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Abstract
The transmission of an electromagnetic field produced by a current loop of finite radius
through a coaxial circular aperture in a perfectly conducting plate is evaluated through a
rapidly convergent formulation in an exact form. By applying the equivalence principle,
the problem is first formulated in the Hankel transform domain, obtaining a set of dual
integral equations in which the equivalent surface magnetic current density defined on the
aperture is not known. The set of dual integral equations is regularised in a second‐kind
Fredholm integral equation by applying the Abel integral‐transform technique. The so-
lution is achieved by expanding the unknown in a set of orthogonal basis functions that
correctly reproduce the behaviour of the equivalent magnetic current at the edge of the
aperture. Finally, under particular assumptions, a low‐frequency solution is extracted in a
closed form. Numerical results are reported to validate the accuracy and efficiency of the
proposed formulations.

1 | INTRODUCTION

The transmission of an electromagnetic (EM) field through an
aperture in a planar conducting screen is a canonical problem
that has attracted great attention in the EM community [1, 2].
In general, an analytical solution is available only for an inci-
dent plane wave impinging on an infinitesimally thin circular
aperture (in this case, the solution is expressed as an expansion
in terms of oblate spheroidal vector wave functions [3]).
In the low‐frequency region, Lord Rayleigh was the first to

propose a solution to the problem [4]: procedure of the solution
was based on a series expansion in ascending powers of the
wavenumber of certain quantities (the so‐called Rayleigh series),
and it has been shown that it leads to a sequence of simple in-
tegral equations with a kernel of the electrostatic type [2]. In a
famous paper, Bethe studied low‐frequency EM scattering by a
small circular hole cut in an infinite perfectly conducting (PEC)
plane [5]. Using a scalar potential approach, he derived the
leading terms of the Rayleigh series. Bouwkamp studied the
same problem in a more rigorous way using a complicated sys-
tem of integrodifferential equations, and he found some errors
and incorrect results in Bethe's solution (in particular, the first‐
order approximation in Bethe's solution does not satisfy the
condition for which the normal component of the electric field

has to be zero in the aperture) [1, 6]. Later, several numerical
studies based on the Bethe–Bouwkampmodel were presented in
Eviatan [7, 8]. An alternative use of Rayleigh series expansion
has been discussed [9–11]. An interestingly elegant variational
formulation of EM diffraction problems for planar apertures,
which allowed for approximate but accurate numerical evalua-
tions of the scattered fields in a wide range of frequencies, was
provided by Levine and Schwinger [12]. Finally, in connection
with near‐field scanning optical microscopy, Michalski pre-
sented rigorous spectral‐domain formulations (based on the
Bethe–Bouwkamp model) to determine the plane‐wave field
transmitted through small circular apertures to include the effect
of a nearby (possibly anisotropic) material sample [13, 14] and
deriving useful closed‐form expressions, especially in the near‐
field region [15].
In this article, we address the problem of the transmission

of the magnetic field radiated by a finite source through a
circular aperture in a planar PEC plate. In particular, the finite
source consists of a current loop of finite radius coaxial to the
circular aperture (none of the previous works dealt with such
an excitation). The adopted approach belongs to the family of
analytical regularisation procedures aimed at formulating the
problem in terms of Fredholm integral equations of the second
kind, and is based on the Abel integral‐transform technique.
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The related configuration composed of a PEC disk excited by a
vertical magnetic dipole is considered in Ovat et al. [16], where
the problem is solved through a standard spectral‐domain
approach with basis functions that reproduce the correct sin-
gular behaviour of the current density at the disk edge. In both
cases, diagonalisation of the static kernel of the relevant inte-
gral operator is achieved.
The formulation of the problem is first presented in Sec-

tion 2. After applying the equivalence principle, operating in
the Hankel transform domain, a set of dual integral equations
is derived whose unknown is the equivalent magnetic surface
current density on the aperture. An exact numerical solution is
then obtained in Section 3, where the Abel integral trans-
formation technique is applied to convert the set of dual in-
tegral equations into a second‐kind Fredholm integral
equation. The convergence properties of the obtained nu-
merical solution are further improved by a suitable series
representation of the elements of the impedance matrix. In
Section 4, as in Lovat et al. [16], under certain assumptions and
owing to some integral identities, a low‐frequency solution is
extracted in a closed form. In Section 5, numerical results that
assess the accuracy and the validity of the proposed formula-
tions are provided. Finally, in Section 6, conclusions are drawn.

2 | FORMULATION OF THE PROBLEM

The configuration under analysis is reported in Figure 1 and
consists of a current loop of radius R coaxial with a circular
aperture of radius a etched in an infinitesimally thin PEC plate
placed along the z = 0 plane of a cylindrical coordinate system
ρ;ϕ; zð Þ. The origin of the coordinate system is located at the
centre of the aperture and the loop is placed in the half‐space
z < 0 at distance h from the conducting plate. The EM
problem is axially symmetric so that all field quantities depend
only on ρ and z. A time‐harmonic dependence ejωt is assumed
and suppressed throughout.
To obtain an integral equation that solves the problem, the

equivalence principle is first applied and equivalent magnetic

current densities MS and −MS are introduced on the aperture
area for z = 0− and z = 0+, respectively. The problem is thus
split into two half‐space problems (for z < 0 and z > 0,
respectively). The magnetic field on both sides of the screen
can be expressed as a function of MS and the continuity of the
tangential component of the electric field through the aperture
is automatically fulfilled. Therefore, the only condition that
must be imposed is continuity of the magnetic field through
the aperture: the sought‐for integral equation follows directly
from such a constraint. In particular, based on the equivalence
principle, circular aperture A is short‐circuited (i.e. completely
replaced by a PEC plate), and it constitutes the domain for
equivalent surface magnetic current density MS, which ac-
counts for a nonzero value of the electric field at z = 0− (i.e.
MS = uz � E). By means of image theory, the PEC plate then
can be removed and the magnetic current density is doubled.
For z > 0, the magnetic field is therefore the scattered mag-
netic field H scat owing to magnetic current density −2MS
radiating in free space, whereas for z < 0, it is scattered
magnetic field H scat owing to magnetic current density 2MS
radiating in free space plus the magnetic field radiated by the
current loop in the presence of an infinite PEC plane at z = 0
(so‐called short‐circuited magnetic field HSC). As mentioned,
the key condition that has to be imposed is continuity of the
tangential magnetic field through the aperture. This is
accomplished by enforcing

lim
z→0þ

Hþ rð Þ � uz½ � ¼ lim
z→0−

H− rð Þ � uz½ � ρ ≤ a ð1Þ

which can be expressed as

H FS −2M Sf g � uz ¼H FS 2M Sf g þH SC � uz ρ ≤ a: ð2Þ

where H FS Mf g is the magnetic field radiated in free space by
magnetic currentM. Because, by virtue of image theory, HSC �
uz= 2H inc�uz (whereH

inc is themagnetic field radiated by the
current loop in free space), from Equation (2), we obtain

−2H FS M Sð Þ � uz ¼H inc � uz ρ ≤ a: ð3Þ

Equation (3) represents the sought‐for integral equation
whose solution evaluates the field everywhere in space.

2.1 | Incident and scattered magnetic fields

We first consider an electric current loop of current I0 and
radius R placed over plane z = −h. Therefore, the impressed
current source has the following expression:

J i ρ; zð Þ ¼ Jϕ ρ; zð Þuϕ ¼ I0R
δ ρ − Rð Þ

ρ
δ zþ hð Þuϕ ð4Þ

where δ ⋅ð Þ indicates the Dirac distribution.

F I GURE 1 Configuration under analysis: a current loop of radius R
excites a circular aperture of radius a in a PEC plate of negligible thickness.
The loop is coaxial to the aperture and placed at distance h from it
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By symmetry, vector potential Ainc generated by the cur-
rent loop has only azimuthal component Aincϕ . As shown in
Lovat et al. [16], passing through the Hankel‐transform
domain, an integral representation for Aincϕ can be obtained as

Aincϕ ρ; zð Þ ¼
μ0I0R
2j

∫ ∞
0
e−jkz zþhj j

kz
J1 λRð ÞJ1 λρð Þλ dλ ð5Þ

where μ0 is the free‐space magnetic permeability, kz ¼

−j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λ2 − k20
q

(with Re
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λ2 − k20
q� �

> 0 and k0 indicates the

free‐space wavenumber), whereas Jn ⋅ð Þ is the first‐kind Bessel
function of order n.
Because H inc = ∇ �Ainc/μ0, for the incident magnetic

field, it results in

H inc
ρ ρ; zð Þ ¼

I0R
2

∫ ∞
0 e

−jkz zþhj j J1 λRð ÞJ1 λρð Þλ dλ ð6Þ

and

H inc
z ρ; zð Þ ¼

I0R
2j

∫ ∞
0
e−jkz zþhj j

kz
J1 λRð ÞJ0 λρð Þλ2 dλ: ð7Þ

On the other hand, the aperture acts like a disk of radius a in
z= 0 with a surface magnetic current densityM S ρ;ϕð Þ. Because
of the azimuthal symmetry of the problem and the TEz nature of
the radiated field, it results in E ρ;ϕ; zð Þ ¼ Eϕ ρ; zð Þuϕ, so that
M S ρ;ϕð Þ ¼MSρ ρð Þuρ. The relevant vector potential
F scat ρ; zð Þ ¼ F scatρ ρ; zð Þuρ can easily be obtained through an
analysis in the Hankel spectral domain [21], that is,

F scatρ ρ; zð Þ ¼
ε0
2j

∫ ∞
0
e−jkz zj j

kz
eMSρ λð ÞJ1 λρð Þλ dλ ð8Þ

where ɛ0 is the free‐space permittivity and eMSρ λð Þ is the
Hankel transform of the magnetic current density MSρ ρð Þ,
defined as

eMSρ λð Þ ¼ H 1 MSρ ρð Þ
� �

¼ ∫ ∞
0 MSρ ρð ÞJ1 λρð Þρ dρ: ð9Þ

Because H scat ¼ −jωF scat þ ∇ ∇ ⋅F scat= jωμ0ε0ð Þ, we have

H scat
ρ ρ; zð Þ ¼ −

1
2k0ζ0

∫ ∞
0 kz e

−jkz zj j eMSρ λð ÞJ1 λρð Þλ dλ ð10Þ

and

H scat
z ρ; zð Þ ¼ �

j
2k0ζ0

∫ ∞
0 e

−jkz zj j eMSρ λð ÞJ0 λρð Þλ2 dλ; ð11Þ

where the plus or minus sign holds for z > 0 and z < 0,
respectively, and ζ0 is the free‐space characteristic impedance.

2.2 | Boundary condition

From Equation (3) and the expressions of the tangential fields
to apertures (6) and (10), we thus obtain for ρ < a

1
k0ζ0

∫ ∞
0 kz eMSρ λð ÞJ1 λρð Þλ dλ

−
I0R
2

∫ ∞
0 e

−jkzh J1 λRð ÞJ1 λρð Þλ dλ¼ 0: ð12Þ

This equation and the condition for which the magnetic
current density vanishes for ρ > a constitute a system of dual
integral equations. In particular, by rearranging, we obtain

∫ ∞
0 kz eMSρ λð Þ −

I0Rk0ζ0
2

e−jkzh J1 λRð Þ

� �

⋅J1 λρð Þλ dλ¼ 0 ; ρ < a

ð13Þ

∫ ∞
0
eMSρ λð ÞJ1 λρð Þλ dλ¼ 0 ; ρ > a: ð14Þ

3 | ABEL TRANSFORM APPROACH

To solve the system of dual integral Equations (13) and (14),
the method of the Abel transformation technique is applied
[17]. In particular, by defining V λð Þ ¼ λeMSρ λð Þ, the system
(13) and (14) can be first recast in the following form:

∫ ∞
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λ2 − k20
q

V λð ÞJ1 λρð Þ dλ

¼ j
I0Rk0ζ0
2

∫ ∞
0 J1 λRð ÞJ1 λρð Þ e−

ffiffiffiffiffiffiffiffiffi
λ2−k20
p

h λ dλ ; ρ < a;
ð15Þ

∫ ∞
0 V λð ÞJ1 λρð Þ dλ¼ 0 ; ρ > a: ð16Þ

By means of the integral identity (derived from the first
integral representation of Abel type for Bessel functions
[18]):

1
α
Jνþ1 αxð Þ ¼

1
xνþ1 ∫ x0Jν αyð Þyνþ1 dy; ð17Þ

Equation (15) can also be written as

∫ ∞
0 V λð Þ 1þ h λ; k0ð Þ½ � − I λð Þf gJ2 λρð Þλ dλ¼ 0 ; ρ < a; ð18Þ

where

I λð Þ ¼ jI0Rk0ζ0
e−

ffiffiffiffiffiffiffiffiffi
λ2−k20
p

h

2λ
J1 λRð Þ ð19Þ

and
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h λ; k0ð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λ2 − k20
q

λ
− 1 ð20Þ

is a small parameter in the limit λ → +∞. By using the first
and the second Abel integral representations of the Bessel
functions [18],

J2 λρð Þ ¼
21=2λ1=2

ρ2Γ 1=2ð Þ
∫ ρ
0

x5=2J3=2 λxð Þ

ρ2 − x2ð Þ
1=2 dx; ð21Þ

J1 λρð Þ ¼
21=2λ1=2ρ
Γ 1=2ð Þ

∫ ∞
ρ

J3=2 λxð Þ

x1=2 ρ2 − x2ð Þ
1=2 dx; ð22Þ

Equations (18) and (16) are transformed into the Abel
integral equations:

∫ ρ
0

x5=2

ρ2 − x2ð Þ
1=2 ∫ ∞

0 λ1=2 V λð Þ 1þ hð Þ − I λð Þ½ �
�

⋅J3=2 λxð Þ dλ
o
dx¼ 0 ρ < a; ð23Þ

∫ ∞
ρ

1

x1=2 ρ2 − x2ð Þ
1=2

⋅ ∫ ∞
0 λ1=2V λð ÞJ3=2 λxð Þ dλ

n o
dx¼ 0 ρ > a; ð24Þ

each of which possesses a unique zero solution, so that

∫ ∞
0 λ1=2V λð ÞJ3=2 λρð Þ dλ¼ ∫ ∞

0 λ1=2I λð ÞJ3=2 λρð Þ dλ

−∫ ∞
0 λ1=2V λð Þh λ; k0ð ÞJ3=2 λρð Þ dλ ρ < a; ð25Þ

∫ ∞
0 λ1=2V λð ÞJ3=2 λρð Þ dλ¼ 0 ρ > a: ð26Þ

Multiplying Equations (25) and (26) by ρJ3=2 νρð Þ and
integrating over 0;∞ð Þ, a second‐kind Fredholm integral
equation is obtained as

V νð Þþ ν1=2∫ ∞
0 λ1=2V λð Þh λ; k0ð ÞG λ; νð Þ dλ

¼ ν1=2∫ ∞
0 λ1=2I λð ÞG λ; νð Þ dλ;

ð27Þ

where

G λ; νð Þ ¼ ∫ a0 ρJ3=2 λρð ÞJ3=2 νρð Þ dρ: ð28Þ

A (different) regularised second‐kind Fredholm integral
equation could also have been obtained through another
method of analytical regularisation [19–21], based on extracting
the static part of the original integral operator, following the
same procedure as in Lovat et al. [16].

In any case, the system (25–26) can also be converted
into a second‐kind matrix system by expanding unknown
function V νð Þ in the Neumann series. This can be
accomplished considering that the unknown current density
MSρ can be expanded through a set of basis functions bn ρð Þ,
that is,

MSρ ρð Þ ¼
Xþ∞

n¼1
vnbn ρð Þ: ð29Þ

Functions bn ρð Þ should correctly reproduce the behaviour
of the equivalent magnetic current in ρ = a. In particular, MSρ
is proportional to the component of the tangential electric field
parallel to an infinitesimally thin PEC edge that behaves as
a2 − ρ2ð Þ

1=2 as ρ → a [22]. Moreover, the magnetic current has
to be finite or, better, identically zero at the origin. We can thus
adopt the radial parts of the generalized Zernike functions or
generalized spherical harmonics [23] as a set of basis functions,
that is,

bn ρð Þ ¼
n − 1ð Þ!

ffiffiffi
2
p
Γ nþ 1=2ð Þa2

ρ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − ρ2

p

⋅ P 1;1=2ð Þ
n−1 1 −

2ρ2

a2

� �

u−1 a − ρð Þ; n¼ 1; 2;…;

ð30Þ

where u−1 ⋅ð Þ is the Heaviside unit‐step function, P α;βð Þ
n ⋅ð Þ

are the Jacobi polynomials of order n, and Γ ⋅ð Þ is the
Gamma function. The adopted basis functions bn ρð Þ are
normalized in such a way that the relevant Hankel trans-
forms are

ebn λð Þ ¼
ffiffiffi
a
p J2nþ1=2 λað Þ

λ3=2
; n¼ 1; 2;…; ð31Þ

so that

V λð Þ ¼
a1=2

λ1=2
Xþ∞

n¼1
vnJ2nþ1=2 λað Þ: ð32Þ

By substituting Equation (32) into Equations (25) and (26)
and using the Weber–Schafheitlin integrals [24, Section 13.4]:

∫ ∞
0 J3=2 λρð ÞJ2nþ1=2 λað Þ dλ

¼
ρ3=2

a5=2
P 3=2;0ð Þ
n−1 1 −

2ρ2

a2

� �

ρ < a;
ð33Þ

∫ ∞
0 J3=2 λρð ÞJ2nþ1=2 λað Þ dλ¼ 0 ρ > a; ð34Þ
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we obtain

Xþ∞

n¼1
vn

ρ3=2

a2
P 3=2;0ð Þ
n−1 1 −

2ρ2

a2

� �

¼ u−1 a − ρð Þ ∫ ∞
0 λ1=2I λð ÞJ3=2 λρð Þ dλ

n

−
Pþ∞

n¼1
vn

ffiffiffi
a
p

∫ ∞
0 J2nþ1=2 λað Þh λ; k0ð ÞJ3=2 λρð Þ dλ

�

:

ð35Þ

Now, by multiplying both sides of Equation (35) by
ρ5=2P 3=ð 2;0Þ

m−1 1 − 2ρ2=ð a2Þ and integrating over 0; að Þ, we have

vn
a3

4nþ 1
¼ ∫ ∞

0 I λð Þ
a5=2

λ1=2
J2nþ1=2 λað Þ dλ

−
Xþ∞

n¼1
vna3∫

∞
0
h λ; k0ð Þ

λ
J2mþ1=2 λað ÞJ2nþ1=2 λað Þ dλ; ð36Þ

where the orthogonality property of the radial part of Zernike
polynomials [25]:

∫ a0 ρ4P 3=2;0ð Þ
m−1 1 −

2ρ2

a2

� �

P 3=2;0ð Þ
n−1 1 −

2ρ2

a2

� �

dρ¼
δmna5

4nþ 1
ð37Þ

has been used together with the identity [25].

∫ a0 ρ5=2P 3=2;0ð Þ
m−1 1 −

2ρ2

a2

� �

J3=2 λρð Þ dρ¼
a5=2

λ
J2mþ1=2 λað Þ:

ð38Þ

From Equation (36), we thus obtain the matrix system:

vn þ
X∞

m¼1
Ynmvm ¼ In; n¼ 1; 2;… ð39Þ

where

Ynm ¼ 4nþ 1ð Þ

⋅∫ ∞
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λ2 − k20
q

λ2
J2mþ1=2 λað ÞJ2nþ1=2 λað Þ dλ

ð40Þ

and

In ¼ j
I0Rk0ζ0
2
ffiffiffi
a
p 4nþ 1ð Þ

⋅∫ ∞
0 J2nþ1=2 λað ÞJ1 λRð Þ

e−
ffiffiffiffiffiffiffiffiffi
λ2−k20
p

h

λ1=2
dλ:

ð41Þ

The solution of the algebraic system in Equation (32)
furnishes coefficients vn and magnetic current density MSρ is
recovered through Equation (29).
In general, the improper integrals in Equation (40) are

highly oscillating and slowly decaying and may be difficult to
compute. However, it can be shown that they can be evaluated
through a rapidly converging series as

Ynm ¼
4nþ 1ð Þ

4

X∞

p¼0
−1ð Þ

p=2 − p
2 þ

3
2

� �

mþn−1
p
2 þ

1
2

� �

mþnþ1

⋅
1

Γ
p
2
þ n −mþ 1

� �
Γ

p
2
þm − nþ 1

� � k0að Þ
p
ð42Þ

where the Pochhammer symbol xð Þy is defined as [26]

xð Þy ¼
Γ xþ yð Þ

Γ xð Þ
; ð43Þ

In general, few terms are needed to reach high accuracy.
The result in Equation (42) seems to be new and original;
therefore, its proof is reported in Appendix.
Once the vn coefficients are known, spectral magnetic

current MSρ λð Þ is

eMSρ λð Þ ¼
Xþ∞

n¼1
vnebn λð Þ; ð44Þ

and therefore, the radiated tangential magnetic field beyond the
aperture (i.e. in z > 0) is given by

H scat
ρ ρ; zð Þ ¼ j

ffiffiffi
a
p

2k0ζ0

Xþ∞

n¼1
vn

⋅∫ ∞
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λ2 − k20
q J2nþ1=2 λað ÞJ1 λρð Þ

ffiffiffi
λ
p e−

ffiffiffiffiffiffiffiffiffi
λ2−k20
p

z dλ

ð45Þ

Regarding the z‐components of the magnetic fields, for
z > 0, we instead have

H scat
z ρ; zð Þ¼

j
ffiffiffi
a
p

2k0ζ0

Xþ∞

n¼1
vn

⋅∫ ∞
0 e

−
ffiffiffiffiffiffiffiffiffi
λ2−k20
p

z J2nþ1=2 λað ÞJ0 λρð Þ
ffiffiffi
λ
p

dλ

ð46Þ

4 | LOW‐FREQUENCY SOLUTION

In the low‐frequency limit (i.e. k0 → 0), elements Ymn in
Equation (40) become:
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Ymn ¼ 4nþ 1ð Þ∫ ∞
0

J2mþ1=2 λað ÞJ2nþ1=2 λað Þ
λ

dλ ð47Þ

Such an integral, again of the Weber–Schafheitlin type [24],
can be evaluated in a closed form using identity [26, Section
6.574] (in any case, the integral in Equation (47) is the product
of two orthogonal functions) and it results in Ymn = 0 for
m ≠ n, whereas

Ynn ¼ 1 ð48Þ

Regarding In, from Equation (41), in the low‐frequency
limit, we have

In ¼ j
I0Rk0ζ0 4nþ 1ð Þ

2
ffiffiffi
a
p

⋅∫ ∞
0 e

−λh
J2mþ1=2 λað ÞJ1 λRð Þ

ffiffiffi
λ
p dλ

ð49Þ

Also, the latter integral can be expressed in a closed form
by using the following identity [26, Section 6.626]:

∫ ∞
0 x

λ−1 e−αxJμ βxð ÞJν γxð Þ dx¼
βμγν

Γ νþ 1ð Þ
2−ν−μ

α−λ−μ−ν P
∞

m¼0

Γ λþ μþ νþ 2mð Þ

m!Γ μþmþ 1ð Þ

F −m;−μ −m; νþ 1;
γ2

β2

� �

− β2
4α2

� �m

ð50Þ

where F ⋅; ⋅; ⋅; ⋅ð Þ is the Gauss hypergeometric function [26]. By
letting λ = 1/2, α = h, μ = 2n + 1/2, β = a, ν = 1, and γ = R,
we thus have

In¼ j
I0k0ζ0 4nþ 1ð Þa2nR2

22nþ5=2h2nþ2
X∞

q¼0

2nþ 2qþ 1ð Þ!

q!Γ 2nþ
3
2
þ q

� �

F −q;−2n −
1
2

− q; 2;
R2

a2

� �

−
a2

4 h2

� �q

ð51Þ

Other ways to express these kinds of integrals analytically
can be found in Fabrikant [27].
Because the system is diagonal, we immediately obtain:

vn ¼
In

1þ Ynn
¼
In
2

ð52Þ

From Equations (6) and (7), and (45) and (46), in the low‐
frequency limit, we also have

H inc
ρ ρ; zð Þ ¼

I0R
2

∫ ∞
0 e

−λ zþhj j J1 λRð ÞJ1 λρð Þλ dλ ð53Þ

H inc
z ρ; zð Þ ¼

I0R
2

∫ ∞
0 e

−λ zþhj j J1 λRð ÞJ0 λρð Þλ dλ ð54Þ

and

H scat
ρ ρ; zð Þ ¼ j

ffiffiffi
a
p

2k0ζ0

Xþ∞

n¼1
vn

⋅∫ ∞
0 e

−λz J2nþ1=2 λað ÞJ1 λρð Þ
ffiffiffi
λ
p

dλ

ð55Þ

H scat
z ρ; zð Þ ¼

j
ffiffiffi
a
p

2k0ζ0

Xþ∞

n¼1
vn

⋅∫ ∞
0 e

−λ zj j J2nþ1=2 λað ÞJ0 λρð Þ
ffiffiffi
λ
p

dλ

ð56Þ

All of these integrals are of Lipschitz–Hankel type and can
be evaluated in a closed form. In particular, for the integrals in
Equations (53) and (54), using the expressions for I 1; 1; 1ð Þ

and I 1; 0; 1ð Þ in Ason et al. [28], we have

H inc
ρ ρ; zð Þ¼

I0R zþ hj jk
8πR3=2ρ3=2

− K kð Þ

"

þ 1 −
k2

2

 !
1

1 − k2
� � E kð Þ

3

5

ð57Þ

and

H inc
z ρ; zð Þ ¼

I0R
2

k
2πR3=2ρ1=2

K kð Þ

"

þ
k3 R2 − ρ2 − zþ hj j

2
� �

8π 1 − k2
� �

R5=2ρ3=2
E kð Þ

3

5;

ð58Þ

where K ⋅ð Þ and E ⋅ð Þ are the complete elliptic functions of the
first and second kind [26], respectively, and

k2 ¼
4Rρ

Rþ ρð Þ
2
þ zþ hj j

2 : ð59Þ

Using Equation (59), we finally obtain

H inc
ρ ρ; zð Þ¼

I0
2π

zþ hj j

ρ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Rþ ρð Þ
2
þ zþ hj j

2
q

⋅
R2 þ ρ2 þ zþ hj j

2

R − ρð Þ
2
þ zþ hj j

2 E kð Þ − K kð Þ

" # ð60Þ

1152 - LOVAT ET AL.



and

H inc
z ρ; zð Þ ¼

I0
2π

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Rþ ρð Þ
2
þ zþ hj j

2
q

⋅
R2 − ρ2 − zþ hj j

2

R − ρð Þ
2
þ zþ hj j

2 E kð Þ þ K kð Þ

" #

:

ð61Þ

The expressions for the incident field in Equations (60)
and (61) are in exact agreement with those given in Smythe
[29], Section 7.10, Eqs. (6) and (7), obtained through the vector
magnetic potential using the free‐space Green's function in the
space domain.
For observation points along the z axis (i.e. for ρ = 0 and

thus k = 0), the incident field simply becomes

H inc
ρ 0; zð Þ ¼ 0 ð62Þ

and

H inc
z 0; zð Þ ¼

I0R2

2 R2 þ zþ hj j
2

� �3=2 ; ð63Þ

For the scattered field, we instead have

H scat
ρ 0; zð Þ ¼ 0 ð64Þ

and

H scat
z 0; zð Þ ¼

j
ffiffiffi
a
p

2k0ζ0

Xþ∞

n¼1
vn∫

∞
0 e

−λ zj j J2nþ1=2 λað Þ
ffiffiffi
λ
p

dλ

ð65Þ

The integral in Equation (65) can be solved in a closed
form by using identity [26, Section 6.621] with x = λ, α = |z|,
ν = 2n + 1/2, β = a, and μ = 3/2, thus obtaining

H scat
z 0; zð Þ ¼

j
ffiffiffi
a
p

2k0ζ0

X∞

n¼1
vn

⋅
2nþ 1ð Þ!

zj j2 þ a2
� �3=4 P

− 2nþ1=2ð Þ

1=2
zj j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

zj j2 þ a2
q

0

B
@

1

C
A

ð66Þ

where Pν
μ ⋅ð Þ are the associated Legendre functions of the first

kind.
For sources sufficiently far from the disk, only one basis

function is sufficient to reach an excellent convergence, so in
these cases, a closed form result can be obtained. In fact, from
[26, Section 6.621.10]

I1 ¼ j
5I0Rk0ζ0
2
ffiffiffi
a
p ∫ ∞

0 e
−λh J5=2 λað ÞJ1 λRð Þ

ffiffiffi
λ
p dλ

¼ j
5I0k0ζ0
2
ffiffiffiffiffiffi
2π
p

h
a3

⋅ L
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − L2
p

þ
2R2L
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − L2
p − 3R2arcsin

L
R

� �� �

ð67Þ

where

L¼
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aþ Rð Þ
2
þ h2

q

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a − Rð Þ
2
þ h2

q� �

ð68Þ

and from Equation (66) (using Equations [52] and [67]), we
thus obtain

H scat
z 0; zð Þ ≃ −

15I0
2
ffiffiffiffiffiffi
2π
p

h
a5=2

⋅ L
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − L2
p

þ
2R2L
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − L2
p − 3R2arcsin

L
R

� �� �

⋅
1

zj j2 þ a2
� �3=4 P

−5=2
1=2

zj j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

zj j2 þ a2
q

0

B
@

1

C
A

ð69Þ

For the considered configuration and in an electromagnetic
compatibility (EMC) context, an important parameter is so‐
called magnetic shielding effectiveness SEH [30], which along
the z axis is defined as

SEH ¼ 20 log
|H inc

z 0; zð Þ|
|H tot

z 0; zð Þ|
ð70Þ

The total magnetic field is equal to the scattered magnetic
field for z > 0 (i.e. Htot = Hscat) and the sum of the incident
and scattered magnetic field for z < 0 (i.e. Htot = Hinc + Hscat).
In particular, for z > 0, low‐frequency approximations (63) and
(69) yield

SEH ≃ 20 log
ffiffiffiffiffiffiffiffiffiffi
2πa5
p

R2

15 h
zj j2 þ a2

� �3=4

R2 þ zþ hj j
2

� �3=2

⋅ L
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − L2
p

þ 2R2Lffiffiffiffiffiffiffiffiffiffi
R2−L2
p − 3R2arcsin L

R

� �
� �−1

⋅ P−5=2
1=2

zj jffiffiffiffiffiffiffiffiffiffiffiffi
zj j2þa2

p

� �� �−1

ð71Þ
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5 | NUMERICAL RESULTS

In this section, numerical results are provided to illustrate
the main features of the shielding configuration under
consideration.
In Figure 2, results obtained through the proposed

formulation and the full‐wave results obtained with the com-
mercial software FEKO [31] are compared. In particular, the z‐
component of transmitted magnetic field Hz is reported as a
function of normalized radial distance ρ/R (Figure 2a) and of
normalized vertical distance z/R (Figure 2b) at operating fre-
quency f = 10 MHz for a configuration with 2R = 30.4 cm,
h = R and a = 3R. A rapid convergence is obtained with few
basis functions and for observation points close to the aperture
(for sufficiently large distances, only one basis function is
sufficient to obtain accurate results).
In Figure 3, SEH is reported as a function of z for points

on the z‐axis, calculated with the proposed formulation by
employing different numbers N of basis functions indicated in
the figure. The current loop has diameter 2R = 30.4 cm (as in
typical low frequency [LF] EMC configurations), its current
oscillates at f = 1 kHz, and it is placed at distance h = R/2
from the aperture centre; in particular, two aperture radii are
considered: a = R (in Figure 3a) and a = 2R (in Figure 3b). In

the former case, a single (N = 1) basis function is sufficient to
obtain excellent results for observation points with z as small
as a few centimeters (i.e. z/R > 0.3). In the latter case,
conversely, at least N = 2 basis functions are required, but this
guarantees accurate results for any z/R > 0.8; for observation
points arbitrarily close to the aperture, convergence is achieved
by using N = 6 basis functions.
To assess the accuracy of the proposed approximate low‐

frequency solution (71), in Figure 4 SEH is reported as a
function of frequency f (or normalized frequency k0a) and for
different distances from the aperture for a structure with
2R = 30.4 cm and h = a = R (in Figure 4a) and 2R = 13.3 cm
and h = a = R (in Figure 4b). In both cases, the approximate
formulation (LF approx.) is superimposed to the exact one
(Exact) for k0a < 10−2, whereas it provides acceptable results
up to k0a < 10−1 (above tens of megahertz for practical di-
mensions); in the highest frequency range, the approximate
formulation slightly underestimates the exact SEH.
In Figure 5 both the exact and approximate formula-

tions are used to calculate SEH for 2R = 30.4 cm,
f = 1 MHz, and different values of z/R, as a function of
the dimensional ratios h/R (in Figure 5a) and a/R (in
Figure 5b). In the former case, the two formulations are in
perfect agreement for all considered values of h/R, whereas
in the latter case, they agree only for a/R smaller than a
threshold that increases with z/R.

(a)

(b)

F I GURE 2 Amplitude of the z‐component of magnetic field Hz
obtained with the proposed formulation and the commercial software
FEKO as a function of ρ/R at z = R (a) and as a function of z/R at ρ = 0
(b). Other parameters: f = 10 MHz, 2R = 30.4 cm, h = R, and a = 3R

(a)

(b)

F I GURE 3 Convergence trend of SEH on the z‐axis with respect to
the number of basis functions (2R = 30.4 cm, h = R/2, f = 1 kHz):
(a) a = R; (b) a = 2R
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Finally, the proposed general formulation in Section 3
achieves a computational speed of about one order of
magnitude with respect to the purely numerical FEKO simu-
lations. For instance, to calculate 301 points for the curves in
Figure 2 with a desktop PC Intel i9‐9900‐K, FEKO in the
parallel module takes 216 s compared with 25 s for the pro-
posed formulation. On the other hand, the low‐frequency
formulation of Section 4 provides instantaneous results with
negligible computational time, thus completely removing any
computation burden.

6 | CONCLUSION

An effective formulation for evaluating the magnetic shielding
effectiveness of an infinite PEC planar screen with a circular
aperture has been presented, applicable to the case of a current
loop source with a finite radius coaxial with the aperture. By
applying the Abel transform technique, the original set of dual
integral equations for the equivalent magnetic currents defined
on the aperture has been transformed into a single Fredholm
integral equation of the second kind. Appropriate basis func-
tions have been introduced that consider the edge conditions.
The resulting formulation is rapidly convergent and accurate.
In particular, for low frequencies, a closed form expression is

extracted and numerical results are presented to assess its limits
of validity. Work is in progress to develop a formulation for
circular apertures in planar screens with finite conductivity.
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APPENDIX
In this appendix, Integral (40) is evaluated as the rapidly
convergent series (42). The proof reported here was inspired
by evaluating infinite integrals containing Bessel functions in
Atson [24] and in Arts [32].
First, the integral in Equation (40) can be written as

Imn ¼ IRmn þ jI
J
mn ðA1Þ

where

IRmn ¼ ∫ ∞
k0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λ2 − k20
q

λ2
J2mþ1=2 λað ÞJ2nþ1=2 λað Þ dλ ðA2Þ

and

I Jmn ¼ ∫ k00

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k20 − λ2
q

λ2
J2mþ1=2 λað ÞJ2nþ1=2 λað Þ dλ ðA3Þ

At the basis of the proof, there is the integral identity [24]:

Jμ λað ÞJν λað Þ ¼
1
2πj

⋅∫ cþj∞c−j∞
Γ −sð ÞΓ μþ νþ 2sþ 1ð Þ 1

2 λa
� �μþνþ2s

Γ μþ sþ 1ð ÞΓ νþ sþ 1ð ÞΓ μþ νþ sþ 1ð Þ
ds

ðA4Þ

where the singularities of the integrand in Equation (A4) are
the poles of Γ −sð Þ at sp = p (p = 0, 1, 2…) and the poles of
Γ μþ νþ 2sþ 1ð Þ at sq ¼ − qþ μþ νþ 1ð Þ=2 (q = 0, 1, 2…)
[26]. Parameter c is therefore a real number such that
− μþ νþ 1ð Þ=2 < c < 0.
Let us start with the integral in Equation (A3), which can

thus be written as

I Jmn ¼ ∫ k00

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k20 − λ2
q

λ2
1
2πj

∫ cþj∞c−j∞
Γ −sð Þ

Γ 2mþ sþ
3
2

� �

⋅
Γ 2mþ 2nþ 2sþ 2ð Þ 1

2 λa
� �2mþ2nþ2sþ1

Γ 2nþ sþ
3
2

� �

Γ 2mþ 2nþ sþ 2ð Þ

ds dλ

ðA5Þ

By interchanging the two integrals in Equation (A5), we
have
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I Jmn¼
1
2πj

∫ cþj∞c−j∞
Γ −sð Þ

Γ 2mþ sþ
3
2

� �

Γ 2nþ sþ
3
2

� �

⋅
Γ 2mþ 2nþ 2sþ 2ð Þ

Γ 2mþ 2nþ sþ 2ð Þ

1
2
a

� �2mþ2nþ2sþ1

⋅∫ k00
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k20 − λ2
q

λ2mþ2nþ2s−1 dλ ds

ðA6Þ

From the integral [26, Section 3.251],

∫ k00
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − y2

p
yα dy¼

x2þα ffiffiffi
π
p

Γ αþ1
2

� �

4Γ α
2 þ 2

� � α > −1 ðA7Þ

it follows that

I Jmn ¼
1
2πj

∫ cþj∞c−j∞
Γ −sð Þ

Γ 2mþ sþ
3
2

� �

⋅
Γ 2mþ 2nþ 2sþ 2ð Þ

Γ 2nþ sþ
3
2

� �

Γ 2mþ 2nþ sþ 2ð Þ

1
2
a

� �2mþ2nþ2sþ1

⋅
k2mþ2nþ2sþ10

ffiffiffi
π
p

Γ mþ nþ sð Þ

4Γ mþ nþ sþ
3
2

� � ds Re s½ � > − mþ nð Þ:

ðA8Þ

In addition to poles sp = p (p = 0, 1, 2…) and
sq = −m − n − q/2 (q = 0, 1, 2…), the integrand function in
Equation (A8) also has pole singularities in sr ¼ − r þmþ nð Þ

(r = 0, 1, 2, …). Parameter c is thus chosen in the interval
− mþ nð Þ < c < 0 so that all poles sp are on the right of the
integration path in Equation (A8) and all poles sq and sr are on
the left. The integration path can then be closed to its right
enclosing all poles sp that have residues Rp ¼ −1ð Þ

p
=p! [26]. By

letting σ = m + n and δ = m − n, from the Cauchy theorem, it
thus follows:

I Jmn ¼
ffiffiffi
π
p

4
k0a
2

� �2σþ1X∞

p¼0

Γ σ þ pð Þ

Γ 2σ þ pþ 2ð ÞΓ σ þ pþ
3
2

� �

⋅
Γ 2σ þ 2pþ 2ð Þ

Γ σ − δþ pþ
3
2

� �

Γ σ þ δþ pþ
3
2

� �
−1ð Þ

p

Γ pþ 1ð Þ

k0a
2

� �2p

ðA9Þ

and, by letting l = p + σ, we have

I Jmn ¼
ffiffiffi
π
p

4
−1ð Þ

−σ
X∞

l¼σ

Γ lð Þ

Γ l þ σ þ 2ð ÞΓ l þ
3
2

� �

⋅
Γ 2l þ 2ð Þ

Γ l − δþ
3
2

� �

Γ l þ δþ
3
2

� �
−1ð Þ

l

Γ l − σ þ 1ð Þ

k0a
2

� �2lþ1

ðA10Þ

By using the Legendre duplication formula for the Gamma
function [26, Section 8.335], that is,

Γ 2xð Þ ¼
22x−1
ffiffiffi
π
p Γ xð ÞΓ xþ

1
2

� �

; ðA11Þ

Equation (A10) becomes

I Jmn ¼
1
4

−1ð Þ
−σ
X∞

l¼σ

−1ð Þ
l22lþ1Γ l þ 1ð Þ

Γ l þ σ þ 2ð Þ

⋅
Γ lð Þ

Γ l − σ þ 1ð Þ

1

Γ l − δþ
3
2

� �

Γ l þ δþ
3
2

� �
k0a
2

� �2lþ1

ðA12Þ

By using the Pochhammer symbol and the property:

x − yð Þy ¼
Γ xð Þ

Γ x − yð Þ
¼ −1ð Þ

y 1 − xð Þy; ðA13Þ

we can express

I Jmn ¼
1
4

X∞

l¼σ

−1ð Þ
l−1 −l þ 1ð Þσ−1

l þ 1ð Þσþ1

⋅
1

Γ l − δþ
3
2

� �

Γ l þ δþ
3
2

� � k0að Þ
2lþ1

ðA14Þ

Finally, considering j¼ −1ð Þ
1=2 and −l þ 1ð Þσ−1 ¼ 0 for

l = 0, 1,…, σ − 1, the summation in Equation (A14) can start at
j = 0, that is,

I Jmn ¼ −j
1
4

X∞

l¼0

−1ð Þ
lþ1=2 −l þ 1ð Þσ−1

l þ 1ð Þσþ1

⋅
1

Γ l − δþ
3
2

� �

Γ l þ δþ
3
2

� � k0að Þ
2lþ1

ðA15Þ
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Using similar arguments for the integral in Equation (A2)
and using the identity [26, Section 3.251]:

∫ ∞
k0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − y2

p
yα dy¼

x2þα ffiffiffi
π
p

Γ −1 − α
2

� �

4Γ 1−α
2

� � α < −2

ðA16Þ

we have

IRmn ¼
ffiffiffi
π
p

4
k0a
2

� �2mþ2nþ1 1
2πj

∫ cþj∞c−j∞
Γ −sð Þ

Γ 1 −m − n − sð Þ

⋅
Γ −m − n −

1
2

− s
� �

Γ 2mþ 2nþ 2sþ 2ð Þ

Γ 2nþ sþ
3
2

� �

Γ 2mþ 2nþ sþ 2ð ÞΓ 2mþ sþ
3
2

� �

⋅
k0a
2

� �2s

ds; Re s½ � < − mþ nþ
1
2

� �

:

ðA17Þ

However, contrarily to what happens in Equation (A8), the
poles of Γ −sð Þ are cancelled by the zeros of 1=Γ 1 −m − sð Þ;
thus, it can be shown that the integrand function in
Equation (A17) has instead pole singularities at
sq = −m − n − 1 − q (q = 0, 1, …) and in sp = p − m − n −
1/2 (p = 0, 1, …). Parameter c is thus chosen in interval
− mþ nþ 1ð Þ < c < − mþ nþ 1=ð 2Þ so that all poles sp are on
the right of the integration path inEquation (A17) and all poles sq
are on the left. The integration path can then be closed to its right
enclosing all poles sp that have residues Rp ¼ −1ð Þ

p
=p! [26].

From the Cauchy theorem, it thus follows:

IRmn ¼
ffiffiffi
π
p

4

X∞

p¼0

Γ σ þ 1=2 − pð Þ

Γ −pþ 3=2ð Þ

Γ 2pþ 1ð Þ

Γ σ þ pþ 3=2ð Þ

⋅
−1ð Þ

p

Γ pþ 1ð Þ

1
Γ p − δþ 1ð ÞΓ pþ δþ 1ð Þ

k0a
2

� �2p

ðA18Þ
By using Legendre duplication formula (A11) together

with the Pochhammer symbols (43) and their properties,
Equations (A13) and (A18) can finally be expressed as

IRmn ¼
1
4

X∞

p¼0
−1ð Þ

p −pþ 3
2

� �

σ−1
pþ 1

2

� �

σþ1

⋅
1

Γ p − δþ 1ð ÞΓ pþ δþ 1ð Þ
k0að Þ

2p

ðA19Þ

Finally, combining Equations (A19) and (A15) in Equation
(A1), a single power series in k0a as in (42) is obtained, that is,

Imn ¼
1
4

X∞

i¼0
−1ð Þ

i=2 −i
2 þ

3
2

� �

mþn−1
i
2 þ

1
2

� �

mþnþ1

⋅
1

Γ
i
2
þ n −mþ 1

� �

Γ
i
2
þm − nþ 1

� � k0að Þ
i

ðA20Þ

where the odd terms (i = 2L + 1) come from Equation (A15)
and the even terms (i = 2p) from Equation (A19).
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