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Abstract

The transmission of an electromagnetic field produced by a current loop of finite radius
through a coaxial circular aperture in a perfectly conducting plate is evaluated through a
rapidly convergent formulation in an exact form. By applying the equivalence principle,
the problem is first formulated in the Hankel transform domain, obtaining a set of dual
integral equations in which the equivalent surface magnetic current density defined on the
aperture is not known. The set of dual integral equations is regularised in a second-kind
Fredholm integral equation by applying the Abel integral-transform technique. The so-
lution is achieved by expanding the unknown in a set of orthogonal basis functions that
correctly reproduce the behaviour of the equivalent magnetic current at the edge of the
aperture. Finally, under particular assumptions, a low-frequency solution is extracted in a
closed form. Numerical results are reported to validate the accuracy and efficiency of the
proposed formulations.

1 | INTRODUCTION

The transmission of an electromagnetic (EM) field through an
aperture in a planar conducting screen is a canonical problem
that has attracted great attention in the EM community [1, 2].
In general, an analytical solution is available only for an inci-
dent plane wave impinging on an infinitesimally thin circular
aperture (in this case, the solution is expressed as an expansion
in terms of oblate spheroidal vector wave functions [3]).

In the low-frequency region, Lord Rayleigh was the first to
propose a solution to the problem [4]: procedure of the solution
was based on a series expansion in ascending powers of the
wavenumber of certain quantities (the so-called Rayleigh series),
and it has been shown that it leads to a sequence of simple in-
tegral equations with a kernel of the electrostatic type [2]. In a
famous paper, Bethe studied low-frequency EM scattering by a
small circular hole cut in an infinite perfectly conducting (PEC)
plane [5]. Using a scalar potential approach, he derived the
leading terms of the Rayleigh series. Bouwkamp studied the
same problem in a more rigorous way using a complicated sys-
tem of integrodifferential equations, and he found some errors
and incorrect results in Bethe's solution (in particular, the first-
order approximation in Bethe's solution does not satisfy the
condition for which the normal component of the electric field

has to be zero in the aperture) [1, 6]. Later, several numerical
studies based on the Bethe—Bouwkamp model were presented in
Eviatan [7, 8]. An alternative use of Rayleigh series expansion
has been discussed [9-11]. An interestingly elegant variational
formulation of EM diffraction problems for planar apertures,
which allowed for approximate but accurate numerical evalua-
tions of the scattered fields in a wide range of frequencies, was
provided by Levine and Schwinger [12]. Finally, in connection
with near-field scanning optical microscopy, Michalski pre-
sented rigorous spectral-domain formulations (based on the
Bethe—Bouwkamp model) to determine the plane-wave field
transmitted through small circular apertures to include the effect
of a nearby (possibly anisotropic) material sample [13, 14] and
deriving useful closed-form expressions, especially in the near-
field region [15].

In this article, we address the problem of the transmission
of the magnetic field radiated by a finite source through a
circular aperture in a planar PEC plate. In particular, the finite
source consists of a current loop of finite radius coaxial to the
circular aperture (none of the previous works dealt with such
an excitation). The adopted approach belongs to the family of
analytical regularisation procedures aimed at formulating the
problem in terms of Fredholm integral equations of the second
kind, and is based on the Abel integral-transform technique.
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Configuration under analysis: a current loop of radius R

WV

FIGURE 1
excites a circular aperture of radius 2 in a PEC plate of negligible thickness.
The loop is coaxial to the aperture and placed at distance b from it

The related configuration composed of a PEC disk excited by a
vertical magnetic dipole is considered in Ovat et al. [16], where
the problem is solved through a standard spectral-domain
approach with basis functions that reproduce the correct sin-
gular behaviour of the current density at the disk edge. In both
cases, diagonalisation of the static kernel of the relevant inte-
gral operator is achieved.

The formulation of the problem is first presented in Sec-
tion 2. After applying the equivalence principle, operating in
the Hankel transform domain, a set of dual integral equations
is derived whose unknown is the equivalent magnetic surface
current density on the aperture. An exact numerical solution is
then obtained in Section 3, where the Abel integral trans-
formation technique is applied to convert the set of dual in-
tegral equations into a second-kind Fredholm integral
equation. The convergence properties of the obtained nu-
merical solution are further improved by a suitable series
representation of the elements of the impedance matrix. In
Section 4, as in Lovat et al. [16], under certain assumptions and
owing to some integral identities, a low-frequency solution is
extracted in a closed form. In Section 5, numerical results that
assess the accuracy and the validity of the proposed formula-
tions are provided. Finally, in Section 6, conclusions are drawn.

2 | FORMULATION OF THE PROBLEM

The configuration under analysis is reported in Figure 1 and
consists of a current loop of radius R coaxial with a circular
aperture of radius a etched in an infinitesimally thin PEC plate
placed along the z = 0 plane of a cylindrical coordinate system
(p, ¢, z). The origin of the coordinate system is located at the
centre of the aperture and the loop is placed in the half-space
z < 0 at distance » from the conducting plate. The EM
problem is axially symmetric so that all field quantities depend
only on p and z. A time-harmonic dependence € is assumed
and suppressed throughout.

To obtain an integral equation that solves the problem, the
equivalence principle is first applied and equivalent magnetic

current densities Mg and —Ms are introduced on the aperture
area for z = 0~ and z = 0%, respectively. The problem is thus
split into two half-space problems (for z < 0 and z > 0,
respectively). The magnetic field on both sides of the screen
can be expressed as a function of Ms and the continuity of the
tangential component of the electric field through the aperture
is automatically fulfilled. Therefore, the only condition that
must be imposed is continuity of the magnetic field through
the aperture: the sought-for integral equation follows directly
from such a constraint. In particular, based on the equivalence
principle, circular aperture A is short-circuited (i.e. completely
replaced by a PEC plate), and it constitutes the domain for
equivalent surface magnetic current density Ms, which ac-
counts for a nonzero value of the electric field at z = 0~ (Le.
Ms = u, x E). By means of image theory, the PEC plate then
can be removed and the magnetic current density is doubled.
For z > 0, the magnetic field is therefore the scattered mag-
netic field H*™ owing to magnetic current density —2Ms
radiating in free space, whereas for z < 0, it is scattered
magnetic field H**“* owing to magnetic current density 2Ms
radiating in free space plus the magnetic field radiated by the
current loop in the presence of an infinite PEC plane at z = 0
(so-called short-circuited magnetic field H“). As mentioned,
the key condition that has to be imposed is continuity of the
tangential magnetic field through the aperture. This is
accomplished by enforcing

lim [H"(r) x )= lim [H (r) xu,] p<a (1)
z—0" z—0~

which can be expressed as

H™S {-2Ms} x u,= H®2Ms} + H“ xu, p<a. (2)

where H'™{M} is the magnetic field radiated in free space by
magnetic current M. Because, by virtue of image theory, H*C x
u,=2H"™ x u, (where H'™ is the magnetic field radiated by the
current loop in free space), from Equation (2), we obtain

—2H™ (M) x u,=H™ xu, p<a (3)

Equation (3) represents the sought-for integral equation
whose solution evaluates the field everywhere in space.

2.1 | Incident and scattered magnetic fields

We first consider an electric current loop of cutrent [, and
radius R placed over plane z = —h. Therefore, the impressed
current source has the following expression:

Lmn:umAW:mR%§5%@+Mw 4)

where (-) indicates the Dirac distribution.
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By symmetry, vector potential A™ generated by the cur-
rent loop has only azimuthal component A;’;C. As shown in
Lovat et al. [16], passing through the Hankel-transform

domain, an integral representation for Ai;c can be obtained as

z+h |

poloR oo e

Ainc —
¢ (ﬂ, Z) 2] 0 kz

Ji(AR)] (4p)ada  (5)

where po is the free-space magnetic permeability, k, =

—j\/A2 — k] (with Re [\ /22 -k

free-space wavenumber), whereas J,(+) is the first-kind Bessel

> 0 and k, indicates the

function of order 7.
Because H = V X A"/, for the incident magnetic
Mo g
field, it results in

0

) IR o _p|,
H;lc(pvz) = 02 el +b‘J1(AR> 1(4p)Ada (6)
and

IR ekl z4h |

H(p,z) = 2 /o TJ1 (AR))(Ap)A*dA. (7)

On the other hand, the aperture acts like a disk of radius & in
z = 0 with a surface magnetic current density Ms(p, ¢). Because
of the azimuthal symmetry of the problem and the TE, nature of
the radiated field, it results in E(p, ¢, z) = Ey(p, z)uy, so that

M;s(p,¢) =Ms,(p)u,. The relevant vector potential
Ft(p, z) :F;C“(p, z)u, can easily be obtained through an

analysis in the Hankel spectral domain [21], that is,

elk\\~

4 / o — 5 Ms, ()], (Ap)Ada - (8)

where & is the free-space permittivity and M sp(4) is the
Hankel transform of the magnetic current density M, (p),
defined as

Misy(2) = 71 {Ms, (p

} /< Ms,(p

—jwFt 4V V -F< [ (jop,e)), we have

J1(p)pdp. (9)

Because H* =

H;Cat(p72) - _ /;okz e_ik2| z| MSp(l)Jl (ﬂp)/l dA (10)

_1
2ko¢,

and

H(p,2) = + [ ekl Mg, (2)],(Ap)22 da, (1)

2/€o o

where the plus or minus sign holds for z > 0 and z < 0,
respectively, and {j is the free-space characteristic impedance.

2.2 | Boundary condition

From Equation (3) and the expressions of the tangential fields
to apertures (6) and (10), we thus obtain for p < a

5 kMs, (2)],(Ap)2.d2

IR & _
- T ML GR) ()2 =0, (12)

koC

This equation and the condition for which the magnetic
current density vanishes for p > a4 constitute a system of dual
integral equations. In particular, by rearranging, we obtain

]0R§0§0 e—ijhJ1 (),R)

/go k. Msp(/l) -
1, (4p)2.dA =0,

[ M, (2)],(3p)hdi =0,

p<a

p>a. (14)

3 | ABEL TRANSFORM APPROACH

To solve the system of dual integral Equations (13) and (14),
the method of the Abel transformation technique is applied
[17). In particular, by defining V(1) = AMs,(4), the system
(13) and (14) can be first recast in the following form:

T2 =k V()] (4p) da

[()Rk()é:( f_] ﬂRJ ) —
- 0J1 1

f;o V(/l)h (lﬂ) di=0,

(15)

/12—k§b/1d/1’ p<a,

p>a. (16)

By means of the integral identity (derived from the first
integral representation of Abel type for Bessel functions

[18]):

1

1
EJH-l (ax) = W _/(Ju(ay)yy+1 dy, (17>

Equation (15) can also be written as

Jo VAL +h(2, k)] = 1(2)}],(Ap)Ad2 =0, p<a, (18)
where
10) =Rk, < GR) (19
and
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7M -1 (20)

A

is a small parameter in the limit A — +o00. By using the first
and the second Abel integral representations of the Bessel
functions [18],

b(/{, k()) =

21/2)1/2 x5/2]3/2(/1x)
Jo(4p) = p2T(1/2) 10 (? _x2)1/2 dx, (21)
/2)1/2 A
1, 0p) = 21242 J?,/z( x) ar, (22)

D(1/2) 77 x1/2(p2 — x2)1/?

Equations (18) and (16) are transformed into the Abel
integral equations:

fim 1/2{/0%/2 V2)(1+5) = 1(3)
-j3/2(/1x)di}dx=0 p<a, (23)

I

.{f?ﬂl/ZV(ﬁ)]s/z(ﬁx)dﬁ}dx:o p>a, (24)

each of which possesses a unique zero solution, so that

/3011/2 V(A)Js/z(/lﬂ) di= /80’11/2](/1)]3/2(/@) da
— [T APV (b2 k)]s, (Ap) dA - p<a,  (25)
[PV, 2 =0 pma (26)
Multiplying Equations (25) and (26) by pJ;), (vp) and

integrating over (0,00), a second-kind Fredholm integral
equation is obtained as

V(w)+ 2 [ 212V (A)h(2, ko) G(4,v) dA

(27)
=2 [P I()G(2,v) da,

where

G(4,v) =[5 P)55(A0)]5 o (vp) dp. (28)

A (different) regularised second-kind Fredholm integral
equation could also have been obtained through another
method of analytical regularisation [19-21], based on extracting
the static part of the original integral operator, following the
same procedure as in Lovat et al. [16].

In any case, the system (25-26) can also be converted
into a second-kind matrix system by expanding unknown
function V(v) in the Neumann series. This
accomplished considering that the unknown current density

can be

Ms, can be expanded through a set of basis functions by(p),
that is,

Msp Z’Un n (29)

Functions b, (p) should correctly reproduce the behaviour
of the equivalent magnetic current in p = 4. In particular, Ms,
is proportional to the component of the tangential electric field
parallel to an infinitesimally thin PEC edge that behaves as
(@ =p*)Pasp—a 22
to be finite or, better, identically zero at the origin. We can thus
adopt the radial parts of the generalized Zernike functions or

Moreover, the magnetic current has

generalized spherical harmonics [23] as a set of basis functions,
that is,

(n—1)!

V2T (n+1/2)a

11/2 2p*
Pn 1/><1— ? 14_1(&1—[})’ }’12172’__.7

(30)

2 2

bn(/)): P -pP

where #_1(-) is the Heaviside unit-step function, P;a’ﬁ >()
are the Jacobi polynomials of order n, and I'(-) is the
Gamma function. The adopted basis functions b,(p) are
normalized in such a way that the relevant Hankel trans-

forms are
~ Aa
R R €}
so that
1/2 +00
V()”) j'1/2 ZWWJZnJrl/Z(J'ﬂ) (32)

By substituting Equation (32) into Equations (25) and (206)
and using the Weber—Schatheitlin integrals [24, Section 13.4]:

fgo Jsp2 (AP)Jan/z(M) da
3/2 2 2
P (3/2 0) 4
5/2 p (1 ﬂT > P < a,

/?Jg/z(ﬂp)bm/z(ﬂﬂ) di=0 p>a, (34)
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we obtain
f’j o P pono (| %
=1 e a

=u_q(a

= )[R I)) 0 (00) 02
+o00 o
= S0 [T ) ) 01
(35)
Now, by multiplying both sides of Equation (35) by
P/ ZPSK 21"0)(1 — 2p%/a®) and integrating over (0,4), we have

P - 2512

“m1 Jo1(2) 22 Joni1)2(4a) d2

‘Z ’e)

(lﬂ)JZnJrl/Z(j'ﬂ) d4, (36)

where the orthogonality property of the radial part of Zernike
polynomials [25]:

» 2p? 2
Fio 0 (-2 ) (-2 ) ap =

ﬂZ

Snd’

4n+1
(37)

has been used together with the identity [25].

2,2 5/2
- Lz )Js/z(’lp) dp = N J2m+1/z(iﬂ)-
(38)

From Equation (36), we thus obtain the matrix system:

vn+ZYﬂmvmzln, n=1,2,... (39)
m=1
where
Yuim=({n+1)
/ /eZ (40)
'fo 2 Jamsay2 (Aﬂ)JanLl/Z (Aa) dA
and
IoRE
1, = 1RG0 (4 1)

2/

A=k b
00 ¢
S Jons1/2(42)]; (AR) T d4

The solution of the algebraic system in Equation (32)
furnishes coefficients v, and magnetic current density Ms,, is
recovered through Equation (29).

In general, the improper integrals in Equation (40) are
highly oscillating and slowly decaying and may be difficult to
compute. However, it can be shown that they can be evaluated
through a rapidly converging series as

(4n+1) & (-5 +3
Y, — ”‘f' Z p/Z 2 2)m+n—1

p=0 ( g + % )m+n+l
1 (@)
p p (/eoﬂ)p
F(E +n—m+1)1“(5 +m—n+1)
where the Pochhammer symbol (x), is defined as [20]
Iix+y)
- 43
w, = e, (43)

In general, few terms are needed to reach high accuracy.
The result in Equation (42) seems to be new and original;
therefore, its proof is reported in Appendix.

Once the v,, coefficients are known, spectral magnetic
current M, (4) is

MS/) (/1) = +Zoo vnzn ()«) ) (44)

and therefore, the radiated tangential magnetic field beyond the
aperture (i.e. in z > 0) is given by

scat . \/; >
Hp (p?Z)_] 2/605:0 Zvn

n=1

Iy W# VT

Regarding the z-components of the magnetic fields, for

(45)

z > 0, we instead have

HQCat p’

21@050 Z

= (46)

f;o eV ﬁ2_k62]2n+1/2(/1“) 0(/1/’)\//—1 da

4 | LOW-FREQUENCY SOLUTION

In the low-frequency limit (i.e. &y — 0), elements Y, in
Equation (40) become:
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A A inc iR o _ z
Yom=(n+1)[° S 431]2”“/2( ) 4 (47) Hy(pz)= —= [, ¢ AT (AR, (Ap)ada (53
. . . , IR o
Such an mtegr.al, again of the \Webe.r—S'chaﬂl.elthn type [2.4], H"™ (p,z) = for /0 oA zth IJ1 (AR) 0(/1’0)/1 dA (54)
can be evaluated in a closed form using identity [26, Section 2
6.574] (in any case, the integral in Equation (47) is the product
of two orthogonal functions) and it results in Y, = 0 for and
m # n, whereas +oo
Hy™ (pz) =] z}c@ >
Yom =1 (48) 020 n=1 (55)

Regarding [, from Equation (41), in the low-frequency
limit, we have

. ]QRkoé’o(ﬁ‘-ﬂ + 1)
i
o _ J2m+1/z(;m) 1(AR)
. e b
: e

I,=
(49)

Also, the latter integral can be expressed in a closed form
by using the following identity [26, Section 6.626]:

{2
S ] (Bo)], (7x) dx = F(Lil) ovn
U(A+p+v+2m)

a—/l—u—u

50

2 L \m
F(—m,—u—m;y—I—l; %)(—4%)

where F(+,+; ;) is the Gauss hypergeometric function [26]. By
lettingd=1/2,a=h,u=2n+1/2,f=a,v=1,andy =R,
we thus have

) [Ok()é‘o(“-fl + 1)d2nR2 -

I (2n+2g+1)!
»=) 02n+5/2 22

=0 gl 3
gt (204 5 +q

1 R? a2 \?

F(—q7—2n— > "D ?)(—m)

Other ways to express these kinds of integrals analytically
can be found in Fabrikant [27].
Because the system is diagonal, we immediately obtain:

(51)

~
I
~

n
R Y oun 2 (52)

From Equations (6) and (7), and (45) and (40), in the low-
frequency limit, we also have

S5 € Jau)p(Aa) {(P)VA d2

scat _ ]\/(,—l G
H p,2) = 2ko¢, ;T’n (56)

Jo C_MZ‘Jszrl/z(’l“) o(20)V2 d

All of these integrals are of Lipschitz—Hankel type and can
be evaluated in a closed form. In particular, for the integrals in
Equations (53) and (54), using the expressions for [(1,1,1)
and 7(1,0,1) in Ason et al. [28], we have

inc  LR|z+hlk
HJ*(p,z)= ARl - K (k)
(57)
/e2> 1
+<1 A )
) (1)
and
ine IR k
Hy(p,2) = —- WK(k)
(58)

/e3(R2 — - |z+b|2)
87r(l - k2>R5/2p3/2

+

where K(-) and E(-) are the complete elliptic functions of the
first and second kind [26], respectively, and

4Rp
k= . 59
R+p)V+|z+h[ (59)

Using Equation (59), we finally obtain

inc [ Z+h
Hy(p,2)= = | |

2 o R4p) + 24 b

R+p+|z+h]
(R=p)* +|z+h[

E(k) - K(k)
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and

- I 1
lenc(p7z) - i

2m \/(R +p) 4|z +h)

(61)
R-p’—|z+h|

(R=p)+|z+h[

E(k) + K(k)|.

The expressions for the incident field in Equations (60)
and (61) are in exact agreement with those given in Smythe
[29], Section 7.10, Egs. (6) and (7), obtained through the vector
magnetic potential using the free-space Green's function in the
space domain.

For observation points along the z axis (i.e. for p = 0 and
thus & = 0), the incident field simply becomes

H3(0,2) =0 (62)
and
, I,R?
lenC(O’ Z) = s 32 (63)
2<R2 + |Z+/o|2>
For the scattered field, we instead have
H;C"”(O,z) =0 (64)
and
H™(0,z) Zkoé’o Z w5 e B Z|J2n+1/2(’1“)\/‘ di
n=1

(65)

The integral in Equation (65) can be solved in a closed
form by using identity [26, Section 6.621] with x = 4, a = |z|,
v=2n+1/2, f=a,and p = 3/2, thus obtaining

HSCR( O
- 0z 2ko§o Z;
(66)
. (271 + 1)' —(2n+1/2) |Z|
3/4 7 1/2
(12 +a2)" V0zP+a

where PZ() are the associated Legendre functions of the first
kind.

For soutces sufficiently far from the disk, only one basis
function is sufficient to reach an excellent convergence, so in
these cases, a closed form result can be obtained. In fact, from
[26, Section 6.621.10]

L= 51(>R/€()Co /oo —h J3/2( a)];(AR) i
Vv
_ .5[01605:0 h
BN
2RL (L
. |:L\/ R2 —L2 =+ W - 3R22.1‘C51ﬁ< ]_{ >:|
(67)
where

L:%{J@+Rf+bz—¢@-Rf+#] (68)

and from Equation (66) (using Equations [52] and [67]), we
thus obtain

151, b

)2 072 ~_ Y
2 0 =-m h

JLVR* - 17 + 2R°L — 3R%arcsin é
VR YRR

1 -5/2 |z

’ E 1/2
(|z|2+412)7)/4 / 0z +a?

(69)

For the considered configuration and in an electromagnetic
compatibility (EMC) context, an important parameter is so-
called magnetic shielding effectiveness SEz; [30], which along
the z axis is defined as

| H7(0,2) |

R 2]

(70)

The total magnetic field is equal to the scattered magnetic
field for z > 0 (i.e. H*' = H*") and the sum of the incident
and scattered magnetic field for z < 0 (i.e. H" = H™ + H*™),
In particular, for z > 0, low-frequency approximations (63) and
(69) yield

V2ra® R?
15 h

(l z |2 +(,ZZ)3/4

SEy ~ 20 log 32
<R2 +lz+h |2)

. |:L\/R2 —I% + 2R’L

-1
ol BRZarcsin( ZL_{ )]

[ )]
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FIGURE 2 Amplitude of the z-component of magnetic field H,
obtained with the proposed formulation and the commercial software
FEKO as a function of p/R at z = R (a) and as a function of z/R at p =0
(b). Other parameters: f = 10 MHz, 2R = 30.4 cm, b = R, and 2 = 3R

5 | NUMERICAL RESULTS

In this section, numerical results are provided to illustrate
the main features of the shielding configuration under
consideration.

In Figure 2, results obtained through the proposed
formulation and the full-wave results obtained with the com-
mercial software FEKO [31] are compared. In particular, the z-
component of transmitted magnetic field H, is reported as a
function of normalized radial distance p/R (Figute 2a) and of
normalized vertical distance z/R (Figure 2b) at operating fre-
quency /= 10 MHz for a configuration with 2R = 30.4 cm,
bh =R and a2 = 3R. A rapid convergence is obtained with few
basis functions and for observation points close to the aperture
(for sufficiently large distances, only one basis function is
sufficient to obtain accurate results).

In Figure 3, SE; is reported as a function of z for points
on the z-axis, calculated with the proposed formulation by
employing different numbers N of basis functions indicated in
the figure. The cutrent loop has diameter 2R = 30.4 cm (as in
typical low frequency [LF] EMC configurations), its current
oscillates at /= 1 kHz, and it is placed at distance » = R/2
from the aperture centre; in particular, two aperture radii are
considered: @ = R (in Figure 3a) and 2 = 2R (in Figute 3b). In

2/R

FIGURE 3 Convergence trend of SEz on the z-axis with respect to
the number of basis functions 2R = 30.4 cm, b = R/2, f= 1 kHz):
(@) a=R; (b)a=2R

the former case, a single (N = 1) basis function is sufficient to
obtain excellent results for observation points with z as small
as a few centimeters (ie. z/R > 0.3). In the latter case,
conversely, at least N = 2 basis functions ate requited, but this
guarantees accurate results for any z/R > 0.8; for observation
points arbitrarily close to the aperture, convergence is achieved
by using N = 6 basis functions.

To assess the accuracy of the proposed approximate low-
frequency solution (71), in Figure 4 SEz is reported as a
function of frequency f (or normalized frequency ko) and for
different distances from the aperture for a structure with
2R =30.4 cm and b = 2 = R (in Figure 4a) and 2R = 13.3 cm
and » = a4 = R (in Figure 4b). In both cases, the approximate
formulation (LF approx.) is superimposed to the exact one
(Exact) for kga < 1072, whereas it provides acceptable results
up to kez < 107" (above tens of megahertz for practical di-
mensions); in the highest frequency range, the approximate
formulation slightly underestimates the exact SEz.

In Figure 5 both the exact and approximate formula-
tions are used to calculate SEgz for 2R = 30.4 cm,
/=1 MHz, and different values of z/R, as a function of
the dimensional ratios /R (in Figure 52) and «/R (in
Figure 5b). In the former case, the two formulations are in
petfect agreement for all considered values of /R, whereas
in the latter case, they agree only for @/R smaller than a
threshold that increases with z/R.
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(a) kya
50 104 103 102
45t 2=4R
_40 I 2=2R
m
%35 [ |— Exact 1
R =R
& =05R
20 I il I I
104 10° 10¢ 107 108

(b) kya
50 10 10° 10 10!

45t 2=4R .
— Exact
---- LF approx.
540' =2
=.35] ]
=
R S =R =
Pl =R
20 T | T | T | T |
10* 10° 108 107 108

FIGURE 4 SEgas a function of the normalized radius kg for
h=a=R: () 2R =304 cm; (b) 2R = 13.3 cm

Finally, the proposed general formulation in Section 3
achieves a computational speed of about one order of
magnitude with respect to the purely numerical FEKO simu-
lations. For instance, to calculate 301 points for the curves in
Figure 2 with a desktop PC Intel 19-9900-K, FEKO in the
parallel module takes 216 s compared with 25 s for the pro-
posed formulation. On the other hand, the low-frequency
formulation of Section 4 provides instantaneous results with
negligible computational time, thus completely removing any
computation burden.

6 | CONCLUSION

An effective formulation for evaluating the magnetic shielding
effectiveness of an infinite PEC planar screen with a circular
aperture has been presented, applicable to the case of a current
loop source with a finite radius coaxial with the aperture. By
applying the Abel transform technique, the original set of dual
integral equations for the equivalent magnetic currents defined
on the aperture has been transformed into a single Fredholm
integral equation of the second kind. Appropriate basis func-
tions have been introduced that consider the edge conditions.
The resulting formulation is rapidly convergent and accurate.
In particular, for low frequencies, a closed form expression is

(@)

SE, [dB
80H[,},,,,,,,,

—— Exact
LF approx.

T T T T T T T

70
60}

—— Exact i
------ LF approx.

401
30¢
20}
10 . . " . . I I T .

FIGURE 5 SEgatf=1MHzas a function of b/R (2) 2R = 30.4 cm,
a=R) and a/R (b) for 2R = 30.4 cm, h = R

extracted and numerical results are presented to assess its limits
of validity. Work is in progress to develop a formulation for
circular apertures in planar screens with finite conductivity.
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APPENDIX

In this appendix, Integral (40) is evaluated as the rapidly
convergent series (42). The proof reported here was inspired
by evaluating infinite integrals containing Bessel functions in
Atson [24] and in Arts [32].

First, the integral in Equation (40) can be written as

where
2
N - 22—k
L, = //e(, T J2m+1/2 (ﬂ“)JZnH/z (Aa) dA (A2)
and
2 2
] ko kU -
Lon=Jo 12 Jomyr2 (’1")]2%1/2 (4a) d2 (A3)

At the basis of the proof, there is the integral identity [24]:

Iy Ga), () = 5

2
-fc+.j°° D(=s)I(p+v+25+1)(1 /Ia)'“rwr ’
i Pu+s+ 1) +s+ D(p+v+s+1)
(A4)

where the singularities of the integrand in Equation (A4) are
the poles of I'(=s) at s, = p (p = 0, 1, 2...) and the poles of
Nu+v+2s+1)ats,=—(g+p+v+1)/2(@=0,1,2...)
[26]. Parameter ¢ is therefore a real number such that
—(u+v+1)/2<c<0.

Let us start with the integral in Equation (A3), which can
thus be written as

VE=2 1 e I(=s)
P

(L _ =
[mn - ./O0 2 271.] c—joo 3
'\ 2m + 5+ 5

(A5)
1 J) 2m+-2n+42s+1
3 )( 2 d) dsda
r<2n+s+ 5 )F(2m+2n—|—s—|—2)

I(2m+2n+2s+2

By interchanging the two integrals in Equation (A5), we
have
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(=)

3 3
F<2m+5+ 5)1“(2714—5—1— 5)

) 2m+-2n+2s+1

i c+joo
27Tj c—joo

mn~

r2m+2n+25+2) (1
L(2m +2n+s+2)

a
2
'/ﬁo /kg — J2 )xmtant2s=1 4a qo

(A6)
From the integral [26, Section 3.251],
2+a a+t
y « Vrr(4
[ V/x =2y dy = M a>-—1 (A7)

it follows that

1 reteo I'(=s)

O jor AN
e 2y 7™ 3
I'| 2m + s+ 5

F(2m+2n—|—25—|—2) (1 )2m+2n+25+1
—a
3 2
F(Zn—l—s—i— 5)F(2m+2n+5+2)

kém+2n+2§+1ﬁr(m+n+s)

3
4F<m+n+s+ 5)

In addition to poles s =p @ =
sq=—m—-n—-g/2(q=0,1

ds  Re[s] > —(m +n).

(A8)

1, 2...) and
, 2...), the integrand function in
Equation (A8) also has pole singularities in s, = —(r + m + n)
(r=0,1, 2, ...). Parameter ¢ is thus chosen in the interval
—(m+n) <c <0 so that all poles s, are on the right of the
integration path in Equation (A8) and all poles s, and s, are on
the left. The integration path can then be closed to its right
enclosing all poles s, that have residues R, = (—1)7/p! [26]. By
letting 6 = m + n and 6 = m — n, from the Cauchy theorem, it
thus follows:

J YT (@)2”“2”: (o +p)
mn 4 2 : 3
p=0 F(26+p+2)F(a+p+ 5)

(%)

(A9)

(26 4 2p +2)

3
r(a—5+p+§> ( ctEtpto

and, by letting / = p + o, we have

o o)
L= z;r(z+a+r2) <z+§>
(2l +2) (_1)1 <@>zl+1
r<1—5+;>r<l+5+z> rl-o+1)\ 2

(A10)

By using the Legendre duplication formula for the Gamma
function [26, Section 8.335], that is,

2\2; ()T (x + % >

Equation (A10) becomes

r(2x) = (A11)

2 (-1)"22H'r(l + 1)
il —c
Fom Z I(l+o+2)

=0

F(l) 1 <@>21+1
Fl-o+1) r(1—5+§>r<l+5+§> 2
(A12)

By using the Pochhammer symbol and the property:

(9= s = (Va1
weE can CpreSS
RS 1 (L 1)y
T = 3 20 T
(A14)

3 3 (koﬂ)zl+l
r<1—5+ §>r<1+5+ 5)

Finally, considering j= (—1)1/2 and (—/+1),_, =0 for
[=0,1,.

> e

— 1, the summation in Equation (A14) can start at

j=0, that is,
1 i 1+1/2 (=14 1),
4 =0 (l + 1)r7+1
1 (A15)
(koﬂ)zl+l

3 3
r<1—5+ 2>r<1+5+ 2>
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Using similar arguments for the integral in Equation (A2)
and using the identity [26, Section 3.251]:

a< -2

- e /ar(-1- ¢
/k” /xz _yzya dy — ﬁ 1(__0, ) 2 )
2

4r(
(A16)

we have

[R _ ﬁ (k()ﬂ >2m+2n+1 1 ctioo F(—S)
mn
4

2 2@ i T(1—m—n—5)

F(—m—n—

' 3 3
F(Zn—i—s—!— 5)F(2m+2n+5—|—2)1“<2m—|—5+ E)

k()d = 1
<7> ds, Re[s]<—<m+n+ 5)

However, contrarily to what happens in Equation (A8), the
poles of I'(—s) are cancelled by the zeros of 1/I'(1 —m —s);
thus, it can be shown that the integrand function in
Equation (A17) has instead pole singularities at
sq=—m—-n—-1-¢q@g=0,1,..)andins,=p—m—n—
1/2 (p = 0, 1, ...). Parameter ¢ is thus chosen in interval
—(m+n+1)<c<—(m+mn+1/2)sothatall poless,are on
the right of the integration path in Equation (A17) and all poles s,

—5>F(2m+2n+25+2)

N —

(A17)

are on the left. The integration path can then be closed to its right
enclosing all poles s, that have residues R, = (=1)7/p! [26].
From the Cauchy theorem, it thus follows:

r2p+1)
(e +p+3/2)

R VT = Te+1/2-p)
g _Z I(=p +3/2)

mn: 4

=0

(=1) 1 koa \ 7
Tp+1) Tp-6+1D)T(p+6+1) (7)
(A18)
By using Legendre duplication formula (A11) together

with the Pochhammer symbols (43) and their properties,
Equations (A13) and (A18) can finally be expressed as

IR _ 1 i(_l)p (_p+ %)o—l

" Z p=0 (P+ %)oﬂrl

1
T(p-0+1)I(p+56+1)

(A19)

(kOﬂ)ZP

Finally, combining Equations (A19) and (A15) in Equation
(A1), a single power series in koa as in (42) is obtained, that is,

e . 3 + 3 m—+n—
[mn: 1 Z(_l)l/z ( Z‘2 12) +n—1
i=0 (E E)m+n+1

1 i

e i (o)

F(— +n—m+1>F(— +m—n+1>
2 2
(A20)

where the odd terms (2 = 2L + 1) come from Equation (A15)
and the even terms (2 = 2p) from Equation (A19).



	Magnetic field penetration through a circular aperture in a perfectly conducting plate excited by a coaxial loop
	1 | INTRODUCTION
	2 | FORMULATION OF THE PROBLEM
	2.1 | Incident and scattered magnetic fields
	2.2 | Boundary condition

	3 | ABEL TRANSFORM APPROACH
	4 | LOW‐FREQUENCY SOLUTION
	5 | NUMERICAL RESULTS
	6 | CONCLUSION


