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Abstract: This study shows how the Theory of Functional Connections (TFC) allows us to obtain fast
and highly accurate solutions to linear ODEs involving integrals. Integrals can be constraints and/or
terms of the differential equations (e.g., ordinary integro-differential equations). This study first
summarizes TFC, a mathematical procedure to obtain constrained expressions. These are functionals
representing all functions satisfying a set of linear constraints. These functionals contain a free function,
g(x), representing the unknown function to optimize. Two numerical approaches are shown to
numerically estimate g(x). The first models g(x) as a linear combination of a set of basis functions,
such as Chebyshev or Legendre orthogonal polynomials, while the second models g(x) as a neural
network. Meaningful problems are provided. In all numerical problems, the proposed method
produces very fast and accurate solutions.

Keywords: Theory of Functional Connections; Ordinary Differential Equations; integro-differential
equations; Extreme Learning Machine; numerical methods

1. Introduction

This paper shows how to solve linear Ordinary Differential Equations (ODEs) and
linear Integro-Differential Equations (IDEs) using a new mathematical framework to per-
form functional interpolation, called Theory of Functional Connections (TFC). TFC derives
functionals, called constrained expressions, containing a free function and representing all
possible functions satisfying a set of linear constraints [1–4]. The most important feature of
the constrained expressions is: they always satisfy all the constraints no matter what the free
function is.

Although it was recently developed (2017), TFC has already found several applications,
especially in solving differential equations [5–8]. The free function can be expressed by
any set of linearly independent functions, such as an expansion of orthogonal polynomials
(e.g., Chebyshev, Legendre, etc.) or Neural Networks (NN), such as shallow NN with
random features, or Deep NNs (DNNs). When the free function is expanded by a set of
orthogonal polynomials the method is here identified as “classic TFC”. When shallow NNs
with random features are used, the method has been identified as Extreme-TFC (X-TFC)
[9], and when DNNs are used the method is called Deep-TFC [10].

The best expansion of the free function depends on the differential equation considered.
Usually, for linear/nonlinear ODEs and simple bivariate PDEs, orthogonal polynomials
represent the best choice in terms of accuracy. Indeed, orthogonal polynomials are generally
the best mathematical tools for approximating and for convergence properties [11,12].
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Nevertheless, for multivariate and more complex PDEs, orthogonal polynomials suffer the
“curse of dimensionality”. For these problems, NNs represent a better choice as they better
tolerate the curse of dimensionality.

In all previous applications, the free function has been expressed as a linear combina-
tion of known basis functions and unknown constant coefficients. These coefficients are
then estimated by least-squares for linear Differential Equations (DEs) [5] and by nonlinear
least-squares for nonlinear DEs [6]. The problems considered in this work will be solved
with classic TFC using Chebyshev orthogonal polynomials and X-TFC.

Note that X-TFC and Deep-TFC are also identified as Physics-Informed Neural Net-
works (PINN) frameworks [9]. PINNs are recently developed machine-learning methods
that employ NNs for data-physics-driven regression, data-physics-driven solution of DEs,
and data-physics-driven discovery of parameters governing DEs [13]. Since X-TFC and
Deep-TFC use NNs as free function, they are considered part of the PINNs family. Thanks
to the constrained expression, developed by TFC, both X-TFC and Deep-TFC are more
robust and accurate than the standard PINN frameworks as introduced by Raissi et al. [13].

TFC has been developed for univariate and multivariate scenarios [2,7,8] to solve a
variety of mathematical problems: a homotopy continuation algorithm for dynamics and
control problems [14], domain mapping [15], data-driven parameters discovery applied
to epidemiological compartmental models [16], transport theory problems such as radia-
tive transfer [17] and rarefied-gas dynamics [18], nonlinear programming under equality
constraints [19], Timoshenko–Ehrenfest beam [20], boundary-value problems in hybrid sys-
tems [21], eighth-order boundary value problems [22], and in Support Vector Machine [23].
TFC has been widely used for solving optimal control problems for space application,
solved via indirect methods [24]: orbit transfer and propagation [25–28], energy-optimal in
relative motion [29], energy-optimal and fuel-efficient landing on small and large planetary
bodies [30,31], the minimum time-energy optimal intercept problem [32].

The aim of this paper is to show how TFC can accommodate integral constraints in
linear differential equations and solve linear integro-differential equations, is organized as
follows. In Section 2, a summary of the TFC framework is provided, with the explanation
of how to derive constrained expressions. In Section 3, the application of TFC to solve
ODEs with integral constraints is shown, and some case problems are reported as examples.
In Section 4, the TFC framework is used to solve linear integro-differential equations.

In all test problems considered in this article, the results have been obtained using
MATLAB R2020a software on an Intel Core i7-9700 CPU PC with 64 GB of RAM. The results’
accuracy is provided in terms of the absolute error. That is,

err = |yTFC − ytrue|,

where yTFC is the TFC approximated solution, and ytrue is the true analytical solution.
Since the classic TFC uses Chebyshev or Legendre orthogonal polynomials as a basis

set, the final Appendix A provides a definition, orthogonality, derivatives, and integral
expressions and properties for both Chebyshev and Legendre orthogonal polynomials.

2. Theory of Functional Connections Summary

A mathematical generalization of interpolation, called Theory of Functional Connec-
tions, has recently been developed and successfully applied to solve, by least-squares,
initial, boundary, and multi-value problems of linear [5] and nonlinear [6] ODEs and
PDEs [8,10]. The theory has been developed for univariate [1] and multivariate rectangular
domains [2,8].

The generalization of interpolation consists of a mathematical procedure to obtain
analytical expressions describing all possible functions subject to n linear constraints. These
expressions are functionals that are called constrained expressions. Two formally equivalent
approaches [1,8] can be used to derive them. These are,
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y(x, g(x)) = g(x) +
n

∑
k=1

ηk(x, g(x)) sk(x), (1)

y(x, g(x)) = g(x) +
n

∑
k=1

φk(x, s(x)) ρk(x, g(x)), (2)

where n is the number of the linear constraints, g(x) is a function that can be freely chosen,
ηk(x, g(x)) are functional coefficients, s(x) = {s1(x), · · · , sn(x)} is a set of n user-defined
support functions that must be linearly independent (necessary conditions), φk are switching
functions, and ρk(x, g(x)) are projection functionals.

By imposing the n constraints to Equation (1), the values of the n functional coef-
ficients, ηk(x, g(x)), are obtained for some set of n user-assigned functions, sk(x). Once
the n functional coefficients, ηk(x, g(x)), are computed, by substituting them back into
Equation (1) we obtain the constrained expression. To give an example, using s1(x) = x
and s2(x) = x2, the constrained expression,

f (x, g(x)) = g(x) +
x (2x2 − x)
2(x2 − x1)︸ ︷︷ ︸

φ1(x)

( fx1 − gx(x1))︸ ︷︷ ︸
ρ1(x,g(x))

+
x (x− 2x1)

2(x2 − x1)︸ ︷︷ ︸
φ2(x)

( fx2 − gx(x2))︸ ︷︷ ︸
ρ2(x,g(x))

,

where the switching functions, φk(x), and projection functionals, ρk(x, g(x)), are identified,
always satisfies the two derivative constraints, fx(x1) = fx1 and fx(x2) = fx2, no matter
what g(x) is. In this article, the use of both formulations, provided by Equations (1) and (2),
will be shown.

The projection functional, ρk(x, g(x)), projects the free function, g(x), on the k-th
constraint. Here is an example of projection functionals associated to a set of constraints,

f (3) = 9
3 f (0)− f (2) = 0
f̈ (1) = −1

→


ρ1 = 9− g(3)
ρ2 = −3g(0) + g(2)
ρ3 = −1− g̈(1)

.

As for the switching functions, φk(x), they are expressed as a linear combination of a
set of support functions, s(x). These functions satisfy φk(x) = 1 when the k-th constraint
is verified and φk(x) = 0 when any other constraint is verified. For instance, given the
support functions,

s1(x) = x, s2(x) = ex, and s3(x) = sin x,

the switching functions are computed as φj(x) =
3

∑
i=1

αji si(x), where the αji coefficients are

computed by inverting the support matrix. For this example,α11 α12 α13
α21 α22 α23
α31 α32 α33

s1(3) 3s1(0)− s1(2) s̈1(1)
s2(3) 3s2(0)− s2(2) s̈2(1)
s3(3) 3s3(0)− s3(2) s̈3(1)

 =

1 0 0
0 1 0
0 0 1

.

Reference [4] presents, in detail, how to derive the TFC constrained expressions using
the formalism defined by Equation (2).

Constrained expressions have been used to solve differential equations. This is done
by expressing the solution using the TFC constrained expressions from Equation (1) or,
equivalently, from Equation (2). These functionals allow us to reduce the whole functions
space to only the functions subspace satisfying the constraints. This is particularly impor-
tant when solving differential equations. In fact, when substituting these functionals into
the DE, a new differential equation is obtained in terms of g(x). This new DE is subject to no
constraints because the constrained expression fully satisfies the constraints. The unknown
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free function, g(x), is then expressed as a linear combination of basis functions. In the
classic TFC, g(x) is a linear combination of orthogonal polynomials. That is,

g(x, ξ) =
m

∑
j=0

ξ j hj(x) = ξTh(x),

where m is the number of the basis functions hj(x) (orthogonal polynomials). In X-TFC,
g(x, ξ) is a shallow NN trained with Extreme Learning Machine (ELM) [33],

g(x, ξ) =
L

∑
j=1

ξ j σj
(
wj x + bj

)
= ξTσ(x) = ξT


σ1(x)

...
σL(x),


where L is the number of hidden neurons, wj ∈ R is the input weights vector connecting
the j-th hidden neuron and the input nodes, ξ j ∈ R with j = 1, · · · , L is the j-th output
weight connecting the j-th hidden neuron and the output node, and bj is the bias of the
j-th hidden neuron, σj(·) are activation functions, and σ = {σ1, · · · , σL}T. According to
the ELM algorithm [33], biases and input weights are randomly selected and not tuned
during the training, thus they are known hyper-parameters. The activation functions, σj(·),
are also known as they are user selected. Thus, the only unknown NN hyper-parameters
to compute are the output weights ξ = {ξ1, · · · , ξL}T. Therefore, for both classic TFC
and X-TFC, the unknown vector, ξ, which actually constitutes the only unknown of our
problem, is then estimated numerically, as for instance by least-squares for linear [5] and
nonlinear [6] differential equation s.

In general, the independent variable of the DE (for instance, time) is defined in the
t ∈ [t0, t f ] range, while the selected basis functions may be defined as a different range,
x ∈ [x0, x f ] (for instance, Chebyshev and Legendre orthogonal polynomials are defined in
the x ∈ [−1,+1]). Thus, a change of variable is needed. The most simple mapping between
these two variables is linear,

x = x0 +
x f − x0

t f − t0
(t− t0) ←→ t = t0 +

t f − t0

x f − x0
(x− x0). (3)

By setting the range ratio, c =
x f − x0

t f − t0
, the derivatives in terms of the new variable are

dk f
dtk = c k dk f

dxk , (4)

and the derivative constraints can be written as:

dk f
dtk

∣∣∣∣∣
ti

= f (k)ti
= c k dk f

dxk

∣∣∣∣∣
xi

= c k f (k)xi . (5)

The change of variable in integrals takes advantage from the fact that the mean value
is independent from the independent variable. Therefore,

1
t f − t0

∫ t f

t0

f (t) dt =
1

x f − x0

∫ x f

x0

f (x) dx → c
∫ t f

t0

f (t) dt =
∫ x f

x0

f (x) dx.

When expressing the free function as g(x, ξ) = ξTh(x), then, the derivatives of g(x, ξ)
can be written as:

dkg
dxk = ξT dkh

dxk and
dkg
dxk

∣∣∣∣∣
xi

= ξT dkh
dxk

∣∣∣∣∣
xi

.
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This procedure can be applied to linear differential equations with non-constant
coefficients. The final expression obtained is linear in terms of the unknown vector, ξ,
and can be written as:

aT(x) ξ = b(x). (6)

To solve the problem numerically, this new equation is discretized for a set of N distinct
values of x. A different discretization scheme can be used. Usually, the discretization
points are either randomly selected or linearly uniformly spaced. When using Chebyshev
polynomials the best discretization is to use the zeros of the Chebyshev polynomials, also
called Chebyshev points or nodes or, more formally, Chebyshev–Gauss points [12]. They
are defined by the cosine distribution,

xk = cos
(
(2k− 1)π

2N

)
for k = 1, · · · , N.

By specifying Equation (6) for these xk values a system of N linear equations is
obtained in m (or L) unknowns that is then solved for ξ by least-squares. Several least-
squares methods can be used to solve (6). The optimal least-squares method to use for each
problem depends on the problem itself and on what TFC technique is used to solve the
problem (e.g., in this paper, classic TFC or X-TFC). For instance, for the classic TFC and
linear DEs, our analysis identifies the QR decomposition on a scaled coefficient matrix as
the best approach minimizing the condition number of the matrix to invert.

3. TFC for ODEs with Integral Constraints

In this section, we show how TFC is applied to solve linear ODEs with integral
constraints. After showing how to derive the constrained expression when dealing with
a general integral constraint, we will solve a couple of linear ODEs subjects to boundary
conditions and integral constraints.

For the first two examples in this section, we will derive the constrained expression
by following the formulation of Equation (1). For subsequent examples and problems,
however, the second formulation, Equation (2), will be adopted.

3.1. Definite Integral Constraint

Let us consider the integral constraint,

∫ b

a
f (x) dx = I. (7)

The constrained expression has the form,

f (x, g(x)) = g(x) + η1 s1(x), (8)

where g(x) is a free function and s1(x) is a user-defined support function, and η1 is a
coefficient that is derived by imposing the constraint. By integrating Equation (8) the
following equation:

I =
∫ b

a
g(x) dx + η1

∫ b

a
s1(x) dx

is obtained, which can be rearranged to obtain the expression for η1,

η1 =
I −

∫ b

a
g(x) dx∫ b

a
s1(x) dx

.
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Substituting this value into Equation (8), we obtain a constrained expression for f (x),
that is, an expression that always satisfies the integral constraint for any expression of g(x),

f (x, g(x)) = g(x) +
s1(x)∫ b

a
s1(x) dx

(
I −

∫ b

a
g(x) dx

)
. (9)

This function becomes undefined when
∫ b

a
s1(x) dx = 0, and thus s1(x) must be

selected to avoid this condition. By simply selecting s1(x) = 1 Equation (9) becomes,

f (x, g(x)) = g(x) +
1

b− a

(
I −

∫ b

a
g(x) dx

)
.

3.2. Integral and Linear Constraints

In this second example, let us consider the more complex case where, in addition to the
integral constraint given in Equation (7), we also consider the additional linear constraints,

α f (x0) + β f (x f ) = 1,

where α, β, x0, and x f are all assigned. A sketch of this example is shown in Figure 1.

Figure 1. Integral and linear constraints example.

The constrained expression has the form,

f (x, g(x)) = g(x) + η1 s1(x) + η2 s2(x). (10)

Then, by applying the constraints the system of linear equations,1− α g0 − β g f

I −
∫ b

a
g(x) dx

 =

α s1(x0) + β s1(x f ) α s2(x0) + β s2(x f )∫ b

a
s1(x) dx

∫ b

a
s2(x) dx

{η1
η2

}
(11)

is obtained. This system tells us that s1(x) and s2(x) functions can be any functions with
the exception of those making the matrix singular. The matrix singularity occurs when(

α s1(x0) + β s1(x f )
) ∫ b

a
s2(x) dx =

(
α s2(x0) + β s2(x f )

) ∫ b

a
s1(x) dx.

For instance, by selecting s1(x) = 1 and s2(x) = x, the previous condition becomes,

(α + β)(b + a) = 2(α x0 + β x f )

which imply that, in order to avoid singularity, the following relationship must be satisfied,

{
α, β

}{b + a− 2αx0
b + a− 2βx f

}
6= 0.
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When this condition is satisfied, the matrix of Equation (11) can be inverted and the
coefficients, η1 and η, can be computed. Then, the constrained expression for this problem
is obtained by substituting the expressions found for η1 and η2 in Equation (10).

Problem #1

Now, let us consider the following DE to be solved on the t ∈ [0, π] range, with a
constraint in the form of an integral over the integration range,

f̈ + f = 0 subject to:


f (0) = 1∫ π

0
f (t) dt = π

,

whose analytical solution is

f =
π

2
sin t + cos t.

In this problem, we build the constrained expression according to the formulation of
Equation (2), where the projection functionals ρk(x, g(x)) are given byρ1 = 1− g0

ρ2 = π −
∫ π

0
g(t) dt

.

Given the support functions,

s1(t) = 1, and s2(t) = t,

the switching functions are computed as φj(t) =
2

∑
i=1

αji si(t), where the αji coefficients are

computed just by inverting a matrix. For this problem,

[
α11 α12
α21 α22

]s1(0)
∫ π

0
s1(τ) dτ

s2(0)
∫ π

0
s2(τ) dτ

 =

[
1 0
0 1

]
.

Then, the constrained expression can be built as:

f (t, g(t)) = g(t) + φ1(t)(1− g0) + φ2(t)
(

π −
∫ +π

0
g(τ) dτ

)
,

where the switching functions are

φ1(t) =
π − 2t

π
and φ2(t) =

2t
π2 .

Now, expressing the free function according to g(t, ξ) = ξTh(x(t)) the terms of the
DE become:

f (x, ξ) =

{
h(x)− φ1(x)h0 − φ2(x)

1
c

∫ 1

−1
h(x) dx

}T

ξ + φ1(x) + πφ2(x)

f̈ (x, ξ) = c2 ḧ(x)Tξ,

where the boundary conditions have been mapped to x ∈ [x0, x f ]. For classic TFC x ∈
[−1,+1], and for X-TFC x ∈ [0, 1] according to Equations (3)–(5). The mapping coefficient

is c =
x f − x0

t f − t0
.
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With the function now expressed in terms of ξ the differential equation can now be
transformed into a function of ξ,{

c2 ḧ(x) + h(x)− φ1(x) h0 − φ2(x)
1
c

∫ 1

−1
h(x) dx

}T

ξ = −φ1(x)− πφ2(x).

This equation can then be specified for a discrete values of x. This discretization yields
to an over-determined linear system that can be solved by least-squares.

A ξ = b → ξ = (ATA)−1AT b. (12)

In this example, using n = 100 and m = 20, the classic TFC was executed with a
computational time is of O

(
10−4) s, the average absolute error on the discretization points

is ofO
(
10−16), the variance of the absolute error on the discretization points is ofO

(
10−16).

For X-TFC, we set the following hyper-parameters n = 100, L = 100, Gaussian activation
function, input weight and bias were sampled from U [−10,+10] . The computational
time is of O

(
10−4) s, the average absolute error on the discretization points is of O

(
10−16),

the variance of the absolute error on the discretization points is ofO
(
10−16). Table 1 reports

the absolute error with respect to the analytical solutions obtained with classic TFC and
X-TFC on 11 points uniformly distributed in the [0, 1] range.

Table 1. Absolute errors on uniform test points for problem #1.

t/π TFC X-TFC

0.0 0.0 0.0
0.1 0.0 2.22× 10−16

0.2 0.0 2.22× 10−16

0.3 0.0 0.0
0.4 0.0 0.0
0.5 0.0 0.0
0.6 4.44× 10−16 4.44× 10−16

0.7 1.11× 10−16 2.22× 10−16

0.8 6.66× 10−16 0.0
0.9 1.66× 10−16 2.77× 10−16

1.0 2.22× 10−16 6.66× 10−16

3.3. Mixed Constraints

Consider a function subject to a value-level, relative, and integral constraint,

f (t1) = f1, f (t0) = f (t f ), and
1

t f − t0

∫ t f

t0

f (τ) dτ = I.

By using Equation (2), the constrained expression has the form,

f (t, g(t)) = g(t) + φ1(t) ρ1(t, g(t)) + φ2(t) ρ2(t, g(t)) + φ3(t) ρ3(t, g(t))

where the projection functionals, ρk(t, g(t)), are given by
ρ1 = f1 − g(t1)

ρ2 = g(t f )− f (t0)

ρ3 = I − 1
t f − t0

∫ t f

t0

g(τ) dτ

.
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Given the support functions,

s1(t) = 1, s2(t) = t, and s3(t) = t2

the αji coefficients of the switching functions, φj(t) =
3

∑
i=1

αji si(t), are computed by inverting

the support matrix. Specifically,

α11 α12 α13
α21 α22 α23
α31 α32 α33




s1(t1) s1(t0)− s1(t f )
1

t f−t0

∫ +π
−π s1(τ) dτ

s2(t1) s2(t0)− s2(t f )
1

t f−t0

∫ +π
−π s2(τ) dτ

s3(t1) s3(t0)− s3(t f )
1

t f−t0

∫ +π
−π s3(τ) dτ

 =

1 0 0
0 1 0
0 0 1

.

Once the φj(t) are known, the constrained expression can be obtained as:

f (t, g(t)) = g(t) + φ1(t) ( f1 − g(t1)) + φ2(t)
(

f (t f )− g(t0)
)
+

+ φ3(t)

(
I − 1

t f − t0

∫ t f

t0

g(τ) dτ

)
.

Problem #2

As an ultimate “stress-test” of the TFC method, a mixed-constraint case is considered
where point, relative, and integral constraints are used in the solution of a differential
equation, on the range t ∈ [−π, π]

...
y + sin t ÿ + (1− t)ẏ + ty = f (t) subject to:



y(t0) = 0

y(t f ) = y(t0)∫ +π

−π
y(τ) dτ = −2π

where the forcing term is

f (t) = (t− 1) sin2 t + (2 + 2t− t2 − 2 cos t) sin t + t(t− 1) cos t.

This problem admits the analytical solution,

y = (1− t) sin t.

Following the procedure explained, the constrained expression for this problem is,

y(t, g(t)) = g(t) + φ1(t)(−g0) + φ2(t) (−g f ) + φ3(t)
(
−2π −

∫ +π

−π
g(τ) dτ

)
,

where the αji coefficients of the switching functions φj(t) =
3

∑
i=1

αji si(t) are computed by

solving the following system:

α11 α12 α13
α21 α22 α23
α31 α32 α33




s1(t0) s1(t f )
∫ +π

−π
s1(τ) dτ

s2(t0) s2(t f )
∫ +π

−π
s2(τ) dτ

s3(t0) s3(t f )
∫ +π

−π
s3(τ) dτ

 =

1 0 0
0 1 0
0 0 1

.
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Now, expressing the free function according to g(t) = ξTh(x(t)) and rearranging
terms leads us to the final constrained expression,

y(x, ξ) =

{
h(x)− φ1(x) h0 − φ2(x) h f − φ3(x)

1
c

∫ x f

x0

h(x) dx
}T

ξ − 2π φ3(x),

and by substituting this constrained expression into the differential equation (by evaluating
its derivatives accordingly), we obtain a linear system that can be solved by least-squares
using Equation (12).

Even in this case, the differential equation and boundary conditions must be mapped
onto x ∈ [x0, x f ]. For classic TFC x ∈ [−1,+1], and for X-TFC x ∈ [0, 1] according to

Equation (3), where the mapping coefficient is c =
x f − x0

t f − t0
.

For classic TFC we set n = 35 and m = 30. The computational time is of O
(
10−4) s,

the average absolute error on the discretization points is of O
(
10−15), the variance of the

absolute error on the discretization points is of O
(
10−30). For X-TFC we set the following

hyper-parameters n = 40, L = 40, sinusoidal activation function, input weight and bias
were sampled from U [−20,+20] . The computational time is of O

(
10−4) s, the average

absolute error on the discretization points is of O
(
10−15), the variance of the absolute error

on the discretization points is of O
(
10−30).

3.4. Discussions

The results from these two problems emphasize the utility and convenience of using
TFC. Once the constrained expression is defined, the method to solving the differential
equation does not change regardless of the use of different constraints. Moreover, this
makes the solution accuracy only dependent on the problem complexity. Finally, once the
solution is computed (on the discretization points), we have an analytical representation of
it. That is, no further manipulations are needed (e.g., interpolation) if we want to evaluate
the solutions in points that are different from the discretization points. Indeed, as shown in
the results of both problems we do not lose any accuracy when evaluating the solution on
test points, as it would happen with some other state-of-the-art methods such as the Finite
Element Method (FEM) [34].

4. TFC for Linear Ordinary Integro-Differential Equation

In this section we show how TFC is applied to solve linear ordinary Integro-Differential
Equations (IDEs) using all constrained expressions derived from the formalism of Equation (1).

As first test problem, the linear Fredholm integro-differential equations is considered.
Comparisons of the numerical results obtained with TFC, X-TFC, and the method published
in Ref. [35] are presented.

4.1. Problem #1

Consider the following integro-differential equation:

ẏ(x) = 1− 1
3

x + x
∫ 1

0
τ y(τ) dτ

with one constraint y(0) = 0, for x ∈ [0, 1]. The analytical solution is y(x) = x. The con-
strained expression for this problem is simply

y(x, ξ) = (h(x)− h0)
Tξ,

where h0 is the vector of the basis function computed at x = 0.
For classic TFC n = 100 discrete points and m = 29 basis functions were used.

The computational time is of O
(
10−4) s, the average absolute error on the discretization
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points is of O
(
10−5), and the variance of the absolute error on the discretization points is

of O
(
10−9). For X-TFC the hyper-parameters were set to n = 20, L = 20, the activation

function was sinusoidal, and the input weight and bias were sampled from U [−1,+1].
The computational time obtained was of O

(
10−4) s, the average absolute error on the

discretization points of O
(
10−4), the variance of the absolute error on the discretization

points of O
(
10−8). The absolute errors obtained with classic TFC and X-TFC on 10 test

points are reported in Figure 2 and compared with those reported by Ref. [35].

Figure 2. Absolute error on test points for problem #1.

4.2. Problem #2

The second test problem is on the following integro-differential equation:

ẏ(x) = x ex + ex − x + x
∫ 1

0
y(τ) dτ,

with one constraint y(0) = 0, for x ∈ [0, 1]. The analytical solution is y(x) = xex. Also for
this this problem the constrained expression is

y(x, ξ) = (h(x)− h0)
Tξ.

For classic TFC n = 25 discretization points and m = 14 basis functions were adopted.
The computational time obtained is of O

(
10−4) s, the average absolute error on the dis-

cretization points is ofO
(
10−16), and the variance of the absolute error on the discretization

points is of O
(
10−32). For X-TFC the hyper-parameters were set to n = 50, L = 50, the acti-

vation function was the hyperbolic tangent, and the input weight and bias were sampled
from U [−1,+1]. The computational time is of O

(
10−4) s, the average absolute error on

the discretization points is of O
(
10−14), and the variance of the absolute error on the

discretization points is of O
(
10−27). The absolute errors on the test points obtained with

classic TFC and X-TFC, are reported in Figure 3 and compared with those reported by
Ref. [35].
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Figure 3. Absolute error on test points for problem #2.

4.3. Problem #3

The last test problem is a second-order integro-differential equation,

ÿ(x) = ex − x + x
∫ 1

0
τ y(τ) dτ,

subject to the initial value problem, y(0) = 1 and ẏ(0) = 1, where x ∈ [0, 1]. The analytical
solution is y(x) = ex. The constrained expression for this problem is:

y(x, ξ) =
(
h(x)− h0 − x ḣ0

)T
ξ + x + 1.

To solve this problem, the classic TFC required n = 9000 points and m = 1000 basis
functions. The computational time was of O(1) second, the average absolute error on
the discretization points was of O

(
10−5), and the variance of the absolute error on the

discretization points was of O
(
10−10). For X-TFC the setting was n = 90 and L = 94

hyper-parameters, hyperbolic sine activation function, and input weight and bias were
sampled from U [−1,+1]. The computational time was of O

(
10−4) s, the average absolute

error on the discretization points of O
(
10−4), and the variance of the absolute error on

the discretization points of O
(
10−7). The absolute errors on the test points obtained with

classic TFC and X-TFC, are reported in Figure 4 and compared with those reported by
Ref. [35].
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Figure 4. Absolute error on test points for problem #3.

4.4. Discussions

The discussions made for the linear ODE subjects to integral constraints are also valid
for linear ordinary integro-differential equations. Nevertheless, the attentive reader will
notice that there is a significant difference in terms of accuracy among problems 1 and 3
compared to problem 2. This is due to the fact that the kernels in the integral terms of
the equations are different than one for problems 1 and 3 (e.g., for the both problems the
kernel is t). This can have a negative impact on the solution accuracy as the function to be
integrated can become very complex, and this can lead to numerical issues. For instance,
when classic TFC is used in problems 1 and 3, where the kernel is simply t, the coefficients
in front of the integrated polynomials become enormous as the number of basis functions
(e.g., the degree of the Chebyshev polynomials) reaches above ten, causing numerical
issues that impact negatively on the accuracy. Moreover, in many real world applications,
such as in radiative transfer equation [17,36], the kernel can be very complex, making the
analytical evaluation of the integral prohibitive.

The are several ways of mitigating these issues that are worth exploring. For instance,
the integral could be evaluated with a Gauss-quadrature scheme or with a Monte Carlo
method. The authors of this manuscript are investigating the possibility of evaluating the
integral numerically using NNs. However, the investigation of different ways to overcome
these limitations is not the focus of this work, and it will be explored by the authors in
future papers.

5. Conclusions

This study presents an extension of the least-squares solution of linear differential
equations studied in an earlier publication [5]. This paper aims to explore solutions using
different boundary constraints including multi-valued, relative, and integral constraints for
linear ordinary differential equations and for linear ordinary integro-differential equations.
In all problems, a constrained expression is used to embed the constraints. This allows the
integration range to be independent from the constraints location. In these expressions,
the free function g(x) was expressed as a linear combination of known basis functions and



Math. Comput. Appl. 2021, 26, 65 14 of 17

unknown constant coefficients ξ, either using Chebyshev polynomials, or shallow NNs
for the X-TFC framework. Expressing g(x) as a linear combination of basis functions and
constant coefficients, the coefficient vector ξ remains linear and is solved by using a least-
squares method. While this paper only solves linear differential equations as a test case,
the proposed methodology can easily be extended to nonlinear differential equations by
replacing the least-squares method with a nonlinear least-squares technique as introduced
in prior research [6].

For all cases explored, the classic TFC and X-TFC methods consistently produce very
fast and accurate solutions. Additionally, for all problems, the constraints are analytically
satisfied since they are integrated into the constrained expression. In general, this means that
the TFC methods decouple the constraints from the solution of the differential equation.
Due to this, the solution range of the differential equation and, where the constraints are
specified, is independent. This fact makes the TFC method a unified framework to solve
differential equations with no more distinctions between the initial and boundary values
problems, as well as any other constraints distribution problem.

Appendix A. Chebyshev and Legendre Orthogonal Polynomials

This appendix provides compact summaries of Chebyshev, Tk(x), and Legendre,
Lk(x), orthogonal polynomials, which are defined in the xß[−1,+1] range. These are:

Appendix A.1. Definition

Starting with T0 = L0 = 1 and T1 = L1 = x these orthogonal polynomials can be
conveniently defined recursively,

Tk+1 = 2 x Tk − Tk−1 and Lk+1 =
2k + 1
k + 1

x Lk −
k

k + 1
Lk−1

and, specifically (∀k),

Tk(−1) = Lk(−1) = (−1)k and Tk(+1) = Lk(+1) = 1.

Appendix A.2. Orthogonality

The orthogonality is provided by the following integrals,

∫ +1

−1
Ti(x) Tj(x)

dx√
1− x2

=


0 if i 6= j
π if i = j = 0
π/2 if i = j 6= 0∫ +1

−1
Li(x) Lj(x) dx =

2
2j + 2

δij.

Appendix A.3. Derivatives

All derivatives of Chebyshev orthogonal polynomials can also be computed recur-
sively. Starting from,

dT0

dz
= 0,

dT1

dz
= 1, and

ddT0

dzd =
ddT1

dzd = 0 (∀ d > 1),

the subsequent derivatives can be computed by:

ddTk+1

dzd = 2

(
d

dd−1Tk

dzd−1 + z
ddTk

dzd

)
− ddTk−1

dzd (k ≥ 1, ∀ d ≥ 1).
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The derivatives of Legendre orthogonal polynomials can also be computed recursively.
Starting from,

dL0

dz
= 0,

dL1

dz
= 1, and

ddL0

dzd =
ddL1

dzd = 0 (∀ d > 1),

the subsequent derivatives can be computed by,

ddLk+1

dzd =
2k + 1
k + 1

(
d

dd−1Lk

dzd−1 + z
ddLk

dzd

)
− k

k + 1
ddLk−1

dzd (k ≥ 1, ∀ d ≥ 1).

Appendix A.4. Integral

• Chebyshev indefinite.∫ x

−1
T0(z) dz = x + 1,

∫ x

−1
T1(z) dz =

1
2
(
x2 − 1

)
,

then →
∫ x

−1
Tk(z) dz =

k Tk+1

k2 − 1
− x Tk

k− 1

• Chebyshev full range.

∫ +1

−1
Tk(x) dx =


0 for k odd

(−1)k + 1
1− k2 for k even

• Chebyshev internal range (−1 ≤ a < b ≤ +1)

∫ b

a
Tk(x) dx =

k
[
Tk+1(b)− Tk+1(a)

]
k2 − 1

− b Tk(b)− a Tk(a)
k− 1

• Legendre indefinite.∫ x

−1
L0(z) dz = x + 1,

∫ x

−1
L1(z) dz =

1
2
(
x2 − 1

)
,

then →
∫ x

−1
Lk(z) dz =

Lk+1(x)− Lk−1(x)
2k + 1

• Legendre full range.

∫ +1

−1
L0(x) dx = 2 and

∫ +1

−1
Lk(x) dx = 0, ∀ k 6= 0.

• Legendre internal range (−1 ≤ a < b ≤ +1)

∫ b

a
Lk(x) dx =

Lk+1(b)− Lk+1(a) + Lk−1(a)− Lk−1(b)
2k + 1

.
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