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Abstract

The large displacements caused by strong earthquakes in base-isolated structures (building, bridges, strategic facilities, equipment,
. . . ) can excessively deform or damage the isolation system or lead to pounding with surrounding moat walls or adjacent structures,
if the available seismic gap is not sufficient. The acceleration spikes caused by the impact can damage the structure itself as well
as sensitive equipment housed in it. A possible mitigation measure consists in the interposition of deformable shock absorbers
(bumpers). In this paper, the influence of the gap amplitude on the experimental response of a single-degree-of-freedom oscillator,
excited by a harmonic base acceleration and symmetrically constrained by two unilateral deformable and dissipative bumpers,
is investigated. The parametric investigation considered both positive, null and negative gaps. Particular attention is paid to the
study of the effect, on the system response, of the transition from positive to small negative gaps and of excessive negative gaps.
Secondary resonances in the low frequency range, associated with the occurrence of multiple impacts, were observed for small
positive gaps. Finally, the experimental results were reproduced, in a sufficiently accurate manner, using a suitable numerical
model, whose parameters were identified based on the experimental data.

Keywords: Small and negative gaps, Primary and secondary resonances, Right and left hysteresis, Multiple impacts, Shaking
table tests, Numerical model

1. Introduction

The impact phenomenon is ubiquitous in many (biomedical,
mechanical, civil, ) engineering applications involving mechan-
ical components or structures repeatedly colliding with one an-
other or with obstacles. Some examples are represented by the
capsule systems used in clinic endoscopy to inspect the surface
lining of the intestine in the human body [1–6] and the drilling
rig used in the oil and gas industry for creation of the wells
[7–13]. In the context of civil engineering, base isolation repre-
sents one of the most applied passive control strategies to mit-
igate the dynamic response of both new and existing structures
[14–17], bridges [18–20], strategic facilities [21, 22], nonstruc-
tural elements and equipment [23–27]. The aim of base iso-
lation is to uncouple the motion of the structure from that of
the ground by introducing some type of support that isolates
it from the shaking ground, thus limiting the energy input into
the system and protecting it from damaging. The flexibility in-
troduced by base isolation increases the fundamental vibration
period of the structure. The occurrence of exceptional loads,
like strong earthquakes, can produce large horizontal displace-
ments in base-isolated structures, concentrated in the isolation
system, which can damage the isolation system itself or can
lead to pounding with the surrounding moat walls or adjacent
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structures [28–30], if the available seismic gap is not sufficient.
A possible mitigation measure consists in the interposition of
deformable shock absorbers (bumpers) [31–33]. On the one
hand, the introduction of the bumpers limits the displacement
of the structure; on the other, the possible occurrence of the im-
pact with the bumpers can produce acceleration spikes which
can be detrimental, not only for the structure itself, but also for
any sensitive equipment housed in it. Furthermore, the occur-
rence of impact can excessively deform the bumpers. In order
to limit the response of the base-isolated system, so as to avoid
the damage of the isolation system, also other types of control
systems can be implemented [34–37].

The nonsmooth dynamics of systems with one-sided or two-
sided constraints, the types of impact motion, attractors and bi-
furcations, have been the subject of several scientific works, of
both numerical and experimental nature [38–53]. The effect
of the introduction of the obstacle on the system response de-
pends on several factors, including the mechanical properties
of the bumpers and the distance between them and the struc-
ture (gap). As concerns the influence of the gap size, few works
can be found in Literature, usually dealing with positive gaps.
In these works the response is found to decreases as the gap
increases [31, 54–57]. Very small seismic gaps, in combina-
tion with strong ground excitation, can lead to relatively milder
consequences from pounding, not allowing the structure to de-
velop high velocities before the impact [56, 57]. According
to Jankowski et al. [18] the optimal gap size to reduce the
response is either a very small one or large enough to avoid
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collisions. The zero-gap configuration was recommended by
Aguiar and Weber [58], since it allows to maximize the im-
pact force in a vibro-impact system without the occurrence of
nonlinear jumps. Even less are the works that deal with neg-
ative gaps, which cause an initial pre-stress/pre-strain state in
the bumpers. Relatively simpler dynamic responses of a two-
degree-of-freedom periodically-forced system are found in [59]
if the constraints are initially prepressed. The effect of the in-
troduction of a prepressing constraint in a capsule system was
highlighted in [5].

The practical problem of excessive displacements in base-
isolated structures inspired several works of the authors, of both
numerical and experimental nature, in which a single-degree-
of-freedom oscillator, impacting against two deformable and
dissipative bumpers, was considered [60–68]. Some of the
scenarios which can occur in the experimental nonlinear non-
smooth response of the system were identified and described
in [68]. These scenarios were also reproduced with a suitable
numerical model. Further numerical investigations highlighted
the existence of gradually more complex and varied behaviors,
that could be observed for values of the gap smaller than those
considered in the experimental laboratory campaign [68]. Fur-
thermore, the combination of small gaps with quite deformable
bumpers appeared to be a good choice which allows to realize,
compared to the free flight condition, a reduction of both ac-
celerations and displacements or a good compromise between
reduction of displacements and limited increase in accelerations
[64].

Based on these preliminary results, a new laboratory cam-
paign was designed and conducted to investigate, in particu-
lar, small positive, null and negative values of the gap and to
validate the numerical predictions. The experimental investi-
gation of small positive, null and negative gaps represent an
element of novelty of this laboratory campaign. Furthermore,
compared to the previous experimental investigations made by
the authors, impact load cells were installed between the mass
and the bumpers, to directly measure the contact force during
the impact phases. In this paper some results of the new labo-
ratory campaign will be presented and discussed. The attention
is focused of the influence of the gap amplitude on the system
(mass and bumpers) response, especially when passing from
small positive to small negative gaps and when the negative gap
exceeds a certain threshold value. For small positive gaps, sec-
ondary resonances in the low frequency range were observed
and the response of the system at these resonances was inves-
tigate. Based on the experimental results, the parameters of a
relatively simple numerical model were identified in order to
reproduce the experimental outcomes. Although several scien-
tific works deal with the problem of impact, there are not many
studies that address, in such a systematic way, the study of the
influence of the gap on the dynamic response of the system, ex-
tending the investigations also to small positive, null and nega-
tive gaps.

The paper is organized as follows. The experimental setup is
introduced in Sect. 2; some experimental results are presented
and discussed in Sect. 3; the transition from positive to small
negative gaps, the effect of excessive negative gaps and the

characteristics of the system’s response at the secondary res-
onances are investigated in Sect. 4; the numerical model and
the comparison between experimental and numerical results are
presented in Sect. 5; finally, concluding remarks and future de-
velopments of the work are given in Sect. 6.

2. Experimental setup and performed tests

The experimental setup, shown in Fig. 1, consists of a rigid
body (mass M = 550 kg), an elastomeric high damping rub-
ber bearing (HDRB) isolator (damper), and two elastomeric
shock absorbers (bumpers), symmetrically mounted on steel
moat walls, denoted as right (BR) and left (BL) bumper respec-
tively. The experimental tests investigated two configurations,
namely with and without bumpers (the latter will be referred
to as free flight condition), under the same base excitation. To
study the response of the system in the presence of obstacles, an
elastomeric bumper with D-shape hollow section, in the follow-
ing denoted as B2, was tested (see the photograph in the bottom
right corner of Fig. 1).

By adjusting the screws behind the plates on which the
bumpers are mounted, the distance between the mass and the
bumpers (gap) was varied. The gaps considered in the exper-
imental tests were denoted as: G∞, G30, G16, G10, G4, G0,
G-1, G-2, G-10, where the number, expressed in mm, repre-
sents the nominal amplitude of the total gap G, defined as the
sum of the right and left gaps and G∞ indicates the free flight
condition. It is worth noting that in the experimental tests, as
far as possible, an attempt has been made to achieve a gap equal
to the nominal value. The negative gaps (G-1, G-2, G-10) were
realized by initially compressing the bumpers against the mass,
leading to an initial pre-stress/pre-strain state in the bumpers.
The investigation of small positive, null and negative gaps rep-
resents one of the novelty elements of this laboratory campaign,
compared to previous tests and works of the authors.

The experimental tests were carried out in the Materials
and Structures Testing Laboratory of the Department of Struc-
tural and Geotechnical Engineering of “Sapienza” University
of Rome, using a uni-axial shaking table Moog 1.50 × 1.50
m, managed by Moog Replication Software. The system was
excited at the base by a step-wise forward and backward sine
sweep in displacement control, in order to impose a given value
of peak table acceleration, namely A = 0.05 g, where g is the
gravity’s acceleration, with a number of cycles n, in each sub-
frequency range, such as to reach the steady state condition.
For positive gaps (G > 0), the investigated frequency range was
between 0.5 and 5 Hz, with frequency step ∆ f = 0.1 Hz and
n = 10. For G ≤ 0, the investigated frequency range was ex-
tended from 0.5 to 10 Hz, with frequency step ∆ f = 0.1 Hz and
n = 10. In some cases, especially for small positive gaps (G10
and G4), in order to better capture the experimental response of
the system in the low frequency range, the frequency step ∆ f
and the number of cycles n were varied, depending on the per-
formance of the shaking table, as it will be illustrated in more
detail in Sect 4.3.

The measured quantities during the tests were the total accel-
erations and displacements of the mass and of the shaking table
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Figure 1: Experimental setup: a plan view and b side view with indication of the main components and sensors. The zoomed areas show two photographs with
details of the impact load cells, enclosed by red squares.

and the contact forces between mass and bumpers. The acceler-
ations were measured by accelerometers and the displacements
by laser transducers (Fig. 1). The forces developed during the
contact phases between mass and bumpers were measured by
four impact load cells, symmetrically mounted on the mass, two
on each side (see the two zoomed areas in Fig. 1). Between the
impact load cells and the bumpers, steel plates were mounted
to distribute the impact force. The use of impact load cells,
in addition to the other sensors, represents another novelty el-
ement of this laboratory campaign, compared to previous tests
and works of the authors.

3. Experimental Results

The total gap amplitude G influences the system response,
as shown in Fig. 2, in terms of forward (red lines and dots)
and backward (blue lines and dots) Pseudo-Resonance Curves
(PRCs). Each PRC corresponds to an experimentally tested
value of G. The size of the dots and the thickness of the lines
decrease as G decreases. In Fig. 2a,b the green curves refer to
the free flight condition (also referred to as G∞ in the legend).

The represented response quantities are the normalized ex-
cursion of the relative displacement of the mass ηd (Fig. 2a), the
normalized excursion of the absolute acceleration of the mass
ηa (Fig. 2b), the normalized maximum deformation η j (Fig. 2c)
and maximum contact force r j (Fig. 2d) of the right (BR) and
left (BL) bumpers respectively ( j = R, L). These quantities are

defined as follows:

ηd =
Ed

Ed0
=

umax − umin

2u∗
(1a)

ηa =
Ea

Ea0
=

amax − amin

2a∗
(1b)

η j =
u j,max

u∗
( j = R,L) (1c)

r j =
F j,max

Mg
( j = R,L) (1d)

In the first three cases (Eqs. 1a-c), the normalization was
made with respect to the free flight resonance condition (u∗ and
a∗ denote the maximum relative displacement and absolute ac-
celeration of the mass in free flight resonance condition). As
concerns the contact force F j ( j = R, L), it is normalized with
respect to the weight Mg of the impacting mass (Eq. 1d).

From Fig. 2 it can be observed that, for G > 0, compared to
the free flight condition (green curves), the hardening caused
by the impact between the mass and the bumpers bends the
PRCs to the right, causing the occurrence of jumps (repre-
sented with vertical arrows for G4), and thus of a primary
right hysteresis (highlighted in yellow). Referring to the pri-
mary resonance condition, it can be observed that, progres-
sively approaching the bumpers to the mass, that is decreasing
G, the movement of the mass is increasingly limited and, con-
sequently, the maximum value of ηd decreases (Fig. 2a). On
the other hand, the maximum acceleration, after an initial in-
crease, starts to decrease (Fig. 2b). Furthermore, as highlighted
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Figure 2: Forward (red) and backward (blue) PRCs of: a ηd; b ηa; c η j ( j = R, L) and d r j ( j = R, L) for different values of the total gap amplitude G. In a and b,
the free flight condition (G∞) is represented with green curves.

by previous numerical investigations [68], for quite small gaps
(G10 and G4) secondary resonances in the low frequency range
were observed, and the number of secondary resonances was
found to increase decreasing G. As concerns the two bumpers
(Figs. 2c,d), it can be observed that the PRCs of the normal-
ized deformation η j and contact force r j corresponding to the
to bumpers (BR, above the frequency axis and BL, below the
frequency axis) are qualitative similar to each other, due to the
mostly symmetric behavior of the studied system. The trends
of both the deformation (Fig. 2c) and the contact force (Fig. 2d)
for decreasing positive gaps are similar to that of the accelera-
tion of the mass (Fig. 2b). The jumps, the right hysteresis and
the secondary resonances, are still visible also in these curves.
Compared to the PRCs of ηd and ηa, for G > 0, the PRCs of η j

and r j ( j = R, L) are zero at the frequency values for which the
impact does not occur.

The situation returns to be smooth for bumpers initially more
or less in contact with the mass (G ' 0), with the forward and

the backward PRCs, of both ηd, ηa, η j and r j ( j = R, L) substan-
tially overlapped, the resonance shifted to higher frequencies
(about 4.8 Hz) and without jumps or hysteresis. As concerns
the bumpers, since now impact occurs for each frequency value
and consequently, the PRCs of η j and r j ( j = R, L) are always
different from zero.

For small negative gaps (G-1), obtained by initially slightly
compressing the bumpers against the mass, the PRCs bend to
the left, due to a softening-like behavior, showing jumps (repre-
sented with vertical arrows) and a primary left hysteresis (high-
lighted in cyan). The left hysteresis is observed in the PRCs of
both ηd, ηa, η j and r j ( j = R, L). The initial pre-stress/pre-strain
state of the bumpers, resulting from the negative gaps, causes
an offset of the PRCs of η j (Fig. 2c) and r j (Fig. 2d) ( j = R,
L) from the frequency axis. Consequently, as in the G' 0 case,
these curves are always different from zero.

By further compressing the bumpers against the mass (G-2
and G-10), the PRCs are no longer bent, show neither jumps
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Figure 3: Force-displacement cycles in steady-state primary resonance condition corresponding to the investigated values of the total gap G: a mass; b bumpers.

nor hysteresis and the resonance is shifted to higher frequen-
cies (about 7.5 Hz). Furthermore, while the PRCs of ηd and ηa
corresponding to these two values of the gap are substantially
overlapped, those of η j and r j ( j = R, L) are similar but appear
to be shifted with respect to each other, with the extent of the
shift related to initial pre-stress/pre-strain state caused by the
negative gap.

The effect of the gap amplitude G on the system response
can be seen also from Fig. 3, in which the force-displacement
cycles, in steady-state primary resonance condition, are repre-
sented, for both the mass (inertia force FI vs. relative displace-
ment u of the mass, Fig. 3a) and the two bumpers (contact force
F j vs. position v j of the bumper, j = R, L, Fig. 3b). The po-
sition of the extremity of the bumper v j ( j = R, L) is mea-
sured from the side of the mass at time t = 0 s, as shown, in
the schematic representations in Fig. 4, which refer to the right
bumper ( j = R). The position v j is related to the deformation
u j, the latter used for the calculation of η j, through the expres-
sion v j = u j + G0 j, where G0 j ( j = R, L) represents the initial
distance (gap) between the mass and the j-th bumper.

Figure 4: Graphical representation of the relationship between bumper’s defor-
mation u j and position v j for j = R (right bumper) and considering a positive,
b null and c negative initial gaps. The dashed black lines represent the initial
configuration of the system.

In Fig. 3 each color corresponds to a gap amplitude G and
the vertical dashed lines represent the initial position of the
bumpers for G > 0. Through these representations it is possible

to see, in the same figure, the evolution of both the forces and
the displacements with the amplitude of the gap. From Fig. 3a
it is possible to observe both the increment of stiffness (hard-
ening), which occurs when the mass impacts the bumper, for
G ≥ 0, and the decrease in stiffness (softening) for small neg-
ative gaps (G-1, light orange curve). For negative gaps beyond
a certain value (G-2 and G-10), the response of the mass does
not vary significantly and the FI-u cycles are substantially over-
lapped, though they are not quite the same, as it will be said in
the following section. On the contrary, the pre-stress state in-
duced in the bumpers by the negative gap causes the F j-v j ( j =

R, L) cycles to move away from the x-axis (Fig. 3b).
The behavior of the system for small positive, null and neg-

ative values of the gap will be discussed in more detail in the
following Sect. 4.

4. Insights

In this section the attention is focused on the range of small
positive, null and negative gaps. Starting from Fig. 5, in which
only the PRCs corresponding to G4 (black lines and dots), G0
(red lines and dots), G-1 (blue lines and dots), G-2 (light green
lines and dots) and G-10 (dark green lines and dots) are rep-
resented, three aspects will be further investigated, namely the
transition from positive to negative small gaps (Sect. 4.1), the
effect of excessive negative gaps on the mass and the bumpers’
responses (Sect. 4.2), the characteristics of the system response
for small positive gaps and in the low frequency range, where
secondary resonances were observed (Sect. 4.3).

4.1. Transition from Positive to Negative Small Gaps

From Fig. 5 it can be observed that the transition from the
hardening-like (black PRCs with primary right hysteresis) to
the softening-like (blue PRCs with primary left hysteresis) be-
havior occurs moving from small positive to small negative
values of the gap, passing through the approximately zero-gap
configuration (G'0, red PRCs). The force-displacement cycles
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Figure 5: Forward (solid line) and backward (dashed line) PRCs of: a ηd; b ηa; c η j ( j = R, L) and d r j ( j = R, L) for G4 (black), G0 (red), G-1 (blue), G-2 (light
green) and G-10 (dark green). In a and b, the PRCs corresponding to G-2 and G-10 are almost superimposed on each other. In c and d, the initial pre-strain/pre-stress
states of the bumpers, resulting from the negative gap, are indicated by horizontal dashed lines and also highlighted with gray shaded areas which have, as baseline,
the frequency axis.

in resonance condition, corresponding to the three gaps in the
neighborhood of this transition (namely G4, G0 and G-1), are
represented in Fig. 6. The top row refers to the mass (inertia
force FI vs. relative displacement u of the mass), the bottom
row to the bumpers (contact force F j vs. position v j of the
bumper, j = R, L). In the lower right corner of Figs. 6d-f

The first column on the left (Figs. 6a,d) corresponds to G4;
at the primary right hysteresis (black PRCs in Fig. 5) two co-
existing stable solutions are observed (Figs. 6a, 7a): one cor-
responding to large-amplitude oscillations with the occurrence
of impact (forward sweep, solid red cycles) and the other to
small-amplitude oscillations without impact (backward sweep,
dashed blue cycles). In this frequency range, there would be
also a third unstable solution, that could not be obtained ex-
perimentally. In Fig. 7a, in which the time history of the rel-
ative displacement u of the mass is depicted, both in the for-
ward (solid red line) and in the backward (dashed blue line)

sweeps, the horizontal dashed lines represent the initial gap
and the vertical colored bands highlight the contact phases with
each bumper (identified from the time histories of the contact
forces). In the time interval between two consecutive colored
bands, the mass is not in contact with either bumper (flight).
The hardening-like behavior is related to the occurrence of the
impact with one of the bumpers, which causes the adding of the
resisting force exerted by the bumper to that of the damper.

For G ' 0 (second column, Figs. 6b,e), the forward and back-
ward cycles are more or less overlapping. In this condition,
which is quite difficult to obtain experimentally, although no
jumps or hysteresis occur in the PRCs (red PRCs in Fig. 5), the
behavior of the system is still nonlinear [68]. The dissipative ca-
pability of the bumpers means that there is a short time interval
in which the mass is not in contact with either bumper (Fig. 7b).
This phase vanishes for purely elastic bumpers. Due to the
small value of the relaxation time of the considered bumper
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Figure 6: Force-displacement cycles in steady-state resonance condition corresponding to the forward (red curve) and the backward sweep (blue curve) for: G4,
f = 3.4 Hz (hardening): a mass; d bumpers. G0, f = 4.8 Hz: b mass; e bumpers. G-1, f = 6 Hz (softening): c mass; f bumpers.

Figure 7: Time histories of the relative displacement u of the mass in steady-state condition: a G4, f = 3.4 Hz (right hysteresis); b G0, f = 4.8 Hz; c G-1, f = 6
Hz (left hysteresis). Red lines refer to the forward sweep, blue lines to the backward sweep. The horizontal dashed lines represent: a-b the initial gap; c the initial
pre-strain of the bumpers. The contact phases with each bumper, identified from the time histories of the contact forces, are highlighted with vertical bands (red for
the forward sweep, blue for the backward sweep).

(B2), the mass detaches from one bumper when the latter has
recovered practically all its deformation and, right after, it im-
pacts the other bumper, which, in the meantime, has already
recovered its deformation. Consequently, also in this case, in
addition to the nonlinearities associated with the behaviors of
the damper and the bumpers, there is still the nonlinear con-
tribution related to the occurrence of impact. By looking at
Fig. 6b, it is possible to observe the increment of the stiffness
associated with the occurrence of impact, while the central part
of the cycle refers to the flight condition.

For small negative gaps (third column, Figs. 6c,f), a primary
left hysteresys, associated with a softening-like behavior, was
observed (blue PRCs in Fig. 5). In correspondence with this

hysteresis, two stable solutions can be found (Figs. 6c, 7c). In
particular:

• forward sweep (solid red cycles): the oscillations ampli-
tude is always lower than the absolute value of the negative
gap (represented in Fig. 7c with horizontal dashed lines).
Consequently, the mass, during its motion, is always in
contact with both bumpers and the resisting force is given
by the sum of the forces exerted by the damper and the two
bumpers.

• backward sweep (dashed blue cycles): as long as the am-
plitude of the displacement u of the mass is lower than
the absolute value of the negative gap, the mass is in con-
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tact with both bumpers (the corresponding time interval is
highlighted in Fig. 7c with darker vertical bands), while
when u exceeds this value, the mass detaches from one
of the bumpers, remaining in contact with the other; this
causes a reduction of the stiffness.

The initial pre-stress of the bumpers, resulting from the nega-
tive gap, causes an offset of the F j-v j ( j = R, L) cycles from the
x-axis (Fig. 6f). From the same figure, it is possible to observe
also the increment of the stiffness when the mass is in contact
with both bumpers (red cycles). As for the primary right hys-
teresis, also in this case, it was not possible to obtain the third
unstable solution.

It is worth noting that the large-amplitude cycles, observed
for G4 (forward sweep, Fig. 6a) and G-1 (backward sweep,
Fig. 6c), are both characterized by nonlinearities associated
with the unilateral constraint, as well as by the nonlinearities
related to the behavior of the damper and the bumpers. The
stiffness change is caused in the first case by the occurrence of
impact between the mass and one of the two bumpers (hard-
ening), and, in a dual manner, by the detachment with one of
the bumpers in the second case (softening). In the other cases
(small-amplitude cycles for G4 and G-1, the behavior of the
system is still nonlinear, due to the behavior of the damper and
the bumpers.

4.2. The Effect of Excessive Negative Gaps

From Fig. 5 it can also be observed that, for negative gap
values greater than G-1 (G-2 and G-10), the PRCs (light green
for G-2 and dark green for G-10) are no longer bent and show
neither jumps nor hysteresis. For these values of the gap the
mass, during its motion is always in contact with both bumpers.
The PRCs of ηd (Fig. 5a) and ηa (Fig. 5b) are substantially su-
perimposed, but they are not exactly the same, due to the non-
linear behavior of the damper and the bumpers. As concerns
the bumpers, the PRCs of η j ( j = R, L) (Fig. 5c) and r j ( j =

R, L) (Fig. 5d) have shifted with respect to each other. This
shift is caused by the initial pre-stress/pre-strain state resulting
from the negative gap, which has been highlighted in Figs. 5c,d
with horizontal dashed lines and with gray shaded areas which
have, as baseline, the frequency axis. Consequently, passing
from G-2 to G-10, the PRCs of η j and r j ( j = R, L) move away
from the frequency axis. It is worth noting that, once the initial
shift value has been removed, the resulting PRCs are substan-
tially overlapped. Also in this case, these curves are not exactly
the same, due to the nonlinear behavior of the damper and the
bumpers.

Based on these considerations, it follows that, when the neg-
ative gap exceeds a certain value which, for the considered sys-
tem (mass, damper and bumpers), is between G-1 and G-2,
since the mass never detaches from the two bumpers, the re-
sisting force is given by the sum of the forces exerted by the
damper and the two bumpers. In this case, further increases in
the absolute value of the negative gap, will only increase the
initial pre-stress and pre-strain state of the bumpers, without
affecting the mass response (Fig. 5).

Figure 8: Force-displacement cycles in steady-state resonance condition corre-
sponding to the forward (red curve) and the backward sweep (blue curve) for:
G-2, f = 7.3 Hz: a mass; c bumpers. G-10, f = 7.6 Hz: b mass; d bumpers.

This can be seen also from Fig. 8, where the force-
displacement cycles corresponding to G-2 (first column) and
G-10 (second column), in steady-state resonance condition, are
represented. As in Fig. 6, the top row refers to the mass (inertia
force FI vs. relative displacement u of the mass), and the bot-
tom row to the bumpers (contact force F j vs. position v j of the
bumper, j = R, L). It can be observed that, passing from G-2 to
G-10, the FI-u cycle (Figs. 8a,b) does not vary significantly. On
the other hand, the consequent increase of the initial pre-stress
state in the bumpers causes a gradually increasing distancing of
the F j-v j ( j = R, L) cycles (Figs. 8c,d).

4.3. Secondary Resonances

Previous numerical investigations by the authors [68] high-
lighted the existence of gradually more complex response sce-
narios, as the gap decreases, with the occurrence of the different
types of secondary resonances in the low frequency range, not
observed in previous experimental laboratory campaigns. The
new experimental results, obtained considering smaller gaps
compared to the previous tests, confirmed the numerical pre-
dictions. In fact, for quite small gaps (G10 and G4) secondary
resonances in the low frequency range were observed and the
number of resonances was found to increase decreasing the gap.

In order to experimentally describe these resonances in a suf-
ficiently accurate manner, it was necessary to properly cali-
brate the input signal, as previously mentioned in Sect. 2. In
particular, as concerns the case G4 (Fig. 9), three sine sweep
(SSi, i = 1, 2, 3) signals were imposed to capture the secondary
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Figure 9: Secondary resonances in the low frequency range for G4: a PRC of ηa with indication of the different sweep frequency intervals (SSi, i = 1, 2, 3). The
three vertical lines indicate the values of frequency corresponding to the observed secondary resonances ( f1 = 0.53 Hz, f2 = 0.71 Hz, f3 = 1.1 Hz). The other
sub-figures represent, at these frequency values: b-d trajectories on the phase plane; e-g inertia force FI vs. relative displacement u of the mass cycles; h-j contact
force F j vs. position v j of the bumper cycles ( j = R, L); k-m time history of the relative displacement u of the mass; n-p time history of the absolute acceleration a
of the mass; q-s: time history of the contact forces F j ( j = R, L). In b-m the dashed black lines represent the initial gap. In h-p the vertical red bands represent the
time intervals corresponding the contact phases with each bumper in one forcing cycle.

resonances, compatibly with the shaking table performances,
namely:

• SS1 (highlighted with a vertical green band in Fig. 9a):
sweep frequency range between 0.5 Hz and 0.8 Hz, with
frequency step ∆ f = 0.03 Hz and n = 20 cycles in each
sub-frequency range;

• SS2 (highlighted with a vertical orange band in Fig. 9a):
sweep frequency range between 0.8 Hz and 1.6 Hz, with
frequency step ∆ f = 0.05 Hz and n = 30 cycles in each
sub-frequency range;

• SS3 (highlighted with a vertical light blue band in Fig. 9a):
sweep frequency range between 0.5 Hz and 5 Hz, with
frequency step ∆ f = 0.1 Hz and n = 10 cycles in each
sub-frequency range.

By combining the results of these three tests, the PRCs cor-
responding to the gap G4, shown in Figs. 5 and 9a, were ob-
tained. Three secondary resonances were observed at frequen-
cies f1 = 0.53 Hz, f2 = 0.71 Hz, f3 = 1.1 Hz (vertical dashed
black lines in Fig. 9a). In correspondence with these reso-
nances, it can be observed that forward and backward PRCs
are substantially superimposed. The phase portraits, in steady
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state condition, corresponding to the three resonances, are rep-
resented in Figs. 9b-d. The inertia force FI vs. relative displace-
ment u of the mass cycles are instead shown in Figs. 9e-g and
the contact force F j vs. position v j of the bumper cycles ( j =

R, L) are represented in Figs. 9h-j. In the right part of Fig. 9,
the time histories of the relative displacement u of the mass
(Figs. 9k-m), the absolute acceleration a of the mass (Figs. 9n-
p) and the contact forces F j ( j = R, L) (Figs. 9q-s), are illus-
trated. The solid red lines refer to the forward sweep, whereas
the dashed blue lines correspond to the backward sweep.

The occurrence of internal loops in both the force-
displacement cycles, rarely shown in literature, and the phase
portraits, was observed in all three investigated cases. The ex-
istence of internal loops for small gap values was already pre-
dicted by the numerical model [68] and now confirmed experi-
mentally. It can be observed that, for f3 (Figs. 9d,g) these inter-
nal loops barely intersect the vertical dashed lines representing
the position of the obstacles. Decreasing the frequency, that is
passing from f3 (Figs. 9d,g) to f1 (Figs. 9b,e), these loops move
outwards, intersecting the vertical lines in a more evident man-
ner; furthermore, the number of internal loops increases. This
is reflected in a number of impacts per forcing cycle, between
the mass and each bumper, which increases decreasing the fre-
quency, as shown in Figs. 9k-s. In these figures, referring to
one forcing cycle, the impacts are highlighted with vertical red
bands. It can be observed that for f3 (Figs. 9m,p,s), the mass
impact each bumper twice, with both the intensity and duration
of the second impact lower than the first one. Passing to f2
(Figs. 9l,o,r), the mass continues to impact each bumper twice,
but the second impact is more evident. Actually, also a third
slight impact was sometimes observed. Finally, in correspon-
dence to f1 (Figs. 9k,n,q), the mass impacts, in an evident way,
each bumper three times, with the intensity of the impact de-
creasing passing from the first one to the third one. Also in
this case, sometimes four impacts were observed. This trend of
the number of impacts with decreasing frequency confirms the
numerical predictions [68].

5. Numerical Modeling

The numerical model of the vibro-impact system shown in
Fig. 1 is illustrated in Fig. 10. In this model the behaviors of
both the damper (D) and the bumpers (B j, j = R, L) were lin-
earized. In particular, in both cases, the resisting forces were
modeled by a linear spring, with stiffness K and K j ( j = R,
L) respectively, in parallel with a linear viscous damper, with
damping coefficient C and C j ( j = R, L) respectively. Despite
this linearization, the model is still nonlinear, due to the other
sources of nonlinearity taken into account, namely the pres-
ence of the gap, the unilateral constrains and the occurrence of
impact that causes abrupt changes of both stiffness and damp-
ing. For this reason, this model was called Simplified Nonlinear
Model (SNM) [68]. The authors, aware of the limitations of the
linear viscoelastic model, particularly when used to model the
contact, consider it satisfactory for their purposes.

During its motion, the mass M can be or not in contact with
the bumpers. The two conditions will be referred to as contact

and flight phases respectively. The equations that govern the
motion of the system are written as:

Mü(t) + Cu̇(t) + Ku(t) + F j(t) · ψ1

[
G j(t)

]
· ψ2

[
F j(t)
]

= −MAt(t)
Fi(t) = 0

(2)

where it is assumed that whether j = L then i = R, or whether
j = R then i = L.

Figure 10: Numerical model of the vibro-impact system.

In Eq. 2, u(t) and u j(t) ( j = R, L) represent the relative dis-
placements of the mass and of the bumpers respectively with
respect to the ground and the dot (.) denotes differentiation with
respect to the time t. As previously said, the position of the
extremity of the bumper v j ( j = R, L), measured from the side
of the mass at time t = 0 s (Fig. 10), is related to u j through
the expression v j = u j + G0 j, where G0 j ( j = R, L) is the
j-th initial gap, that is the initial distance between the mass
and the j-th bumper. At(t) = AG sin Ωt is the base acceler-
ation, with amplitude AG and circular frequency Ω. The to-
tal (or absolute) acceleration of the mass is therefore given by
a(t) = ü(t) + At(t). G j(t) ( j = R, L) is the clearance function
which represents the distance, instant by instant, between the
mass and the j-th bumper:

G j(t) = G0 j + ∆u j(t) ( j = R,L) (3)

where:

∆uR(t) = uR(t) − u(t); ∆uL(t) = u(t) − uL(t) (4)

When the mass is in contact with the j-th bumper G j(t) = 0,
otherwise G j(t) > 0. In Eq. 2, ψ1 and ψ2 represent the Heaviside
functions, defined as follows:

Beginning of the contact :

ψ1

[
G j(t)

]
=

0, G j(t) > 0
1, G j(t) = 0

Detachment :

ψ2

[
F j(t)
]

=

0, F j(t) ≤ 0 ( j = R) or F j(t) ≥ 0 ( j = L)
1, F j(t) > 0 ( j = R) or F j(t) < 0 ( j = L)
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Figure 11: PRCs of a ηa and b ηa obtained experimentally (red and blue dots) and with the numerical model (solid and dashed black lines) for G4. The figures in the
lower part show, for five values of frequency, namely f = 0.53 Hz, 0.71 Hz, 1.1 Hz, 1.4 Hz and 3.4 Hz, the comparison between experimental (red and blue lines)
and numerical results (black lines) in terms of: trajectories on the phase plane (c-l); inertia force FI vs. relative displacement u cycles (m-v). In c-v the vertical
dashed black lines represent the initial gap.

where F j(t) = C ju̇ j(t) + K ju j(t) ( j = R, L) is the contact force
occurring during the contact period with the j-th bumper.

The parameters of the model were identified based on the

experimental results. In order to make a comparison with the
results obtained with the SNM, it was necessary to reduce the
nonlinear restoring force exerted by the damper to a linear elas-
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Figure 12: Time histories of the relative displacement u of the mass, the absolute acceleration a of the mass and the contact forces F j ( j = R, L) obtained
experimentally (red and blue lines) and with the numerical model (black lines) for G4 and: a f = 0.53 Hz, b f = 1.4 Hz and c f = 3.4 Hz. The horizontal dashed
black lines in the time histories of the relative displacement represent the initial gap.

tic one. This was made considering an equivalent stiffness K,
estimated in free flight resonance condition for a peak table ac-
celeration A = 0.05 g. The identified parameters of the model
are: K = 36 kN/m, C = 1.1 kN s/m, for what concerns the
damper, and K j = 510 kN/m, C j = 0.9 kN s/m, for what con-
cerns the bumper B2 ( j = R, L).

Considering the gap amplitude G4, some comparisons of the
experimental results with the numerical simulations are shown
in Fig. 11. In the upper part of the figure, the comparison is
made in terms of PRCs of both ηa (Fig. 11a) and ηd (Fig. 11b).
The experimental results are represented with red (forward
sweep) and blue (backward sweep) dots, while the numerical
results are represented with solid (forward sweep) and dashed
(backward sweep) black lines. The vertical dashed lines indi-
cates some values of frequency, namely 0.53 Hz, 0.71 Hz, 1.1
Hz, 1.4 Hz and 3.4 Hz, for which the comparison is made, in
the lower part of Fig. 11, also in terms of phase portraits and
hysteresis loops. In particular, each column of sub-figures cor-
responds to a frequency value. In these sub-figures, the exper-
imental results are represented with solid red (forward sweep)
and dashed blue (backward sweep) lines, while the numerical
results are represented with solid (forward sweep) and dashed
(backward sweep) black lines. The initial gap is represented
with vertical dashed lines.

As concerns the PRCs (Figs. 11a,b), it can be observed that
there is a good agreement between experimental and numeri-
cal results, although the model does not take into account non-
linearities associated with the behaviors of the damper and the
bumpers. The model is able to reproduce satisfactorily the po-
sition and amplitude of both the primary resonance and some of

the secondary resonances in the low frequency range. Some dif-
ferences are noted in the branches of the PRCs associated with
the absence of impact (after the downward jump in the forward
sweep and before the upward jump in the backward sweep) and
in the frequency of the upward jump. This is due to the differ-
ence between the experimental (nonlinear) and numerical (lin-
ear) PRCs in free flight condition; in particular, the numerical
curve is below the experimental one. A good agreement is ob-
served also in the trajectories on the phase plane (Figs. 11c-l)
and in the force-displacement cycles (Figs. 11m-v). The pres-
ence of internal loops, whose number increases as the frequency
decreases, is confirmed also by the model.

The numerical model highlighted the existence of several
secondary resonances, of different type (with left hysteresis and
of non-regular type), in the low frequency range (Figs. 11a,b).
The calibration of the characteristics of the sine sweep signal,
bound by the limitations of the shaking table, has made it possi-
ble to observe also experimentally some secondary resonances
(Sect. 4.3), but not the left hysteresis, due to the limitations of
the shaking table, which didn’t allowed to further reduce the
frequency step of the sine sweep signal. Thanks to the model it
is possible to better describe what was observed with the exper-
imentation.

From Figs. 11h-j it can be observed that, at the secondary
resonances observed experimentally, the numerical response is
slightly quasi-periodic, with the extent of the quasi-periodicity
increasing with the frequency. Furthermore, the number of in-
ternal loops on the left is greater than that of the internal loops
on the right. While the larger loops cross the vertical lines rep-
resenting the obstacles in an evident way, the innermost loops
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on the left as time goes by, approach, cross and then move away
from the left bumper, resulting in a different number of impacts.
This behavior was observed also experimentally. The situation
returns to be quite symmetric, although with a greater quasi-
periodicity, for f = 1.1 Hz (third column, Figs. 11e,j,o,t).

As previously said, the numerical model highlighted also
the existence of irregularities between 1 Hz and 1.5 Hz
(Figs. 11a,b). In this frequency range, an evident asymmetric
response was observed experimentally, for example for f = 1.4
Hz (fourth column, Figs. 11f,k,p,u), and also confirmed by the
numerical model. In both the phase portraits (Fig. 11f) and the
hysteresis loop (Fig. 11p) a single internal loop, intersecting
the left vertical dashed line (left bumper) was noticed. This re-
sults in a different number of impacts between the mass and the
bumpers. In particular, in each forcing cycle, the mass impacts
the left bumper twice and the right bumper once.

The asymmetric behavior of the system in this frequency
range can be seen also from Fig. 12b, in which the time his-
tories of the relative displacement u of the mass, the absolute
acceleration a of the mass and the contact forces F j ( j = R,
L) obtained experimentally (red and blue lines) and with the
numerical model (black lines) are compared. In Fig. 12a an
analogous comparisons is made for f = 0.53 Hz, that is in cor-
respondence with the smallest secondary resonance observed
experimentally, where the highest number of impact was ob-
served. Finally, in Figs. 11g,l,q,v and 12c the comparison is
made for a value of frequency, f = 3.4 Hz, that is in the fre-
quency range between the two jumps (primary right hysteresis).

Based on these considerations, the SNM, despite its relative
simplicity, has proven to be able to simulate and reproduce sat-
isfactorily the behavior of the system.

6. Conclusions and Future Developments

Some of the results of an experimental laboratory campaign,
designed based on the results of previous studies of the authors,
were presented. Compared to previous tests, also small posi-
tive, null and negative values of the total gap G between mass
and bumpers were investigated. Furthermore, impact load cells
were used to directly measure the contact forces between mass
and bumpers during the impact phases.

The amplitude of the gap was found to influence the response
of both the mass and the bumpers for G > 0, where the occur-
rence of impact causes a hardening-like behavior, characterized
by the presence of jumps and a primary right hysteresis in the
PRCs. Referring to the primary resonance condition, the reduc-
tion of the gap, causes the reduction of the relative displacement
of the mass and an increase, followed by a decrease, of the abso-
lute acceleration. A trend similar to the latter one was observed
also in the deformation of the bumpers and in the impact force,
which attain zero values in the absence of impact.

By putting the bumpers initially, more or less, in contact with
the mass (G ' 0) the situation returns to be smooth, without
jumps and hysteresis, although the behavior is still nonlinear,
due not only to the nonlinear behaviors of the damper and the
bumpers but also to the nonlinearity associated with the occur-
rence of impact, consequent to the existence, also in this case,

of a short time interval in which the mass is in contact with
either bumper.

For small negative gaps (G-1), obtained experimentally by
slightly compressing the bumpers against the mass, both the
relative displacement and the absolute acceleration of the mass,
the bumpers’ deformation and the contact force, in resonance
condition, continue to decrease. Compared to G > 0, a
softening-like behavior was observed, characterized by the oc-
currence of jumps and a primary left hysteresis. Further-
more, due to the initial pre-stress/pre-strain state resulting from
the negative gap, the PRCs of both the bumpers’ deforma-
tion and the contact forces are always different from zero for
each frequency value. The transition from the hardening-like
to the softening-like behavior occurs moving from small posi-
tive to negative values of the gap, passing through the approx-
imately zero-gap configuration, not easy to realize experimen-
tally. Compared to the case of small positive gaps (hardening)
for which the increase in stiffness is caused by the occurrence
of impact between the mass and one of the two bumpers, for
small negative gaps (softening) the stiffness reduction is due, in
a dual manner, to the detachment with one of the bumpers.

For negative gaps exceeding a certain value which, for
bumper B2, is between G-1 and G-2, the mass, during its mo-
tion, always remains in contact with both bumpers and there-
fore, the resisting force is given by the sum of the forces exerted
by the damper and the two bumpers. Consequently, the PRCs
are no longer bent and show neither jumps nor hysteresis. In
this case, further increases in the absolute value of the negative
gap, will only increase the initial pre-stress and pre-strain state
of the bumpers, without affecting the mass response.

Previous numerical investigations [68] highlighted the exis-
tence of secondary resonances, of different type (with left hys-
teresis and of non-regular type), in the low frequency range
and for quite small gaps. Some of these resonances were ob-
served also experimentally and the number of secondary reso-
nances was found to increase decreasing G. To experimentally
capture, in a sufficiently accurate manner, these resonances,
not observed in previous experimental laboratory campaigns,
it was necessary to properly calibrate the input signal, compat-
ibly with the shaking table performances. In correspondence
with the observed resonances, the occurrence of internal loops,
intersecting the obstacles, in both the force-displacement cy-
cles, rarely shown in literature, and the phase portraits, was
observed. Decreasing the frequency, the number of internal
loops increases, and consequently also the number of impacts
per forcing cycle between the mass and the bumpers.

The experimental results were reproduced, in a sufficiently
accurate manner, by a suitable numerical model, in which the
behavior of both the damper and the bumpers was linearized,
retaining the other sources of nonlinearities, namely the pres-
ence of the gap, the unilateral constrains and the occurrence of
impact that causes abrupt changes of both stiffness and damp-
ing. The identification of the parameters of the model was made
based on the experimental data. A good agreement was ob-
served in terms of PRCs, trajectories on the phase plane, force-
displacement cycles and time histories.

With regard to the future developments of this work, the au-
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thors intend to finish processing the recorded data and to ex-
tend the experimental laboratory campaign also considering the
earthquake excitation.
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