, as standard in the competitive storage models, we assume perfect information on aggregate stock availability and no liquidity
constraints across traders. These assumptions are generally relaxed in storage models that take the point of view of farmers (see—inter alia—
Maître d’Hôtel & Le Cotty, 2018).
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With the possibility to hold inventories, It, they adjust them accordingly so that the overall amount of
crop available in the market at time t (denoted zt) is given by: zt = ht+θ It � 1.

The commodity price at any period [pt=P(zt)] must satisfy:

pt ¼max θEtptþ1,P ztð Þ� � ð1Þ

where P () is the inverse demand function, and Et is the expectation conditional on information
available at t. This equilibrium is derived from a standard no-arbitrage condition that equates cur-
rent period price with expected price in the next period, minus the marginal cost of storage (includ-
ing depreciation and interest of capital invested). Thus, traders maximize profits for holding
inventory from period t to t+1, as follows:

θEtptþ1�pt
� �

It ;It ≥ 0 ð2Þ

This standard decision rule is at the core of the competitive storage model. When a rational
trader expects prices to be high enough, that is θEtpt+1 > pt, there is a strictly positive profit from
holding the entire stock until the next period. Hence, traders build up inventory and the price
increases until marginal profit is zero. At this equilibrium, traders stop purchasing, and pt aligns on
the expected future price, θEtpt+1 = pt. Conversely, when pt > θEtpt+1, traders sell until the current
price goes down to the discounted expected future price. Traders’ expectations thus shape the equi-
librium price.

According to the competitive storage model depicted above, weather could enter Equation 2 via
two main channels: (i) changes in current supply (harvest and/or in commodity inventory, infra-
structure damage, etc.); (ii) changes in Etpt+1, via changes in expectations on future prices, through
anticipatory effects on future supply.7

We focus below on the second channel. In this respect, we rely mainly on Osborne’s (2004)
modeling of the role played by cumulative weather news in affecting seasonal equilibrium prices in
an intra-annual competitive storage model. With a seasonal distribution of harvest and conditional
expectations augmented with weather information, Osborne (2004) shows that, in Ethiopia, a large
proportion of the production information is known before the harvest itself, through the observation
of rainfall. In this theoretical framework, expectations regarding future prices pt+1 in pre-harvest sea-
sons (when ht = 0), are formed on the basis of current inventories It, and Vt, that is the information
set for the future harvest (or supply), based on a vector of observable weather information. Assuming
that demand for consumption is constant at the monthly frequency, we can model expectations on
future prices as follows:

Et ptþ1 It ,Vtj �� ð3Þ

Following Osborne (2004) and Adjemian (2012), we assume that weather-related news matters
the most during the sowing and growing period preceding harvest, when stocks are at their annual
low and the market is thinner. That is the time when weather events can have a material impact on
yields and/or cultivation areas. During the other seasons, weather can still have an impact on crop
prices, albeit to a lesser extent and mostly through the first impact channel, directly affecting supply,

7Consistently with most of the literature in the field, the implication is that farmers, unlike traders, do not adjust their behavior throughout the
season in response to weather news. This is due to our focus on anticipatory effects of traders when farmers have already taken their planting
decisions. More generally, we acknowledge that farmers in developing countries often face information and physical storage constraints. If we
assume that they could change their behavior in response to informative weather forecasts (e.g., planting mainly on their most productive
lands), there may be no yield effects, and the effects on future prices would consequently depend on changes in aggregate output. In both cases,
it would not have direct implications on our identification and empirical strategies, because we would register the same anticipatory effects on
off-market contemporaneous prices.
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such as inventory destruction, infrastructural damage, and lower labor productivity. These direct
weather-induced supply variations are much weaker, if not absent, during the growing months.8

From the assumptions and intertemporal arbitrage mechanics of the competitive storage model, it
follows that current prices must equal expected future prices. Therefore, during the sowing and
growing season, prices are driven by:

pt ¼ θEt ptþ1 It ,V xtð Þj �� ð4Þ

where xt represents all relevant weather news, and θ is the cost of carrying a positive inventory across
time. When weather news signal a potential lower future supply, they anticipate future prices to
increase and therefore align current prices through the intertemporal arbitrage condition.

Starting from Equation 4, in the subsequent empirical test we exploit the time lag between
weather shocks and supply shocks to investigate the role of news in pre-harvest season wholesale
market prices in India.

3 | CONTEXT AND DATA

The Indian climate is particularly heterogeneous throughout the country. Annual rainfall varies from
a few centimeters in dry states, like Rajasthan, to several hundred centimeters in the north-eastern
states (Das et al., 2014; Guhathakurta & Rajeevan, 2008). Temperature distribution also features con-
siderable regional differences. Nevertheless, a seasonal cycle drives agricultural activities across the
whole country. India has two main harvest seasons, rabi (winter) and kharif (autumn, after the sum-
mer monsoon). Some states benefit from rabi rainfalls, whereas others have dry winters. Northern
states make intense use of irrigation, especially during the rabi months, whereas rain-fed agriculture
is more prevalent in the south. The monsoon season typically starts in June and reaches its peak in
August, but the rainfall might last longer in some states, especially those on the east coast. Kharif
season crops include rice, millet, sorghum, maize, gram (chickpea), and pigeon pea, grown between
June and September and harvested in October–November. Rabi production typically includes wheat,
barley, and masur lentils, planted after the summer monsoon and harvested at the end of the spring,
but chickpea can also be grown during the wet winter in some southern states.

Both inter-annual and long-run climate variability affect food production in India (Guiteras,
2009; Pre & Revadekar, 2013). The relationship between weather and crop yields has been studied in
India, among others, by Auff et al. (2012); Barnwal and Kotani (2013); Birth et al. (2014); Birthal
et al. (2014, 2015); Pat and Kumar (2014); Dkhar et al. (2017); and Mishra et al. (2017). Weather
variables significantly drive the yield/production distribution and feature considerable nonlinearity.
Although crop yields are strongly influenced by summer monsoon rainfall, even the post-monsoon
winter cropping season depends on summer rains through the replenishment of groundwater stocks
needed for irrigation (Kris et al., 2004; Kumar & Parikh, 2001). Auff et al. (2012) found a non-linear
relationship between weather and rice yields in India during the period 1966–2002. Specifically, their
results suggest that droughts and heavy rains negatively affected rice yields, but that the impact of
droughts was much more important than the one related to extreme rainfall.

The Indian marketing system is built on a physical and legal framework facilitating trade, stor-
age, and processing of a large percentage of agricultural produce (Chand, 2016). Wholesale markets
might be labeled as primary, secondary, or terminal, according to the volumes of trade and type of
participants. This analysis is focused on primary wholesale market yards, which are closest to pro-
ducers. These market yards (mandis) are designated and operated under the supervision of market
committees, made up of members of producers’ cooperatives and civil servants. Producers and

8Most long-distance transport takes place after harvest. A risky form of open-air storage happens mainly on farms and at the early stage of
commercialization, right after the harvest months.
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aggregators are matched with bidders in organized auctions. Bidders are traders, processors, and, for
a few months in the year, public procurement agencies. Bids are placed at specific times of the day,
and the highest bid wins the lot. Every day, market operators record the minimum, maximum, and
modal transaction prices, and send the data to the AgMarkNet price information portal. Notably,
Indian grain markets are generally protected from imports, and this implies the predominance of
local production condition effects on market dynamics. Another important feature of primary agri-
cultural markets in India is the Minimum Support Price (MSP) recommendation, issued annually by
the Ministry of Agriculture.9 This policy intervention has an impact on markets but is not observable
with a monthly frequency during the sowing and growing period. MSPs are announced to producers
before sowing, and procurements at the recommended price take place after the harvest. Hence, in
our empirical analysis, the effect of this policy during the growing season across the years is filtered
out by the use of state-specific time trends. However, it should be noted that, given that the policy
goal of the MSP is to prevent low prices, and because seasonally low prices are most commonly
observed during the post-harvest period, the MSP is less relevant during the growing period
(on which we focus), when prices are most commonly at their seasonal peak.

For the purpose of our empirical analysis, we construct a panel dataset of monthly crop prices
and weather variables at the district level (see Tables 1 and 2 for data sources, definitions, and basic
descriptive statistics). Monthly district averages are constructed from daily market crop prices regis-
tered by AgMarkNet during the sowing and growing season. See Figure 1 for district coverage of the
price data. Wholesale prices have been deflated using the national-level annual World Bank Whole-
sale Price Index for India.10 We use the Global Monthly Irrigated and Rainfed Crop Areas around the
year 2000 (MIRCA 2000), prepared by the Physical Geography Department of the Goethe
Universitat Frankfurt am Main (Portmann et al., 2010), as our source for state-level crop-specific
calendars. MIRCA 2000 provides state-level information on growing seasons. We focus on the pri-
mary cropping period for each crop (maize, rice, wheat) to select the sowing and growing season
months in which we can isolate the crop-specific expectation channel in the price formation
mechanism.

Our indicator of abnormal weather is the one-month Standardized Evapotranspiration Index
(SPEI), a multiscalar drought index developed by Beguería et al. (2014), which jointly considers pre-
cipitation, potential evaporation, and temperature, and is commonly used to capture weather shocks
(Harari & La Ferrara, 2018) and combines the temperature and precipitation information that has
been seen to affect crop yields. The SPEI is obtained by taking the difference between precipitation
(P) and potential evapotranspiration (PET): Di = Pi � PETi. Then Di is standardized such that the
index represents the deviation from the normal water balance. In other words, an SPEI of 0 indicates
a value corresponding to 50% of the cumulative probability of D, according to a log-logistic distribu-
tion. The SPEI is interpreted as follows: A negative SPEI value is associated with dry events, that is

T A B L E 1 Data sources

Item Frequency Spatial resolution Source

SPEI Monthly
2004–2017

0.5 x 0.5 University of East Anglia (Beguería et al., 2014).

Prices (Rupees) Daily
2004–2017

Market AgMarkNet, wholesale markets for medium to
large producers, and aggregators.

Crop calendar Monthly State (crop specific) Global Monthly Irrigated and Rainfed Crop Areas
around the year 2000 - MIRCA 2000
(Portmann et al., 2010)

9Note that the MSP reaches less than 7% of farmers in the country, whereas the share of officially procured crop output is close to 11% in total
crop output and 7% in total agricultural output. For an overview of MSP recommendations, see the annual reports of the Commission for Costs
and Agricultural Prices, available at: https://cacp.dacnet.nic.in.
10Available at the following link: https://data.worldbank.org/indicator/FP.WPI.TOTL?locations=IN .
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lower rainfall; positive SPEI values capture wet events, that is higher rainfall. As such, hot and dry
conditions are represented by large and negative SPEI values, heavy rains by large and positive ones.
SPEI values close to zero indicate close to no deviation from the usual water balance for that time of
the year and location.

We aggregate SPEI data at the district level by averaging all pixels within district boundaries.
Then, for each district, we produce our main SPEI weather indicator: SPEIt,av., that is the average in
month t of SPEI values since the beginning of the crop-specific sowing and growing season. This var-
iable is first used in its original form, then split into positive and negative deviations, and finally fur-
ther split into small (<= the 90th percentile) and large (above the 90th percentile) positive and
negative deviations. The assumption underlying this choice of constructing cumulative weather vari-
ables is that traders observe weather conditions from the beginning of the sowing-growing period,
incorporate cumulative weather news as the season unfolds, and react accordingly by updating their
harvest expectations. This is consistent with the intra-annual competitive storage model depicted in
Section 3. However, we later show that even abandoning this assumption and adopting a contempo-
raneous, rather than cumulative, model does not affect our core findings. Table A.1, in the online
supplementary Appendix, provides additional descriptive statistics on the year-to-year variation of
district-level prices and SPEI values.

A simple visual inspection (Figure 2), free from the constraints of any parametric model,
shows that, in our sample, when looking at monthly prices (in Indian Rupees with code INR)
during the cropping period (Panel A), the lower quantiles of SPEI distribution across districts
(highly negative SPEI values, i.e., strong water deficits) are associated with sowing and growing
season monthly prices that are about 10% higher than the overall average. This price-SPEI
pattern disappears and almost reverses in the months following the completion of the harvest,
which we will later use in a placebo test (Panel B). It is noted that these descriptive statistics only
show correlation. Causation is established through the implementation of our empirical strategy
in the following section.

T A B L E 2 District-level variables—sowing and growing season descriptive statistics

Variable Symbol Description Mean SD Obs

SPEI SPEIt,av: Cumulative average �0.083 0.828 28,524

Positive SPEI þSPEIt,av: Cumulative average 0.287 0.434 28,524

Negative SPEI (absolute value) �SPEIt,av:j j Cumulative average 0.370 0.534 28,524

Crop price (INR per tonne) pt_maize Monthly average of modal
maize prices

980.7 246.3 7330

pt_rice Monthly average of modal rice prices 1055.3 295.9 9306

pt_wheat Monthly average of modal wheat
prices

1232.1 202.7 11,888

F I G U R E 1 District price coverage in our dataset. Note: Districts with at least one price observation in the sample
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4 | EMPIRICAL APPROACH AND ESTIMATES

4.1 | Empirical Approach

As outlined in Section 3, to isolate the anticipatory effects of weather anomalies on pre-harvest
prices, our identification strategy leverages the time lag between weather shocks and the ensuing
supply shocks to identify and estimate price reactions that are solely due to a change in expectations
regarding future prices (Et[pt+1]). Drawing on Osborne (2004)’s seasonal model with weather news,
we estimate a pooled model and reformulate Equation 4 as follows:

PANEL A: Sowing and growing season months 

PANEL B: Post-harvest months 
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F I G U R E 2 Prices under normal conditions and anomalies (SPEI). Note: Whole sample used in the descriptive statistics
(three crops). INR stands for Indian Rupees
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pcdt ¼ β0þβ1Vdtþ
X4

r¼1

φmþ τ1tsþ τ2t
2
s þ γtcþϕdþηdt ð5Þ

where pcdt is the set of monthly district wholesale crop-specific prices in the pre-harvest season
(which embed the effects of agents’ expectations induced by weather news as proxied by weather
anomalies), and Vdt represents the set of weather anomalies observed for each district d in month t.
Weather variables are measured by the cumulative cropping-period SPEI values (alternatively in its
original form, split between negative and positive SPEI values, and then split into small and large
positive and negative deviations). Monthly variations of inventories, It, are represented by region-
specific monthly seasonal cycles (

P4
r¼1φm) with φm being a set of monthly dummies for each region

r. Regions are defined here as four groups of states (eastern, northern, southern and western states).11

These region-specific monthly seasonal cycles are included to capture the broad climatic differences that
shift the production cycles across the country. In addition to the regional seasonal cycles, each specifica-
tion includes state-specific quadratic time trends (τ1ts and τ2t2s ) and a linear crop-specific time trend
(γtc) to control for MSP policy interventions as well as other general price drivers, and account for
multiple time-varying confounders and gradual changes.12 District fixed effects (ϕdÞ capture charac-
teristics that do not change every month, such as, for instance, infrastructures and soil quality fixed
effects, thus offsetting many potential sources of omitted variable bias. Time trends and district fixed
effects absorb the depreciation and storage loss parameters from our structural model described in
Section 3. Finally, the error term, ηdt , is clustered at the district level to capture heteroskedasticity.

4.2 | Food Price Reactions to Weather Anomalies

Table 3 reports the outcomes of the pooled regressions carried out with the identification strategy set
out in Equation 5. The estimates show the monthly food price reactions to cumulative weather
anomalies throughout the sowing and growing season, captured by cumulative SPEI during sowing
and growing season months. We first look only at the entire SPEI domain (Column 1), then we sepa-
rate between positive and negative SPEI spells (Column 2) to provide further details on the direction
of the investigated relationship, and finally we further split positive and negative spells between small
(<= the 90th percentile) and large (above the 90th percentile) ones (Column 3). The coefficients pro-
vide a quantification of the average percentage price deviation from their state-specific seasonal
cycles. The absolute value of the SPEI was used for the negative shocks, to ease the interpretation of
coefficient signs. Looking only at the aggregate SPEI variable in Column 1, cumulative average SPEI
negatively affect food prices, with coefficient estimates significant at the 1% level. An increase in the
SPEI, that is wetter weather conditions, leads to a fall in prices. Vice versa, the reaction to a decrease
in SPEIt,av. due to lower rainfall, is that of an increase in food prices in wholesale markets. More spe-
cifically, each month with a positive (or negative) cumulative SPEI deviation results in a fall (or rise)

11States are mapped to regions as follows: eastern India includes Assam, Bihar, Chhattisgarh, Jharkhand, Manipur, Odisha, Tripura, and West
Bengal; northern India comprises Haryana, Himachal Pradesh, Jammu and Kashmir, Punjab, and Uttar Pradesh; southern India groups
Andhra Pradesh, Karnataka, Kerala, Puducherry, Tamil Nadu, and Telangana; western India comprises Gujarat, Madhya Pradesh, Maharashtra,
and Rajasthan.
12Adjemian (2012) found that the largest “announcement effect” of USDA reports, which include details such as growing season conditions, on
prices are observed mainly in years when stocks are low. We acknowledge that, although we capture intra-annual cyclicality of stock levels that
could drive some seasonality in prices, given the monthly frequency of our data, we are not able to capture inter-annual variations, that is,
deviations of inventories from their annual cycle that might also increase price sensitivity to weather news. In addition, between September
2007 and October 2011 (resp. February 2007 and April 2012), the government of India implemented a set of export restriction measures for
various crops, including the three we focus on. These measures isolated the domestic market from international commodity turmoil and
increased domestic grain reserves. To capture these deviations from the typical year-to-year stock variations, we introduce a quadratic term to
the state-specific trends associated with seasonal cycles.
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in monthly prices of about 1%. To explore possible asymmetries in price sensitivity to hot and dry
spells, we break down the SPEI indicators in their positive and negative domains.13 Results are given
in Column 2. Whereas wet anomalies have a positive, but small and nonsignificant, impact on
monthly food prices, drought spells (i.e., negative SPEI deviations) have a large, positive, and very
significant impact on prices. A one-unit increase in negative SPEI results in a 2.1% price hike. By
way of a further breakdown, we examine the differences in small versus large deviations of both posi-
tive and negative spells. As shown in Column 3, small and large positive deviations seem to have a
varied impact: Small positive deviations (slight increases in water balance) improve cropping condi-
tions and lead to a significant fall in prices, but large positive deviations (heavy rains/water surplus)
are damaging for crops, and as one would expect, prices significantly increase in this case. Hot and
dry conditions, on the other hand, are always associated with price increases, growing higher in the
case of more severe drought spells.

These pooled estimates suggest that crop prices increase in reaction to droughts and extreme
temperatures during the cropping period, thus mirroring the biophysical relationship between crops
and rainfall. But as we focus on cumulative weather conditions during the sowing and growing sea-
son alone, when crops are still being planted and grown, and we adopt wholesale prices as our
dependent variable, we argue that, because no yield effect has yet materialized, the price reactions we
detect must be caused by traders anticipating upcoming supply shocks and their consequent upward
pressure on prices.14 If this is the case, then we should observe a stronger price increase effect in the
last month of the growing season, when traders realize that prolonged droughts or extreme tempera-
tures (or heavy rains) throughout the cropping period are about to determine a significant supply
shortfall. This is exactly what we find: In Table 4, we give the results of the same model run only on
the prices of the last month of the growing season. Point estimates suggest indeed much larger

T A B L E 3 Sowing and growing season impact of cumulative weather deviations on crop prices

Dependent variable: log of monthly price

(1) (2) (3)

SPEIt,av: �0.00971***
(0.00153)

þSPEIt,av: 0.00452
(0.00375)

�SPEIt,av:j j 0.0213***
(0.00261)

þSPEISmall
t,av:

�0.0167***
(0.00478)

þSPEILarget,av:
0.0192***
(0.00405)

j �SPEISmall
t,av: j 0.0158***

(0.0036)

j �SPEILarget,av: j 0.0183***
(0.00272)

N 28,524 28,524 28,524

adj. R2 0.520 0.521 0.522

Note: district-level pooled regressions including district fixed effects, State-specific quadratic time trends, crop-specific linear time trends, and
region-level seasonal cycles. Standard errors clustered at the district level in parentheses.
*p < 0.10. **p < 0.05. ***p < 0.01.

13To ease interpretability, negative SPEI deviations are expressed in absolute values, so that to an increase in this variable corresponds an
increase in price.
14Traders also likely take into consideration the levels of stock available. Specifically, if grain stocks levels are low relative to historical levels,
then traders would adjust prices to a greater degree than if they were near historical averages.
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impacts than in the corresponding columns of Table 3, in line with our hypothesis and theoretical
model.15

Having discovered that expectations matter, the next question is this: To what extent? Estimates
are statistically significant, but magnitudes may seem not that large. We thus need a test to gauge the
magnitude of this expectation channel.

4.3 | Gauging the Magnitude of the Expectation Channel

To understand how much of the total price impact of weather shocks traders’ anticipate by updating
expectations, we exploit the discontinuity between the last month of the growing season and the first
harvest month. Specifically, first, we pool together the prices of the last growing season month
(i.e., the sample used for Table 4) and the prices of the first harvest month. Second, we amend our
model by introducing a “harvest” dummy that signals if a given price refers to the harvest month or
not. Finally, we interact this dummy with the growing-season weather shocks. Note that, regardless
of whether the price is that of the last growing season month or that of the first harvest month, we
always test the effects of growing-season SPEI shocks. In this way, we are able to assess the share of
price impacts anticipated by the expectation channel by comparing the main SPEI coefficients with
the coefficients of the interactions between the “harvest” dummy and the SPEI variables, which cap-
ture the “residual” effects of growing-season shocks on the prices of the first harvest month. Should
expectations totally anticipate the price effect of the supply shortfalls, then we should observe

T A B L E 4 Impact of cumulative weather anomalies on crop prices of the last growing-season month

Dependent variable: log of monthly price

(1) (2) (3)

SPEIt,av: �0.0354***
(0.00350)

þSPEIt,av: �0.0331***
(0.00872)

�SPEIt,av:j j 0.0375***
(0.00592)

þSPEISmall
t,av:

�0.0483***
(0.00897)

þSPEILarget,av:
0.0240
(0.0215)

j �SPEISmall
t,av: j 0.0341***

(0.00643)

j �SPEILarget,av: j 0.0298***
(0.00769)

N 6717 6717 6717

adj. R2 0.533 0.533 0.534

Note: district-level pooled regressions including district fixed effects, State-specific quadratic time trends, crop-specific linear time trends, and
region-level seasonal cycles. The dependent variable is log(price) of the last growing-season month. Standard errors clustered at the district level
in parentheses.
*p < 0.10. **p < 0.05. ***p < 0.01.

15A note of caution here regarding the interpretation of the results of Column 3, where more severe droughts appear to have a slightly smaller
price-increasing effect compared to smaller negative deviations: As we are focusing on only one month and observations with negative
deviations larger than 90%, we have very few observations for severe droughts in these regressions. The same applies to large positive
deviations, which are insignificant here.
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interacted coefficients close to zero. If, on the other hand, expectations do not matter, we would
expect a much larger impact on the first harvest month. As shown in Table 5, the estimates are defi-
nitely more in line with the first hypothesis. For the sake of comparability, let us focus on negative
deviations in Column 2: A back-of-the-envelope calculation, based on the values of the main and
interacted coefficients, suggests that expectations account for about 85% of the total price impact of
growing-season droughts. Therefore, the expectation channel anticipates a major share of the
biophysical effects on production and, hence, prices that materialize at the time of the harvest.

T A B L E 5 Gauging the magnitude of the expectation channel: Impacts of growing-season anomalies on the prices of the
last growing season month and of the first harvest month

Dependent variable: log of monthly price

(1) (2) (3)

SPEIt,av: �0.0377***
(0.00345)

SPEIt,av: * Harvest �0.00987**
(0.00483)

þSPEIt,av: �0.0301***
(0.00860)

þSPEIt,av: * Harvest �0.0123
(0.0107)

�SPEIt,av:j j 0.0443***
(0.00598)

�SPEIt,av:j j * Harvest 0.00758
(0.00849)

þSPEISmall
t,av:

�0.0458***
(0.00881)

þSPEISmall
t,av: * Harvest �0.00388

(0.0112)

þSPEILarget,av:
0.0296
(0.0217)

þSPEILarget,av: * Harvest �0.0348
(0.0262)

j �SPEISmall
t,av: j 0.0411***

(0.00667)

j �SPEISmall
t,av: j * Harvest 0.0151

(0.00927)

j �SPEILarget,av: j 0.0352***
(0.00719)

j �SPEILarget,av: j * Harvest �0.00516
(0.0107)

Harvest �0.0824***
(0.0214)

�0.0830***
(0.0214)

�0.0801***
(0.0217)

N 12,700 12,700 12,700

adj. R2 0.487 0.487 0.488

Note: District-level pooled regressions including district fixed effects, state-specific quadratic time trends, crop-specific linear time trends, and
region-level seasonal cycles. The dependent variable is log(price) either of the last growing season month or of the first harvest month.
“Harvest” is a dummy taking value 1 if the price is that of the first harvest month and 0 if the price is that of the last growing season month.
SPEI variables refer to the last growing-season month. Standard errors clustered at the district level in parentheses.
*p < 0.10. **p < 0.05. ***p < 0.01.
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4.4 | Robustness Checks

We reinforce the validity of the above findings by performing three robustness checks. The first
is a “common trend” test of the differential impacts of the expectation channel across drought-
prone (“dry”) and non-drought-prone districts. “Dry” districts are defined as those in which the
average cumulative monthly SPEI across our entire timespan has a negative value. Such districts,
therefore, are more often exposed to drought spells than those in which the average monthly
SPEI is positive. We generate a dummy variable based on this distinction, which can be inter-
acted with our weather indicators. The results of this test are given in Table 6. The impact of
negative spells in dry districts is always stronger, particularly in the case of more severe
droughts. This is consistent with the idea that a marginal and negative change in the SPEI is
arguably, on average, more damaging in drought-prone (dry) districts than elsewhere, because it

T A B L E 6 Drought-prone versus non-drought-prone districts

Dependent variable: log of monthly price

(1) (2) (3)

SPEIt,av: �0.00501*
(0.00270)

SPEIt,av: * Dry �0.00791***
(0.00290)

þSPEIt,av: 0.00137
(0.00521)

þSPEIt,av:* Dry 0.00648
(0.00617)

�SPEIt,av:j j 0.0142***
(0.00509)

�SPEIt,av:j j * Dry 0.00938*
(0.00542)

þSPEISmall
t,av:

�0.0240***
(0.00685)

þSPEISmall
t,av: * Dry 0.0171**

(0.00861)

þSPEILarget,av:
0.0172***
(0.00521)

þSPEILarget,av: * Dry 0.00346
(0.00653)

j �SPEISmall
t,av: j 0.00877

(0.00635)

j �SPEISmall
t,av: j* Dry 0.0109

(0.00714)

j �SPEILarget,av: j 0.00618
(0.00599)

j �SPEILarget,av: j* Dry 0.0151**
(0.00618)

N 28,524 28,524 28,524

adj. R2 0.521 0.521 0.522

Note: District-level pooled regressions including district fixed effects, state-specific quadratic time trends, crop-specific linear time trends, and
region-level seasonal cycles. “Dry” is a dummy taking value 1 if the average within-district value of monthly SPEI is negative and 0 otherwise.
Standard errors clustered at the district level in parentheses.
*p < 0.10. **p < 0.05. ***p < 0.01.

14 WEATHER SHOCKS, TRADERS’ EXPECTATIONS



represents a negative change to a base level that is already very dry. Therefore, a drought in a
dry district may imply going from difficult to impossible growing conditions, whereas in non-
dry districts, it would only mean going from normal to difficult conditions.

The second test is a replacement of our cumulative model with a contemporaneous one. Readers
may be concerned that the results we attribute to the expectation mechanism are driven by the par-
ticular cumulative construction of our weather indicators. Although the cumulative structure is a key
part of our theoretical model and of the related empirical application, it is thus important to check
whether there are also price effects of contemporaneous shocks. We therefore replace our cumulative
weather indicators with their corresponding monthly SPEI values, and add one-month lagged values
of the weather indicators to account for slightly delayed adjustment effects. The outcome of this test
is given in the online supplementary Appendix, Table A.2. Contemporaneous monthly shocks do
affect prices in a manner that is qualitatively analogous to our cumulative model. Impacts, however,
are notably smaller, and lagged values seem to be as large as, if not larger than, contemporaneous
spells, pointing to the relevance of cumulative effects.

Finally, the third test is an amended version of the baseline pooled model in which we also
include crop dummies and interact them with the weather shocks. This check is important for two
reasons: (i) it allows us to disentangle crop-specific effects; (ii) it can attenuate concerns about the
possibility that our results are spuriously driven by on–off switches in the availability of crop-specific
prices over time within districts. The estimates, reported in the online supplementary Appendix
(Table A.3), confirm that drought conditions do positively affect the prices of all the three crops in
our sample (Column 2). Column 3 reveals that maize and wheat are more affected by large negative
deviations, rice is more sensitive to small negative deviations. This last result, though, should be
interpreted with caution given the drastic loss in the sample size of crop-specific prices above the
90th percentile of the SPEI distribution.

4.5 | Placebo Test

There may also be a concern that the statistically significant associations we detect between SPEI
deviations and prices are not triggered by traders’ rational expectations about a forthcoming
supply shortfall but rather by the disruptive damage that abnormal weather conditions might
have on infrastructure and storage facilities, and by weather-related effects on crop quality and
costs for drying. The simplest way to address this concern is a standard placebo test: We can
check whether prices also respond to SPEI in the months outside the sowing–growing season.
However, things are not so straightforward: The group of months outside the growing–sowing
season also includes the harvesting months, during which the yield effect materializes, and that
is indeed the reason why we block that channel by design and focus only on the sowing–growing
season, when plants are still being grown, and weather spells cannot affect prices via yields. This
implies that, because weather conditions are typically strongly autocorrelated across months, a
placebo test using prices for all the months except those in the sowing–growing season would
likely capture the effects due to the yield channel. Hence, we decided to opt for a slightly differ-
ent strategy: We focus only on the “post-harvest” period—that is a four-month period between
the harvest and new planting.16 During this period of the agricultural year, for the primary crop-
specific growing season on which we focus, there can be no yield channel (as plants are not being
grown), no expectation channel (for the same reason), and the only potential impact of weather

16Because the MIRCA 2000 calendar only provides information on the cropping months, this period has been identified using the FAO Indian
crop calendar (see Figure A.1 in the online supplementary Appendix), in which it is shown that, for maize, rice and wheat, there is an
approximate gap of two to four months between the harvest and the new planting. We use four as a conservative upper bound. Note that the
FAO crop calendar is one of the main sources used to generate the MIRCA 2000 calendar.
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shocks on contemporaneous prices could be that of storage and infrastructure damage or other
disruptive mechanisms.

To perform our placebo test, we thus regressed the average price during the four months before
the new cropping period (our post-harvest period) over the cumulative monthly SPEI variables dur-
ing the same period, using exactly the same baseline identification strategy with district fixed effects,
state-specific quadratic time trends, linear crop-specific time trends, and region-level seasonal cycles.
This is to check whether prolonged drought or abnormally heavy rains in the post-harvest period
also affect food prices. Results are given in Table 7. Estimates are all insignificant and substantially
smaller in magnitude compared to the coefficients obtained in the main specification. Importantly,
for the negative SPEI coefficients, even the sign is reversed, pointing to a price-decreasing effect,
albeit of negligible proportions, of hot and dry conditions on prices during the post-harvest months.
Such evidence of no impact of post-harvest SPEI variability on post-harvest food prices allows us to
be confident that the role played by storage or infrastructure is not the cause of our baseline results,
and that the causal pathway of the relationships we detect points to a “true” expectation effect, that
is traders’ reactions to prolonged drought spells and future supply shortfalls, that affects price
dynamics in wholesale markets during the cropping period and before any harvest-related effect
materializes.

5 | IMPLICATIONS AND CONCLUSION

This paper presents an empirical approach to assess the impact of weather anomalies on traders’
expectations and, in turn, on the price dynamics of Indian agricultural markets. By setting up a
reduced empirical form drawing from the seasonal competitive storage model with cumulative news
depicted by Osborne (2004), we analyze short-run price reactions to weather disruptions in Indian
wholesale markets closer to producers, in a context where storage is the main hedging tool. Results

T A B L E 7 Placebo test on post-harvest months

Dependent variable: log of monthly price

(1) (2) (3)

SPEIt,av: 0.00163
(0.00177)

þSPEIt,av: 0.000365
(0.00401)

�SPEIt,av:j j �0.00297
(0.00359)

þSPEISmall
t,av:

�0.000750
(0.00521)

þSPEILarget,av:
0.00155
(0.00416)

j �SPEISmall
t,av: j �0.00181

(0.00445)

j �SPEILarget,av: j �0.00483
(0.00404)

N 27,446 27,446 27,446

adj. R2 0.565 0.565 0.565

Note: District-level pooled regressions including district fixed effects, state-specific quadratic time trends, crop-specific linear time trends, and
region-level seasonal cycles. Standard errors clustered at the district level in parentheses.
*p < 0.10. **p < 0.05. ***p < 0.01.
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from the empirical application confirm that market prices of crops in India contemporaneously react
to the non-linear and asymmetric impact of unusual weather on yields. Specifically, we find that hot
and dry spells lead food prices to significantly rise during the sowing and growing months, a period
in which the biophysical link between crops and rain cannot exert any impact on prices in wholesale
markets. We argue that this strong pre-harvest period association between drought spells and food
prices is rooted in the expectation channel: Abnormally low rainfall trends are quickly picked up by
traders and reflected in contemporaneous prices. In other words, traders anticipate the future supply
shortfall and update their pricing and supply decisions accordingly. A placebo test shows the absence
of such an effect in the post-harvest period. These findings suggest that appropriate short-run price
modeling of weather events should take weather anomalies into account in the expectation function
of traders.

Several caveats are necessary. First, identification concerns. Although our conceptual framework
relies on a deliberately partial time structure, allowing us to block the biophysical channel by design
and isolate the expectation mechanism, the latter is not the only channel that may be at work before
the harvest. Although our placebo test suggests that there are no disruption effects, we may be pick-
ing up impacts from other weather-related supply shifters, such as local demand mechanisms and
potential substitution effects. As for local demand shocks, we argue that such demand-driven shifts
in prices are likely to take place over a period longer than the brief period on which we focus. Simi-
larly, substitution effects are ultimately driven by demand shifts and thus take more time to unfold.

Second, our division of sowing–growing versus harvesting months is based on state-level crop-
specific calendars. Although our identification strategy controls for seasonal cycles and differences in
production across months, India is a country with vast states characterized by considerable climatic
diversity. In this respect, the availability of district-specific calendars would allow us to more accu-
rately capture district-level heterogeneity in climatic conditions and growing periods. Third, future
research could consider refining the estimated price reaction through a granular identification of the
role played by aspects such as local connectivity and irrigation facilities, which we do not investigate
here, due to both the lack of high-resolution data and the very different transport systems and bio-
physical characteristics of the crops we pool in our analysis.

Fourth, the standard assumption of the competitive storage model—that farmers do not carry
over inventory—is strong. However, the most relevant empirical literature highlights that farmers’
decisions to sell or store grain are subject to liquidity constraints and heterogeneous price expecta-
tions. Investigating this issue in depth would require a separate and specific analysis based on a
totally different theoretical framework. It is worth recalling that such a parallel investigation would
not fundamentally alter the findings that pre-harvest prices are responsive to seasonal weather
shocks. Possible further empirical refinements would only help to better attribute such expectation
effects between farmers and traders, but would not alter the main message.

Despite these limitations, we believe that these preliminary results are a step in the right direc-
tion. Understanding how traders use weather information is essential for planning efficient policy
interventions for food security and climatic risk assessments and management. In the literature on
food prices and weather shocks, the emphasis is usually put only, or mostly, on the direct yield effect
that materializes at the time of the harvest as a supply shock. We show here that a substantial share
of this effect is already accounted for by traders when the actual yield information becomes available.
Traders incorporate expectations on future supply shortfalls and react accordingly, anticipating the
upward pressure on prices before the actual effect materializes. Neglecting the importance of this
pre-harvest channel can thus have non-trivial repercussions on the efficacy and design of food and
agricultural policies, especially in the implementation of early warning mechanisms. Specifically,
policymakers should calibrate early warning systems using updated estimates of these short-run
price elasticities to nowcast likely perturbations on market prices induced by weather anomalies in
the pre-harvest season.

Our findings are supported by sound theoretical underpinnings and are in line with the well-
established evidence on the key role played by market expectations in different domains of economic
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policy. They also complement recent literature on market anticipation of possibility future disruptive
events induced by climate change losses. As such, they call for a more comprehensive investigation
of the relationship between prices and weather shocks in agricultural commodity markets to shed
more light on the often neglected role played by economic agents’ expectations and relative implica-
tions for current policy design. In turn, this could also improve efforts to identify institutional and
other marketing-related interventions aimed at reducing traders’ forecast errors. These guidelines
appear to be particularly valid for India, where traders play a key role in the current mandi system,
and will likely become even more relevant in the near future, as the changes brought about by the
new set of reforms will further enhance the importance of anticipatory channels.
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