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Abstract

Solving a global optimization problem is a hard task.

In the chapters of this thesis variable space transformation techniques and new al-
gorithmic approaches are proposed to deal with such hard problems.

In the first research investigation some variable space transformation techniques
are defined as a tool that can be helpfully integrated in (almost) all algorithm
frameworks. In particular the focus will be on piecewise linear and non-linear trans-
formations that allow to tackle the problem advantageously. After introducing the
theory, preliminary numerical experiments are reported exploiting the transforma-
tions in a simple multi-start framework. The idea is to gather the information
obtained during a multi-start approach and to apply a sequence of transformations
in the variable space that makes the exploration easier. The aim is to expand the
attraction basins of global minimizers shrinking those of the local minima already
found. Preliminary considerations are made about the possibility to use these trans-
formations as derivative-free preconditioner.

The second research investigation concerns the definition of an efficient algorithm
on a wide spectrum of global optimization problems. In particular will be discussed
how to do an accurate exploratory geometry and a space search reduction strategy,
recently renamed in literature as zoom-in strategy, in a probabilistic algorithm that
can speed up significantly the convergence towards better solutions. After intro-
ducing the algorithm framework named GABRLS, presented as the winner of the
Generalization-based Contest in Global Optimization (GENOPT 2017, [61]), the
approach is extended to handle also non-continuous variables. The resulting algo-
rithm has been tested in a real case study of design optimization of electric motor.
The case study provides evidences about the promising exploratory geometry of
the approach in quickly finding feasible and optimal solutions of a mixed integer
constrained problem.

In the last research investigation, a new black-box approach is proposed to tackle a
real case study of the spare part management problem of a fleet of aircraft. In par-
ticular, for this specific type of inventory problem, a black-box model and a tailored
global optimization algorithm is defined. The aim is to address the non-linearity
of the problem as is, without any decomposition in sub-problem and without any
approximation or necessity to check ex post the feasibility of the solution. The
main contribution consists of advancing the existing literature for multi-item inven-
tory systems through an enhanced time-effective optimization algorithm tested in
a single-echelon system.
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Introduction

Optimization is a basic tool in all areas of applied mathematics, engineering, medicine,
economics and other sciences. Technological progress and the expansion of knowl-
edge, constantly bring problems to light which need to be addressed in quantitative
terms, solving Global Optimization problems [37, 38, 39, 41, 59]. Global optimiza-
tion is a relatively young field of applied mathematics, studying theory, methods,
and implementation of models and strategies for solving multiextremal optimiza-
tion problems. Global optimization fundamentally dates back to 1975-78, when the
two volumes “Towards Global Optimisation” [7, 8], by Szego and Dixon, appeared.
These volumes are the first books containing a collection of papers that present dif-
ferent solution methods for problems with continuous variables. Through the years
there was a wide dissemination of this field in books like “Handbook of Global Opti-
mization” [37, 45] by Horst and Pardalos (vol.1), Pardalos and Romeijn (vol.2), and
journal like “Journal of Global Optimization” [46] fully devoted to the developments
in this area.

The scope of global optimization is to approach to problems that requires to
find a point z* and the corresponding value f(x*) being the global minimizer (or
maximizer) of a function f(x) defined over an N—dimensional set X'.

Since the function f(z) can be hard non-differentiable, multimodal, and given
as a “black box” from external routine or simulation software, traditional local
optimization methods [34, 47] can not be exploited.

It is well known that the global optimum of a generic optimization problem
can be computed only by an algorithm which has an everywhere asymptotic dense
convergence to the feasible domain. The algorithms proposed in literature try to
ensure such property by exploiting different approaches such as:

- to partition the feasible domain into a growing number of hyper-intervals [1, 2];
- to employ space-filling curves [3, 4, 40];

- to choose points at random according to a suitable distribution [5, 6, 8, 9, 10, 11].

Among these approaches, in the deterministic setting one can mention the so-
called direct search methods [49], such as the DIRECT (DIvide RECTangles) [2, 21],
the response surface [50], surrogate model methods [51] and pattern search methods
[90, 63, 64].
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While well-known techniques in the stochastic setting, that are mainly based
on random sampling in the feasible set, are adaptive random search [6], simulated
annealing [52, 53], evolutionary and genetic algorithms [54, 55, 56|, tabu search
[57, 58].

In both deterministic and stochastic global optimization algorithms it is possible
to identify two separate phases [48]: the global phase and the local phase. The
exhaustive exploration of the search space is delegated to the global phase. At each
iteration in the global phase, a local optimization procedure is called to refine the
current solution, this is known as the local phase, which is usually deterministic.
A robust local optimization procedure is essential for a fast convergence. Most of
the numerical calculus (solution refining) is performed in the local phase, which
turns out to be the most computationally expensive step of the global optimization
algorithm. Approaches in this framework are the so called multi-start strategies
[8, 12] where in the first phase the solution is generated whereas in the second one
the solution is typically (but not necessarily) improved. It aims to iterate local
minimization starting from points provided by probabilistic [5] or deterministic
methods [12]. It is shown under suitable assumption that local minimizations can
be attracted by the global minimum of both gradient related algorithms [16] and
derivative-free ones [17, 18].

Other approaches to global optimization problems are the filled function tech-
niques [13, 14, 15]. In the filled function techniques the objective function is itera-
tively perturbed in order to avoid that local optimization methods getting stuck in
local minima.

The aim of this thesis is precisely concerned with research in global optimization
to which it intends to contribute. It is composed by three chapters. The first chapter
focuses on exploiting variables space transformations as tool for global optimization
algorithms. The second chapter presents an algorithm for the solution of general
global optimization problems. The last one describes a tailored algorithm approach
for a specific case study of spare part management problem.



Chapter 1

Exploiting variables space
transformations in global
optimization

1.1 Introduction

In this chapter a new strategy that can be useful to tackling hard global optimization
problems is proposed. The rationale behind the approach is to gain an advantage
by an iterative perturbation of the original problem. In particular it performs a
suitable continuous transformation of the variable space without directly modifying
the objective function.

Hard global optimization problems arise when the regions of attraction of lo-
cal optimal solutions are stronger than the global ones. This situation, in which
algorithms may fails, often occurs in one of the following circumstances:

i) global minimum surrounded by a cluster of many local minima;

ii) global minimum placed in steeper valley than those of local minimizer.

The idea for problems showing drawback i) is to perform a space dilation of the
region containing the cluster to avoid that the global minimum is hidden by the
attraction regions of the local minima meanwhile the rest of the space shrinks due
to the continuity of the transformation.

For problems that shows drawback ii) the opposite action can be performed.
Namely, for such problems a contraction of the attraction regions of local optimal
solutions imply the expansion of the attraction region of the global minimum.

The integration of a dynamic strategy of expansion-contraction of the space
within existent algorithmic schemes could lead to obtain a better exploration of the
search space and hence hopefully to a speed up of the global search.

In the following sections two continuous bijective transformations are proposed.
After some preliminary definitions that will be used throughout the chapter, a simple
piecewise linear transformation (PLT) is described and its properties are outlined.
Then a more complex non-linear transformation (NLT) is proposed. Finally, in
order to have a feel of the possible interest of the proposed transformations, they
are embedded in a simple multi-start algorithm.
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1.2 Problem definition and Notation

Consider the following problem

min f(z)

re X,

(1.1)

where
e X=(eR"” : <z <u) with [ueR"
e f is a continuous function.

The aim is to find the global solution x*, namely a point such that
fl@") < f(x), Ve e X.

Consider n-dimensional Euclidean space R™ and denote the lo — norm (Euclidean

distance) as
1
n 2
b= (342)
i=1

and the I, — norm (Chebyshev distance) as

|2]loo = maz |zl, i =1,...,n.

Definition of hypercubes and hyperspheres
We introduce a notation for the shape of the neighborhood of radius r of a generic

solution Z. In particular, exploiting the I, — norm, we define hyper-cubical neigh-
borhoods

o Bo(Z,r)=(x€R", r>0 :|lx—2z||,  <r);

and its boundary

° 8Boo(i'77") = (I‘ € Rn’ r > 0 : ||l’ — i”oo = r)’
and hyper-spherical neighborhoods by using Euclidean norm distance
o Bo(#,r)=(z €R™ >0 : [lz—2|, <r);

and its boundary

© OBy(d,r) = (z €RY r>0 :|z—ify=r).
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Definition of linear intervals
We also refer to linear interval as

o I(z,r)={zeR" : |z;—|<r, i=1,...,n }.

and its boundary

o O(z,r)={2zeR" : |x;—z|=r,i=1,...,n }.

Definition of hyperrectagles and hyperellipses
Consider a square diagonal matrix with positive entries D € R"*"

We define an hyper-rectangular neighborhood (I, —norm ellipsoidal neighborhood)

e &xo(@,Dyr)=(xeR", r>0 : ||Dx—2)| <7);

and its boundary

o (@, D7) =(xeR™, r>0 : |Dx—a)|, =r);

(e 9]

and hyper-ellipsoidal neighborhood by using Euclidean norm distance

o« &(&,D,r)=(xeR", r>0: |D(x—2)|, <r);

and its boundary

« 0&(&,D,r) = (x €R", v >0 : |[D(x—2)[y =)
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Definition of direct and inverse transformation
We refer to

y="Ti(z) orshortly y=yg(x),

as the direct continuous bijective transformation from the original space X to a
transformed space Y = (y € R" : [ < y <w) with [,u € R". The point % is the
centroid of the transformation.

Conversely we refer to

=T, ' (y) orshortly z=2z(y)

as the inverse continuous bijective transformation from a space ) to the original
space X.

Definition of original and transformed problem
Given the inverse transformation T !(y), the problem (1.1)

mxin f(zx)

reX,

is transformed in

min HT ()

1.2
- (1.2)

where f(T; 1(y)) has suitable properties.

We point out that we never need to double-transform the variable space during
the search of solution. In fact we only deal with problem (1.2), where we make
the search for solutions in a transformed variable space ) and by using the inverse
transformation, we always evaluate the objective function in the original variable
space X. By the way, as long as the direct and inverse equations we are going
to define are both continuous and bijective (one-to-one and onto), one can switch
between them.
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1.3 Piecewise Linear Transformation (PLT)

In this section it is introduced a piecewise linear transformation y = T;(x) between
two variable spaces: the original space X and a transformed one ).

It is componentwise, and it is piecewise along a single component. In figure (1.1)
the transformation is illustrated before going into the details of the definition of the
transformation equations.

For the sake of simplicity consider a reference point § € Y as the origin of the
Cartesian axes. This point is set as centroid of the hypercube B. (7, ,) in which we
concentrate the transformation impact range. The point ¢ is also set as centroid of
the smaller hypercube B..(9,¢€,) in which the transformation impact has the main
focus. The centroid g is a fixed point of the transformation, so that the equality
¢ = Z holds, where & is the centroid of the corresponding hypercube B, (Z,7;) in
the X space.

For each dimension i = 1,2,...,n the piecewise linear transformation (blue line
in fig. (1.1)) propagates outward from the centroid in the relative space.

The larger the angle between the bisector (green line in fig. (1.1)) and the
piecewise linear transformation, the greater the effect of the transformation.

Parameters X, Uz
o 01 =tan(a) > 0; o '/',

o 0y =tan(B) > 0; Z; + 12 o

. 03 = tan(y) = 1;

. rz2€z>0;

[ ’I“y Z € Z 0 R yspace
I(:Eiv Fm)

Vector Parameters

o i < Ty — 1y

o T+ 1y <y

o I < i —ry; i — 1y,
. A Ui — Ty 1(9;,€,) G+
* Yitry < u / e Y
s

Figure 1.1. Graph of the piecewise linear transformation in the ‘" dimension.

In the next subsections the equations that described the piecewise linear trans-
formation are formally defined.
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1.3.1 Definition of the PLT over hypercubes

Let £ € R™, €., 74, 01, 02, 03 be positive scalar quantities, with €, < r.

The following equations define the piecewise linear transformation y = T;(z) over

hyper-cubical space.

o Forz e R" : |x; — | <€ i=1,...,m,

gj(x)z :@i‘i‘el (x,—ﬁ:z)

e Forz e R" : e, <|wj— 34| <ry, i=1,...,n,
~ . (@i — Z4) .
y(x); =9 + ——— (01 + 02(|z; — 4| — €2)) .
s — &
o Forz e R" @ |z; —&i| > 71y, 1 =1,...,nm,

(zi — 901)

y(x); =19+ T—

(01€x + O2(ry — €2) + 03 (|Jzg — | — 712)) -

(1.3)

(1.4)
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1.3.2 Properties of the PLT - hypercube

Here below are listed the properties and the necessary coupling condition to pre-
serve the continuity of the transformation between the original space X and the
transformed space ).

i)

ii)

iii)

The reference point & € & is transformed in the corresponding one ¢ in the
transformed space ):

The region { x € R" : |z; — & <€z, i =1,...,n } is transformed in
{yeR" : |Jyi—0il <ey, i=1,...,n},
where (1.3)
y(x); — 9i = 01 (2 — 24),

imposes at the boundary the following coupling condition

€y = 016, (1.6)
The region { z € R"” :¢e; < |z; — & < ry, i =1,...,n } is transformed in
{yERn tey < ‘yz_gz‘ <1y, iZl,...,TL},
where (1.4)
_ N T — T R
y(x); — i = (wz_;f (Or€z + O2(|zi — & — €))
7 (2

and (1.6) impose at the boundary the following coupling condition

ry = ey + Oa(rs — o). .7
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iv) The region { x € R" : |z; — %] > ry, i=1,...,n } is transformed in

{yeR" : |lyi—gi| >ry, i=1,....n},

where from (1.5)

— ~

§a), = i + G

|z; — 24

‘916:0 + ‘92(7'93 - Ex) + 93 (‘331 - iz| - Tx)) s

substituting (1.6) and (1.7)

— A~

§a); = i + G

O3(|z; — x| — . 1.8
i — 2] ry + 03| — & —12)) (1.8)
As long as the (1.8) refers to the outermost region there is no need to further
coupling condition. It means that 03 is free of choice.
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1.3.3 Special case of PLT - hypercube

In this section a particular example of the transformation is considered. The focus
is on a transformation that can be suitable in the context of global optimization.
The idea is to get values of the parameters 61, 62, 03 such that the transformation
performs an expansion of the neighborhood of the global minimum. This task can be
obtained either by shrinking or expanding the neighborhoods of the already found
local minima. Therefore in this case it can be set:

. =i

The possibility of expanding or contracting the neighborhood of z follows from
suitable choices of €;, €,. It implies from (1.6) that

c O =2 AL

Moreover for ensuring that the transformation impact has the main effect in a local
area, inside the radius r;, 7, it has to be set

o Ty =Ty =T.

It implies from (1.7) that

_ I—¢y
.« Oy="",

Finally in (1.8) by imposing that

for z € R™ : |x; — 2| >r, i=1,...,n, it has
y(x); = ;.
From this choices, the equation (1.3), for x € R" : |z; — & <€, i=1,...,n,
y(x); = 9i + 01 (v — 2),
becomes

- € .
g(@), =0+ 2L (xi— ).
€x
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The equation (1.4), for x € R™ : €, <|z; — 23| <7, i=1,...,n,

§(a); = i + G

Py Orex + 02(|xi — 23| — €2))

becomes

_ . T; — T r—¢€ R
L e R =R )

|z — 24 p

The equation (1.5), for z € R™ @ |z; — | >7r, i=1,...,n,

(zi — 24) (

|z; — 4

gj(:p)z :Q’L‘{' 91€x+02(rm_em)+‘93(|mi_ii| _T:):»,

becomes
y(x); = ;.

In summary the piecewise linear transformation in this special case:

o Forz e R" : |x; — 2| <€ i=1,...,m,
_ N € N
g (@) =g+ (2 = &) (1.9)
x
e Forz eR" : e, <|x;— 2| <r,i=1,...,n,
g(x):gz+m € —|—r_76y(‘mi—£i’—6x) . (1.10)
¢ |x; — ] Y'ir—e
e Forz e R" : |z; — | >r, i =1,...,n,
y(x); = ;. (1.11)
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1.3.4 Definition of the inverse PLT over hypercubes
Let y € R", €y, 1y, 01, 02, 03 be positive scalar quantities, with ¢, < ry.
The following equations define the inverse piecewise linear transformation.
o ForyeR" : |y, — 0| <€y, i=1,...,n,
. 1 .
T(y); =&+ o (yi — i) (1.12)
o ForyeR" : ¢, <|yi— 9| <y, i=1,...,n,
_ . (yi — Ui) <€y 1 . >
W) =i+t ———7 |5 T 7y —yi| — € . 1.13
() =it B (2l — ) (1.13)
e ForyeR" : |y —gi| >y, i=1,...,n,
_ . (yi — Us) <€y 1 1 " )
W), =i+ |7+ (ry =€)+ 7 (lyi =G| —1y) |- 1.14
(Y); i lvi — 3i] \ 6y (92( y — €y) 05 (lyi — 9l y) ( )

To have an easier reading and better clarity the properties and the special cases are

in the appendix A in sections A.1 and A.1.2.
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1.3.5 Representation of the PLT over hyper-cubical space
For a quick understanding a 2D representation of the transformation is drawn. Let

us consider the multimodal continuous function Ackley :

n

1 1
= E z? | —exp ( E cos(27rxi)> + 20+ exp(1),
n n

=1

=1

f(z1---xy) = —20exp | —0.2

over
X=(xeR": 3< z; <3,i=1,...,n),

with minimum at

Let us consider a transformed variables space

Y=@weR" : 3< y; <3,i=1,...,n).

Expansion Consider to make an expansion of a hyper-cubical neighborhood

B (Z, €z) of the point & = g = (0,0) with radius €, = 0.9 bringing it to a radius of
€y = 1.125. The transformation boundary is r, = r, = 1.8. For the continuity of the
transformation, the region in between the two hypercubes is shrunk. Summarizing,
the transformation parameters and the other resulting quantities are the following;:

e ¢, =0.9; o 1, =138; e 0, =0.8; o O3=1;
o ¢, =1.125; o 1, =18; o 0y =1.33; e i =7=(0,0).

In figure (1.2) on the left there is the starting function and contour plot in the X
space. On the right the result of the transformation in the ) space.

[ Contour and region - X space [ Contour and region - Y space

C1(x) Obijective function [ Transformed f(x) Objective function

Figure 1.2. A hyper-cubical neighborhood of & has been expanded while shrinking the
one in between the two hypercubes. Original X space on the left, transformed ) space
on the right.


https://www.sfu.ca/~ssurjano/ackley.html

1.3 Piecewise Linear Transformation (PLT) 15

Contraction Now consider make a contraction of a hyper-cubical neighborhood
of the point 2 = ¢ = (0,0) with radius e, = 1.44 bringing it to a radius of ¢, =
1.125. The transformation boundary is r, = 7, = 1.8 For the continuity of the
transformation, the space in between the two hypercube is expanded. Summarizing,
the transformation parameters and the other resulting quantities are the following:

o ¢, = 1.44; o r, =1.8, o 0, =1.28; o O3=1;

e ¢, =1.125; o 1, =18; o 0 =0.533; e i =9=(0,0).

In figure (1.3) on the left there is the starting function and contour plot in the X
space. On the right the result of the transformation in the ) space.

[ contour and region - Y space

[ Transformed f(x) Objective function

Figure 1.3. A hyper- neighborhood of & has been shrunk while expanding the one in
between the two hypercubes. Original X space on the left, transformed ) space on the
right.
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1.3.6 Definition of the PLT over hyperrectangles

The basic equations that describe the transformation over hypercubes can be suited
for general hyper-rectangular space. Let us introduce two square diagonal matrices
with positive entries:

o1 0 0 121 0 0
0 g2 0 0 V9 0
DJ: = ; Dy = .
0 : 0
0 0 0 On 0 0 0 Unp

Let £ € R", €, rz, 01, 02, 03 be positive scalar quantities, with €, < r,. The
following equations define the inverse piecewise linear transformation over hyper-
rectangles.

e Forz e R" : |o; — | <&, i=1,...,n,
1

§(@); =i+ 61 <m> (s — &) . (1.15)

v

e Forz e R" + & <z — &< & i=1,...,n,
~ T; — Ty o € . €
@(x)izyi—l-i( : f) <z> <91 (“”) +92<1x,-—xi|—$>>. (1.16)
|z — 2] \wi o o;
o Forz e R" @ |z; — | > 22, i=1,...,n,

_0'7:’

y(x), =i + % (%) (91 (Zi) + 0o (”;”) +93(|xi —a] - Zl)) .17
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1.3.7 Properties of the PLT - hyperrectangle

Here below are listed the properties and the necessary coupling condition to pre-
serve the continuity of the transformation between the original space X and the
transformed space ).

i)

ii)

iii)

The reference point & € X is transformed in the corresponding one ¢ in the
transformed space Y:

g =T;(z).

N € . . .
The region { T ER™ ¢ o — & <= i=1,...,n } is transformed in

)

N € .
{yGR” : |yi—yi|§—3{, z:l,...,n},

v

where (1.15)

p@ =i+ (2) - a0,

v
imposes at the boundary the following coupling condition

€y = O1€s. (1.18)

The region { reR" &= <y —a) <=, i=1,...,n } is transformed in

€ T

(2 (2

where (1.16)

. T — T4 Ior €x . €x

and (1.18) impose at the boundary the following coupling condition

Ty =€y + O02(ry — €z). (1.19)
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iv)

. A r . . .
The region { T ER™ ¢ jp;— % >=,i=1,...,n } is transformed in
g;

where from (1.17)

_ N (xz - 5&1) (oF} €x Ty — € N Tx

y(@), =0i+t——— (=) (0| =)+ 02 + 03| |z — 25| — — ) ],
|IL'Z‘ — ZL‘l’ V; o; o o;

substituting (1.18) and (1.19)

7 (z); gy Bz ) (‘”) <?+93<|xi—:ﬁi| n ::”)) (1.20)

|z; — 2]
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1.3.8 Special case of PLT - hyperrectangle

As well as in the transformation over hypercubes, this section consider a particular
example of the transformation over hyperrectangles. Therefore in this case it can
be set:

. §=i.

The hyperrectangle dimensions in the original space X and in the transformed space
Y are described by

e Dy=D, andso v;=o0; fori=1,...,m;

The possibility of expanding or contracting the neighborhood of & follows from
suitable choices of €;, €,. It implies from (1.18) that

. 91:%7&1.

Moreover for ensuring that the transformation impact has the main effect in a local
area, inside the radius r;, 7, it has to be set

° Ty:Tx:T.

It implies from (1.19) that

r—e
* 02 = T‘—Ez'

Finally in (1.20) by imposing that

for z € R™ @ |x; — 2| >r, i=1,...,n, it has
y(x); = i
From this choices, the equation (1.15), for z € R" : |2, — & < &, i=1,...,n,
_ N 0 N
y(@);=0i+ 0 (Z> (i — &),
Vi
becomes
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The equation (1.16), for z € R™ : ;—f <la; — ) < a%? 7

i G2 (2) () o 0-5)).

becomes
B ) (x; — &) €y r— €y R €
y(x)i:yi‘f‘iA - |+ — |xi—xi\—— .
‘:L'i —ac,-] ag; r—€g ag;
The equation (1.17), for x € R" : |z; —Z| >7r, i =1,...,n,

y(x); =0i + M <Ui> <91 (6%) + 62 <r$ _QE) +03<‘l’i — &l — m)) )
lzi — &) \ v o; o .

becomes

I
\.P—‘
E

y(x); = zi.

In summary the piecewise linear transformation in this special case:

e Forx ¢ R" : |xi—:%i]§§—f, 1=1,...,n,
_ ey R
y(@); =g+ = (@i = 2i) - (1.21)
xX
e Forz e R" :+ & <z — %< -, i=1,...,n,
_ ) (z; — ) €y r— €y ) €
J@), =i+ —— () + —2 |z — | — =) ). (1.22)
\a:i — :ZIZ’ ag; r— € ag;
o Forz e R" : |z; — & > i=1...n,

y(x); = ;. (1.23)
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1.3.9 Definition of the inverse PLT over hyperrectangles

Let us introduce two square diagonal matrices with positive entries:

141 0 0 o1 0 0
0 ) 0 0 09 0
Dy — 0 9 DCC = : 0
0 0 0 Up, 0 0 0 On

Let y € R", €,, ry, 01, 02, 03 be positive scalar quantities, with ¢, < r,. The
following equations define the inverse piecewise linear transformation over hyper-
rectangles.

e ForyeR" : |y, — 9| <2, i=1,...,n,

_1/72_7
_ N 1 v; N
T(y)i=2i+ 5 ) (i =90 (1.24)
1 \0i
e Fory e R" : %g]yi—yilg%’, i=1,...,n,

_ L, Wi—0) (v (1 (e 1 S _ &y
RSN (A VAN LN e ') BN A AR 1.2
Tl) =it lyi — 0l \oi) \01 \vi "6 i — 9 Vi (1.25)

o ForyeR" : |y, — 4 Z%, i=1,...,n,

c() =g Wim0) (v (L e L (e L
) =it lyi — 3| \oi) \01 \vi +92 Vi +93(|y, bil=ry) ) - (1:26)

The properties and the special cases are in the appendix A in sections A.1.3 and
A.1.4.



22 1. Exploiting variables space transformations in global optimization

1.3.10 Definition of diagonal entries of the matrix D,
The aim is to find the matrix D, such that
{x € R" : ||Dy(x — 2)||,, ST} € XL (1.27)

From the definition of ellipsoidal norm it has:

Jmaz |(d)i(w = 2)i] = | Da(w = 2) g < 7o,
from which considering the index of max i € {1,....,n} and from (1.27), it follows
that

e min{z; — l;, u; — z;}
<d$); - 2 19 Y S

The same derivation can be followed for the diagonal element of matrix D,,.
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1.3.11 Representation of the PLT over hyper-rectangular space

For a quick understanding a 2D representation of the transformation is drawn. Let
us consider the multimodal continuous function of section (1.3.5).

Expansion Consider to make an expansion of a hyper-rectangular neighborhood
E.(&,Dy,€;) of the point & = g = (0,0) with radius €, = 0.9 bringing it to a
radius of €, = 1.125. The transformation boundary is r, = r, = 1.8. For the
continuity of the transformation, the space in between the two hyperrectangles
is shrunk. Summarizing, the transformation parameters and the other resulting
quantities are the following:

e 0=[151.0]; e ¢, =0.9; e 7, =138; e 0 =0.7; e O3=1;

e v=[1510]; e ¢, =1.286; o ry=71,=18; e 0=1.75; e & =9y=(0,0).

In figure (1.4) on the left there is the starting function and contour plot in the X
space. On the right the result of the transformation in the ) space.

[ Contour and region - Y space

[1(x) Objective function [ Transformed f(x) Objective function

Figure 1.4. An hyper-rectangular neighborhood of Z has been expanded while shrinking
the one in between the two hyperrectangles. Original X space on the left, transformed
Y space on the right.
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Contraction Now consider to make a contraction of a hyper-rectangular neigh-
borhood of the point & = § = (0,0) with radius €, = 1.44 bringing it to a radius of
€, = 1.125. Summarizing, the transformation parameters and the other resulting
quantities are the following:

e 0=[151.0]; e e, =1.44; e r, =1.8; e 0 =1.6; e 03=1.0;

)

e v=[151.0]; e ¢ =0.9; o 1, =18; e Oy =04, e & =9=(0,0).

Y

In figure (1.5) on the left there is the starting function and contour plot in the X
space. On the right the result of the transformation in the ) space.

[E=Contour and region - X space

[ 1(x) Objective function [ Transformed f(x) Obijective function

Figure 1.5. An hyper-rectangular neighborhood of Z has been shrunk while expanding
the one in between the two hyperrectangles. Original X’ space on the left, transformed
Y space on the right.

1.3.12 Pros and cons of the piecewise linear transformation

The piecewise linear transformation is well suited for all global optimization ap-
proach where the feasible region is partitioned in sets of hyper-rectangles.

Examples can be a deterministic algorithms such as DIRECT-type approach
(DIviding RECTangle [2] and its variants [21]). In the modifications of the DIRECT,
there are hybridization with local minimization algorithm [12] in order to speed up
the search in promising partition. One can expand the current promising partition
to let the local minimization algorithm be fast exploiting longer stepsize or to avoid
coming across numerical issue if the partition region is already too small.
For example, the transformation can be applied to the subrectangles which are more
promising, while the rest of subrectangles remain unchanged.

A possible drawback is that the transformation propagates outside the hyper-
rectangle. In particular the subsection (1.3.3) describes the special case of a trans-
formation which has an effect as limited as possible within the region

{zeR" ! e <|zi—&| <r,i=1,...,n}.
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However also in this case the transformations perturbs all the space except for the
region
{z eR" : |x;—z4|>r,i=1,...,n}.

This drawback can be noted in the figures (1.4) and (1.5) above where all the space
is interested by the transformation except hyperrectangles at the corners.
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1.4 Non Linear Transformation (NLT)

In this section we introduce a transformation that overcome the drawback of the
piecewise linear one. It means that for such transformation there exist choices of
parameters such that its effect can be limited in the region

{z eR" : |z —-2|y<rgy, i=1,...,n}.

In particular here below it is introduced a piecewise nonlinear transformation y =
T;:(x) between two variable spaces: the original space X and a transformed one ).
It is not component-wise (not separable in dimension higher that one), but it is still
piecewise. Figure (1.6) illustrates the transformation before going into the details
of the definition of the transformation equations.

For the sake of simplicity consider a reference point § € ) as the origin of the
Cartesian axes. This point is set as centroid of the hypersphere B,(g, ) in which we
concentrate the transformation impact range. The point ¢ is also set as centroid of
the smaller hypersphere B,(y, €,) in which the transformation impact has the main
focus. The centroid ¢ is a fixed point of the transformation, so the equality § = &
holds, where & is the centroid of the corresponding hypersphere B,(Z,7;) in the X’
space.

In one dimension the nonlinear transformation (blue line in fig. (1.6)) coincides
to the graph of the piecewise linear transformation. It propagates outward from the
centroid in the relative space.

The larger the angle between the bisector (green line in fig. (1.6)) and the piecewise
nonlinear transformation, the greater the effect of the transformation.

Parameters U
o 01 =tan(a) > 0; e
v
o 0 =tan(B) > 0; 2+ ry
o O3 =tan(y) =1;
L 2 €x 2 0;
[ Ty 2 Ey Z 0 yspace
B’(iv 5T>
Vector Parameters
o i <&y — 1y
o Tty <y
o i <gi—ry; T —rg ‘
'/@_Ty B, (g, €,) g+ r
o Uity <uy e 2\ € v Ty
AN
l

Figure 1.6. Graph of the piecewise nonlinear transformation in one dimension.
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1.4.1 Definition of the NLT over hyperspheres

Let £ € R, €., 74, 01, 02, 03 be positive scalar quantities, with €, < r.

The following equations define the nonlinear transformation over hyper-spherical

space.

o Forz e R" : ||z — 2], < e,

y@)=g+01(z—1).

o Forz e R" : ¢ < |l — 2|y <1y,

|z — 53”2

. O Ct)) .
g(z) =9+ (e + 02 (|lz — &y — €2)) -
[Ed| P 2
o Forz e R" : |z — 2|y > ra,
" T -2 .
ylx) =9+ le=d) (Orex + O2(re — €2) + 03 (|lz — 2|, —72)) -

(1.28)

(1.29)

(1.30)
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1.4.2 Properties of the NLT - hypersphere

Here below are listed the properties and the necessary coupling condition to pre-
serve the continuity of the transformation between the original space X and the
transformed space ).

i) The reference point & € X is transformed in corresponding one g in the trans-
formed space Y:

ii) The region { z € R : ||z — 2|, < €, } is transformed in
{yeR" : lly—dgl,<e}
where (1.28)
y(x)=9+061(z—12),
imposes at the boundary the following coupling condition

€y = O1€z. (1.31)

iii) The region { z € R"® : ¢, < ||z — 2|, < 7 } is transformed in
{yeR" tey< [ly—glly <ry }

where (1.29)

~ . (r—2) .
y(x) =9+ —— (Orex + 02 (lz — 2], — €2))
|z — 5’3”2 ?
which can be rewritten as
(Y (x) —9) X (z - 1) .
17 (x) —9lly = (0162 + 02 ([[x — 2|y — €2)),

H33—§T||2

and applying the norm operator it has

S (Ore + 02 ([l — 2, — €2))
lz — 2[5 ?

)

(¥ (z) —9)
il 2

HH:&(SC) 17 () =4l
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iv)

from which taking into account scalar terms

D =0l 2 — gy

_ |z — 55”2
17 (z) — 9l

= — Orex + 65 (||lx — 2|5 — €2)),

that is
19 () — @HQ = they + 02 (||x — S%HQ —€x),

and by substituting (1.31) it impose at the boundary the following coupling
condition

ry =€y + O2(ry — €z). (1.32)

The region { ||z — Z||, > r, } is transformed in
{yeR" : ly—dgly=zry }

where from (1.30)

(z - 2)

y(x) =9+ . (Or6x + O2(re — €2) + 05 (|2 — 2]}y — 7)),
|z — 2|

substituting (1.31) and (1.32)

@)

— (ry + 03 ([[z — 2]y —rz)).- (1.33)
[z — &[],

As long as the (1.33) refers to the outermost region there is no need to further
coupling condition. It means that 63 is free of choice.
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1.4.3 Special case of NLT - hypersphere

This section consider a particular example of the transformation over hyperrectan-
gles. Therefore in this case it can be set:

. §=a.

The possibility of expanding or contracting the neighborhood of z follows from
suitable choices of €, €,. It implies from (1.31) that

c O =2 AL

Moreover for ensuring that the transformation impact has the main effect in a local
area, inside the radius r;, 7, it has to be set

o Ty =Tz =T.

It implies from (1.32) that

r—e
° 92 = rfez .

Finally in (1.33) by imposing that

for x € R" : ||z — 2|, > r, it has

y(z)=a.
From this choices, the equation (1.28), for x € R" : ||z — Z||, < €,

y(x)=9+01(z—1),
becomes

y@»=y+§§@—@»

The equation (1.29), for x € R™ : €, < ||l — 2|y < 1y,

g) =g+ o
ERE

7@ =i+ 1o (ot (22 (o= al, - )

(Orez + 02 (||lz — C%HQ —€z)),

becomes
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The equation (1.30), for x € R™ : ||l — &[4 > ry,

. T—1 .
g (x) :y+7( A) (Orex + O2(ry — €2) + 03 (||Jx — 2|, — 72)),
|z — 2|

becomes
y(x) ==z

In summary the nonlinear transformation in this special case:

o Forz e R" : |z -2, < e,

G@) =g+ Y (x—23). (1.34)

€z

o Forz e R" : ¢ < |z -2, <

p@ =i+ (a4 (22 (el -e). )

Iz =& z

o Forz e R" : |z —2|,>r,

g(z) == (1.36)
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1.4.4 Invertibility of the nonlinear transformation

We are going to prove that the direct equations of the nonlinear transformation
introduced in section (1.4.1) are invertible. In particular the non-linearities appear
in (1.29) and (1.30). Consider the equation (1.29):

(x —2)

y(x) =9+ —— (b€ + 02 (||z — 2|, — €2)) s
[l — 2l 2

substituting (1.31)

(iU—i’) (

D (ey+ s (lr — &y — €0)) (1.37)
lw = &fl, ’

y—y=

applying the 2 — norm operator and taking into account that ||z — Z||, > €,

ly=dll, = H“”_@ (e + 02 (|lz — 2|y — €x))

o=l )

_ H(xj“f") (e + 65 (Ilx — 3], — )
le—alll,

= (g +b(lz—2l; —e)),

and so
ly —9lly = ey + 02 (|2 — 2[|y — €z) , (1.38)

by inverting the last expression we have
| 1 .
&l = o+ -y =31l ~ ). (1.39)

Substituting (1.38) in (1.37)

(z - 2)

y—9=7—=llv—19ls,
[ (P ?
by inverting the last expression
- (y—9 3
z(y) —& = —— e — 2[5,
ly = 9l ?
and substituting (1.39) we have
A (y—9) ( 1 X
z(y) — &= —— et -y =3l —e) ),
ly —3ll, \° 62 2
that is ( ) .
_ N y—y N
s =i+ 0 (et gl - a)). (1.40)
ly =3l \* 62 2
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Now consider the equation (1.30):
_ . (z—2) 5
y(x)=19 — (Ohex + 02(rp — €2) + 03 ([|z — 2[5 — 72))
[z — 2[5
substituting (1.31) and (1.32)
. (z—2) .
y—9= i (ry + 03 ([lz — 2y —72)) (1.41)
[l — 2l
applying the 2 — norm operator and taking into account that ||z — 2|/, > 75
R (x — 1) R
=il = [ a2l - o)
2 |z — x||2 Y 2 ’ 2
(z — %) .
= 5= (ry+0slz =2l —r2))
H |z — 2|2 [, ! 2T
= (ry+03(lz—2ly —ra)),
and so
ly = dlly =7y + 03 (2 = Zlly —72), (1.42)
by inverting the last expression we have
) 1 .
[l — 2l =7“:r+%(||y—y||2—7”y)- (1.43)
Substituting (1.42) in (1.41)
. (z—2) X
y—i=5—>=——llv=14l,,
[ — 2l ?
by inverting the last expression
. -9 A
z(y) — &= —— llz — 2],
ly =4l ?
and substituting (1.43) we have
._ -9 < 1 X
r—2=——— e+ = (ly =3l =) |
ly=all, \'° 0 2
that is ( ) .
_ N y—y N
2 =2+ L0 (s L=l =) (149)

+ -
ly — 9l
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1.4.5 Definition of the inverse NLT over hypersphere

Let y € R", €y, 1y, 01, 02, 03 be positive scalar quantities, with ¢, < ry.

The following equations define the inverse nonlinear transformation over hyper-

spherical space.

o Fory e R" :|ly — 9, < ey,
_ - ]' oy
x(y)z:z-i-e*l(y_y)- (1.45)
o ForyeR" : ¢, <|ly—1ly <1y,
I et ) <1 1 ; >
zWy) =2+ — | e+ Uy =7yl — € ) 1.46
() =il \a 92(|| o — €y) (1.46)
o Forz e R" : |ly —gly >y,
f(y) =44+ M <1ey + i(Ty - Ey) + i (||y—3}||2 _ry)> : (1'47)
ly=all, \61 7 " 02 05

To have an easier reading and better clarity the properties and the special cases are
in the appendix A in sections A.2 and A.2.2.
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1.4.6 Representation of the NLT over hyper-spherical space

Here below a 2D representation of the nonlinear transformation is drawn. Let us
consider the multimodal continuous function of section (1.3.5).

Expansion Consider to make an expansion of a hyper-spherical neighborhood
Ba(Z, €;) of the point & = ¢ = (0,0) with radius €, = 1.5 bringing it to a radius
of ¢, = 2.14. The transformation boundary is r, = r, = 3.0. For the continuity
of the transformation, the space in between the two hyperrectangles shrunk. The
transformation parameters has been set as follows:

e ¢, =15; e 1r,=30; e 0, =0.7; o O3=1;

o ¢, =214 e 1,=30;

0, = 1.75; o i=7=1(0,0).

[Z01(x) Objective function [ Transformed (x) Objective function

Figure 1.7. A spherical neighborhood of & has been expanded while shrinking the one in
between the two spheres .
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Contraction Now consider to make a contraction of a hyper-spherical neighbor-
hood Bs(Z, €;) of the point & = § = (0,0) with radius e, = 2.4 bringing it to a radius
of €, = 1.33. The transformation boundary is r, = r, = 3.0. For the continuity of
the transformation, the space in between the two hyperrectangles is expanded.

o ¢, =24, o 1, =230; o 6h=18; o O3=1;

e ¢,=1.33; o 1r,=30; e 0, =0.36; e i=y=1(0,0).

[E01(x) Objective function [=—J Transformed f(x) Objective function

Figure 1.8. A spherical neighborhood of & has been shrunk while expanding the one in
between the two spheres .
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1.4.7 Definition of the NLT over hyperellipsoids

The equations that describe the nonlinear transformation over hyperspheres can be
suited for general hyperellipsoidal space. Let us introduce two diagonal matrices
with positive entries:

o1 0 0 1 0 0

0 09 0 0 ) 0
-DJ,’_ . . ) Dy: . .

: : . 0 : : . 0

0 0 0 On 0 0 0 Up,

The matrices D, € R"*" e D, € R"*" are positive definite and invertible and can
be used for specifying the ellipsoidal lo — norm distance over the ) space in this
way

|Dale = &)l = 1/ (& — #)7 Dy Dol — ),
and over the X" space

IDy(y — )1y = /(v — )T D, Dy (y — ).

Let £ € R", €, rz, 01, 02, 03 be positive scalar quantities, with €, < r,. The
following equations define the nonlinear transformation over hyper-ellipsoidal space.

o For z € R" :||Dy(x — 2)||y < €,

y(z) =9+ 01D, ' Dy(x — ). (1.48)

o Forz e R" : e, <||Dy(z —2)|y < 7g,

) _1 Di(x—12)

y@) =9+ D, m (016 + 02 (| Da(z — )|y — €2)) - (1.49)

o Forz e R" : ||Dy(x — )| > 74,

D,(x — 1)

pla) =g+ D,
( v e =),

(Or€z +02(re — €) + 03 (| Da(z = @)l —72)) - (1.50)
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1.4.8 Properties of the NLT - hyperellipse

Here below are listed the properties and the necessary coupling condition to pre-

serve the continuity of the transformation between the original space X and the

transformed space ).

i) The reference point & € X is transformed in the corresponding one ¢ in the

transformed space ):
§=T:(2).
ii) The region { z € R" : ||Dy(x — 2)||5 < €, } is transformed in
{yeR" : [IDy(y—9)ll, <€},
where (1.48)
y(x) =9+ 601D, Dy(x — &),
imposes at the boundary the following coupling condition

€y = O1¢€.

iii) The region { x € R" :€; < ||Dgy(z — 2)||, < 75 } is transformed in
{yeR" 1, < |IDy(y—9lly <y }

where (1.49)

_ . 1 Dy(x—12) )
y(x) =9+ D, (e =), (0r€z + 02 ([[Du(z — )5 — €2))
which can be rewritten as
D) ~9) oo Do), L

and applying the norm operator it has

Dy(y () — 9) . . H Dy(z — 1) A
= - D T) — = |(|—=————— (0164 + O (|| Dp(x — T)||, — €,
[ TDHE =B 10,0) =il = | R Oree + 2 (IDete = ), = )
from which taking into account scalar terms
1Dy(7 (x) — 9)ll, _ Doz = 2)ll,

1Dy(5 (x) = 9)ll,

(1.51)

€))

2

1Dy(5 () = 9)lly = 1Daz =), (Orez + 02 (| D (2 — 2)]|5 — €x)) ,

)
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iv)

that is

1Dy (4 () = 9)lly = Orex + 02 (| Da(z — 2), — &),

and by substituting (1.51) it imposes at the boundary the following coupling
condition

ry =€y + 02(rz — €2). (1.52)

The region { ||Dy(z — Z)||, > 75 } is transformed in
{yeR" - [IDy(y =)l =7y

where from (1.50)

D,(z — %)

D a =, e+ 0alra = e2) + 05 (IDa(w = D), = 72)),

substituting (1.51) and (1.52)

_De(@—2) I
Doe o, v BIDel@ = Dlp=ra)). (153)

As long as the (1.53) refers to the outermost region there is no need to further
coupling condition. It means that 63 is free of choice.
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1.4.9 Special case of NLT - hyperellipse

As well as in the transformation over hyperspheres, this section consider a particular
example of the transformation over hyperellipses. Therefore in this case it can be
set:

The hyperellipse dimensions in the original space X and in the transformed space
Y are described by

e Dy=D, andso v;=o0; fori=1,...,m;

The possibility of expanding or contracting the neighborhood of & follows from
suitable choices of €, €,. It implies from (1.51) that

c O =2 AL

Moreover for ensuring that the transformation impact has the main effect in a local
area, inside the radius r;, 7, it has to be set

o Ty=Tz=T.

It implies from (1.52) that

° 62 — r—ey

r—€g "

Finally in (1.53) by imposing that

for x € R" : ||Dy(x — )|, > r, it has

y(z) ==
From this choices, the equation (1.48), for x € R" : ||Dy(z — 2)||, < €,
J(x) =i+ 61D, ' Do(x — 2),

becomes .
glx)=9+ gD;lDI(x — ).
T
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The equation (1.49), for x € R™ : €, < ||Dy(x — )| < 74,

j(z) =g+ D;IM (0165 + 05 (|| Dl — )y — €2)) »
becomes
y(a) =9+ Dy—lm <ey + (::Zy> (|1 Dx(x — )l — er)> .

The equation (1.50), for z € R™ : || Dy(x — )|y > 7,

1 Dy(x—2)

T a =, e + 0alra = e2) + 05 (IDa(w = D)o = 72)),

becomes

y(x) =

In summary the nonlinear transformation in this special case:

o Forz e R" : ||Dy(x — ), < €,

_ . Gyt N
y(z) =9+ ;Dy Dy(x — 7). (1.54)

o Forz e R" : € < ||Dy(x —2)||, < 1,
_ . 1 Dy(x—12) r—e )
7@ =i+ 0y e (ot (F22) sta - )l - ) (159
2 T

|Dx(z — ) —€

o Forz e R" : ||Dy(x — )|, >,

g(z)==x. (1.56)
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1.4.10 Definition of the inverse NLT over hyperellipses

Let us introduce two diagonal matrices with positive entries:

121 0 0 o1 0 0
0 1) 0 0 (o] 0
Dy - 0 B D{L’ — . 0
0 0 0 Un 0 0 0 On

The matrices D, € R"*" e D, € R"*" are positive definite and invertible and can
be used for specifying the ellipsoidal lo —norm distance over the ) space in this way

1Dy(y — )y = /(v — )T Dy Dy (y — ),
and over the X space

ID2(z = )]y = /(2 = )T De Dol — 2).

Let g € R", €y, 1y, 61, 02, 03 be positive scalar quantities, with €, < ry.
The following equations define the inverse nonlinear transformation over hyper-
ellipsoidal space.

« Fory e R" :[|Dy(y — 9, < ey,

2() =i+ 5 D;'D, (- 9). (1.57)

e Fory e R" : ¢, < HDy(y - @)HQ < Ty,

1
Dy — o \g @ g, WPy =9l —e > 1.58
1Dy(y —D)ll, \617 " 6 (I1Dy (5 = D)l — &) (1.58)
« Forz € R ¢ Dy~ )l 2 7y

1 1 )
1D, (v — ), \& + @(ry —€&)+ % (I1Dy(y = D)ll, — ry)) . (1.59)

The properties and the special cases are in the appendix A in sections A.2.3 and
A.2.4.
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1.4.11 Definition of diagonal entries of the matrix D,
The aim is to find the matrix D, such that

{z e R": ||Dy(z — 2)|y < rp} € X. (1.60)

From the definition of ellipsoidal norm it has:

(do);(x = 2)F = | Da(z — &5 < 72,
i=1

2
from which Vi € {1,...,n} it has
(de)j(w — 2); < | Do — 3)[ly < 7o

)

Finally (1.60) it follows that
TJ: .
< min{x; — l;,u; — x;

(@) v

The same derivation can be followed for the diagonal element of matrix D,.
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1.4.12 Representation of the piecewise nonlinear transformation
over hyperellipses

Expansion Consider to make an expansion of a hyperellipsoidal neighborhood
E(Z, Dy, €;) of the point & = ¢ = (0,0) with semi-axes €,/0 = [1.5 0.9] bringing it
to semi-axes €,/v = [2.14 1.28]. The transformation boundary is r, = r, = 3.0. For
the continuity of the transformation, the space in between the two hyperrectangles
is expanded. The transformation parameters has been set as follows:

e 0=11.01.67]; e ¢, =1.5; e 7, =3.0; e 01 =0.7; e 03 =10,

e v=[1.01.67]; e ¢, =2.14; o 1, =3.0; o Oy =1.75; e i =9=(0,0).

[ Contour an

region - X space [ Contour and transformation region - Y space

[ Transformed f(x) Objective function

Figure 1.9. An ellipsoidal neighborhood of & has been expanded while shrinking the one
in between the two ellipsoid.

Contraction Consider to make a contraction of a hyperellipsoidal neighborhood
E(Z, Dy, €;) of the point & = § = (0,0) with semi-axes €, /0 = [2.4 1.44] bringing it
to semi-axes €, /v = [1.71 1.03]. The transformation boundary is r, = r, = 3.0. For
the continuity of the transformation, the space in between the two hyperrectangles
is expanded.

e 0=1101.67]; & ¢, =2.4; e 7, =3.0; o 01 =14, e 03 =10,

e v=[1.01.67]; & ¢, =1.71; o ry, =3.0; o 0y, =1047; o i =9=(0,0).
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&= Contour and ion region - X space [ Contour and ion region - Y space

[Jf(x) Objective function [ Transformed f(x) Objective function

Figure 1.10. An ellipsoidal neighborhood of # has been shrunk while expanding the one
in between the two ellipsoid .
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1.5 Recursive formula

Since the transformations proposed in chapter (1.3) and chapter (1.4) are continu-
ous and bijective we can apply it recursively.

As long as we want to define a recursion we need to transit in intermediate variable
spaces a number of times. Let us define the k — th intermediate variable space Z¥

Zk:<zk€Rn 1< Sk Su)

with [, € R™. Given a sequence of K > 1 transformations

k
zk:i<zk_1> , k=1,....K

that V& have its own parameters D¥ D]zj’ e e’y“ , ks rly“ , OF, 05  and reference point
2% We start from the transformed variable space ) to arrive to the original variable
space X. It means that for the first intermediate variable space the equality Z¥ = )
holds, whereas for the last one ZX = X. Algorithm 1 summarize the recursive

formula.

Algorithm 1 Recursive transformation formulas

LzeX, yelY, 2bezZkk=1,... K, =y, 3=
2: for k=1,...,K do

3: set D';,Dly“,efc, EZ, rk, 7“5, 9]f, 9]5, 3k = zk-1
4: b=z (zk_l)k

5: end for

6: x = ZK

7: return x

The following figures show examples of application of two iteration of the recur-
sive transformation in both cases of expansion and contraction. Respectively hy-
perrectangle shaped space for piecewise linear transformation and hyperellipsoidal
shaped space for piecewise non linear transformation.

PWL Expansion Let us start considering to make two recursive expansion of
hyper-rectangular neighborhoods B.. (4", 65) The first neighborhood is character-
ized by the point #! = §! = (2,3) with radius e} = 0.8 bringing it to a radius of
eé = 1.14. The transformation boundary is rl = T; = 1.6. The same action is done
for the second neighborhood at the point 22 = §? = (0,0) with radius e% = 0.7 bring-
ing it to a radius of 62 = 1.0. The transformation boundary is r2 = rg = 1.4. For
the continuity of the transformation, the space in between the two hyperrectangles
is shrunk.

The transformation parameters for the recursive hyper-rectangular expansion at
iteration £ = 1 has been set as follows:
e 01 =[091.0]; o ¢ =058; o L =16; e 01 =0.7; o 0i=10;

T

o V1 =1[0910]; o ¢! =114; o 1l =16; o 0 =1.75; o« i=7=1(2,3).
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In figure (1.11) on the left there is the starting function and contour plot in the
X space. On the right the result of the recursion at iteration k = 1, in the ) space.

[E01(x) Objective function [ Transformed f(x) Objective function

y2

5 5 Y

Figure 1.11. Recursion at iteration & = 1. An hyper-rectangular neighborhood of # has
been expanded while shrinking the one in between the two hyperrectangles. Original X
space on the left, transformed ) space on the right.

The transformation parameters for the recursive hyper-rectangular expansion at
iteration £ = 2 has been set as follows:

e 02=[100.7]; e € =0.7; o r2=14; e 03=0.7; o 02=10;
e 1X=[1.00.7] e =1.0; o r2=14; o 02=1.75; o £=9=(0,0).

In figure (1.12) on the left there is the starting function and contour plot in
the X space. On the right the result of the recursion at iteration k& = 2, of the
transformation in the ) space.
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[ Contour and region - X space [ Contour and region - Y space

[E=31(x) Objecive function [I2 Transformed f(x) Objective function

Figure 1.12. Recursion at iteration & = 2. Another hyper-rectangular neighborhood of &
has been expanded while shrinking the one in between the two hyperrectangles. Original
X space on the left, transformed ) space on the right.

PWL Contraction Considering now to make two recursive contraction of hyper-
rectangular neighborhoods B.. (3", e’;) The first neighborhood is characterized by
the point 2! = §! = (2, 3) with radius €. = 1.28 bringing it to a radius of e; =0.71.
The transformation boundary is 7} = ry = 1.6. The same action is done for the
second neighborhood at the point 22 = §? = (0,0) with radius €2 = 1.12 bringing
it to a radius of eg = 0.62. The transformation boundary is r2 = rg = 1.4. For the
continuity of the transformation, the space in between the two hyperrectangles is
shrunk.

The transformation parameters for the recursive hyper-rectangular contraction

at iteration k£ = 1 has been set as follows:

1
T
r

e 0! =[091.0] e ¢l =128 e rl=14 o 0] =1.8; o 0i=10;

T

o 11 =10091.0]; e ¢ =0.71; o rl =16; e 03 =0.36; o T=7=(2,3).

In figure (1.13) on the left there is the starting function and contour plot in the X
space. On the right the result of the recursion at iteration k = 2, in the ) space.
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[01(x) Objective function [ Transformed f(x) Objective function

Figure 1.13. Recursion at iteration k& = 1. An hyper-rectangular neighborhood of & has
been expanded while shrinking the one in between the two hyperrectangles. Original X
space on the left, transformed ) space on the right.

The transformation parameters for the recursive at iteration £ = 2 has been set
as follows:

e 02=[1.00.9]; e € =1.28; o r2=14; o 03 =18; o 02=1.0;
e 12=[091.0]; e ¢=0.71; o r2=14; e 02 =0.36; o z=9=(0,0).

In figure (1.14) on the left there is the starting function and contour plot in
the X space. On the right the result of the recursion at iteration k = 2, of the
transformation in the ) space.
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[ Contour and region - X space [ Contour and region - Y space

[ f(x) Objective function [ Transformed f(x) Objective function

Figure 1.14. Recursion at iteration & = 2. Another hyper-rectangular neighborhood of &
has been expanded while shrinking the one in between the two hyperrectangles. Original
X space on the left, transformed ) space on the right.
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NLT Expansion With regard to piecewise non-linear transformation, consider
to make two recursive expansion of hyperellipsoidal neighborhoods B,(3*, e’;) The
first neighborhood is of the point 2! = §! = (2,3) with radius €. = 0.5 bringing
it to a radius of e, = 1.1. The transformation boundary is r} = rj = 2.0. The
same action is done for the second neighborhood at the point 22 = §° = (0, 0) with
radius €2 = 0.6 bringing it to a radius of 632/ = 1.27. The transformation boundary
is r2 = TZ = 2.2. For the continuity of the transformation, the space in between the
two hyperrectangles is shrunk.

The transformation parameters for the recursive hyperellipsoidal expansion at
iteration k=1 has been set as follows:
o ol = [0.83 1.0]; el =0.9; o rl =20; ° 9% = 0.45; ° 9% = 1.0,

x

e 1 =[0.831.0];e ¢ =1.286; o rl=20; e 0} =1.69; o T=9=(2,3).

In figure (1.15) on the left there is the starting function and contour plot in the X
space. On the right the result of the recursion at iteration k = 1, in the ) space.

[ Contour and region - X space [ Contour and region - Y space

Y 5 5 Yy

[ Transformed f(x) Objective function

[ f(x) Objective function

Figure 1.15. Recursion at iteration & = 1. An hyperellipsoidal neighborhood of & has
been expanded while shrinking the one in between the two hyperellipsoidal. Original X
space on the left, transformed ) space on the right.

The transformation parameters for the recursive hyperellipsoidal expansion at
iteration k = 2 has been set as follows:

e 02 =[1.00.88];8 €2 =0.6; e r2=22; o 07 =047; o 02=1.0;

o 12 =[1.00.88];e € =1.27; o 12 =22; o 02 =1.72; o 2 =7=(0,0).

In figure (1.16) on the left there is the starting function and contour plot in the X
space. On the right the result of the recursion at iteration k& = 2, of the transfor-
mation in the ) space.
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[ Contour and Tegion - X space [E Contour and region - Y space

[1(x) Objective function [ Transformed f(x) Objective function

Figure 1.16. Recursion at iter k¥ = 2. Another hyperellipsoidal neighborhood of % has
been expanded while shrinking the one in between the two hyperellipsoidal. Original X
space on the left, transformed ) space on the right.
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NLT Contraction Considering now to make a contraction of two hyperellipsoidal
neighborhoods. The first neighborhood is B (9, €,) of the point & =y = (2, 3) with
radius €, = 1.28 bringing it to a radius of ¢, = 0.71. The transformation boundary
is 7, = ry = 1.6. The same action is done for B (9, €,) of the point & = g = (0,0)
with radius €, = 1.12 bringing it to a radius of ¢, = 0.62. The transformation
boundary is r, = ry = 1.4. For the continuity of the transformation, the space in
between the two hyperellipsoidal is shrunk.

The transformation parameters for the recursive hyperellipsoidal contraction
iteration k=1 has been set as follows:

e 01 =[0.91.0]; e €l =1.28; o rl=14; o 0l =18; e 01=10;

o 11 =1[0.91.0]; o ¢ =0.71; o rl=16; e 03 =0.36; o I=7=(2,3).

In figure 1.17 on the left there is the starting function and contour plot in the X
space. On the right the result of the recursion at iteration k = 1, in the ) space.

[ Contour and region - X space [ Contour and region - Y space

2 5 5 1

() Objective function [ Transformed f(x) Objective function

Figure 1.17. Recursion at iteration & = 1. An hyperellipsoidal neighborhood of & has
been expanded while shrinking the one in between the two hyperrectangles. Original X
space on the left, transformed ) space on the right.

The transformation parameters for the recursive hyperellipsoidal contraction
iteration k=2 has been set as follows:

e 02=[1.00.9]; e 2 =1.28; o 12 =14; o 07 =138; o 02=1.0;

e 12 =1[0.91.0]; o ¢ =0.71; o r2=14; e 02 =0.36; e & =9=(0,0).

In figure (1.18) on the left there is the starting function and contour plot in
the X space. On the right the result of the recursion at iteration k = 2, of the
transformation in the ) space.
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[ Contour and

region - X space

[ Contour and

region - Y space

Yz 5 5 Y

[C1(x) Objective function [ Transformed f(x) Objective function

ERNINCYS ST

Figure 1.18. Recursion at iteration & = 2. Another hyperellipsoidal neighborhood of & has

been expanded while shrinking the one in between the two hyperellipsoidal. Original X
space on the left, transformed ) space on the right.
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1.6 Scaling and Preconditioning

1.6.1 Scaling

In addition to the contraction and the expansion we have seen so far, the equations
allow us to relate hyperspheres B(z, ;) in the original space, to scaled hyperspheres
B(y,ry) in the transformed space. The scaling factor can be tuned by setting 63 to
the ratio of the outer radius r;/r, of the considered hyperspheres. In figure (1.19)
there is an example of an hypersphere in the X space centered in & = ¢ = (0,0)
with outer radius r, = 2.5 that is related to an hypersphere in the ) space with
outer radius r, = 3.
The transformation parameters has been set as follows:

o ¢, =20, o 1, =2.5; e 0 =1.0; e O3=12;
o ¢, =2.0; o 7, =3.0; o Oy =0.5; e & =9=(0,0)
[ Contour and region - X space [ Contour and region - Y space |

[C01(x) Objective function [ Transformed f(x) Objective function

Figure 1.19. A spherical neighborhood of & has been scaled to an expanded one in the
transformed space.

The same can be made for a contraction scaling by inverting the previous ratio
and so by setting 03 = r,/r,. The example is in figure (1.20) there is an example of
an hypersphere in the X’ space centered in & = g = (0,0) with outer radius r, = 2.5
that is related to an hypersphere in the ) space with outer radius r, = 3.

The transformation parameters has been set as follows:

o ¢, =20, o 1, =3.0; e 0 =1.0; e 3 =0.83;

e ¢, =2.0; o 1y =25; o 0y =20; e & =9=(0,0).

Y
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[ Contour and region - X space | [ Contour and region - Y space

[E01(x) Objecive function [ Transformed f(x) Objective function

Figure 1.20. An entire spherical neighborhood of Z has been scaled to an expanded one
in the transformed space. The innermost region of radius €, = €, remain unchanged.

Scaling with unchanged innermost region.

The transformation equation can also be tuned to perform a generalized scaling
but isolating a specific region to be unchanged. Let us consider the innermost
transformed region

B(g,ey) = (y€R™, €,>0 : ly—9| <ey),
where the transformation equation involved is
T(y)=2+01(y—79),

with the coupling condition

Orey = €.

In order to keep the region unchanged we must set 6; = 1, while setting 63 = 7, /7.
With this transformation to the hypersphere B(y,€,) C Y, corresponds an identical
the hypersphere in the original space

B(z,ez) =(x €R", >0 : ||z — 2| <€),
The transformation parameters has been set as follows:

o ¢, =20; o 1, =2.5; e 0 =1.0; o 03=12;

e ¢, =2.0; o 1, =3.0; e 0y =0.5; e & =9=(0,0).
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[ Contour and on region - X space [ Contour and

ion region - Y space |

[ (x) Objective function [E0 Transformed f(x) Objective function

Figure 1.21. A spherical neighborhood of & has been scaled to an expanded one in the
transformed space. The innermost region of radius €, = ¢, remains unchanged.

The same can be made for a contraction scaling by inverting the previous the
ratio and so by setting 03 = 7,/r,. The example is in figure (1.22) there is an
example of an hypersphere in the X space centered in & = ¢ = (0,0) with outer
radius r, = 2.5 that is related to an hypersphere in the ) space with outer radius
r, = 3. The transformation parameters has been set as follows:

o ¢, =20; o 1, =3.0; o 0, =1.0; e 03 =0.83;
e ¢, =20; o 1y =25; e 0y =20; e & =7=(0,0).
[ Contour and region - X space | [ Contour and region - Y space

[1(x) Objective function [ Transformed f(x) Objective function

Figure 1.22. A spherical neighborhood of # has been scaled to a contracted one in the
transformed space. The innermost region of radius €, = €, remains unchanged.
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1.6.2 Preconditioning

The conditioning of a problem can be defined as the range (over a level set) of the
maximum improvement of objective function value in a ball of small radius centered
on a given level set. In the case of convex quadratic functions (f(x) = %J‘TH x where
H is a symmetric definite matrix), the conditioning can be exactly defined as the
condition number of the Hessian matrix H, i.e., the ratio between the largest and
smallest eigenvalue. Since level sets associated to a convex quadratic function are
ellipsoids, the condition number corresponds to the squared ratio between the largest
and shortest axis lengths of the ellipsoid.

In optimization, the preconditioning is a technique exploited by algorithms
which seeks to let an ill-conditioned problem be more straightforward to be tack-
led. In literature there are many methods for preconditioning but all are based
on derivatives [27, 28, 29] or an approximation of them, such as finite differences
[30, 31].

At the time of writing this thesis, it is under exploration how to apply the
proposed transformations as preconditioning technique that neither use derivatives
nor an approximation of them. In this subsection it is reported a possible way to
proceed and a numerical example.

It considers the well known Rosenbrock function, also referred to as the Valley
or Banana function, defined as follows

n—1

floy--2,) = Z(/\(l'? —2ip1)” + (1= 2)?)

=1

-3.0 < z; < 3.0, Ae{l,...,10'%
minimum at f(1,1,---,1) =0

The function is unimodal, non-separable, and the global minimum lies in a nar-
row, parabolic valley. However, even though this valley is easy to find, convergence
to the minimum is difficult [32, 33]. Moreover for large enough A and n, has one local
minimum close to z = [—1,1,..., 1], see also [35]. In figure (1.23) the contour lines
of the 2D Rosenbrock function show a bent ridge that guides to the global optimum
and the parameter A controls the width o the ridge. In the classical Rosenbrock
function A is equals to 100. For smaller A the ridge becomes wider and the function
becomes less difficult to solve.

It considers a derivative-free algorithm DFL such as [34] (S. Lucidi, M. Scian-
drone, 2002). The algorithm investigates the local behaviour of the objective func-
tion on the feasible set by sampling it along the coordinate directions and by per-
forming a linesearch along suitable descend direction. When the stepsize a; along a
coordinate direction i = 1, ..., n, differs too much, say, over a threshold 7, from the
stepsize of the other coordinate directions, it might suggest that an ill-conditioning
occurs in a neighborhood of the current best point Z.

Now consider to apply the non-linear transformation over hyperellipsoids intro-
duced in subsection 1.4.7 in such a way as to prevent the ill-conditioning. It can
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Figure 1.23. Contour plot of Rosenbrock function in 2D

be done by a suitable choice of the diagonal entries of the matrices D, and D,. In
particular a possible choice is

g1 0 0 141 0 0
0 g9 0 0 %] 0
Dw = 9 Dy = 9
0 0
0 0 0 on 0 0 0 Up,
mazx(a;) )
where g; = —* , =1, 1=1,...,n.

Qg
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In figure (1.24), with the function parameter A\ = 102, it is drawn the trace
of 2102 improving points explored by the algorithm mentioned above in standard
setting, until the stopping criterion of maxz(a;) < 107% is satisfied, without the use

1

of any transformation.

[ Countour and transf region - X space
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Figure 1.24. Trace of the improving points explored by the algorithm DFL

In figure (1.25), it is drawn the trace of the 1246 improving points explored by
DFL algorithm with the use of the non-linear transformation.
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[ Countour and transf region - X space|

X2
o
T

Figure 1.25. Trace of the improving points explored by the DFL with transformation.

The transformation is applied iteratively in a neighborhood of the current best
solution & such that the path followed by the algorithm turns out to be smoother
and it could exploit larger stepsize, meaning less function evaluations, until the
stopping criterion is met. Tables (1.1, 1.2) report the results of DFL algorithm
on the Rosenbrock, with and without the non-linear transformation, with different
values of the function parameter A and different thresholds 7 = a?iﬁ % = O‘; Loi=
1,...,n — 1 that trigger the use of the transformation.
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Table 1.1. DFL not exploiting non-linear transformation.

Cond. Funct. | Min. Threshold
Function Param. | Iter. | Eval. Value Dim. | 7
Rosenbrock | 100 2102 | 6270 0.000000 | 2 -
Rosenbrock | 500 8992 | 26943 | 0.000002 | 2 -

Table 1.2. DFL exploiting non-linear transformation.

Cond. Funct. | Min. Threshold
Function Param. | Iter. | Eval. Value Dim. | 7
Rosenbrock | 100 1274 | 3784 0.000000 | 2 2
Rosenbrock | 100 1246 | 3700 0.000000 | 2 53
Rosenbrock | 100 1246 | 3702 0.000000 | 2 10
Rosenbrock | 500 5100 | 15264 | 0.000001 | 2 2
Rosenbrock | 500 5176 | 15492 | 0.000001 | 2 )
Rosenbrock | 500 8992 | 26943 | 0.000002 | 2 10

The results seems promising. In particular the identification of a tailored dy-
namic strategy to select the 7 threshold, and an accurate tuning of the transforma-
tion could be the keys to pursue the research.
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1.7 Performance results

This section aims to provide preliminary results about the promising use of the trans-
formation in global optimization algorithms. It is considered the DFL algorithm
mentioned in the previous subsection in a multi-start framework that leverages vari-
ables transformations to gain an advantage for the search of the global minimum.
The goal is to find a good solution of multi-modal black-box global optimization
problems. It is compared a simple multi-start approach against a multi-start that
exploit the transformations. Both the algorithms were stopped either when the
number of local searches exceeds the budget or when a point Z is found such that:

@ = <107° (1.61)
maz (1, |f*])
where f(Z) is the approximations of the global minimum value of the objective
function f* found by the multi-start algorithm.

For the testbed it is chosen the library CEC’ 2013 Benchmark Set for Real
parameter Optimization. The CEC’13 test problems library [24] was released on
the occasion of the Special Session on Real-Parameter Optimization held in Cancun,
Mexico. 20 - 23 June 2013, during IEEE Congress on Evolutionary Computation
(CEC 2013). In figure (1.26) the details of the 28 problem classes available in
dimension 2, 5, 10, 20, 50, 100.

As long as in the multi-start approach exploits randomly generated points as
staring point for the local searches, the tests on these libraries were set in a stochastic
fashion and it is summarized as follows

- Test problem: 28;

- Dimensions investigated 2, 5, 10;

- Budget local searches: 100 * dimensions;

- Stochastic runs per problem (random starting point): 10;

- Fixed seed for reproducibility of the pseudorandom number sequence (Mersenne
Twister generator [36]).

It means that the total number of problems was 28 * 10 = 280. The following
tables report the comparison of a simple multi-start approach against a multi-start
that exploit the transformation. The dimensions investigated are 2, 5 and 10 for
both the piecewise linear transformation and non-linear transformation and both
the strategy of space expansion and space contraction. For each algorithm three
key performance indicator are analysed:

e The mean value of the objective function over the 10 stochastic runs;
e The best value of the objective function over the 10 stochastic runs;

e The ability to find the global minimum value of the objective function.
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No. | Functions fit=fitx*)
1 Sphere Function -1400
. 2 Rotated High Conditioned Elliptic Function -1300
Unimodal X :

Functions 3 Rotated Bent Cigar Function -1200
4 | Rotated Discus Function -1100
5 Different Powers Function -1000

6 Rotated Rosenbrock’s Function -900

7 Rotated Schaffers F7 Function -800

Rotated Ackley’s Function -700

9 Rotated Weierstrass Function -600

10 | Rotated Griewank’s Function -500

11 | Rastrigin’s Function -400

Basic 12 | Rotated Rastrigin’s Function -300
Multimodal 13 | Non-Continuous Rotated Rastrigin’s Function -200
Functions 14 | Schwefel's Function -100
15 | Rotated Schwefel's Function 100

16 | Rotated Katsuura Function 200

17 | Lunacek Bi_ Rastrigin Function 300

18 | Rotated Lunacek Bi_ Rastrigin Function 400

19 | Expanded Griewank’s plus Rosenbrock’s Function 500

20 | Expanded Scaffer’s F6 Function 600

21 | Composition Function 1 (n=5.Rotated) 700

22 | Composition Function 2 (n=3.Unrotated) 800

23 | Composition Function 3 (n=3.Rotated) 900
Composition | 24 | Composition Function 4 (n=3.Rotated) 1000
Functions 25 | Composition Function 5 (n=3.Rotated) 1100
26 | Composition Function 6 (n=5.Rotated) 1200
27 | Composition Function 7 (n=5.Rotated) 1300
28 | Composition Function 8 (n=5.Rotated) 1400

Search Range: [-100.100]7

Figure 1.26. CEC13 problems. https://www.ntu.edu.sg/CEC2013/CEC2013.htm

The results are presented in terms of number of wins over the 28 function classes, it
means that each value in the tables reveals the number of times an algorithm wins
against the other. If this situation doesn’t occur it means that both algorithms has
the same performance.
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Table 1.3. Hyperrectangle expansion in 2D. Number of of wins.

Multi-Start Multi-Start Both
Transformation Simple algorithms
Meanivalues Objective 9 1 18
Function
Best 'Values Objective 1 0 97
Function
Global minimum values 1 0 24

found

Table 1.4. Hyperrectangle expansion in 5D. Number of of wins.

Multi-Start Multi-Start Both
Transformation Simple algorithms
Mean.values Objective 94 1 3
Function
Best .values Objective 19 9 7
Function
Global minimum values 0 0 4

found

Table 1.5. Hyperrectangle expansion in 10D. Number of of wins.

Multi-Start Multi-Start Both
Transformation Simple algorithms
Mean'values Objective 23 0 5
Function
Best .Values Objective 14 0 14
Function
Global minimum values 0 0 4

found
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Table 1.6. Hyperrectangle shrinking in 2D. Number of of wins.

Multi-Start Multi-Start Both
Transformation Simple algorithms
Mean. values Objective 8 1 19
Function
Best .Values Objective 1 0 97
Function
Global minimum values 1 0 924

found

Table 1.7. Hyperrectangle shrinking in 5D. Number of of wins.

Multi-Start Multi-Start Both
Transformation Simple algorithms
Mean. values Objective 924 0 4
Function
Best .values Objective 10 1 17
Function
Global minimum values 1 0 7

found

Table 1.8. Hyperrectangle shrinking in 10D. Number of of wins.

Multi-Start Multi-Start Both
Transformation Simple algorithms
Mean. values Objective 23 0 5
Function
Best .Values Objective 16 0 12
Function
Global minimum values 0 0 4

found
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Table 1.9. Ellipsoidal expansion in 2D. Number of of wins.

Multi-Start Multi-Start Both
Transformation Simple algorithms
Meanivalues Objective 9 0 19
Function
Best 'Values Objective 4 0 924
Function
Global minimum values 1 0 24

found

Table 1.10. Ellipsoidal expansion in 5D. Number of of wins.

Multi-Start Multi-Start Both
Transformation Simple algorithms
Mean.values Objective 94 0 4
Function
Best .values Objective 19 1 15
Function
Global minimum values 9 0 7

found

Table 1.11. Ellipsoidal expansion in 10D. Number of of wins.

Multi-Start Multi-Start Both
Transformation Simple algorithms
Mean'values Objective 23 0 5
Function
Best .Values Objective 15 0 13
Function
Global minimum values 0 0 4

found
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Table 1.12. Ellipsoidal shrinking in 2D. Number of of wins.
Multi-Start Multi-Start Both
Transformation Simple algorithms

Mean. values Objective 4 1 923
Function

Best .Values Objective 1 0 97
Function

Global minimum values 1 0 924

found

Table 1.13. Ellipsoidal shrinking in 5D. Number of of wins.
Multi-Start Multi-Start Both
Transformation Simple algorithms

Mean. values Objective 924 0 4
Function

Best .values Objective 10 1 17
Function

Global minimum values 1 0 7

found

Table 1.14. Ellipsoidal shrinking in 10D. Number of of wins.
Multi-Start Multi-Start Both
Transformation Simple algorithms

Mean. values Objective 923 0 5
Function

Best .Values Objective 14 0 14
Function

Global minimum values 0 0 4

found
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1.8 Comments

The obtained numerical results show that the performance of the multi-start ap-
proach could be improved by exploiting the transformations.

It is clear that the proposed transformations can be integrated with more complex
algorithm schemes, with a stronger ability in finding global solution than the one
of the multi-start. The study of more powerful global optimization algorithms and
the integration with a space expansion-contraction strategy will be the objective of
future works.
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Chapter 2

Exploratory geometries and
space search reduction in

GABRLS algorithm

The adoption of an accurate exploratory geometry and a space search reduction
strategy can speed up significantly the convergence towards better solutions.

In this chapter it is presented a significant advancement of the global optimiza-
tion algorithm GABRLS introduced in [113] (Romito, 2017). The GABRLS algo-
rithm was the winner of the Generalization-based Contest in Global Optimization
(GENOPT 2017) [61]. It is originally designed for continuous problems in the black-
box environment, meaning problems for which the analytic formulation it is not
known, or it is not convenient to directly solve it in terms of time to spend and
amount of resource needed. The advanced version is able to handle continuous and
discrete variables over a bound constrained set.

The problem of minimizing a continuously differentiable function of several vari-
ables, where some of them are restricted to take discrete or integer values, arises
frequently in many industrial and scientific applications and this motivates the in-
creasing interest in the study of new derivative-free methods for their solution.

The approach has been tested in a real case study of design optimization of
electric motors.

2.1 Preliminary Concepts

Let f(z) be continuously differentiable function within a feasible hyper-interval X.
The bound constrained minimization problem can be stated as follows:

min f (z),

{HEiER:lbigxiSubiiEIC} (2'1)

1'Z'€Dilbi§$i§ubii€[d

where [b < wub are the lower and upper bound in the variables, while I., I
are the index sets of real and discrete variables respectively. The feasible set is
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assumed dense (and not sparse as in the integer programming). It is common in
many real-life applications where, despite the continuous nature of the underlying
models, a number of practical issues prescribe rounding of values. It is pointed
out that the work environment is totally black-box, meaning the exact analytical
expression of f(z) and its first order derivatives cannot be explicitly calculated
or approximated. Usually, in this context, direct search methods are widely used.
They are based on appropriate sampling strategies of the feasible set. Some of the
techniques to approach to the problem (2.1) can be included in the methods based
on one-dimensional searches that do not use derivatives [75, 76] or well structured
set of points [69].

2.1.1 Searches based on sets of directions

In derivative-free optimization the selection of an appropriate set of directions is
fundamental to fill the lack of derivatives. A simple way to identify a finite num-
ber of search direction is the use of the so called Positively Spanning Set that are
widely used in direct search algorithms. In [62] can be found an extensive analysis.
A well-known result is that if the gradient of a continuously differentiable objective
function on R™ is nonzero at a point, then one of the vectors in any positive span-
ning set of R™ is a descent direction for the objective function from that point. A
common used definition is the following.

Definition 1 Given the set of vectors Dy = {di,...,dn} € R", we say that D
is a Positively Spanning Set (PSS) if for n + 1 < 'm < 2n and any vector v € R" it
has:

m
U= Z Ozjdj, Qi > 0, (2.2)
j=1

i.e any vector v € R” can be expressed as the weighted sum of the vectors in
D, using nonnegative weights. In particular if the size of a positive basis is n +
1 (the minimal positive bases) the maximal value of the cosine measure is 1/n.
A straightforward corollary is that the maximal cosine measure for any positive
spanning set of size n + 1 is 1/n. If the size of a positive basis is 2n (the maximal
positive bases) the maximal cosine measure is \/1/n. Upper bounds of the cosine
measure are analysed in [81]. Examples of popular algorithms that make use of
PSS include Pattern Search [63], Mesh Adaptive Direct Search [64] and Implicit
Filtering [65].

2.1.2 Searches based on grid points

As well as line-search methods [34, 66] or trust region methods [67], grid-based meth-
ods are strongly investigated for both constrained and unconstrained optimization.
In the studies of I. D. Coope and C. J. Price [68, 70, 71] can be found a full overview.
They provided different general schemes of algorithms and proved the global conver-
gence. It is redrafted two definitions of the points generated by grid-based methods
in presence of bound constraints that are useful for the algorithmic scheme that will
be introduced in the next section.
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Definition 2 Given a maximal PPS of directions D4 = {d1,...,d2,} € X C R", the
feasible points of a grid G**) are

g(k) = T e X k) + h Z'ﬂjd + Znn+] n+] ) (23)

where

o #(F) € X is the offset between different grids generated for k = 0, 1... ;

e 7 is any integers such that Vj

- (k)
0 _p.
[ jdntj| < {Jh(k)]J , if d,,4; is pointing to lb;,

b — 7.k
Injd;| < {%J , if d; is pointing to ubj;

o h(¥) is a positive scalar parameter

« 0<h® < min (& by, ubj 2,

that adjust the mesh size as k is increased and it is fundamental to establish
convergence by ensuring that consecutive mesh are suitably finer.

Now, a particular set of grid points called the local grid minimizers can be charac-
terized.

Definition 3 Consider a maximal PPS Dy. A point z € G® is a grid local
minimum of f(z) with respect to D if and only if

fa+h®d)) > f(x) Vd; € Ds . (2.4)

Grid local minimizers are nothing other than finite difference approximations of
the local optima in continuous optimization.

Now the attention is addressed to the minimization of the bound constrained
optimization problem (2.1). The black-box context in real life problems hardly per-
mit to design and solve more detailed models. In fact eventually one can make
use of penalty [74] or barrier [60] approach to manage general constraints and so
make the assumption that the non-linear constrained problem is approximated by
a sequence of box-constrained problems. The presence of general nonlinear con-
straints is handled by using an exact penalty approach. Since only the violation of
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such constraints is included in the penalty function, the algorithms developed for
bound constrained problems can be used to minimize the penalized problem, which
is proved to be equivalent to the original one under reasonable conditions. It is
important to point out that the strategy of penalizing only the general nonlinear
constraints have been successfully adopted in many researches from the literature
related to derivative-free optimization [77, 78, 79].

2.2 The GABRLS algorithm

The algorithm GABRLS is a modified genetic algorithm (GA) in which have been
successfully introduced an effective exploratory geometry (BR) and hybridization
with local search (LS) to speed up the classical GA scheme. Hereinafter, we refer
to GABR as to identify the global search strategy, disregarding the hybridization
with any local search (LS). The salient points that let GABR be distinct from the
other GAs are essentially two:

(i) Effective geometry of the set of points iteratively generated (population).

(ii) Space search reduction strategy for steering the search towards the most
promising area.

The original version of (i) can be found in [15] in sec. 3.1, whereas (ii) in sec.
3.2, where the novel Bounding Restart (BR) technique has been introduced. The
following two subsections provide a recap of the original version and the details of
the updated version of the algorithm.

2.2.1 Adjustments on the GA phase

As in [15] starting from a classical formal scheme of GA (see Algorithm (2.1) below)
it is detailed the change at each step.

Algorithm 3.1. Classical GA scheme

1. Initial Population (points generated in X))

2. for k=1 — generations (max iterations)

3. Evaluate Population

4. Selection Criterion (Tournament, Elitism, etc.)

5. Genetic Operators (Crossover — Mutation)
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6. Evolved Population (new points generated in X')

7. end for

Initial population. It is introduced a discretization technique to place the
initial points (initial population) in the feasible domain, in such a way as to lie on
nodes of a multi-dimensional grid. The original AxialPI routine has been modified
in this regard. It allows the discrete positioning of points along axes that are paral-
lel to the coordinate ones, unless an offset. The offset  is the center of the current
feasible hyper-rectangle (Fig. 1 provides an example in a 3D box). Denoting with
Space; the amplitude of the interval along the 4t dimension, with I ncrease; the
step along the j** dimension between two consecutive points and with Pop the num-
ber of initial points where the objective function f is evaluated, the result is the
Algorithm (2.2).

o—0-
¥

Y

Figure 2.1. Graphic view of the points generated with AxialPI in a 3D box.

Algorithm 3.2. AxialPI

1. n=|X|, AxialPop = (Pop —1)/n, Pop= (p-2n)+ 1, p > 1 integer
2. forj=1—n

3. Space; = (ubj — 1b))
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Increasej = Spacej/(Azxial Pop)
:f?j = (ubj + lbj)/?

Pointlj = fj

end for
z2=0
t=1

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

fori=2— k= (Pop—1)/2

if (2 = AwxialPop/2) then
z=10
t=t+1
end if
z=z+1
forj=1—n
if (j =t) then
Point; j = &; + (2) - Increase;
Pointyy;j = &; — (2) - Increase;
else

POZ'TLtZ'J‘ = .f?j
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21. Pointyy;; =
22. end if

23. end for

24. end for

Evaluation and Selection criterion. At the step 2 of Algorithm (2.1) the
GA main loop starts. The step 3 and 4 are free, meaning one may use any suitable
strategy as evaluation and selection criterion. A comparative analysis on the selec-
tion rules for GA can be found in [72].

Genetic operators. With respect to classical GA operators, it is employed a
single-point crossover operator without recombination of blocks (see more in [15],
section 3.1) in order to move the points lieing on a grid, while it is let mutation
vary in any point of X. In other words, the mutation operator grants to reach
(in probability) any feasible point (therefore also global optima) in X', while the
crossover operator in conjunction with AxialPI routine allow to move a point to any
other point in X N G*). Let us consider points xz(k) (j), i=1— Pop, j=1—n
and k >0 is the index of the current population (iteration). Equations (2.5) show

how the crossover works with two points.

2 = 2By, WG —1),203), 2P ()}, (2.5a)
25D = 29y, 2P G - 1), 2P (), ... 2P ()} (2.5b)

All possible positions in which the crossover will be able to move the points are
known a priori and are all nodes of a multi-dimensional mesh (Fig. 2.2).

" 4

Y

Figure 2.2. All possible points that crossover allows to reach through the recombination
of the initial ones generated by AxialPI in a 3D box.
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New population. In the main loop of Algorithm (2.1), for each k£ > 0 this
step identify an evolved population of points, among all possible nodes of the lat-
tice, increasingly in a neighborhood of the most promising area. It means that the
evolution of the initial population of points let the lattice be more dense where the
objective function values become lower.

Termination criterion. The criterion of a max number of generations to allow
the evolution of the initial population is met and Algorithm (2.1) ends. Actually
one can develop any suitable criterion to stop the GA search.

Since GAs are global optimization algorithms, other routines can be integrated
in the main loop in order to speed up the search and to enhance the efficiency.
After a number of iterations one can check the homogeneity of points and enforce
a diversification to avoid premature convergence or, for very expensive black box
problems, one can save time not doing evaluations of identical points. Both these
strategy are very useful but it would be a good idea to make use of them after
a sufficient number of iterations. As it comes up from experimental results, a
reasonable choice is at least one half of the budget iterations avoiding to deceive the
algorithm. The following formal scheme sums up all the analysis carried out until
now.

Algorithm 3.3. Modified GA scheme

1. Initial Population (Discrete points positioning - AxialPI)
2. for k =1 — generations (max iterations)

3. Evaluate Population (at least |Dy| points if k = 1)

4. Selection Criterion (any suitable routines)

5. Genetic Operators (CrossOver — Mutation)

6. if (k>generations/2) then
7. Check premature convergence (any suitable routines)
8. end if

9. New Population
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10. end for

At this point, it is recalled the Bounding Restart technique ([15] sec 3.2) and
then we show how it is able to manage finer and finer grids iteratively generated
satisfying the condition that all points, excepted the mutated ones, lie on these
grids.

2.2.2 Properties of Bounding Restart (BR)

We all known that GAs perform a weaker search when the dimension of problems
increase or the search space is large. An iterative space reduction technique can be
useful to avoid too many function evaluations to locate a good solution.

BR is a two-step technique that fulfils the requirement of efficiency, in which
GA can be successfully integrated. In literature this technique is recently called
“zoom-in” strategy by Jones D.R. in his work “The DIRECT algorithm: 25 years
Later” [21] and exploited to speed-up the efficiency of the well known deterministic
partitioning algorithm DIRECT. We call the first step of BR as bounding step.
Assuming that the genetic algorithm has the ability to quickly identify a promising
area, however large, it’s reasonable to focus the search in the given area temporarily.
On that basis, by means of hyper-intervals that are dynamically resized, according
to the need to lead the search towards the most promising area, the bounding step
at the generic iteration k is carried out through the following equations:

ub+1  ub—10b

LB®) = 5 T 5 OFN CF eR: CF =constant > 1, A€ N,  (2.6a)
b+1b b—1b
vk =Y ;L n 2“ cpye COF€R: CF = constant > 1, A€ N (2.6b)

C'F is a convergence factor that has a high impact on reducing the bounds. The
reduction is managed by increasing A according to the speed one want to proceed
to the search of a solution. After updating lower and upper bounds, the reduced
set is centred in the best point Z(*) currently known. Let #(%) be the offset between
the current best solution Z*) and the centre of the k' reduced hyper-interval then,
taking into account the bound constraints, the set can be put centrally as follows:

w UBW 4+ LB®

A(k‘) _ =

z z 5 , (2.7)
LB®D = max {lb, LB® + :e<k>}, (2.82)
UB* ) = min {ub, UB® 4 z®) } (2.8D)

The second step of BR is the restart of the modified GA (Algorithm (2.3)) in the
new reduced hyper-interval. A suitable stopping criterion for the reduction of the
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hyper-interval can be the precision with which approximate the solution. Consider-
ing 6 > 0 as acceptable threshold for an approximated solution Z. Let assume that
the threshold has been attained at the k" BR reduction cycle. Considering A = X,
where ) is the number of bounding step performed until now, an upper bound for
the reduced feasible space is
max Space(.k) = |UB® — LB(-E)| = [bias = sy _}bjM‘
je{l,...n} J Im IM CF)‘
where jps is the index of the maximum length among the dimensions of the
current hyper-interval. It is the same as identifying an hyper-interval neighborhood
Hoo(Z,0) about Z defined by the maximum norm [|z; — z;|| < 6, z € &. The
following Algorithm (2.4) shows the overall integration scheme of GABR. It is a
generalized scheme in which only a simple decrease condition is required as to declare

< 26, (2.9)

an iteration successful.

Algorithm 3.4. GABR scheme - Simple decrease acceptance crite-
rion

1. k=0,6>0 D°Cx, 2°=(UB"+LB%/2, LB®=1b, UB® = ub,
Space® = (ub — 1b)/CF*, CF = constant > 1, A =0

2. while (Space®) > 26) or (other stopping criterion)

k)

3. run Algorithm 3 in D®) and found the current minimizer z

4. if (f(z®)) < f(z®)) then

5. 2k = (k)

6. k =k + 1, continue
7. else

8. E=k+1

9. A = A+ 1, perform a Bounding step, egs. (2.6),(2.7),(2.8)
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10. end if

11. end

In the Algorithm (2.4), until the stopping criterion is not verified, the GA phase
is restarted. At each iteration, if a simple decrease in the objective function does not
occur, the feasible hyper-interval is reduced, it remain the same otherwise. Thus,
for each k, the step 1 of Algorithm (2.3) is repeated to generate a new set of
initial points through AxialPI routine in the reduced set. It means that for each
unsuccessful iteration we have the same number of initial points placed closer and
closer one to another along axes that are parallel to the coordinate ones and the
current best solution is their origin. It is an extended search over each dimension
tlza)t is performed alon% ;che axes at the current iteration k in which the stepsize

k k

o and trial points Pe;7,j=1—=mn, p=1— Axial Pop, are defined by

el = pz® p oWa; = pe 4 ppWNa; dje {ej,—es},  (2.10)

(k) (k)
B(k) _ ubj — lbj _ UBj — LBj
I CF* AwialPop —1)  (AzialPop — 1)’

AzialPop > 1, (2.11)

where, recalling Algorithm (2.2), Azial Pop is the number of search points along
an axis. For each k, the equation (2.11) is the minimal distance between points
along the j** axis, whereas the equation (2.10) identify all points along the j**
axis of a PSS and for p = 0 we have the starting point that is the current best
solution. Every point except ones on the bounds have two adjacent points that are
a simultaneous trial expansion and reduction of the stepsize. Figure (2.3) shows the
points produced by (2.10), (2.11) in two consecutive iteration of the one-dimensional
searches identified by iterative restarting AxialPI in a reduced hyper-interval. In
particular, in the example figure the iteration k is a failure, hence the feasible set is
reduced and the GA phase restarted (and so also AxialPI) for the iteration k + 1.

BR is not only a simple technique to speed up the search of a genetic algorithm.
Another property of BR is that it is able to proficiently manage grids. It is not
immediate if one look at BR separately from the modified GA scheme and from
the definition of grid. For each BR step an instance of (Algorithm 2.3) is run and
so for each inner iteration (GA main loop), the operator of crossover is carried out
through equations (2.5) such that the initial points can be moved lieing on a grid.
Now following the steps of the Algorithm (2.4) it can be identified a reformulation
of the grid (Definition 2, (2.3)) by using the equations (2.6) that iteratively redefine
its bounds and meshsize.

Definition 5 Given Algorithm (2.4) and a maximal PPS D, = {di,...,d2,} that
positively span the hyper-intervals D) C X iteratively generated. The feasible
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Y

Figure 2.3. The one-dimensional searches performed by AxialPI in D(*),
Black points for k = 0, red circles for k£ = 1.

points of a grid G*) are
A a k - k
GW =Lz eD® . p =30 4 Z hg» )njdj + Z hg- )nn+j(—dn+j) , (2.12)
j=1 J=1

where

o ) € DW) is the offset between different grids, given by (2.7);

 7; is any integers such that Vj

2 — 1Bk
o |Nntjdntj| < \‘WJ, LBJ(.k) given by (2.6a), if d; is pointing
J
to lbj,
uBk) _ ;%
o |njd;| < {jh(k)]J , UBJ(»k) given by (2.6b), if d; is pointing to ubj;
J

. hﬁk) is a positive scalar parameter such that

. hgk) = /8](.]‘3) given by (2.11), if the iteration k is a failure,

o B — pk=D)

; j otherwise,
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The mesh size parameter is an n — dimensional vector that considers different
scale along different dimensions. Since X is a bounded set, the scale between the
dimensions is a well defined constant.

The GABR algorithms has the ability of a quick identification of the most promis-
ing area in the feasible domain. A local optimality guarantee it is obtained by
hybridizing the GABR algorithm with a local search strategy with proved conver-
gence.

2.2.3 Hybridizing GABR with Local Searches

The global search represented by Algorithm (2.4) can be expensive in terms of func-
tion evaluations if the goal is to identify an optimal solution with a high precision.
The reason is that the higher is the precision required, the more BR iterations must
be performed. The refining of the solution can be delegated to a local search algo-
rithm. With the aim to make the whole algorithm more efficient, a derivative free
local searches (DFL) has been introduced. In literature there are many ideas on the
hybridization of the global search. Examples of automatic balancing techniques can
be found in [80] where the estimates of local Lipschitz constants allow to accelerate
significantly the global search. A suitable strategy has been implemented in the
GABR algorithm, similar to that one described in [22] where local minimizations
are started in the most promising area of the feasible space. Since the number of
LSs performed affects the efficiency, it is necessary to locate when a LS should be
started. A reasonable choice is to perform LS at every BR iteration, only after the
end of GA main loop and only if an improved solution is found with respect to
previous BR iteration.
The comprehensive GABRLS algorithmic scheme is the following:

Algorithm 5. GABRLS scheme

—_

Run Algorithm 3in D®) DFC X k=0

N

Start LS from the current best point
3. while (stopping criterion)

4. Bounding step (2.6), k =k +1

5. Restart Algorithm 3 in D)

6. if (an improved solution has been found) then
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7. Start LS from the current best point
8. end if
9. end

2.3 Prize and application

This section report briefly the prize obtained by GABRLS algorithm during a global
optimization challenge and an application to real life problem.

2.3.1 Genopt prize

The Generalization-based Contest in Global Optimization (GENOPT, [61]) is a spe-
cial session of the Learning and Intelligent Optimization Conference (LION). Dur-
ing LION 11 (June 19-21, 2017, Nizhny Novgorod, Russia), the GABRLS algorithm
won the 1% prize in both partial categories on a test suite of 1800 multidimensional
problems. Below, fig (2.4) shows the top four position of the final leaderboard and
the score (less is better) on the speed of convergence (High Jump), the task solved
(Target Shooting) and the overall ranking (Biathlon Score).

w HOME UPLOAD LEADERBOARD (1ST PHASE) LEADERBOARD (FINAL) LION11 CONFERENCE CONTACT

FINAL LEADERBOARD

Position Submission Name High Jump Target Brathjon Submission Date
7 Shooting (7) Score (7)

1 F. Romito, GABRLS 1.13889 2222 1.18056 Api: 7t (1 2.av(3)
passed)

5 E. Segredo, E. Lalla-Ruiz, E. Hart, B. Paechter, S AR —— —— Apr, 6th (13 day(s)
Vof, HOCO Sl e, SRS passed)

1

3 A, Mar R 416 6 Apr, 6th [.4fiav(s)
passed)

113 .

4 r ra, HCO-CMA-G 4 Bary 7t (L2 davls)

passed)

Figure 2.4. Final leaderboard - GENOPT competition.

GENOPT organizers provide a black-box library of 1800 problems, distinguish-
able in 18 classes by their dimension and other high-level characteristics. The total
number of solved problem was 1605 over 1800, almost 90%. Next figure (2.5) sum-
marize the 18 function classes and the result in term of problems solved for each
class of function.
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Id | Type Type-details Dim | GABRLS
Tasks solved

0 |GKLS Non-differentiable | 10 86
1 30 74
2— Differentiable 10 77
3 | 30 56
4_ Twice differentiable | 10 60
5 30 47
6 | High condition | Rosenbrock 10 100
7 30 | 100
8| Rastrigin 10 99
9 30 | 100
10| Zakharov 10 | 100
N 30 | 100
12 | Composite 10 100
13 30 | 100
14| 10 | 100
15 30 | 100
16 10 | 100
17 30 | 100
Total 1605

Figure 2.5. Number of solved tasks per function class.

2.3.2 Case study: Design optimization of an electric motor

This subsection describes an application of the GABRLS algorithm on the optimiza-
tion of the design of an electric motor. The local search integrated in the algorithm
scheme is the one of [76], developed by G.Liuzzi et al., that is able to optimize
over continuous and discrete variables and exploit a sequential penalty approach to
handle non-linear constraints. The case study is intended to optimize the design
of a Synchronous Reluctance Motor with the goal of maximizing the torque while
smoothing the torque profile. This last objective means to reduce the torque rip-
ple (instability of the torque) under an acceptable threshold. The motor model is
designed in a Finite Element software e treated as a Black-Box. The strategy is to
approach to the particular optimal design problem as mixed discrete constrained
minimization of a suitable objective function. In particular the FE analysis can be
used to evaluate the motor performance, namely to compute the objective function
value and the constraints. The optimization procedure can use the information ob-
tained by the FE program to iteratively update the set of motor parameters and try
to identify an optimal motor by making a trade-off between the different parameters
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of the machine.

The set of parameters x used in the optimization procedure of the SRM concern
are listed in Table 2.6. Fig. (2.6) shows in details the 17 design variables (dimensions
of flux barriers, tilt angles, fillet radii): they have been varied according to practical
limits existing in cutting the rotor shape.

Table 2.6. Minimum and maximum ranges of design variables.

Variables Min Max Type Step

x1. Width of rotor tooth along d-axis (mm)  ald 4 8 D 025

zo. Width of barrier 1 by 2 4.5 D 0.1
x3. Width of barrier 2 b 2 4.5 D 0.1
z4. Width of barrier 3 bs 2 4.5 D 0.1
xs. Distance between shaft and barrier 1 fol 2 3 D 0.1
xg. Distance between barriers 1-2 fu2 3 5 D 0.1
x7. Distance between barriers 2-3 fb3 3 5 D 0.1
xg. Distance between barriers 3-ext.channel  fb4 3 5 D 0.1
x9 — x19. Tilt angles barrier 1 ar, b1 0° 5° R -
x11 — x12. Tilt angles barrier 2 g, B 0° 5° R -
x13 — x14. Tilt angles barrier 3 ag, B3 0° 5° R -
r15. Number of conductors in slot 20 40 D 1
x16 — x17. Fillet radii (mm) ri,re 0.5 3 D 0.1

Moreover, several constraints have been introduced to guarantee the reliability
and feasibility of the final design (Table 2.7). They are: the average torque, the
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Figure 2.6. Rotor independent variables.

maximum flux densities in the stator and rotor core and the percentage of torque

ripple.

Table 2.7. Constraints.

Constraints Limits
cl. Fill factor < 0.48
c2. Max flux density in the stator tooth T < 1.60
¢3. Max flux density in the stator yoke T <145
c4. Max flux density in the rotor tooth T < 1.50
¢b. Joule losses at 90 degrees Celsius W <240
c6. Torque ripple %  <10.0
c7. Average torque @ 1500 rpm Nm > 19.0

In particular, we deal with the following mixed discrete non-linear minimization
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problem:

min f(x)

g(z) <0

b<z<ub (2.13)
eD, icly

r €R, iel.={1,...,n}\ Iy,

where f: R" - R, g: R* - R™, [b € R", ub € R", I; is the index set of the discrete
variables and I. is the index set of the continuous variables.

The non-linear constrained problem (2.13) is approximated by a sequence of
box-constrained problems of the form:

min P(z;ex) = f(x) + elk Z max{0, g;(z)}”
i=1

Ib<x<ub
z, €D, 1€y
r, R, 1€l

where ¢, > 0 and p > 1.

The global search quickly find the most promising area, while the local search
generates a sequence {e;} such that, for any given €, the function P(z;ey) is re-
duced (with respect to x) by means of suitable derivative-free line searches along all
coordinate directions. Afterwards, if the constraint violation at the new point is not
sufficiently decreased, then the penalty parameter ¢ is updated. The single evalu-
ation in a feasible point of the motor model in the FE software is computationally
onerous even if it exploit multithread computation (up to 5 minute on 8-core desk-
top computer). In an unfeasible point it take less than a minute. In the following
table are reported the initial non optimized motor, the result of the optimized motor
with the local search only, and the optimized motor with GABRLS algorithm. The
budget of function evaluation has been set to 10000 function evaluations for both
algorithm. In table (2.8) the results os the comparison, whereas in figure (2.7) the
torque profile in a single operating cycle.

Table 2.8. Comparison: non optimized motor, optimization with DFL and GABRLS.

Average torque (N/m) Standard deviation Constr. violation

Non-Optimized 19.91 1.13 13.20
DFL 20.00 0.60 2.43.1072

GABRLS 21.02 0.44 3.88-1072
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Torque profile

Torque (N/m)
26
21 i A
\ =~ \//
\_/" \\_/
16 Non optimized
e GABRLS
11 DFL

135 7 91113151719212325272931333537394143454749515355575961

Operating cycle (61 states)

Figure 2.7. Torque profile: non optimized motor, optimized with DFL and GABRLS.

The motor optimized with GABRLS show the most high torque (21.02 New-
ton/meter) and also the most stable one (the value of 0.44 as standard deviation
reveal the lowest torque ripple).
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Chapter 3

A black box approach for the
spare parts management
problem

This chapter is the outcome of a joint work with prof. Laura Palagi et al., to appear
on the International Journal of Information Systems and Supply Chain Management
[82].

The aim of this project was to advancing the existing literature in tackling the
inventory problems known as spare parts management problems. The idea was to
develop a holistic approach that allows to directly address the non-linearities of the
global optimization problem involved. Comparative results are presented on a case
study of spare part management of a fleet of aircraft.

3.1 Introduction

Modern organizations are fully dependent on readily available spare parts to max-
imize operational capability in case of failures. Managing repairable inventories -
which are spares normally characterized by high market value - represents an impor-
tant managerial domain for improving operational readiness and reducing life-cycle
costs for equipment. As a component downtime can be very costly, part inventories
are required to keep the stock-out time as low as possible. Nevertheless, an exces-
sive number of spare parts is to be avoided as well for reducing the cost dimension.
Spare parts shall thus be thoroughly optimized to balance high system availability
requirements and low cost of allocation [83].

Such repairable items are usually managed following a one-for-one replenishment
policy, where the part is ordered after each substitution in lots of one. This situation
is usually represented as a (S-1, S) policy where S is the optimum number of items
in the inventory, and S-1 is the re-order level, i.e. the number of items below
which activates the need for a re-ordering. This latter remains meaningful for parts
characterized by high inventory cost and low demand, where the economic order
quantity tends to a size of one [84]. In case of failure, the defective part is removed
from the equipment, substituted with a functioning one. In the meantime, the
original defective part is sent to a maintenance facility to be repaired.
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Traditionally, inventory is balanced following an item-approach process, i.e. in-
ventory levels for each item are set independently [85], failing to give a holistic
optimization. The assignment of over-simplified constraints and requirements at
the item level becomess increasingly less adequate for the needs of the so-called HA-
HCLDS (High Availability, High Cost and Low Demand Systems), which represent
the focus of the study [86]. Starting from the original contribution of Sherbrooke
[87], it is possible to set item’s stock levels jointly, adopting a systemic optimiza-
tion, as for the so-called system-approach. The system-approach allows a holistic
perspective on the system, being fed by systemic variables (e.g., total inventory
budget, overall system’s availability), and supporting the identification of system-
wide parameters (e.g., the budget required for an overall service level, the effect of
a stock reduction on the overall system service level).

The dominant system-approach model for repairable items is the Multi-Echelon
Technique for Recoverable Item Control (METRIC), which relies on Palm’s theorem
[87]. Since the METRIC aims to respect a systemic perspective, it has to take into
account a large number of variables, e.g. for each item at each local warehouse,
the demand rate, the on-site repairing time, the turn-around-time, the reparability
level. The approach should be also subjected to constraints related to holding
costs, and availability requirements. The corresponding algorithmic computational
complexity — which is non-linearly increasing with the number of items - forces the
analysts to develop and adopt approximated optimization solutions. Traditionally,
METRIC approaches adopt heuristics based on the so-called marginal allocation
algorithm, as proposed by [87]. The marginal allocation generates acceptable stock
level solutions in a limited time interval, counting on the incremental benefits related
to the placement of an additional item in stock. More specifically, the METRIC-
based model aims at defining the stock level for a single site that allows minimizing
the holding costs whilst satisfying availability constraints.

After reviewing the literature on optimization algorithms for the METRIC, this
work explores possible enhancements for the marginal allocation heuristics in or-
der to define an alternative optimization algorithm for solving the system-approach
model for repairable items. The main contribution of the work consists thus of ad-
vancing the existing literature on operational research for multi-item inventory sys-
tems through an enhanced time-effective optimization algorithm tested in a single-
echelon system.

The discussed problem can be considered a non-linear global optimization prob-
lem, where functions are not available in closed form but only as the output of a
black-box system, which implies expensive evaluation and not available derivatives.
Therefore, this chapter describes an original black-box derivative-free algorithm [88]
for solving such a problem which fully exploits the peculiar aspects of the applica-
tion. It is pointed out that the proposed derivative-free approach allows tackling
the non-linearity as is, without any decomposition in subproblems and without any
approximation or necessity to check the feasibility of the solution. The algorithm is
inspired by pattern search algorithms [89] and it includes specific features both to
exploit integrality of the variables and to locally explore promising feasible subre-
gions by using suitable tailor-made rules. In particular, the algorithm considers an
enhanced approach for the selection parameters based on the ratio between holding
costs of each item at a local warehouse and the absolute value of the availability
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variation associated with a change in the stock of the same item at the local ware-
house. The tailored selection rules allow improving performance in terms of needs
of function evaluations which represent the main computational costs in black-box
optimization.

The remainder of the chapter is organized as follows. Section 3.2 provides a
literature review about METRIC with a focus on optimization approaches. Section
3.3 clarifies the analytic formulation of METRIC, as applied to the case of spare
management of a fleet of aircraft. Section 3.4 specifies the innovative black-box
algorithm proposed for its optimization, and Section 3.5 details its application as
a walk-through application in a case study, comparing the results obtained via the
proposed approaches with the ones obtained via the traditional marginal allocation
and some high performance direct search algorithms. Lastly, section 3.6 summarize
the outcomes of the work and pave the way to future joint multi-disciplinary research
combining advanced optimization algorithms and logistics.

3.2 Literature review

Multi-component systems such as aircraft fleets, nuclear power plants, oil refineries,
etc., demand for a thorough analysis of system requirements before deciding how
many spares should be kept in each warehouse. The analysis should consider multi-
variate non-linear relations, which require an analytical formulation hard to made
explicitly [90]

The METRIC starts from the assumption of a Poisson-distributed demand and
of independent and identically distributed repair time, characterized by any distri-
bution with a specified mean. Both these assumptions are representative of HA-
HCLDS, and in analytical terms, they allow adopting Palm’s theorem. Once re-
spected the above-mentioned assumptions, the theorem states that the steady-state
probability distribution for the number of units in repair is still a Poisson distribu-
tion, where the mean can be calculated as a simple product of the mean demand
(following a Poisson) and the mean repair time [91]. From a logistics perspective,
the theorem represents an important milestone that can significantly ease the math-
ematical formulation for the allocation problem, motivating the dominant role of
the METRIC as one of the most used system-approaches, especially considering its
reduced degree of mathematical sophistication [91].

In terms of optimization, the METRIC traditionally adopts a marginal alloca-
tion algorithm, whose applications in literature confirm it to be a flexible method
suitable for a variety of problems. The marginal allocation can be originally found
in the work of Sherbrooke [87], who started promoting its advantage compared
to a random trial-and-error stock assignment procedure [88, 92]. The concept of
marginal analysis dates back to Gross (1956) [93], and it has been re-organized
by Sherbrooke to find the optimal stock solution which maximizes the backorder
reduction-versus-cost increment when marginally adding a spare individually to each
item. It remained a widely used approach in several early METRIC applications; see
(e.g.) the multi-echelon METRIC model assuming a compound Poisson processes
for modeling the demands (Graves, 1985, [94]); or the extended MOD-METRIC for
multi-indenture systems by Muckstadt (1973) [95]. For example, Kline & Bachman
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(2007) [96] use the marginal allocation for their inventory optimization problem,
where the volume of spares is calculated from the functioning time percentage re-
quested for the system to work. Similarly, in the context of performance-based
logistics, Nowicki et al. (2008) [97] adopt a traditional marginal analysis for inven-
tory optimization. De Smidt Destombes et al. (2009) [98] use a marginal allocation
as well for a joint optimization problem on the frequency of maintenance activities,
the ability to repair and the spare level. A similar marginal analysis has been em-
ployed by Costantino et al. (2013) [99] to solve a military inventory problem in
a multi-item system with non-equal maintainability certification levels, imposing
a weighted availability constraint on the number of equipment at each local ware-
house. The adoptions of the marginal analysis can be also confirmed in the work of
Xu et al. (2015) [100], who in their METRIC approach relax the hypothesis of an
infinite supplier’s capacity, rather assuming a prioritized maintenance service. Even
Basten & Van Houtum (2014) [101] in their review about spare parts inventory in-
dicate the METRIC as a dominant technique for rotable spare parts management,
and present a greedy algorithm, which is largely based on the traditional marginal
analysis. Their paper also refers to software in place for the adoption of METRIC,
or its variant VARI-METRIC.

More recently, even considering the benefits arising from the adoption of the
METRIC, alternative optimization approaches have been discussed and explored
in literature, mainly focused on genetic and pattern search algorithms. Kapoor et
al. (2016) [102] develop a simulation approach referring to METRIC theory for a
two-echelon problem in a public transport fleet counting 9000 buses. Their version
of a genetic algorithm provides optimal review periods and the level of spare parts
for each site. Patriarca et al. (2016) [103] create a Real Coded Genetic Algorithm,
the MI-LXPM, to increase the randomness of a Mixed-Integer (MI) solution em-
ploying Laplace Crossover (LX) and Power Mutation (PM). In the same research
stream, Patriarca et al. (2016) [104] adopt a similar genetic algorithm for a more
computationally demanding problem, i.e. including also lateral transshipment of
spares. The advantage of these MI genetic algorithms is the possibility of providing
integer values as outcomes of the optimization, which is meaningful outcome for any
inventory problem optimization. In general terms, an integer solution obtained by
approximating the real numbers to the nearest integer values may be not feasible
or produce quite different results in terms of costs. Alternatively, Duran & Perez
(2014) [105] develop a hybrid Particle Swarm Optimization algorithm combined with
local search to solve a multi-item problem. The explorative nature of the work is
acknowledged by the authors themselves, who suggest to further consider different
initialization strategies, fitness definitions, and replacement strategies. Another ex-
plorative contribution is the one developed by Costantino et al. (2014) [106], who
test a Pattern Search algorithm to determine the items to stock, and their quantity
in a multi-item multi-indenture problem. The solution is obtained by implement-
ing a Generalized Pattern Search (GPS) (Audet & Dennis, 2003) [90], where no
specific attention is presented for parameters’ optimization. Even though not ex-
plicitly related to the METRIC, Nickel et al. (2006) [107] address a similar problem
by a pattern search algorithm for spare parts allocation. In their work, the target
cost function is linear, while the constraints are highly non-linear and considered as
black-box functions, i.e. very difficult (and expensive) to evaluate, whose derivatives
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are not available. The (resource-expensive) solution adopted in this case consists of
performing a second pattern search algorithm for each solution point that is found
by the initial pattern search at each iteration, to find a good integer solution. Other
relevant approaches for inventory optimization can be linked to the work conducted
by Topan et al. (2017) [108], and Wong et al. (2007) [109], both in multi-echelon
systems. Both the researches propose variations to the standard marginal allocation
approach, but with a partly different focus: the former aimed at defining the order
quantities, the reorder points at the central warehouse, and the base-stock levels at
the local warehouse; the latter offers a multi-echelon representation which does not
necessarily hold the same results for the single-echelon proposed in this research.

Based on this review, it emerges from the literature the continuous interest in
spare parts optimization over the years. Nevertheless, recent research in the area
confirms an increasing interest in developing alternative optimization techniques
for such complicated problems (Nowicki et al., 2012) [110], aimed at exploring the
benefits of pattern search, genetic algorithms, and particle swarm optimization.
These algorithms, however, are not widespread in the specific literature, partly due
to the large difference in terms of ease of implementation and required computational
efforts. These pieces of evidence motivate the development for a heuristic to be both
effective and efficient if compared (at least) with the marginal analysis. The black-
box algorithm presented in this work aims to provide near optimal solutions in a
reduced computational time. This original and efficient solution remains significant
to allow quick systemic parametric analyses, in order to test multiple managerial
options and allocations in a non-invasive approach.

3.3 The inventory management model

This section presents a black-box optimization model for a single-echelon multi-item
inventory system. It is considered a problem that is based on the METRIC and
it aims at the minimization of the holding costs of items at a single site, whilst
guaranteeing a required availability level.

3.3.1 The single-echelon multi-item problem and assumptions.

In Figure (3.1) is described the single-echelon multi-item system, where:
o CD (Central department)
e MD (Maintenance Department)
o LW; (Local Warehouse j =1,...,J, J = total number of LW)

o LRU; (items, Line Replaceable Unit ¢ = 1,...,I, I = total number of LRU)
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CD MD
| |
LW, LW, LW;
o, | o, | -
LRU, LRU, LRU,
LRU, LRU, LRU,

Figure 3.1. Echelons structure for multi-item LRU;.

In Figure (3.1), it is important to clarify the assumption is that the CD has
no stock levels, and it is used only as a maintenance center with infinite capacity,
i.e. it always holds an appropriate resources level to execute any needed operation.
Furthermore, each LW; does not have a maintenance center. Hence each LRU;
that requires maintenance at LW; must be sent to the CD. For these reasons, in
analytical terms, the problem can be interpreted as a single-echelon optimization
problem.

The proposed formulation does not consider lateral transshipment among LW
and that the back-order queues generated by each LW; at the CD are unrelated.
Under these assumptions the authors can decompose the spare parts management
problem of the LRUs on subproblems on each LW for all j =1,...,J.

The remainder of this section focuses on the definition of the optimization prob-
lem for each LW; for the detection of an optimal stock level s; such as to minimize
an objective cost function Cj(s) subject to nonlinear restriction which enforces the
availability of vehicles at each LWj.

3.3.2 Analytic formulation

This section describes the analytical model at the local warehouse LWW;.

As a first step, the authors define the decision variables which are the stock
level s; ; for all LRU;, i =1, .., I, at the local warehouse LW;. The goal is the
minimization of the holding cost for all LRUs i at the j — th local warehouse LWj.
Denoting c; j the unit cost for stocking the 7 —th item in the j —th local warehouse
the authors get the overall holding cost for the local warehouse LW;.

I
Cj = ZS@]‘ *Cij- (3.1)
i=1

At any time, the stock level s; ; of LRU; at LW; can be split into the sum of
three components:
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sij = Dlijj+OH;; — BO,;, (32)

where:

e DI; ; is the number of Due In items of LRU; waiting for repair by the CD;
Under the hypothesis of no queue at CD, they are the items being repaired in
the exact moment of the calculation

e OH;; is the number of On Hand items of LRU; currently available at LW

e BO; ; is the number of Back Orders of LRU; due to request arrived when the
inventory was already out of stock at the LW

The feasible values of s; ; are thus constrained by two nonlinear constraints. The
first constraint imposes a lower bound A!"9¢ > (. In addition, the availability at
site A; has to verify the target availability constraint:

* target
Ar > Ataroet, (3.3)

The availability at site refers to the availability of the fleet planned for the
site. In this case, the authors consider a fleet of machines, so that each site can
be modelled as a passive redundancy system constituted by N; machines, when
M; machines are active, the remaining IN; — M; are put in cold stand-by ready to
substitute the active machine in case of failure.

The total availability A% , is described by the following formula (Costantino et
al., 2013 [99]):

N;—M;

M In( AN
pm S M A 64
k=0

The availability of the single machine A; depends on the availability of the LRUs
that affect it, so that a machine is available when all the items that contribute to
form it are available. The mathematical relation is here simplistic described as a
series:

I
A; =[] 4 (3.5)
=1

where A; ; is the availability of the single item LRU; at site j and it is expressed
by:

E[BO, ;]

(3.6)
where E[BO; ;] is the expected value of the Back-Order corresponding to the
stock level s;; and the ratio between E[BO; ;] and N; is the unavailability level.
Since s;; can only take non-negative integer values, at least one of BO;; and
OH, jis zero, the Expected Back Order is the positive part of the delta between the
Due In DI; ; and the stock level s; ; (Costantino et al., 2018):
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EBO@j(S@j) = E[BOIJ] = E[(Djz,] — SZ‘J‘)JF]. (37)

Hence the expected value of backorders BO;;is obtained, following the assump-
tion of Poisson distribution, as:

o0

E[BOjl= > (x—sij)fi;(@), (3.8)

Izsiyj-i-l

where f; j represents the fraction of demand due to item i at site j (Sherbrooke,

2004):
mij(1 —7i;)
5= . 3.9
fl,] m%[) ( )

In the last relation m; ; is the share of LRU; sent from LW; to the CD with
probability 1 — r; ; with respect to the total demand m;go of LRUs of all local
warehouses. Since it is assumed that the local warehouses have no maintenance
center the probability of a repair is r; ; = 0.

Since the availability of the single item A;; is non-negative, from the formula
(3.6), a second non-linear constraint is needed:

E[BO; ;] < Nj. (3.10)
The whole formulation of the problem has to deal with is the following integer
nonlinear constrained minimization for all local warehouse j =1, ..., J:

I

msin C; = Z Sij " Cij (3.1)
i=1

s.b. A > Aleroet, (3.3)

E[BO; ;(si;)] < Nj (3.10)

Ib < s;; < ub, (3.11)

8;5 € 4. (3.12)

The lower bound and the upper bound (3.11) limit the values that can be assumed
by the inventory level. The lower bound [b is usually set to 0 to avoid those solutions
that present one or more negative - unrealistic - values. The upper bound, on the
other hand, can model different requirements such as a limitation in the space of
storage or a precise restriction about the quantities in stock for one or more items.
Since indivisible goods are considered, the last constraint (3.12) ensure that the
stock levels are integers.

Notice that constraints (3.3) and (3.10) embed the values of the stock levels s; ;,
and are tackled explicitly in our algorithm scheme so that feasibility is retained at
every trial solution.
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Table (3.1) summarize the main parameters involved in the definition of the
mathematical model.

Table 3.1. Variables and parameters of the mathematical model.

1 Number of items (LRU)

J Number of Local Warehouse (LW)

i Item index (LRU index) i =1:1

J Warehouse index of the LW j =1:J

mi0 Annual average demand of LRU; at CD

m; Annual average demand of LRU; at LW;
5ij Stock level of LRU; at LW;

S; [51,j,52,4,-- - -, S1,j] vector of stock levels of LRU;
i Repair rate of LRU; at LW;

N; Number of vehicles at LW}

M; Number of active vehicles at LW

Cij Unit inventory holding cost of LRU% at LW
A% Total fleet availability at LW;

Aj Aircraft availability at LW

A; Availability of LRU; at LW;

Atarget | Target value of availability for each LW




100 3. A black box approach for the spare parts management problem

BO;; | Back Order level for LRU; at LW

Ib, ub | Lower and Upper bounds on stock level of LRU; at LW;

Z The set of integers

Number of items which may be considered all together

during the optimization. It may limit the computational

Tma:c . .
effort that is machine-dependent.
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3.3.3 Optimization using the Marginal Analysis

At this step, it is possible to solve the above-described problem via marginal analy-
sis, which represents the most common approach for METRIC-like problems. The
following 7 steps summarize the main phases of a marginal analysis approach ap-
plied to inventory optimization:

1. Set the index of the iteration count & = 0 and choose the starting point
(zero - vector in our case).

2. Calculate the expected backorder

E[BO,].
3. Calculate the rating vector
E|BO;
R; ={pij = [BO] i=1,.1},
’ Cij

where p; ; is a variable created to prioritize the solution.

4. Select the index 7 which returns the max; p;;-

5. Calculate s"T1 as sFH!

s§+1 . fori=1,
j ij

k

Sij otherwise.

6. Evaluate the availability A% in S;?H.

7. Stopping criterion:

If  Af< A;‘"get Set k = k + 1 and repeat from 2,

else A}‘f > A;arget then evaluate the objective. function and ends.

The marginal analysis provides an incremental solution that does not consider com-
plex re-combinations of different items: once an item is assigned, it cannot be
removed from the optimal solution.

Nevertheless, the solution provided by the marginal analysis can be used as a
good starting point for more accurate and complex optimization algorithms, i.e. to
define a feasible point. In this regard, one can note that the service level constraint
(3.3) and the upper bound on the back order expected value (3.10) are highly non-
linear constraints involving all the variables s; ; which represent the hard constraints
in the spare management problem.
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3.4 The Deterministic Black Box Integer Feasible Opti-
mization

In this section, it is presented the Derivative Free Optimization (DFO) method,
which is an innovative deterministic feasible algorithm to deal with the integer black-
box constrained problem represented by the inventory problem at hand. It is well
known that the complexity of finding an optimal solution of black-box optimization
problems increases exponentially with the number of variables (Vavasis, 1995 [111]).
Indeed, an exhaustive search is not conceivable because of the time-consuming evalu-
ation of the objective function and of the constraints due to the simulations involved.
In addition to the Pattern Search type approach already mentioned, examples of
recent efficient and effective algorithms for black-box optimization, that later we
would take in consideration for the comparison of our approach, are:

o the NonMonotone Black-Box Optimization Algorithm (NM-BBOA) developed
by Liuzzi et al. (2018) [112] that is suited for managing only integer variable
and exploit primitive direction to perform a dense neighborhood search. Even
if the algorithm is conceived for local searches the authors explore the effect
on the global search by increasing a parameter 8 that allows to explore larger
and larger neighborhoods.

e the GABRLS algorithm presented in chapter 2 that is a modified genetic
algorithm, integrated with a Bounding Restart technique and derivative free
Local Searchers (Romito, 2017 [113]).

The algorithm proposed in this research is inspired by the pattern search frame-
work and it includes specific features both to exploit integrality of the variables and
to locally explore promising areas of the feasible region by using tailor-made rules.
A generic DFO pattern search algorithm starts from a first feasible solution and at
each iteration produces points that lie on a rational lattice. Elementary directions
are combined and scaled with a step length parameter on a finer and finer grid
to meet, where possible, convergence requirements. Elementary displacements are
movement along one direction with unit step-length. The set of used directions must
constitute a positive spanning set [114] such as in any positive basis method [115]
or a dense set of directions in case of integer variable [116]. The proposed algorithm
is able to explore suitable vector combinations to speed up the search in the most
promising neighborhood but it is also able to explore densely a neighborhood by
enumeration if allowed by the budget of function evaluation.

Key elements that influence the performance of a DFO algorithm are the rules
for selecting the i-th elementary displacement and the number of trial points along
the selected direction.

The proposed contribution stays in the definition of tailor-made rules for se-
lecting the mesh of trial points that exploit the relationship among constraints
and objective function. The tailored selection rules allow improving performance
in terms of needs of function and constraint evaluations which represent the main
computational costs in black-box optimization.
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3.4.1 DeB?IFO (Deterministic Black Box Integer Feasible Opti-
mization)

As previously discussed, the main innovative aspect of the proposed algorithm is to
explore the feasible integer mesh as best as possible using tailor-made rules. Indeed,
the aim is to avoid expensive function computations at points where the expected
value of the objective function is locally worse than the current best solution. Thus,
the it is introduced a parametric selection strategy for choosing subsets of items with
the best expected improvement in the objective function. The selection strategy of
an item 7 is based on the trade-off between its holding cost and the percentage
availability variation due to a unit variation of the stock s;. The idea of using
similar ratios has been also explored in [109] within a greedy procedure to find a
feasible solution.

Formally it is introduced the selection indicator (3.13) for each item i — th and
the local warehouse LW

Rij = (3.13)

which is the ratio between the storing cost of the item 7 at LW, and the value
of the change in availability AA; ; due to a change of the stock As; ; of the item 4
at the same LW;. It is necessary to discuss some issues in order to explain the role
played by k; ; in the construction of the new trial point.

Two scenarios may occur following a unit variation of stock As; ;:

o when As;; = 41, namely the stock increases, the availability A;; increases
too so that the difference AA; ; is positive and the cost of storage increases
by ¢;; (the unit storage price of the item i-th in LWj);

o when As;; = —1, namely the stock decreases, the availability of the item
A; ; is reduced, so the difference AA; ; is negative and the cost of storage is
reduced by ¢; ;.

Hence for each LW; two vectors are constructed
o k= [kijlik ;05
® k]_ = [ki>j]i3ki,j<0 :

corresponding respectively to positive or negative variations on all the compo-
nents As; ; sorted in ascending order, namely such that

(k;_)h < (k;—)h—&-l and (k]_)h < (kj_)h—i-L (3.14)

It is possible to select heuristically combinations of items that seem to be more
promising to provide a decrease in the cost in order to obtain an improvement
of the objective function. It is selected the items corresponding to the first T ax
components of k‘;r and k;, which are linked respectively to a positive and negative
unit variation of availability, and therefore to an elementary displacement on the
integer mesh. The algorithm moves along a grid defined by selecting a bunch of
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items of cardinality 27,ax. It is denoted with k; the vector made up of the 27},,
selected items.

kj = [k, k] (3.15)

Note that, at first glance, using items ¢ —th corresponding to the values in kjrnay
appear to be useless. In fact, if the stock increases, the cost function increases
too, thus deteriorating the objective function. However, it is essential to consider
the positive variations due to the presence of the service level constraint. Merely
decreasing the stock could lead to a reduction in availability, with a possible violation
of the corresponding constraint. What is of interest now are A+j and A, ; which
represent respectively the increase and reduction in availability due to a change in
stock of items in k:j*, k:j . These availability factors are combined in order to maintain
feasibility. The core idea of this approach consists of choosing items corresponding
either to low reduction in availability at a high cost or high increase in availability at
a low cost, thus reducing the total cost whilst satisfying the service level constraint.

The parameter Thax plays a crucial role in the computational effort needed by
the algorithm. It is explored the neighbourhood of feasible points combining in
all possible feasible ways the changes in the stock of at most 2711, items corre-
sponding to different components of vectors k;f, k]_ It makes no sense to consider
combinations related to the same item which will lead either to a null displacement
or a double displacement which is not allowed in the algorithm. The number of
combinations is exponential in Ty,,x. In principle it is used an iterative incremen-
tal strategy to select the value Ty ax starting from a minimum number Ti,;, of two
items, in order to limit the computational effort at the first iterations when it is
far from the optimal solution. All search points are therefore determined for the
current iteration as the most promising subset of the mesh points in a neighborhood
of s; with radius Tiin.

Now it is proceeded to the last step, the Direct Search. Consider a starting
point s; for the current iteration with value of the objective function C;. This value
of the objective function is the target for the considered iteration. The algorithm
plans to move to the search points earlier identified. For each of them, indicated by

sirial, the value of the objective function C;(s%%!) is calculated. Only if

Cj(Sz-Mal) < ij

the correspondence of the point s}”“l to the bounds and to the constraints is
verified, while if

Cj(séﬂal) > Cj,

the point is discarded.

In the case sé”“l satisfies both the constraints and the bounds, the value of the
( tjizzl) trial

objective function Cj(s is stored in a matrix, called Cost Matrix, while s;"" is
put in a second matrix, called Stock Matrix.

Once this procedure has been repeated for all the selected displacements, the
stock level is chosen from the Stock Matrix related to the respective lowest value
in the Cost Matrix. This level of inventory is imposed as the starting point of the
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next iteration and the corresponding value of the objective function becomes the
new target. The number of elements taken for the combinations must be increased
in those cases where it would not be possible to determine a point better than the
starting point, i.e. one of the following situations does not hold:

i) the value of the objective function C’j(s?”wl) is lower or equal than the target
value CJQ of the current iteration;
trial

ii) s satisfies the bounds;

iii) s satisfies the constraints.

The algorithm stops when the number of elements taken to construct the com-
binations is equal to the number of items T},.x previously identified as reasonable
choice for computational resource limitation. It is pointed out that by setting T ax
equal the number of items, the algorithm is able to perform an exhaustive search
in the feasible domain.

The evaluation of the cost function is the first step because the cost function is
much less onerous, in terms of computational time, than the constraint functions.
This allows to avoid the calculation of the latter for those points which, in any case,
will not be chosen at the end of the iteration, since they present a value of the
cost function greater than the target one. The following section shows formally the
algorithm steps for each LW;.

3.4.2 Optimization using the DeB?IFO

In agreement with the described black-box approaches, the following steps detail
the algorithm as applied to the inventory optimization problem at hand. This
subsection presents the approach intended to enhance the traditional optimization
based on the marginal analysis.

1. Set I =1 as the counter of inner the iterations of the algorithm and consider
lmaz a8 max number of iterations. Choose 1 < n as the number of items to
consider in the selection rule (3.13). Choose Tyin <= Tinar and set T = Tiin
for the starting number of items to be optimized jointly. Find the starting
point s; through marginal analysis and evaluate its availability

s; = {s; ri=1,...,n},
A] == {A'Lv](sl,j) N Z = 1,...,n}.
2. Perturb s; and find
+
5; s;+ 1,
sj_ = §;— 1
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3. Calculate the corresponding availability Aj and A;

Aj = {Ai,j(s:’rj) ci=1,...,n},
AJ_ = {Aid(si_,j) 1= 1, ce ,n}.
4. Calculate the delta availability w.r.t. the base scenario AAj and AAj_
+ _ g+
AAT = A - A,
AAT = A7 — A
5. Calculate the ratio kj and kj_ to rank the solutions for all the items
Ci s
kEF = {7 o k. =-22 i=1,...,n}
5 s + ) ) ) )
J i,J “ A Af
ko= {k7 o kn=-2 0 i=1....n}
J ] 1,] AA;]
6. Sort k:;r and k:]_ in ascending order to facilitate the ranking.
7. Create vector l%j by selecting a subset of items, i.e. the first n < n values of
+ —
kj and kj
k= 16 )1, 6 ooy (6 (B )1y (B s (K5 )]

8. Create all the possible combinations (;ﬁ) of values of (A;r)h and (A; )y, cor-
responding to the combination of the components of I%j. Notice that each
components of lch is linked to a specific item 4, so in practice for each Aj or
Aj_ we have a specific combination of items.

9. Eliminate combinations of items involving null displacements or multiple dis-
placements along the same component.

10. Create the expected availability vector for each remaining combination p =
1,...,P
AP AY = Ay (s, Vi€ 1, i linked to h— (K )y € k;
A? = Af,j : Af,j = A;j(s;;),V i €1, ilinked to h — (k; )n € k; .
11. Evaluate the total expected availability A" (from 3.4) and deletes those less

than the target value A!"9¢t,
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12.

13.

14.

15.

16.

Consider the item indices used for the remaining P combination and construct
the points 3? ,p=1,...,P.

trial,p __

Construct complex trial displacements s y =s; + s’; ,p=1,...,P.

Evaluate all the trial mesh points szmal’p and compare it to the current best

solution s I

If Ip such that C j(s;”“l’p ) < Cj(s;) and (s?mal’p is feasible) put

5. — st'm'al,p I

j=sT =1

Stopping criterion

Execute instruction 2-15 until [ < [, or at the current iteration [ there is no
further trial point to evaluate. In the last case
if T < Tpax set

=1, T=T-+1, repeats from 2.

else

T=5..

return an optimal (local) solution s; = s;

end

Any suitable criterion can be added, such as time limit or a max number of
function evaluations.
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3.5 Case study: Spare part management of a fleet of
aircraft

In this section, it is illustrated an application of the DeB?IFO for a single-site case
study for a fleet of aircraft.

3.5.1 Scenario description

The system under investigation is a multi-item system constituted by one CD and 3
LWs. This problem becomes a single-echelon scenario where each LW is responsible
for a different fleet of aircraft. The case study is intended to test the proposed
optimization process for a subset of items (23 items) which constitute the main
LRU for an aircraft flight system. The items considered in this explorative research
are linked to an aircraft hydraulic plant. Each site has the possibility to activate
cold stand-by aircraft. This situation is representative of several civil aviation real
operating contexts, in which the stand-by aircraft can be used to guarantee fleet
operability and deal with unexpected failures generating the so-called AoG (aircraft
on ground), i.e. a problem serious enough to prevent an aircraft from flying. For
each LW, the efficient number of aircraft must satisfy an availability target equal
to 0,96. In operating contexts, the availability level is usually set by the decision-
maker based on the company scheduled service level and it depends on the market
competitiveness, as well as customers’ expectations.

The sites are characterized by total vehicles N; and active vehicles M;, j = 1,2,3
respectively

e« Ny =97, M;=96;
° N2 = 23, M2 = 22;
e N3 =202, Ms3=201;

while the holding cost are distributed between 104 €/piece and 5705 €/piece, and
an average value of about 1300 €/item.

Note that the proposed scenario remains representative also of an MRO com-
pany (Maintenance, Repair, Overhaul) network. In this case, the company remains
responsible for a subset of maintenance interventions for an airline, or a pool of
airlines, and has to manage the spare parts to be located in 3 LW's intended for
maintenance operations.

The aim of the computation experiment presented in this case study is threefold
without the ambition of being exhaustive. First, the DeB%2IFO was compared with
the traditional marginal analysis; secondly, the Pattern Search, that is one of the
most used in literature metaheuristic is chosen, to assess the quality of the proposed
tailored grid search in the neighborhood of feasible solutions. Moreover, two recent
efficient and effective algorithm approaches are included in the comparison to have
a feel of the strength to exploration of DeB?IFO.

3.5.2 Results

The starting solution benchmark is the result of marginal analysis. It is compared
with three direct search alternatives and the proposed approach on 23 demand
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scenarios for 3 local warehouse. The used software environment is MATLAB. All
the search algorithms must be stopped if they exceed the timelimit of 1 hour for
solving all 69 problems. To do so each of them has no more than 20000 function
evaluation to solve an instance (1 scenarios of 1 local warehouse), according to the
single evaluation time of the objective function and constraints. The algorithms are
compared in terms of the overall total cost of all problems. The search algorithms
are tuned as follows:

e Marginal analysis doesn’t need any tuning;

e DeB?IFO adopt Tinin = Timax = 4 (i.e. the maximum number of items to be
considered jointly during the optimization), ., = 1000 as max number of
iteration, and 7 = 10 as the number of best performer items to consider in
the selection rule.

« NM-BBOA has the g parameter that specifies the neighborhood size is set to
50 according to the global search analysis reported in [112];

o GABRLS has the initial set of point (population) and the number of itera-
tion (generations) as two main feature to tune. They are set to 100 and 70
respectively according to the dimension of the problems.

The Pattern Search algorithms is the most common direct search alternative to
marginal analysis. Since the Pattern Search algorithms integrated into the MAT-
LAB optimization toolbox allow several parametrizations, it is made a preliminary
analysis to select the most robust tuning. The fundamental three parameters tuned
concern the search directions:

o Poll method (Generalized Pattern Search, Generating Set Search, Mesh Adap-
tive Direct Search (Audet & Dennis, 2006) combined to positive basis 2N);

o Polling order (random, success, consecutive);

o Complete search (on/off).

To ensure an optimal setting of parameters, twelve different configurations have
been considered. The best configuration corresponds to MADS algorithm combined
to a positive basis 2N as reported in table (3.2). This configuration is used in the
following comparisons.

Table 3.2. Selected Configuration.

Poll Method | Polling Order | Complete Search

MADS 2N Random Off

In table (3.2) it is compared the results of all the algorithms.
Fig. (3.2) shows the total amount of the costs for the 23 demand scenarios
per each LW, while table (3.3) summarize the total costs on all LW and the saving


https://it.mathworks.com/help/gads/patternsearch.html

110

3. A black box approach for the spare parts management problem

w.r.t. the best solution found. It is interesting to observe how the DeB2IFO ensures
a cost reduction of approximately 3.6% w.r.t. MADS 2N, or about 6.6% w.r.t. a
traditional marginal analysis. A comparative table with detailed results on the 23
demand scenarios is provided in the appendix B.

1.000.000 €

900.000 €

800.000 €

700.000 €

600.000 €

500.000 €

400.000 €

m DeB2IFO

B NM-BBOA
GABRLS

m MADS 2N

M Marginal Analisys

Total Cost per LW

m DeB2IFO
= NM-BBOA
GABRLS
II II = MADS 2N
.. II ® Marginal Analisys
w1 Lw2 LW3
463905.84 525985.99 873468.88
465605.3319 532931.7551 876225.6797
465311.5168 535724.7214 883278.7618
481485.61 552757.54 895537.55
499224.41 567825.64 918946.28

Figure 3.2. Total costs for each LW (23 items).

Table 3.3. Total Item’s holding costs in € and computational time in seconds.
DeB’IFO NM GABRLS MADS Marginal
BBOA 2N Analysis
Total € 1863361 | 1874763 | 1884315 | 1929781 | 1985996
A€ — 11402 20954 66540 122635
% A€ - % 0,61 % 1,12 % 3,57 % 6,59
Total time (sec.) 3427 3481 2893 1832 281
A time (sec.) 3146 3200 2612 1832 281
% A time % 11,20 % 11,39 % 9,30 % 5,52 -
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All these results are highly satisfactory and confirm the goodness of the opti-
mization procedure and the effectiveness of the proposed approach.

3.6 Conclusion

A novel strategy to reduce the costs associated with spare parts management has
been presented. The proposed approach started by modeling the spare parts man-
agement problem as an integer constrained minimization of a linear objective func-
tion. Then the focus of the chapter was devoted to the introduction of the DeB2IFO
algorithm, a deterministic method that takes into account the relationships between
different items and a robust selection strategy for subsets of items with the most
promising impact in reducing the total cost function. The advantages of DeB2IFO
are the ability to handle integer solutions always satisfying feasibility and the tailor-
made criterion of choosing only subsets of promising directions that avoid costly
evaluations of the objective function and constraints. The results of comparison
with the traditional marginal analysis and the others black-box algorithms were
satisfactory both in terms of quality of the solutions and computational time. Nev-
ertheless, the focus of this paper was mainly devoted to the definition of the ana-
lytical formulation of the algorithm itself and as such, there are several possibilities
for further research. Firstly, the algorithm might be tested in more complex logistic
networks, with other logistic solutions (e.g.) multi-echelon, lateral transshipment,
cannibalization. It could be also relevant to expand the proposed solution enhancing
the objective function via other ordering costs related to transportation or adminis-
trative aspects. The proposed algorithm could be also used for optimization related
to additional METRIC-like solutions referred to the management of performance-
based contract, such as the PBC-METRIC (Patriarca et. al., [103]). Moreover,
with respect to multi-echelon scenarios, it will be relevant to compare, and possibly
integrate the results of this research with other algorithms developed as a variation
of the greedy algorithm, or Dantzig-Wolfe decomposition and Lagrangian heuristics
(Wong et al., 2007 [109]; Topan et al., 2017 [108]). There might be also possible to
test the algorithm in multi-indenture systems: systems whose LRUs are made up
of multiple SRUs (Shop Replaceable Units), i.e. items at a lower level of the bill
of material. In this case, it is expected to further increase the effects of reduced
computational efforts for the proposed solution. Lastly, as for the general formu-
lation, the DeB2IFO remains conceptually suitable for a wide range of spare parts
optimization problems, where items are subject to 1 by 1 replenishment policy (S-1,
S) to guarantee high service levels.
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Appendix A

Properties and special cases of
the inverse transformations

In the following sections are reported the properties and the special cases of the
inverse equations for all the geometries of the piecewise linear and non-linear trans-
formations.

A.1 Piece Wise Linear inverse transformation

A.1.1 Properties of the inverse PLT - hypercube

Here below are listed the properties and the necessary coupling condition to preserve
the continuity of the inverse transformation between the original space X and the
transformed space ).

i) The reference point § € ) is transformed in the corresponding one Z in the
original space X:

ii) The region { y € R" : |y; — 9i| <€y, i =1,...,n } is transformed in

{zeR" @ |o;— 34| <€, i=1,...,n },

where the coupling condition at the boundary is

€y
==, Al
€z 91 ( )
iii) The region { y € R™ : ¢y < |y; —4i| < ry, i=1,...,n } is transformed in

{zeR" 16, < |oi—Z4| <7y i=1,...,1n },
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where the coupling condition at the boundary is
1
ro = €z + H—(Ty — €y). (A.2)
2
iv) Theregion { y e R" : |y; — 95| >y, i =1,...,n } is transformed in

{zeR" : |z;—24|> ry,i=1,...,n },

where from (1.14)
_ . (yi— ) <€y 1 1 N >
2Y); =i+ |5 Ty =€)+ % =Yl —71y) |,
(¥);i lyi — 93]\ 61 92< v~ €y) 05 (lyi = Gil —1y)
substituting (A.1) and (A.2)

_ . 1 .
x(y)i =$i+7“x+9*3(|yi—yi| —T‘y)- (A'3)

As long as the (A.3) refers to the outermost region there is no need to further
coupling condition. It means that 3 is free of choice.
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A.1.2 Special case of the inverse PLT - hypercube

Consider a transformation that has the following features:
- Y=
€ .
- 91 = i 7& 17

- Ty =Ty=T;

_ I—¢y.
- 92 T or—eg?
- 03=1.

From this choices, the equation (1.12), for y € R™ : |y; — 95| <€y, 1 =1,...

_ R 1 .
x(y)i:%-i-ef(yi—yz’),
1
becomes
_ “ € N
T(y); = i+ — (yi — i)
€y

The equation (1.13), for y e R™ : €, <|y; — 4| <r, i =1,...,n,

N (yz'—??z') <€y 1 N >
=@+~ L+ (i — 0] — &) ),
7 | ; Z| 02(|yz yz| y)

z (y)z o,

becomes

_ . (yi — Ui) ( r— € . )
TWY), =i+ — | €&+ Yi — Yi| — € .
( )z ‘yz_yz‘ x T—Gy(‘ 1 Z‘ y)

The equation (1.14), for y € R™ : |y; — gl >r, i=1,...,n,

_ - (i — ) <

(v), = i + !
T(y), =T ~
PNy — Gl

IR DRSS DR
=)+ =il -n).

becomes

T (y); = Yi-

7n7
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In summary the inverse piecewise linear transformation in the this special case:

o ForyeR" : |y, — 0| <€y, i=1,...,n,

o ForyeR" : ¢, <|yi—9| <r, i=1,...,n,

|yi _gz| Y

e ForyeR" : |y;—gi|l>r, i=1,...,n,

z(y); = Yi-

. . Yi — Ui r—e N
e O )

(A.4)

(A.5)
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A.1.3 Properties of the inverse PLT - hyperrectangle

Here below are listed the properties and the necessary coupling condition to preserve
the continuity of the inverse transformation between the original space X and the
transformed space ).

i) The reference point § € ) is transformed in the corresponding one & in the
original space X:

1

ii) The region { y eR" ¢ |y, — 4i] < e—y, i=1,...,n } is transformed in
»

~ € .
{xGRn : |xi—mi|§f, z:l,...,n},
K3

where the coupling condition at the boundary is

€r =L, (A7)

€ T
iii) The region { yeR" : X<y —i| <L, i=1,...,n } is transformed in
7 7

€ . T .
{xER" :U—%§|xi—xi|§—x', z:l,...,n},

3 (2

where the coupling condition at the boundary is

1
Te = €+ - (ry — &) (A.8)
B2

iv) The region { yeR” : |lyy—gi|l >—,i=1,...,n } is transformed in

i
n - Tz .
{xER :|$i—xi|2,z:1,...,n},

where from (1.26)

B . (yi —0i) (vi 1 (e 1 [ry— €y 1 N .
T = dit lyi —9:l \oi) \b1 \vi * D) Vi * 93(@Z Gl =) )
substituting (A.7) and (A.8)

_ . i — Ui Vi r . r

ph= I () (g (g + ). ag)
|y2 - yZ’ 0; Vi Vi

As long as the (A.9) refers to the outermost region there is no need to further

coupling condition. It means that 03 is free of choice.




118 A. Properties and special cases of the inverse transformations

A.1.4 Special case of the inverse PLT - hyperrectangle

Consider a transformation that has the following features:

- T=Y;

- D,=Dy andso o;=v; fori=1,...,n;
_ & .

- 91 627&1a

r—ey
- b= r—ez’
- 03=1

From this choices, the equation (1.24), for y € R™ : |y; — g;| < %, i=1,...,n,

_ . 1 [y .
T(y), =& + o (Ui) (vi — i),
becomes
_ “ € N
Z(y), =&+ — (yi — 0i)
€y

The equation (1.25), for y € R™ : Z—f <|yi — 9| < Vii, i=1,...,n,

oy a, Wi—G) (v L (e 1 &y
o) =2t lyi — 3i| \ o 01 \ v * 02 lvi = 3l vi))’
_ N Yi — Ql (% T —€ “ €
B ()= b DI () TS (g gy ),
|yi - yi’ Vi v Vi

The equation (1.26), for x € R" : |z; — 24| >7, i =1,...,n,

S Wi ) (Vi (1 (e Ly e 1
x (y)'L = T; + ’yl . Z)Z’ oy 01 Vi + 62 v + 93 (’yl yl’ Ty) N

becomes

becomes

T(y); = Yi-
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In summary the inverse piecewise linear transformation in this special case:
e ForyeR™ : |y, — 4| < %, i=1,...,n,
_ . 1 .
T(y), =&+ o (yi — 9i) - (A.10)

e ForyeR" : <[y~ <, i=1,....n,

o ForyeR” : |y, — 9| > L1, i=1,...,n,

= v

z (y)z = Yi-

w(y)iziﬁm ((Z"”) +’T‘(|yi—gi|—z>>. (A.11)

(A.12)
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A. Properties and special cases of the inverse transformations

A.2 Non-Linear inverse transformation

A.2.1 Properties of the inverse NLT - hypersphere

Here below are listed the properties and the necessary coupling condition to preserve
the continuity of the inverse transformation between the original space X and the

transformed space ).

i)

ii)

iii)

iv)

The reference point § € Y is transformed in the corresponding one & in the
original space X:

The region { y € R" : |ly — 9|y, < €y } is transformed in

{reR" : [z-il,<e )

where the coupling condition at the boundary is

€y
.= 2. Al
=g (A.13)

The region { y € R" : ¢, < |ly — ||, < ry } is transformed in
{zeR" tex <z -2y <7 b,
where the coupling condition at the boundary is

Ty = € + i(7“3,, —€y). (A.14)
62

The region { ||y — ||, > ry } is transformed in
{zeR" : |z -2, >}
where from (1.47)
X 1 N
lz =2l = 7o = 5-(lly = 9ll, = 7).
substituting (A.13) and (A.14)

. 1 N
lz = 2lly =7 = p-(lly = 9l = 7). (A.15)

As long as the (A.15) refers to the outermost region there is no need to further
coupling condition. It means that 03 is free of choice.
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A.2.2 Special case of the inverse NLT - hypersphere

It is considered a transformation that has the following features:
- U=
- b= F

- T =Ty=T;

_ T—¢&y
- b= r—ez’
- 03=1

From this choices, the equation (1.45), for y € R" : |y — 9, < €,

— ~

w(y):@Jr(jl(y—y),

becomes

The equation (1.46), for y € R™ : €, < ||y — gl < 1y,

- . (y — ) < 1 1 . >
T =+ —| —€,+ = — — € s
(y) Hy yHZ 01 Yy 92 (”y y||2 y)

becomes

2 =i+ (o T gl - a).

€z
ly =4l — €y
The equation (1.47), for x € R : ||y — 9|y > 1y,

— N (y—19) (1 1 1 N )
T =34+ T [ —¢,+—(ry —€,) + — _ —_r 7
(v) Iy ?JHQ 0, Y 92( Y y) 05 (Hy y”z y)

becomes

z(y) =y.
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In summary the inverse nonlinear transformation in this special case:

o Fory e R" :|ly —glly, < €y,

T(y)=2+—(y—19).

o Fory e R" : ¢, < |ly =17y <1y,

f(y)Z:i“Jri(y_%/) (ex+r_6m
T—Gy

OM—Mb—@Q-

(A.16)

(A.17)

(A.18)
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A.2.3 Properties of the inverse NLT - hyperellipse

Here below are listed the properties and the necessary coupling condition to preserve
the continuity of the inverse transformation between the original space X and the
transformed space ).

i)

ii)

iii)

iv)

The reference point g € Y is transformed in the corresponding one Z in the
original space X:

The region { y € R™ : [[Dy(y — 9)|, < €y } is transformed in

{zeR" : |[Do(x—2)[ < e},

where the coupling condition at the boundary is
T (A.19)
01
The region { y € R" : ¢, < ||Dy(y — 9)|l, <7y } is transformed in

{zeR" 16 <||Dy(x—2)||y <7y},

where the coupling condition at the boundary is

1
Ty =€ + —(ry — €). (A.20)
02

The region { ||Dy(y — 9)|l, > ry } is transformed in

{2eR" : |Dale—d)ly = )

where from (1.59)

- . 1 Dy(y—19) < 1 1 1 . >
T(y) =a+D, ' ey 4+ —(ry — &) + — (|[Dy(y — —ry) |,
(y) HDy(y _ y)H2 01 Yy 92( Yy y) 93 (” y(y y)”2 y)
substituting (A.19) and (A.20)

~1 Dy(y—9)

1
z(y) =2+ D, —F—=— (7‘ + — (IDy(y — )|, — r > (A.21)
Syl il "y P9 )
As long as the (A.21) refers to the outermost region there is no need to further

coupling condition. It means that 03 is free of choice.
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A.2.4 Special case of the inverse NLT - hyperellipse

Let us consider a transformation that has the following features:

- T=Y

- Dy,=Dy andso o;=v; fori=1,...,n;
— &y .

- Hl_em#la

r—ey
- b= r—ez’
gy =1

From this choices, the equation (1.57), for y € R™ :||[Dy(y — 9)|l, < €y,

1

9 D;IDy(y_g)7
1

T(y) =2+
becomes

_ N € _ ~
x(y)zf’”*fDmlDy(y—y)-
)

The equation (1.58), for y € R™ : €, < [[Dy(y — )|l < 1y,

. o1 Dyly—9) (1 1 .
= p-l_—Zv\g  J) - — (D, (1 — _
x (y) T + xT HDy(y _ Q)HQ 91 Ey + 92 (H y(y y)”2 ey) 9

becomes

_ - 1 Dyly—19) €z T — € N
Z(y) =i+ D = (2 —(IDy(y = D)l — &) ) -
||Dy(y*y)||2 €y 7“*ey( Y 2 y)

The equation (1.59), for x € R : ||Dy(y —9)|ly > 7y,

_ . 1 Dy(y—1) 1 1 1 .
= )t AV —(r — = _ _
l’(y) X+ T HDy(y_yA)Hz 016y+ 92 (ry €y)—|— 03 (Hy y||2 ry) )

becomes
z(y) =y.
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In summary the inverse nonlinear transformation in this special case:

e Fory e R" : || Dy(y —9)ll, < ey,

_ N €x ~_ ~
T(y) =2+ E—Dx 'Dy(y—9). (A.22)
Yy

o Fory e R" : ¢, < ||Dy(y —9)|ly <7y,

2) = a4 D DI (L T Dyl - ) (A9)

e Forz €R" ¢ [Dy(y— )l > ry.

z(y) =y (A.24)
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Report on item’s holding costs

The following table provide item’s holding costs in € per demand scenario and per
Local Warehouse.

Table B.1. Item’s holding costs in € for each demand and at each LW.

Demand | LW | DeB?IFO | NM-BBOA | GABRLS | MADS | Marginal
2N Analysis

1 LW1 | 23566,89 23566,89 23566,89 | 24634,95 | 28714,21
LW2 | 22251,05 22251,05 22251,05 | 22381,09 | 22881,35

LW3 | 40547,17 40835,06 40835,06 | 41303,13 | 42436,93

Total | 86365,11 86652,99 86652,99 | 88319,17 | 94032,48

2 LW1 | 18478,07 18542,34 18478,07 19250,1 | 20324,77
LW2 | 19648,67 20461,29 20461,29 | 21950,27 | 22216,94

LW3 | 40354,59 40409,27 41299,89 | 41201,48 | 44397,73

Total | 78481,33 7941291 80239,25 | 82401,86 | 86939,44

3 LW1 | 23566,89 23566,89 23566,89 | 27804,65 | 28714,21
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LW2 | 22251,05 22251,05 22251,05 | 22323,77 | 22881,35

LW3 | 40547,17 40835,06 40835,06 | 41303,13 | 42436,93

Total | 86365,11 86652,99 86652,99 | 91431,55 | 94032,48

4 LW1 | 18478,07 18542,34 18478,07 | 18668,77 | 20324,77

LW2 | 19648,67 20461,29 20461,29 | 21586,64 | 22216,94

LW3 | 40354,59 40409,27 41299,89 | 42238,63 | 44397,73

Total | 78481,33 79412,91 80239,25 | 82494,03 | 86939,44

5 LW1 | 19533,26 19533,26 19589,11 | 19786,78 | 19786,78

LW2 | 25537,68 25537,68 27257,45 | 28269,57 | 29388,45

LW3 | 35999,3 35950,45 35999,30 | 36175,46 | 36175,46

Total | 81070,25 81021,39 82845,86 | 84231,81 | 85350,69

6 LW1 | 19888,64 19888,64 19888,64 | 19993,07 | 19993,07

LW2 | 23223,02 23223,02 23223,02 | 25071,17 | 26092,98

LW3 | 36661,16 36789,17 36957,79 | 36652,83 | 37771,71

Total | 79772,82 79900,83 80069,45 | 81717,07 | 83857,76

7 LW1 17026,2 17026,20 17026,20 | 17026,2 17026,2

LW2 | 25289,88 26017,64 25911,35 | 26761,21 | 28052,14

LW3 | 41502,06 41502,06 41502,06 | 41502,06 | 41502,06
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Total | 83818,14 84545,91 84439,61 | 85289,47 | 86580,41
8 LW1 | 23566,89 23566,89 23566,89 | 24036,82 | 28714,21
LW2 | 22251,05 22251,05 22251,05 | 22323,77 | 22881,35
LW3 | 40547,17 40835,06 40835,06 | 42436,93 | 42436,93
Total | 86365,11 86652,99 86652,99 | 88797,52 | 94032,48
9 LW1 | 18478,07 18542,34 18478,07 | 20108,45 | 20324,77
LW2 | 19648,67 20461,29 20461,29 | 21229,59 | 22216,94
LW3 | 40354,59 40409,27 41299,89 | 42181,94 | 44397,73
Total | 78481,33 79412,91 80239,25 | 83519,98 | 86939,44
10 LW1 | 19896,23 19995,07 19970,83 | 20082,71 | 20082,71
LW2 | 23463,68 24422,22 24461,38 | 24177,38 | 25252,05
LW3 | 29185,68 29321,32 29334,37 | 29523,72 | 29804,3
Total | 72545,59 73738,61 73766,58 | 73783,81 | 75139,07
11 LW1 | 23566,89 23566,89 23566,89 | 25838,95 | 28714,21
LW2 | 22251,05 22251,05 22251,05 | 22705,19 | 22881,35
LW3 | 40547,17 40835,06 40835,06 | 41929,7 | 42436,93
Total | 86365,11 86652,99 86652,99 | 90473,84 | 94032,48
12 LW1 | 18478,07 18542,34 18478,07 | 20058,1 | 20324,77
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LW2 | 19648,67 20461,29 20461,29 | 22056,57 | 22216,94

LW3 | 40354,59 40409,27 41299,89 | 41304,58 | 44397,73

Total | 78481,33 7941291 80239,25 | 83419,25 | 86939,44

13 LW1 | 20941,92 21251,17 21251,17 | 21467,49 | 21907,11

LW2 | 23791,91 23743,65 23791,91 | 23829,2 23829,2

LW3 | 38853,24 38853,24 38853,24 | 38853,24 | 38853,24

Total | 83587,07 83848,05 83896,31 | 84149,93 | 84589,55

14 LW1 | 23462,76 24546,16 23987,38 | 25741,03 | 25741,03

LW2 | 25987,32 25987,32 25987,32 | 25987,32 | 25987,32

LW3 | 35194,15 36048,96 36152,67 | 36935,04 | 37132,71

Total | 84644,23 86582,43 86127,37 | 88663,39 | 88861,06

15 LW1 | 18458,65 18354,22 18354,22 | 18709,53 | 18885,69

LW2 | 25279,49 25957,44 25957,44 | 27236,69 | 27236,69

LW3 | 34999,58 34999,58 35537,85 | 36151,27 | 36943,91

Total | 78737,72 79311,24 79849,50 | 82097,49 | 83066,29

16 LW1 | 19497,57 19497,57 19497,57 | 19497,57 | 19497,57

LW2 | 23458,77 24045,43 24045,43 | 26143,33 | 26334,03

LW3 | 4295291 4295291 43070,86 | 43070,86 | 43070,86
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Total | 85909,25 | 8649591 | 86613,86 | 88711,76 | 88902,46
17 LW1 | 2442026 | 24420,26 | 2442026 | 24596,42 | 24890,19
LW2 | 21168,16 | 21168,16 | 21168,16 | 21168,16 | 21168,16
LW3 | 34985,39 | 3498539 | 35569,12 | 35440,78 | 37627,36
Total | 80573,81 | 80573,81 | 81157,55 | 81205,36 | 83685,71
18 LW1 | 17382,66 | 17382,66 | 17382,66 | 17382,66 | 17382,66
LW2 | 22690,73 | 22690,73 | 22903,86 | 2328241 | 25316,91
LW3 | 33593,27 | 3359327 | 3359327 | 34093,53 | 34093,53
Total | 73666,65 | 73666,65 | 73879,79 | 747586 | 767931
19 LW1 | 17977,21 | 1797721 | 17977,21 | 18137,58 | 18137,58
LW2 | 2398526 | 24189,88 | 24071,04 | 26654,01 | 27528,09
LW3 | 40660,19 | 40660,19 | 40660,19 | 40660,19 | 40660,19
Total | 82622,65 | 8282728 | 82708,44 | 85451,78 | 8632587
20 LW1 | 17539,25 | 17539,25 | 17992,39 | 17992,39 | 18096,82
LW2 | 20521,95 | 21109,98 | 21523,08 | 22440,21 | 25397,01
LW3 | 36946,9 | 36920,53 | 36946,90 | 38673,65 | 41996,76
Total | 75008,1 | 75569,76 | 76462,38 | 79106,25 | 85490,59
21 LW1 | 1897243 | 18972,43 | 18972,43 | 19244,69 | 19442,36
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LW2 | 25488,18 25488,18 26072,86 | 26233,23 | 26233,23
LW3 | 37843,51 38250,57 38250,57 | 38481,3 | 39038,88
Total | 82304,11 82711,18 83295,86 | 83959,22 | 84714,47
22 LW1 | 24296,02 24351,40 24351,40 | 24993,76 | 25568,12
LW2 | 23999,27 23999,27 23999,27 | 2444495 | 24556,84
LW3 | 31173,85 31110,05 32391,69 | 34168,79 35387
Total | 79469,14 79460,72 80742,36 83607,5 | 85511,96
23 LW1 | 16432,94 16432,94 16470,23 | 16432,94 | 16630,6
LW2 | 24501,81 24501,81 24501,81 | 24501,81 | 25059,38
LW3 | 39310,65 39310,65 39919,07 | 41255,31 | 41549,67
Total | 80245,39 80245,39 80891,11 | 82190,05 | 83239,66
Table B.2. Total Item’s holding costs in € for all LW and all demands.
DeB?IFO NM GABRLS MADS Marginal
BBOA 2N Analysis
Total € | 1863361 | 1874763 | 1884315 | 1929781 | 1985996
A€ — 11402 20954 66540 122635
% A - % 0,61 % 1,12 % 3,57 % 6,59




133

Bibliography

1]

[10]

[11]

Sergeyev, Ya D., Kvasov, D.E.: Deterministic Global Optimization:
An Introduction to the Diagonal Approach. Springer, New York (2017)
https://doi.org/10.1007/978-1-4939-7199-2.

Jones, D.R., Perttunen, C.D., Stuckman, B.E.: Lipschitzian optimization with-
out the Lipschitz constant. J. Optim. Theory Appl. 79(1), 157-181 (1993)
https://doi.org/10.1007/BF00941892.

Lera, D., Sergeyev, Y.D. GOSH: derivative-free global optimiza-
tion using multi-dimensional space-filling curves. J. Glob Optim (2017)
https://doi.org/10.1007/s10898-017-0589-7.

Lera, D., Sergeyev, Y.D.: Deterministic global optimization using space-filling
curves and multiple estimates of Lipschitz and Hélder constants. Commun.
Nonlinear Sci. Numer. Simul. 23(1-3), 328-342 (2015).

Kirkpatrick, S., Gelatt, C. D. Jr & Vecchi, M. P.: Optimization by simulated
annealing. Science 220, 671-680 (1983).

Francisco J. Solis and Roger J.-B. Wets.: Minimization by Random Search
Techniques. Mathematics of Operations Research, 6(1):19-30, ISSN 0364-765X
(1981). doi: 10.1287/moor.6.1.19.

Dixon, L. C. W., Szego, G. P. (eds.): Towards global optimization 1: North-
Holland, Amsterdam (1975).

Dixon, L. C. W., Szego, G. P. (eds.): Towards global optimization 2: North-
Holland, Amsterdam (1978).

Greenhalgh D.,  Marshall, S Convergence criteria for ge-
netic  algorithms,  SIAM J. Comput. 30(1), 269-282  (2000)
https://doi.org/10.1137/S009753979732565X.

Hartl, R. F., Belew, R. K.: A global convergence proof for a class of genetic
algorithms. Tech. rep. University of Technology, Vienna (1990).

Rudolph, G.: Convergence of evolutionary algorithms in general search spaces.
Proceedings of the Third IEEE Conference on Evolutionary Computation, pp.
50-54, IEEE Press, Piscataway (NJ) (1996).


https://doi.org/10.1007/978-1-4939-7199-2
https://doi.org/10.1007/BF00941892
https://doi.org/10.1007/s10898-017-0589-7
doi: 10.1287/moor.6.1.19.
https://doi.org/10.1137/S009753979732565X

134 Bibliography

[12] Liuzzi, G., Lucidi, S., Piccialli, V.: Exploiting derivative-free local searches
in direct-type algorithms for global optimization. Comput. Optim. Appl. 65,
449-475 (2016) https://doi:10.1007/s10589-015-9741-9.

[13] Lucidi, S., Piccialli, V. New Classes of Globally Convexized Filled Functions
for Global Optimization. Journal of Global Optimization 24, 219-236 (2002)
https://doi.org/10.1023/A:1020243720794.

[14] Xu, Z., Huang, H., Pardalos, P.M. et al.: Filled functions for uncon-
strained global optimization. Journal of Global Optimization 20, 49-65 (2001)
https://doi.org/10.1023/A:1011207512894.

[15] Wu, Z.Y., Lee, H.W.J., Zhang, L.S. et al.: A Novel Filled Function Method
and Quasi-Filled Function Method for Global Optimization. Comput Optim
Applic 34, 249-272 (2006). https://doi.org/10.1007/s10589-005-3077-9.

[16] Bertsekas, D.P.: Constrained Optimization and Lagrange Multipliers Methods.
Academic Press, New York (1982) https://doi.org/10.1002/net.3230150112.

[17] Di Pillo, G., Lucidi, S., Rinaldi, F.: A Derivative-Free Algorithm for Con-
strained Global Optimization Based on Exact Penalty Functions. J Optim
Theory Appl 164, 862-882 (2015) https://doi.org/10.1007/s10957-013-0487-1.

[18] Liuzzi, G., Lucidi, S., Piccialli, V., Sotgiu, A.: A magnetic resonance device
designed via global optimization techniques. Math. Program. 101(2), 339-364
(2004).

[19] Bertolazzi, P., Guerra, C., Liuzzi, G.: A global optimization algorithm for
protein surface alignment. BMC Bioinform. 11, 488-498 (2010).

[20] Locatelli, M., Schoen, F.: Efficient algorithms for large scale global optimiza-
tion: Lennard-Jones clusters. Comput. Optim. Appl. 26(2), 173-190 (2003).

[21] Jones, D.R., Martins, J.R.R.A.: The DIRECT algorithm: 25 years Later. J
Glob Optim (2020). https://doi.org/10.1007 /s10898-020-00952-6.

[22] Liuzzi, G., Lucidi, S., Piccialli, V.: A DIRECT-based approach exploiting
local minimizations for the solution of large-scale global optimization problems.
Comput. Optim. Appl. 45, 353-375 (2010).

[23] Sergeyev, Ya D., Kvasov, D.E.: Deterministic Global Optimization:
An Introduction to the Diagonal Approach. Springer, New York (2017)
https://doi.org/10.1007/978-1-4939-7199-2.

[24] J. J. Liang, Q. B. Y., and S. P. N.: “Problem Definitions and Evaluation
Criteria for the CEC 2013 Special Session and Competition on Real-Parameter
Optimization,” Computational Intelligence Laboratory, Zhengzhou University,
Zhengzhou China And Nanyang Technological University, Singapore, Technical
Report 201212, (2013).


https://doi:10.1007/s10589-015-9741-9
https://doi.org/10.1023/A:1020243720794
https://doi.org/10.1023/A:1011207512894
https://doi.org/10.1007/s10589-005-3077-9
https://doi.org/10.1002/net.3230150112
https://doi.org/10.1007/s10957-013-0487-1
https://doi.org/10.1007/s10898-020-00952-6
https://doi.org/10.1007/978-1-4939-7199-2

Bibliography 135

[25]

[26]

[27]

Liuzzi, G., Lucidi, S., Piccialli, V.: A partition-based global optimization algo-
rithm. J Global Optim 48(1), 113—-128 (2010) https://doi.org/10.1007/s10898-
009-9515-y.

Goldberg, D.E., Kalyanmoy, D.: A comparative analysis of selection schemes
used in genetic algorithms. Found. Genetic Algorithms 1, 69-93 (1991).

Al-Baali, M., Caliciotti, A., Fasano, G., Roma, M.: A Class of Approximate
Inverse Preconditioners Based on Krylov-Subspace Methods for Large-Scale
Nonconvex Optimization in STAM JOURNAL ON OPTIMIZATION, vol. 30,
pp. 1954-1979 (ISSN 1052-6234) (2020)

Caliciotti, A., Fasano, G., Roma, M.: Preconditioned Nonlinear Conjugate
Gradient methods based on a modified secant equation in APPLIED MATH-
EMATICS AND COMPUTATION, vol. 318, pp. 196-214 (ISSN 0096-3003)
(2018)

Fasano, G., Roma, M.: Preconditioning Newton-Krylov Methods in Non-
Convex Large Scale Optimization in COMPUTATIONAL OPTIMIZATION
AND APPLICATIONS, vol. 56, pp. 253-290 (ISSN 0926-6003) (2013)

Morales JL, Nocedal J. Automatic preconditioning by limited memory Quasi-
Newton updating. STAM J Optim. 10(4): 1079-1096 (2000)

Brown, P.N., Walker, H.F., Wasyk, R., Woodward, C.S.: On using approxi-
mate finite-differences in matrix-free Newton—Krylov methods. SIAM J. Numer.
Anal. 46, 1892-1911 (2008)

Dixon, L. C. W., Szego, G. P.: The global optimization problem: an introduc-
tion. Towards global optimization, 2, 1-15 (1978)

Picheny, V., Wagner, T., Ginsbourger, D.: A benchmark of kriging-based infill
criteria for noisy optimization (2012)

Lucidi, S., Sciandrone, M.: A Derivative-Free Algorithm for Bound Con-
strained Optimization, Computational Optimization and Applications, 21(2):
119-142 (2002) https://doi.org/10.1023/A:1013735414984

Yun-Wei Shang and Yu-Huang Qiu. A note on the extended rosenbrock func-
tion. Evol. Comput., 14(1):119-126 (2006)

Matsumoto, M., Nishimura, T.: Mersenne twister: a 623-dimensionally equidis-
tributed uniform pseudo-random number generator. ACM Trans. Model. Com-
put. Simul., 8(1), 3-30 (1998) https://doi.org/10.1145/272991.272995

Horst, R. & Pardalos, P. M. (eds): Handbook of Global Optimization, vol. 1,
Kluwer Academic Publishers, Dordrecht (1995)

Pintér, J. D. Global Optimization in Action (Continuous and Lipschitz Opti-
mization: Algorithms, Implementations and Applications). Kluwer Academic
Publishers, Dordrecht (1996)


https://doi.org/10.1007/s10898-009-9515-y
https://doi.org/10.1007/s10898-009-9515-y
https://doi.org/10.1023/A:1013735414984
https://doi.org/10.1145/272991.272995

136

Bibliography

[39]

[42]

[43]

[44]

[45]

[46]
[47]

[48]

[49]

[50]

[52]

[53]

[54]

Price, K., Storn, R. M., Lampinen, J. A. Differential Evolution: A Practical
Approach to Global Optimization. Natural Computing Series. Springer, New
York (2005)

Sergeyev, Y. D., Strongin, R. G., Lera, D.: Introduction to Global Optimiza-
tion Exploiting Space-Filling Curves. (Springer, New York, 2013).

Holland, J. H.: Adaptation in Natural and Artifcial Systems: an Introduc-
tory Analysis with Applications to Biology, Control, and Artifcial Intelligence.
University of Michigan Press (1975)

Strongin, R. G., Sergeyev, Y. D.: Global Optimization with Non-Convex Con-
straints: Sequential and Parallel Algorithms. Kluwer Academic Publishers, Dor-
drecht (2000)

Paulavic¢ius R., Zilinskas J.: Simplicial Global Optimization. SpringerBriefs in
Optimization. Springer-Verlag, New York (2014).

Sergeyev, Y., D., & Kvasov, D., E.: Deterministic Global Optimization.
Springer (2017).

Pardalos, P. M. & Romeijn, H. E. (eds): Handbook of Global Optimization,
volume 2. Kluwer Academic Publishers, Dordrecht, (2002).

Journal of Global Optimization https://www.springer.com/journal/10898.

Grippo, L., Sciandrone, M.: Metodi di Ottimizzazione non Vincolata. Springer
(2011).

Schoen, F.: Two-phase methods for global optimization, Handbook of global
optimization, Vol. 2, Kluwer Acad. Publ., Dordrecht, pp. 151-177 (2002).

Conn, A. R., Scheinberg, K., Vicente, L. N.: Introduction to Derivative-Free
Optimization. STAM, Philadelphia, USA, (2009).

Jones, D.R. A Taxonomy of Global Optimization Methods Based on
Response Surfaces. Journal of Global Optimization 21, 345-383 (2001)
https://doi.org/10.1023/A:1012771025575.

HuJ., Wang Y., Zhou E., Fu M.C., Marcus S.I.: A Survey of Some Model-Based
Methods for Global Optimization. In: Hernandez-Hernandez D., Minjarez-Sosa
J. (eds) Optimization, Control, and Applications of Stochastic Systems. Sys-
tems & Control: Foundations & Applications. Birkhauser, Boston (2012).

Bertsimas, D., Tsitsiklis, J.: Simulated annealing. Statistical Science 8(1), 10—
15 (1993).

Wah, B., Chen, Y., Wang, T.: Simulated annealing with asymptotic conver-
gence for nonlinear constrained global optimization. Journal of Global Opti-
mization 39, 153-162 (2002).

Reeves, C.: Genetic algorithms for the operations researcher. INFORMS Jour-
nal on Computing 9, 231-250 (1997).


https://www.springer.com/journal/10898
https://doi.org/10.1023/A:1012771025575

Bibliography 137

[55]

[56]

[64]

[65]

[66]

[67]

[68]

Greenhalgh D., Marshall, S.: Convergence criteria for genetic algorithms, STAM
J. Comput. 30(1), 269-282 (2000).

Rudolph, G.: Convergence of evolutionary algorithms in general search spaces.
Proceedings of the Third IEEE Conference on Evolutionary Computation, pp.
50-54, IEEE Press, Piscataway (NJ), (1996).

Glover, F.: Tabu search: A tutorial. Interfaces 20, 74-94 (1990). DOI
10.1287 /inte.20.4.74

C. A. Floudas and P. M. Pardalos, editors. Encyclopedia of Optimiza-tion (6
Volumes). Springer, 2nd edition, (2009).

Serani, A., Fasano, G., Liuzzi, G., Lucidi, S., lemma, U., Campana, E.F.,
Stern, F., Diez, M.: Ship hydrodynamic optimization by local hybridization of
deterministic derivative-free global algorithms. Appl. Ocean Res. 59, 115-128
(2016).

Di Pillo, G., Facchinei, F.: Exact barrier function methods
for Lipschitz programs. Appl. Math. Optim. 32, 1-31 (1995)
https://doi.org/10.1007/BF01189901.

Battiti R., Sergeyev Y.D., Brunato M., Kvasov D.E. GENOPT 2016: Design
of a generali-zation-based challenge in global optimization. In Sergeyev Y.D.,
Kvasov D.E., Dell’Accio F., Mukhametzhanov. M. S. (Eds.), AIP Conference
Proceedings, Vol. 1776. No. 060005. AIP Publishing (2016).

Regis, R. G.: On the properties of positive spanning sets and positive bases.
Optim. Eng. 17(1) 229-262 (2016) https://doi.org/10.1007/s11081-015-9286-x.

Lewis, R.M., Torczon V.: Rank ordering and positive bases in pattern search al-
gorithms. Technical Report TR96-71, ICASE, NASA Langley Research Center
(1999).

Abramson, M.A., Audet, C., Dennis, J.E.Jr., Le Digabel, S.: OrthoMADS:
a deterministic mads instance with orthogonal directions. SIAM Journal on
Optimization 20(2), 948-966. (2009) https://doi.org/10.1137/080716980.

Kelley, C.T.: Implicit Filtering (Software, Environments and Tools). SIAM
(2011) https://doi.org/10.1137/1.9781611971903.

Lucidi, S., Sciandrone, M.: On the global convergence of derivative-free
methods for unconstrained optimization, STAM J. Optim. 13, 97-116 (2002)
https://doi.org/10.1137/51052623497330392.

Conn, A.R., Gould, N.I.M., Toint,P.L.: Trust-Region  Meth-
ods, MPS/SIAM Ser. Optim. 1, SIAM, Philadelphia, (2000)
https://doi.org/10.1137/1.9780898719857.

Coope, 1.D., Price, C.J.: On the convergence of grid-based methods for un-
constrained optimization. STAM Journal on Optimization 11, 859-869 (2001)
https://doi.org/10.1137/51052623499354989.


https://doi.org/10.1007/BF01189901
https://doi.org/10.1007/s11081-015-9286-x
https://doi.org/10.1137/080716980
https://doi.org/10.1137/1.9781611971903
https://doi.org/10.1137/S1052623497330392
https://doi.org/10.1137/1.9780898719857
https://doi.org/10.1137/S1052623499354989

138

Bibliography

[69]

[70]

[71]

[79]

Lewis, R.M., Torczon, V.: Pattern search algorithms for bound constrained
optimization. SIAM Journal on Optimization 9(4), 1082-1099, (1999).

Coope, 1.D., Price, C.J.: Positive bases in numerical optimization. Computa-
tional Optimization and Applications 21(2), 169-175 (2002).

Coope, 1.D., Price, C.J.: Frames and grids in unconstrained and linearly con-
strained optimization: A nonsmooth approach, STAM J. Optim. 14, 415438
(2003).

Goldberg, D.E., Kalyanmoy, D.: A comparative analysis of selection schemes
used in genetic algorithms. Found. Genetic Algorithms 1, 69-93 (1991).

Halton, J.: On the efficiency of certain quasi-random sequences of points in eval-
uating multi-dimensional integrals. Numerische Mathematik 2, 84-90 (1960).

Di Pillo, G., Grippo, L.: Exact penalty functions in constrained optimization.
Siam J. Control Optim. 27, 1333-1360 (1989).

Liuzzi, G., Lucidi, S., Rinaldi, F.: Derivative-free methods for
bound constrained mixed-integer optimization. Computational Optimiza-
tion and Applications - COMPUT OPTIM APPL 53 (2012). DOI
https://doi.org/10.1007/s10589-011-9405-3.

G.Liuzzi, S.Lucidi, F.Rinaldi. Derivative-Free Methods for Mixed-Integer Con-
strained Optimization Problems, Journal of Optimization Theory and Applica-
tions, 164(3): 933-965 (2015) https://doi.org/10.1007/s10957-014-0617-4.

Lewis, R., Torczon, V.: A globally convergent augmented lagrangian pattern
search algorithm for optimization with general constraints and simple bounds.
SIAM J. Optim. 12, 1075-1089 (2002).

Lin, C.J., Lucidi, S., Palagi, L., Risi, A.: Decomposition algorithm model
for singly linearly-constrained problems subject to lower and upper bounds.
Journal of Optimization Theory and Applications 141, 107-126 (2009).
https://doi.org/10.1007/s10957-008-9489-9.

Liuzzi, G., Lucidi, S., Sciandrone, M.: Sequential penalty derivative-free meth-
ods for nonlinear constrained optimization. STAM J. Optim. 20, 2614-2635
(2010).

Sergeyev, Y.D., Kvasov, D.E.: Global search based on efficient diagonal parti-
tions and a set of Lipschitz constants. STAM J. Optim. 16(3), 910-937 (2006).

Navdal, G. Positive bases with maximal cosine measure. Optim Lett 13, 1381—
1388 (2019). https://doi.org/10.1007/s11590-018-1334-y

Bernabei, G., Costantino, F., Palagi, L., Patriarca, R., Romito, F.: An Inte-
ger Black-Box Optimization Model for Repairable Spare Parts Management.
International Journal of Information Systems and Supply Chain Management
(IJISSCM), 14(2), 46-68 (2021) https://doi.org/10.4018/1JISSCM.2021040103


https://10.1007/s10589-011-9405-3
https://10.1007/s10957-014-0617-4
https://doi.org/10.1007/s10957-008-9489-9
https://doi.org/10.1007/s11590-018-1334-y
https://doi.org/10.4018/IJISSCM.2021040103

Bibliography 139

[83]

[84]

[85]

[87]

[88]

Sleptchenko, A., Hanbali, A. Al, Zijm, H.: Joint planning of Ser-
vice Engineers and Spare Parts. Eur. J. Oper. Res. 271, 97-108 (2018)
https://doi.org/10.1016/].ejor.2018.05.014.

Diaz, A., Fu, M.C.: Models for multi-echelon repairable item inventory sys-
tems with limited repair capacity. Eur. J. Oper. Res. 97, 480-492 (1997)
https://doi.org/10.1016/S0377-2217(96)00279-2.

Wong, H., Van Houtum, G.J., Cattrysse, D., Van Oudheusden,
D.:  Multi-item spare parts systems with lateral transshipments and
waiting time constraints. Eur. J. Oper. Res. 171, 1071-1093 (2006)
https://doi.org/10.1016/j.ejor.2005.01.018.

Costantino F., Di Gravio G., Patriarca R., Petrella L.: Spare parts manage-
ment for irregular demand items. Omega (United Kingdom), 81, 57-66 (2018)
https://doi:10.1016/j.omega.2017.09.009.

Sherbrooke, C. C.: METRIC: A Multi-Echelon Technique for Recoverable Item
Control. Operations Research 16, 122-141 (1968).

Sherbrooke, C. C.: VARI-METRIC: Improved Approximations for Multi-
Indenture, Multi-Echelon Availability Models. Operations Research 34, 311-319
(1986).

Audet, C., Hare, W.: Derivative-free and blackbox optimization. Berlin:
Springer International Publishing (2017) https://10.1007/978-3-319-68913-5.

Audet, C. and Dennis, Jr. J. E.: Analysis of Generalized Pattern Searches.
SIAM Journal on Optimization. Volume 13, Number 3, pp. 889-903 (2003).

Marseguerra, M., Zio, E., Podofillini, L., 2005. Multiobjective spare part alloca-
tion by means of genetic algorithms and Monte Carlo simulation. Reliab. Eng.
Syst. Saf. 87, 325-335. https://doi.org/10.1016/j.ress.2004.06.002.

Sherbrooke, C.C.: Optimal Inventory Modeling of Systems: Multi-Echelon
Techniques (2004).

Gross, O.: A Class of Discrete-Type Minimization Problems. RAND Corpora-
tion, RM-1655-PR, Santa Monica, CA. (1956).

Graves, S.C.: Multi-echelon inventory model for a repairable item with one-for-
one replenishment. Management Science 31 (10), 1247 - 1256 (1985).

Muckstadt, J.A.: A model for a multi-item, multi-echelon, multi-indenture
inventory system. Management Science 20 (4), 472 - 481 (1973).

Kline, R.C., Bachman, T.C.: Estimating Spare Parts Requirements with
Commonality and Redundancy. J. Spacecr. Rockets 44, 977-984 (2007).
https://doi.org/10.2514/1.28072.

Nowicki, D., Kumar, U.D., Steudel, H.J., Verma, D.: Spares provisioning under
performance-based logistics contract: profit-centric approach. Journal of the
Operational Research Society 59 (3), 342-352 (2008).


https://doi.org/10.1016/j.ejor.2018.05.014
https://doi.org/10.1016/S0377-2217(96)00279-2
https://doi.org/10.1016/j.ejor.2005.01.018
https://doi:10.1016/j.omega.2017.09.009
https://doi:10.1007/978-3-319-68913-5
https://doi.org/10.1016/j.ress.2004.06.002
https://doi.org/10.2514/1.28072

140 Bibliography

[98] De Smidt Destombes, K., van der Heijden, M., van Harten, A.: Joint optimiza-
tion of spare part inventory maintenance frequency. International Journal of
Production Economics, 118(1), 260-268 (2009).

[99] Costantino, F., Di Gravio, G., Tronci, M.: Multi-echelon, multi-indenture spare
parts inventory control subject to system availability and budget constraints.
Reliability Engineering and System Safety 119, 95-101 (2013).

[100] Xu, L., Li, Q., Li, H.: Inventory control of multi-echelon maintenance supply
system with multiple repair priorities. Hangkong Xuebao/Acta Aeronautica et
Astronautica Sinica, 36(4), 1185-1194 (2015).

[101] Basten, R.J.I., Van Houtum, G.J.: System-oriented inventory models for spare
parts. Surveys in Operations Research and Management Science, 19(1), 34-55
(2014) https://doi.org/10.1016/j.sorms.2014.05.002.

[102] Kapoor, R., Shah, B. J., Shah, N. H.: A simulation- and genetic algorithm-
based optimisation of closed-loop multi-echelon inventory system. Interna-
tional Journal of Mathematics in Operational Research, 8(1), 28-59 (2016)
https:/ /doi.org/10.1504/IJMOR.2016.073278.

[103] Patriarca, R., Costantino, F., Di Gravio, G., Tronci, M., 2016
(b). Inventory optimization for a customer airline in a Perfor-
mance Based Contract. J. Air Transp. Manag., 57, 206-216 (2016)
https://doi.org/10.1016/j.jairtraman.2016.08.005 .

[104] Patriarca, R., Costantino, F., Di Gravio, G., 2016 (a). Inventory model for
a multi-echelon system with unidirectional lateral transhipment. Expert Syst.
Appl. 65, 372-382 (2016) https://doi.org/10.1016/j.eswa.2016.09.001.

[105] Duran, O., Perez, L.: Optimization of the multi echelon system for repairable
spare parts using swarm intelligence combined with a local search strategy. Lec-
ture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), Volume 8583 LNCS, Issue
PART 5, 2014, Pages 747-761 (2014).

[106] Costantino, F., Di Gravio, G., Patriarca, R., Tronci, M.: Spare parts inventory
control model for the aeronautical industry. Proceedings of the Summer School
Francesco Turco Volume 09-12-September-2014, 2014, Pages 120-125 (2014).

[107] Nickel, R., Mikolic Torreira, I., Tolle, J.: Computing Aviation Sparing Policies:
Solving a Large Nonlinear Integer Program. Computational Optimization and
Applications, 35, 109-126 (2006).

[108] Topan, E., Bayindir, Z.P., Tan T.: Heuristics for multi-item two-echelon spare
parts inventory control subject to aggregate and individual service measures.
European Journal of Operational Research, 256 (1), 126-138 (2017).

[109] Wong, H., Kranenburg, B., van Houtum, G., Cattrysse, D.: Efficient heuristics
for two-echelon spare parts inventory systems with an aggregate mean waiting
time constraint per local warehouse. OR Spectrum, 29 , 699-722 (2007).


https://doi.org/10.1016/j.sorms.2014.05.002
 https://doi.org/10.1504/IJMOR.2016.073278
https://doi.org/10.1016/j.jairtraman.2016.08.005 
https://doi.org/10.1016/j.eswa.2016.09.001

Bibliography 141

[110] Nowicki DR, Randall WS, Ramirez-Marquez JE.: Improving the computa-
tional efficiency of metric-based spares algorithms. Eur J Oper Res. 219(2):324-
334 (2012) https://doi:10.1016/].ejor.2011.12.033.

[111] Vavasis S.A.: Complexity Issues in Global Optimization: A Survey. In:
Horst R., Pardalos P.M. (eds) Handbook of Global Optimization. Noncon-
vex Optimization and Its Applications, vol 2. Springer, Boston, MA (1995)
https://doi.org/10.1007/978-1-4615-2025-2_ 2.

[112] Liuzzi, G., Lucidi, S., Rinaldi, F.: An algorithmic framework based on
primitive directions and nonmonotone line searches for black-box optimiza-
tion problems with integer variables. Math. Prog. Comp. 12, 673-702 (2020)
https://doi.org/10.1007/s12532-020-00182-7.

[113] Romito, F.: Hybridization and Discretization Techniques to Speed Up
Genetic Algorithm and Solve GENOPT Problems. In: Battiti R., Kvasov
D., Sergeyev Y. (eds) Learning and Intelligent Optimization. LION, 2017.
Lecture Notes in Computer Science, vol 10556. Springer, Cham (2017)
https://doi.org/10.1007/978-3-319-69404-7_ 20.

[114] Regis, R. G.: On the properties of positive spanning sets and positive bases.
Optim. Eng. 17(1) 229-262 (2016) https://doi.org/10.1007/s11081-015-9286-x.

[115] Coope, I. D., Price, C. J.: Positive bases in numerical optimization. Compu-
tational Optimization and Applications 21(2), 169-175 (2002).

[116] Audet, C., Dennis Jr., J.E.: Pattern search algorithms for mixed variable
programming. STAM J. Optim. 11(3), 573-594 (2001).


https://doi:10.1016/j.ejor.2011.12.033
https://doi.org/10.1007/978-1-4615-2025-2_2
https://doi.org/10.1007/s12532-020-00182-7
https://doi.org/10.1007/978-3-319-69404-7_20
https://doi.org/10.1007/s11081-015-9286-x

	Introduction
	Exploiting variables space transformations in global optimization
	Introduction
	Problem definition and Notation
	Piecewise Linear Transformation (PLT)
	Definition of the PLT over hypercubes
	Properties of the PLT - hypercube
	Special case of PLT - hypercube
	Definition of the inverse PLT over hypercubes
	Representation of the PLT over hyper-cubical space
	Definition of the PLT over hyperrectangles
	Properties of the PLT - hyperrectangle
	Special case of PLT - hyperrectangle
	Definition of the inverse PLT over hyperrectangles
	Definition of diagonal entries of the matrix Dx
	Representation of the PLT over hyper-rectangular space
	Pros and cons of the piecewise linear transformation

	Non Linear Transformation (NLT)
	Definition of the NLT over hyperspheres
	Properties of the NLT - hypersphere
	Special case of NLT - hypersphere
	Invertibility of the nonlinear transformation
	Definition of the inverse NLT over hypersphere
	Representation of the NLT over hyper-spherical space
	Definition of the NLT over hyperellipsoids
	Properties of the NLT - hyperellipse
	Special case of NLT - hyperellipse
	Definition of the inverse NLT over hyperellipses
	Definition of diagonal entries of the matrix Dx
	Representation of the piecewise nonlinear transformation over hyperellipses

	Recursive formula
	Scaling and Preconditioning
	Scaling
	Preconditioning

	Performance results
	Comments

	Exploratory geometries in GABRLS algorithm
	Preliminary Concepts
	Searches based on sets of directions
	Searches based on grid points 

	The GABRLS algorithm
	Adjustments on the GA phase
	Properties of Bounding Restart (BR)
	Hybridizing GABR with Local Searches

	Prize and application
	Genopt prize
	Case study: Design optimization of an electric motor


	A black box approach for the spare parts management problem
	Introduction
	Literature review
	The inventory management model
	The single-echelon multi-item problem and assumptions.
	Analytic formulation
	Optimization using the Marginal Analysis

	The Deterministic Black Box Integer Feasible Optimization 
	DeB2IFO (Deterministic Black Box Integer Feasible Optimization)
	Optimization using the DeB2IFO

	Case study: Spare part management of a fleet of aircraft
	Scenario description
	Results

	Conclusion

	Properties and special cases of the inverse transformations
	Piece Wise Linear inverse transformation
	Properties of the inverse PLT - hypercube
	Special case of the inverse PLT - hypercube
	Properties of the inverse PLT - hyperrectangle
	Special case of the inverse PLT - hyperrectangle

	Non-Linear inverse transformation
	Properties of the inverse NLT - hypersphere
	Special case of the inverse NLT - hypersphere
	Properties of the inverse NLT - hyperellipse
	Special case of the inverse NLT - hyperellipse


	Report on item's holding costs

