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Abstract: Here we present an extensive narrative review of the broadly understood modifications
to the lifestyles of women with polycystic ovary syndrome (PCOS). The PubMed database was
analyzed, combining PCOS entries with causes, diseases, diet supplementation, lifestyle, physical
activity, and use of herbs. The metabolic pathways leading to disturbances in lipid, carbohydrate, and
hormonal metabolism in targeted patients are described. The article refers to sleep disorders, changes
in mental health parameters, and causes of oxidative stress and inflammation. These conditions
consistently lead to the occurrence of severe diseases in patients suffering from diabetes, the fatty
degeneration of internal organs, infertility, atherosclerosis, cardiovascular diseases, dysbiosis, and
cancer. The modification of lifestyles, diet patterns and proper selection of nutrients, pharmacological
and natural supplementation in the form of herbs, and physical activity have been proposed. The
progress and consequences of PCOS are largely modifiable and depend on the patient’s approach,
although we have to take into account also the genetic determinants.

Keywords: PCOS; reproduction; lifestyle; diet; sleep; supplementation; herbs supporting

1. Introduction

Polycystic ovary syndrome (PCOS) is the most common female endocrinopathy,
affecting as many as 15% to 18% of women of reproductive age [1]. The definition of PCOS
changed in 2003, when representatives of the European Society of Human Reproduction
and American Society of Reproductive Medicine met in Rotterdam, The Netherlands.
Currently, it is defined as a heterogeneous group with different phenotypes, which pose
challenges in its treatment [2]. It seems, however, that some dependences and the tendency
of the occurrence of the similar metabolic disorders are comparable [3].

Many studies have shown that higher hormone levels, gut microbiome composition,
and plasma metabolomics are new parameters related to the PCOS phenotypes [4]. The
clinical phenotypes can change over the life span with weight gain, and can coexist in
the same patient. Individualized treatment remains the main approach, but grouping the
phenotypes and following therapeutic recommendations may also prove to be clinically
suitable. Precise recommendations should be implemented long before metabolic complica-
tions occur, which is particularly important for women with PCOS as they are predisposed
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to developing endometrial and ovarian cancer [5,6]. Therefore, the therapeutic approaches
aimed at using anti-inflammatory remedies in supplementing and supporting anticancer
therapy are crucial. They can help in inactivating the cascade of the deteriorating signaling
pathways. Through these, better survival, faster recovery, and the improvement of the
patients’ quality of life can be achieved.

1.1. Physiological Basis

The four main causes of the physiological basis of PCOS include:

• disorders of gonadotropin hormonal synthesis;
• the appearance of insulin resistance;
• the influence of the present excessive body fat; and finally,
• the metabolic pathways involved in PCOS (the secretion and activity of insulin, encoding

for steroidogenesis, and other metabolic and hormonal pathways) (Figure 1) [7].
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In the suprachiasmatic nucleus of the hypothalamus there are neurons synthesizing gon-
adotropin-releasing hormone (GnRH), which is released into the pituitary portal circula-
tion in the median eminence. GnRH release is regulated by a network of interconnected 
neurons. Gonadoliberin is an example of a hormone secreted in a pulsatile rhythm, and 
the frequency of this rhythm determines the type of gonadotropin released. A low fre-
quency of gonadoliberin pulses results in the secretion of follicle-stimulating hormone 
(FSH), while a high frequency results in the secretion of luteinizing hormone (LH) from 

Figure 1. Main pathophysiological basis of polycystic ovary syndrome (PCOS)-disorders of gonadotropin hormonal
synthesis, the appearance of insulin resistance, the influence of the present excessive body fat and oblique metabolic
pathways involved in PCOS.

Appropriate functioning of the mechanisms responsible for the maturation of the
ovarian follicle and its ovulation depends on the proper physiological activity of three
organs: the hypothalamus, pituitary gland, and ovaries.

The mechanisms of hormonal regulation in the hypothalamic-pituitary-ovarian sys-
tem take place through the axes of negative feedback: long, short and ultra short feed-
back. In the suprachiasmatic nucleus of the hypothalamus there are neurons synthesizing
gonadotropin-releasing hormone (GnRH), which is released into the pituitary portal circu-
lation in the median eminence. GnRH release is regulated by a network of interconnected
neurons. Gonadoliberin is an example of a hormone secreted in a pulsatile rhythm, and the
frequency of this rhythm determines the type of gonadotropin released. A low frequency of
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gonadoliberin pulses results in the secretion of follicle-stimulating hormone (FSH), while a
high frequency results in the secretion of luteinizing hormone (LH) from the anterior lobe
of the pituitary gland. LH is responsible for the luteinization of the corpus luteum, i.e., the
transformation of granulosa cells into theca lutein cells which produce progesterone. In
turn, FSH stimulates ovarian follicle maturation and estrogen secretion in the granulosa
cells of ovarian follicles. It also increases the activity of aromatase, the enzyme responsible
for converting androgens (testosteron and androstendion) to estrogens. When the concen-
tration of luteinizing hormone increases relative to FSH, excessive androgen production
occurs, which is more common in women with PCOS [8].

Insulin, both directly and indirectly, affects the pathogenesis of PCOS. It acts synergis-
tically with luteinizing hormone, increasing the production of androgens (theca cells) and
decreasing the liver synthesis of the main binding testosterone protein (SHBG), which re-
sults in testosterone circulating in the unbound, active form [8]. Excess body fat is involved
in the development of PCOS in many ways. Adipose tissue cells (adipocytes) produce
peptide hormones like resistin and leptin, as well as some inflammatory cytokines (IL-beta,
TNF-alpha) [9].

The activity of leptin affects the function of the hypothalamus–pituitary gland–ovary
axis by modifying the secretion of GnRH, LH, and FSH. Leptin is a signal for the hypotha-
lamus to release LH, causing the secretion of pituitary GnRH, as well. This can result in
excessive androgen synthesis. Adipose tissue, by secreting pro-inflammatory factors such
as mentioned cytokines, contributes to the development of inflammation in PCOS and
an increased amount of free radicals caused by hyperglycemia; excess adipose tissue and
androgens contribute to the formation of chronic inflammation in PCOS [8].

The various clinical symptoms of the disease indicate that many metabolic pathways
participate in PCOS development, including: secretion and activity of insulin, with genes
encoding for insulin receptor (IR), insulin (INS), and insulin-like growth factor (IGF) and
its receptor; genes encoding for steroidogenesis; genes responsible for the activity of
cytochrome P450 (CYP 17, CYP 11 alpha); and other metabolic and hormonal pathways,
with genes for androgenic receptor (AR), LH receptor, leptin, and follistatin [10]. Moderate
adherence to an anti-inflammatory dietary pattern and the low glycemic index (GI) and
low-fat dietary pattern, have protective effect on the odds of developing PCOS [11,12].

1.2. Improvement in Metabolic Pathways
1.2.1. Insulin Resistance

Weight gain mediates most of its direct medical sequelae through worsening insulin
sensitivity.

Insulin resistance (IR) plays a key role in the development of metabolic dysfunction,
including hypertension, dysglycemia, and dyslipidemia. A large amount of evidence
supports a role of mitochondrial dysfunction in the development of IR, stimulated through
ectopic fat deposition. Lipid-induced production of reactive oxygen species (ROS) within
skeletal muscle promotes mitochondrial dysfunction and the development of IR [13]. Ulti-
mately, IR underlies obesity-related conditions such as polycystic ovary syndrome (PCOS).

The cellular effects of insulin occur through two main post-receptor pathways: the
phosphatidylinositol 3-kinase (PI3K) and the mitogen-activated protein kinase (MAPK)
pathways [14]. The PI3K pathway regulates cellular intermediary metabolism, whereas
the MAPK pathway controls growth processes and mitoses [14]. AKR1C3 expression
in adipocytes leads to the occurrence of insulin resistance and hyperinsulinemia, then
drives a vicious circle of intra-adipose androgen activation, lipid accumulation, and hy-
perinsulinemia [15]. Kauffman et al. suggested that ethnicity plays an additive effect on
insulin resistance in PCOS. Mexican American women showed significantly higher insulin
resistance compared with Caucasian American women [16].
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1.2.2. Oxidative Stress and Chronic Inflammation

The association between body weight and IR is mediated through inflammatory
pathways [17]. Obesity causes changes in the release of key cytokines and adipokines,
which in turn manifest in paracrine and endocrine effects. The increased levels of leptin
and plasminogen activator inhibitor-1 and the reduced release of adiponectin result in a
generalized low-grade inflammatory response. This process is mediated by macrophages
and other immune cells.

Increases in ROS generation, p47phox gene expression, and circulating thiobarbituric
acid-reactive substances (TBARS) occur in PCOS in response to saturated fat ingestion
independent of obesity. A diet rich in simple sugars, as well as saturated fatty acids
additionally enhances the production of ROS by different mechanisms, including the
influence on gut microbiota [18]. Circulating mononuclear cells and excess adipose tissue
are separate and distinct contributors to oxidative stress in this disorder [19]. Lipid-
stimulated oxidative stress may be a key driver of insulin resistance and hyperandrogenism
in PCOS. Excess adipose tissue is a contributor to the pro-oxidant burden and an additional
regulator of insulin action [19]. Moreover, the chronic exposure to androgens results in an
increase in oxidative stress in islet cells, inducing mitochondrial dysfunction [20,21].

Superoxide is a ROS produced when NADPH is oxidized by membrane-bound
NADPH oxidase [22]. Dysregulated ROS production from NADPH oxidase has been
implicated in a variety of cardiovascular disorders, including endothelial dysfunction,
atherosclerosis, and hypertension, which are observed in women with PCOS [23]. Peroxide-
induced oxidative stress activates nuclear factor-κB (NF-κB), which is a cardinal inflamma-
tory signal that increases tumor necrosis factor (TNF)-α gene transcription [24]. Oxidative
stress in response to saturated fat ingestion is an intermediate step in stimulating TNF-α
secretion from circulating leukocytes [19,25]. In our investigations, we also showed that
women with PCOS exhibit increased TNF-α synthesis [4]. Women with PCOS with normal
and low levels of androgens measured by the level of testosterone and free androgen index
(FAI) were more susceptible to the development of oxidative stress and inflammation
induced by TNF-α [26].

1.2.3. Anticancer Protection

Many studies have targeted the inactivation of the transcription factor (NRF2) as
a therapeutic approach in various types of cancer [27]. NRF2 was first recognized in
anticancer research as an inducer of several antioxidant enzymes. It can protect cells and
tissues against many types of toxicant that interrupt essential biochemical processes and
carcinogens by increasing the expression of cytoprotective genes [28]. NRF2 can act as
a double-edged sword, being able to mediate both tumor-suppressive or pro-oncogenic
functions depending on the specific biological context of its activation [29]. In line with this
principle, the controlled activation of NRF2 might reduce the risk of cancer initiation and
development in normal cells by scavenging ROS and by preventing genomic instability
through decreased DNA damage. In contrast, already transformed cells with constitutive or
prolonged activation of NRF2 signaling might represent a major clinical hurdle and exhibit
an aggressive phenotype characterized by therapy resistance and unfavorable prognosis,
requiring the use of NRF2 inhibitors [29].

It has been found that there are at least three pathways controlling the stability of
NRF2. The first one depends on the cytosolic repressor KEAP1 [30]; the second is connected
with the β-transducin repeat-containing protein (β-TrCP) [31]; while the third is related
to the protein HRD1, which is an E3 ubiquitin ligase associated with the endoplasmic
reticulum [32].

The abnormal activation of the NRF2/KEAP1 pathway promotes cancer develop-
ment [33], metastasis formation [34], and even resistance to ovarian cancer therapy [35].
Mutations in the KEAP1 gene induce the hyper activation of the NRF2/KEAP1 pathway.
Notably, KEAP1 missense or nonsense mutations were reported in endometrial carcino-
mas [36], as well as gall bladder [37], breast [38,39], cervical [40], and ovarian [41,42]



Nutrients 2021, 13, 2452 5 of 18

cancers. MicroRNA miR-141 was the first-identified miRNA to directly repress KEAP1
levels in ovarian carcinoma cell lines [43].

1.3. Gut Microbiota Dysbiosis

The structural and functional dysbiosis of the gut microbiota in high-fat diet (HFD)-
induced obesity was demonstrated in a mouse model [44]. The microbiota, through
its metabolites, has multiple and complex effects on appetite, lipids, and carbohydrate
metabolism and may influence body weight [44,45]. The gut microbiota can regulate about
10% of the host’s transcriptome and genes involved in the immune response, proliferation,
and metabolism [46]. Interest in dietary fiber, gut fermentation, and probiotics has led to
extensive research in this field [47]. The role of dietary fiber was demonstrated to modulate
gut microbiota dysbiosis in patients with type 2 diabetes [48]. The growth of Bifidobacteria
correlates with insulin secretion and increased glucose tolerance, regulates IR, and helps
reduce inflammation. Short-chain fatty acids (SCFAs) such as acetate and butirate produced
by the beneficial gut flora influence glycemia through glucagon-like peptide 1 (GLP-1) and
pancreatic polypeptide (PPY), which are intestinal hormones [45]. The hormone PYY is a
peptide that acts as a paracrine substance to stimulate the feelings of satiety or hunger in the
control center [49]. Due to the absolute role of metabolites such as SCFAs in the metabolism
of lipids and carbohydrates, ensuring the good condition of the microbiota is one of the
therapeutic goals [50] in combating inflammation at local and systemic levels [51], as well
as infections of the urogenital tract [52].

2. Lifestyle Changes

Lifestyle change is the first line of treatment for the management of women with PCOS
but is not an alternative to its pharmacological treatment [7]. Regular physical activity,
maintaining appropriate body weight, following healthy dietary patterns and avoiding
tobacco use is vital in prevention and treatment of metabolic disorders, and is included in
clinical guidelines for various conditions. Focusing on overall wellbeing and mental health
is a personal choice, and while it is not an immediate fix, it is an important step towards a
more fulfilling life.

Nutritional counseling for PCOS patients has been one of the treatment methods for
many years. However, strict caloric restrictions do not produce the expected long-term
effects [53,54], and the isocaloric diet did not significantly improve the biochemical and
anthropometric parameters even in combination with physical activity [55].

2.1. Diet

Analysis of the impact of lifestyle modification related to the share of energy from
macronutrients (protein, fat, and carbohydrates) showed no significant differences in the
levels of the analyzed parameters. However, a significant factor in these changes was the
reduction in the caloric content of the diet [56] and the introduction of a reduced-calorie diet
with a low GI [57]. Low GI (LGI) diets decreased homeostatic model assessment for insulin
resistance (HOMA-IR), fasting insulin, total and low-density lipoprotein (LDL) cholesterol,
triglycerides, waist circumference, and total testosterone compared with high GI (HGI) diets
without affecting fasting glucose, HDL cholesterol, weight, or the free androgen index [58].
In addition, the inclusion of the LGI diet, punitive restrictions, and/or physical activity, and
the supplementation of omega-3 increased HDL, sex hormone binding globulin (SHBG)
synthesis, and reduction in body fat [8]. Gonzales et al. found that saturated fat acid (SFA)
ingestion stimulates increases in circulating TNF-α and peripheral leukocytic suppressor
of cytokine-3 (SOCS-3) expression [25]. Therefore, eliminating SFA from the diets of these
patients is imperative. Dietary α-linolenic acid-rich flaxseed oil exerted beneficial effects on
polycystic ovary syndrome through the sex steroid hormones–microbiota–inflammation
axis in rats, but other sources of α-linolenic acid will probably produce an equally good
effect [59].
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The effects of soluble dietary fiber on SCFAs were demonstrated. Fermentable fiber has
positive metabolic benefits on the gut microbiome with subsequent release of SCFAs [60].
Diets with a low GI may influence appetite-regulating hormones including ghrelin and
glucagon [12,61]. Low-GI meals reduced ghrelin and increased glucagon in women with
PCOS [61]. High fructose consumption (HFC) synergistically aggravated endocrine but
not metabolic changes in PCOS, suggesting that (HFC) might deteriorate endocrine-related
phenotypes in PCOS [62]. A meta-analysis and systematic review showed that the LGI diet
is an effective, acceptable, and safe intervention for relieving IR, and professional dietary
advice should be offered to all PCOS patients [63,64].

It seems that another reduced-GI diet modification is the ketogenic diet, which limits
the consumption of total carbohydrates in favor of plant-based fat. The ketogenic diet
(KD) improves the menstrual cycle, reducing blood glucose and body weight, improving
liver function, and treating fatty liver in women with PCOS and liver dysfunction who
were obese [65]. Even more interesting results were reported by Paoli et al. after using the
KD for 12 weeks in women with PCOS [66]. The anthropometric and body composition
measurements revealed a significant reduction in body weight (−9.43 kg), body mass index
(BMI; −3.35), and fat-free body mass (8.29 kg). A significant decrease in glucose and insulin
blood levels was observed, together with a significant improvement in HOMA-IR scores.
A significant decrease of triglycerides, total cholesterol and LDL were observed along with
a rise in HDL levels. The LH/FSH ratio, LH total and free testosterone, and DHEAS blood
levels were also significantly reduced. Estradiol, progesterone and SHBG increased. The
Ferriman Gallwey Score was slightly, although not significantly, reduced [66]. There was
no significant association between parameters of hirsutism and the visceral adiposity index
(VAI). Hirsutism is unlikely to be due to visceral adipocyte dysfunction [67]. Therefore, in
PCOS patients with advanced obesity and/or obesity accompanied by full-blown metabolic
syndrome, the introduction of a ketogenic diet may provide even better results than a diet
with a LGI. Nonetheless, a general conclusion is that by following the main principles of
a healthy diet, the physiological homeostasis can be managed, as well as faster recovery
from disease achieved.

2.2. Physical Activity

Exercise training in the management of PCOS is becoming more recognized and
accepted among professionals in the health sector and the patients. Physical training
potentiates the effects caused by insulin sensitivity through the optimization of glucose
transport and metabolism [68].

A recent meta-analysis found that improvements in health outcomes are more de-
pendent on exercise intensity than dose. The results from this analysis support the use of
exercise and that vigorous intensity exercise may have the greatest impact on cardiorespi-
ratory fitness, insulin resistance, and body composition [69]. Insulin resistance, measured
using the HOMA-IR and BMI showed a significant decrease with moderate and high
certainty (MD-0.57; 95% confidence interval (CI), −0.98 to −0.16, and p = 0.01; MD-1.90,
95% CI −3.37, −0.42, and p = 0.01), respectively [70]. Other authors in a systematic review
found that vigorous aerobic exercise and resistance training to improve insulin sensitivity
and androgen measurements are warranted for women with PCOS. [71]. The minimum
aerobic activity per week should be 120 min [69].

2.3. Sleep

Mental health disorders are highly prevalent in PCOS cases, which are associated
with significantly more frequently experienced states of anxiety and depression, as well as
sleep disorders [72]. Sleep disorders impact the etiology and development of the anxiety
and depression seen in PCOS, so treating sleep-related conditions should be an integral
part of treating women with PCOS [72]. Sleep deprivation has been connected with
increased risk of IR, obesity, and type 2 diabetes (T2D) [73–75]. Although incompletely
understood, the factors that mediate IR in response to sleep deprivation, likely implicated
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centrally regulated autonomic pathways, endocrine responses (e.g., changes in the key
appetite hormones ghrelin and leptin), and inflammatory status. Mice experiencing sleep
fragmentation (SF) showed white adipose tissue (WAT) inflammation and worsened IR,
which resulted from enhanced disruption to the colonic epithelial barrier [76] and “gut
leakage” syndrome which leads to LPS mediated inflammation [51]. Thus, SF-induced
metabolic alterations may be mediated in part by concurrent changes in the gut microbiota,
thereby providing an opportunity for gut-microbiome-targeted therapeutics [76]. The main
pineal gland hormone melatonin is involved in the regulation of the circadian rhythm. In
recent years, it was observed that a reduction in the melatonin levels of follicular fluid
occurs in PCOS patients [77]. Melatonin receptors in the ovary and intrafollicular fluid
adjust sex steroid secretion at different phases of ovarian follicular maturation. Melatonin is
a strong antioxidant and an effective free-radical scavenger, which protects ovarian follicles
during follicular maturation [77].

Based on current knowledge, it is plausible to conclude that sleep disorders can be
considered as one of the first symptoms leading to the weakening of the body’s protective
properties and intensification of the pathways associated with insulin resistance in the
course of PCOS.

2.4. Supplementation

The research showed that the vast majority of women with PCOS consume an improp-
erly balanced diet, involving deficiencies in fiber, omega 3, calcium, magnesium, zinc, and
vitamins (folic acid, vitamin C, vitamin B12, and vitamin D) [8]. An excess of nutrients
was also noted in sucrase, sodium, total fats, saturated fatty acids, and cholesterol [8]. It
was examined whether the deficiencies can be balanced with a correct calories-reduction
diet with a lowered GI and it resulted positive regarding influence on the water-soluble
vitamins [78,79]. In the case of most vitamin B, the increase in its supply with the diet
led to the expected result in the form of its increased level in the plasma of women with
PCOS. This effect was not observed for vitamin B3, and the levels of B2 and thiamine were
not as satisfactory as in the case of the other, related vitamins [79]. It was documented
that the insufficient supply of vitamin B3 is associated with the development of inflam-
matory conditions, leading to the associated diseases [80] as well as the increased risk of
cardiovascular syndromes [81]. Women with PCOS may be treated with metformin, which
normalizes glycemia, but its chronic intake is additionally associated with deficiencies in
thiamine and cobalamin [82]. Therefore, it is a good idea to supplement with thiamine,
which, by activating transketolase, contributing to the inhibition of mechanisms damaging
blood vessels, reducing the risk of cardiovascular diseases [83,84].

While drawing attention to the potential properties of blood vessel protection in PCOS,
supplementation with coenzyme Q10 also requires consideration. CoQ10 supplementation
for 8 weeks had a beneficial effect on inflammatory and endothelial dysfunction markers
in overweight and obese patients with PCOS [85].

When analyzing the available literature on supplementation in PCOS, attention should
be paid to vitamin D, which increases insulin synthesis and release, increases insulin recep-
tor expression, and increases insulin response to glucose transport [86]. Vitamin D indirectly
influences carbohydrate metabolism by normalizing extracellular calcium and parathyroid
hormone concentration. It also affects the expression of the genes of the metabolic pathways
affecting systemic inflammation by inhibiting the synthesis of pro-inflammatory cytokines,
which may contribute to the occurrence of IR [87]. Women with PCOS receiving 20,000 IU
of cholecalciferol weekly benefited from improved carbohydrate metabolism. Decreases
in fasting glucose, triglycerides, and estradiol were observed. Although no changes in
androgen levels were observed, improvements in menstrual frequency were noted [88].
Combined magnesium, zinc, calcium, and vitamin D supplementation in another study led
to a significant reduction in hirsutism and total testosterone compared with the placebo,
but supplementation did not affect SHBG levels or the free androgen index (FAI) [89].
Conversely, the combination of vitamin D and fish oil reduced the parameters of inflam-
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mation in the body (serum C-reactive protein (CRP), downregulation of interleukin (IL)-1
genes) and total testosterone levels and has beneficial effect on mental health parameters
measured by Beck’s Depression Questionnaire [90].

Current results showed that myo-inositol is as effective as metformin in improving the
clinical and metabolic profile of women with PCOS and the metabolic disorders associated
with diabetes [91]. However, the administration of metformin is associated with side effects
that are not experienced with inositol [92]. Inositol increases insulin sensitivity, normalizes
androgens in the blood, improves glycemia, and affects numerous features of metabolic
syndrome [93,94]. PCOS appears to involve increased epimerization of myo-inositol (MI) to
d-chiro-inositol (DCI) in the ovary by insulin, the consequence of which is overproduction
of DCI and deficiency of MI, which in turn affects the disturbance of FSH signaling and
deterioration of the quality of oocytes [95]. Inositols (both isomers, both given separately
and in combination) also have the potential to restore spontaneous ovulation and improve
fertility in women with PCOS. An analysis of the literature showed supplementation with
inositol as being a safe and, importantly, effective form of PCOS therapy, improving the
development of ovarian follicles, oocyte maturation, and stimulation of pregnancy [96].

As in traditional medicine, natural substances such as isoquinoline alkaloids have been
used to regulate the synthesis of androgens and the metabolism of lipids and carbohydrates,
the introduction of berberine in patients with PCOS has been considered [97–99]. As with
metformin, the beneficial metabolic effects of berberine in type II diabetes are related to the
activation of adenosine monophosphate-activated protein kinase (AMPK). Berberine has
good hypoglycemic and hypolipidemic effects, reduces body weight, and is an effective
insulin sensitizer [100]. It also reduces the synthesis of steroid hormones and the expression
of ovarian aromatase by acting on the hypothalamic–pituitary–ovarian axis, and improves
the ovulation rate and the regulation of menstruation, thus increasing the pregnancy and
live birth rates. In addition, studies showed that even with long-term use of berberine,
its side effects are transient and mild (constipation, nausea) [101], which suggests that
berberine may be a safe and promising compound for the treatment of PCOS patients [98,102].

Chromium is the basic element involved in the metabolism of carbohydrates and
lipids; therefore, it has become one of the most commonly consumed dietary supplements
in the USA [103]. The indications for its supplementation were once very broad; however,
chrome is currently one of the most controversial components by which its influence is
strongly undermined [104,105]. It was argued that it is not an essential micronutrient, but
has potential benefits and/or side effects. By enhancing the insulin signaling pathway,
increasing the activity of AMPK, and increasing cellular glucose uptake, it has a beneficial
effect in PCOS patients in improving diabetes [106]. Decreases in the expressions of 3β-
hydroxysteroid dehydrogenase and 17β-hydroxysteroid dehydrogenase were identified in
adipose tissue, which were related to dehydroepiandrosterone [107].

The research, and the available literature, show that supplementation with zinc and
selenium to counter deficiencies may be indicated in the case of at least some patients with
PCOS. Due to intracellular signaling and structural functions, zinc plays a role in lipid and
glucose metabolism and fertility [108]. Low zinc intake in obese people is associated with
hyperinsulinemia, increased low-grade inflammation, and a worsened lipid profile. In
addition, zinc ions can act in an insulin-mimetic manner in adipocytes, stimulating lipoge-
nesis and glucose transport through the translocation of glucose transporter 4 (GLUT4) to
the plasma membrane [109]. Zinc deficiency may play a significant role in the pathogenesis
of PCOS and may be a prognostic marker of PCOS. Studies showed that the average serum
zinc levels of PCOS patients are significantly lower compared with healthy controls [110].
In addition, serum zinc levels were shown to be lower in PCOS patients with impaired
glucose tolerance than in PCOS patients with normal glucose tolerance. [110]. Selenium
is associated with a lower level of CRP. It has anti-inflammatory and antioxidant proper-
ties [111]. Finally, it is necessary to supplement the omega-3 fatty acids, which tend to lack
in the diet of PCOS women. However, with the balanced diet, supplementation can be
regarded as a seasonal intervention [112]. Polyunsaturated fatty acids (PUFAs) enhance
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the reproductive performance in PCOS by increasing the expression of steroidogenesis
enzymes, which are related to hormone secretion and ovarian functions, and the protein
levels of CYP51, CYP19, StAR, and 3β-HSD [113]. In summary, supplementing the diet
is an individual subject that requires dietary consultation with the patient, and its active
participation and compliance is desirable for the overall improvement of the metabolic
equilibrium. A properly balanced diet and a healthy lifestyle should be the first element of
PCOS therapy.

2.5. Herbs Supporting Treatment

A balanced diet to support insulin management is the most important treatment for
PCOS; drinking infusions of some herbs would therefore be a very good complement to
the therapy, such as Aloe vera, cinnamon (Cinnamomum verum), green tea (Camellia sinensi),
and chamomile (Matricaria chamomilla), and white mulberry (Morus alba) [114]. There are
medical herbs can affect the lipid profile, blood glucose, and IR [115]. Because these herbs
have properties of regulating lipid and carbohydrate metabolism they can be used by all
phenotypes of PCOS women. Several of the herbs also have endocrine properties, these
were the ones mentioned earlier: green tea [116] and marjoram (Maiorana hortensis) are
some of the herbs whose effects include improvements in hormonal levels, ovaries weight,
insulin sensitivity, antioxidants, and anti-inflammatory parameters [117,118].

Another group of herbs is indicated especially for women with PCOS with biochemical
evidence of increased levels of androgens: green mint (Mentha spicata L.), which has
an antiandrogenic effect and restores follicular development in ovarian tissue [119,120];
licorice smooth (Glycyrrhiza glabra) has been used in the treatment of PCOS because of its
antiandrogen and estrogen-like activity. Licorice root appears to be effective in reducing
excess testosterone as it blocks the conversion of androstenedione. Glycyrrhetinic acid and
metabolites block 11 beta-hydroxysteroid dehydrogenase type 2 and bind mineralocorticoid
receptors directly, acting as agonists [121,122]. However, licorice is not a flawless solution,
having the potential to induce hypertension, hypokalemia, and metabolic alkalosis [123].
People with high cortisol levels should, therefore, avoid this preparation. The available
literature suggests a role of herbal drugs in the action against 5-alpha-reductase enzyme,
inhibiting it and reducing hair loss [124]. Serenoa repens, Camellia sinensis, Rosmarinus
officinalis, and Glycyrrhiza glabra can also lower androgen levels and inhibit androgenetic
alopecia [124]. Vitex agnus-castus is a good regulator of the menstrual cycle and has been
used in traditional medicine for centuries [125]. The best-studied dietary phytoestrogens are
the flaxseed lignans [126]. The lignan content of flax-seed (Linum usitatissimum) may alter
the activity of key enzymes involved in estrogen synthesis (e.g., aromatase) to modulate
relative levels of circulating sex hormones and their metabolites [127].

Turmeric (Curcuma longa), and specifically curcumin, is a biologically active phyto-
chemical ingredient [128,129]. Curcumin seems to be an efficient reducer of oxidative-stress-
related complications in patients with PCOS [130,131]. Moreover, curcumin attenuates
proangiogenic and proinflammatory factors in human eutopic endometrial stromal cells
through the NF-κB signaling pathway [132]. Nettle (Urtica dioica) is a multipurpose herb in
medicine for which some antioxidative, anti-inflammatory, antimutation, and antitumor
properties were identified [133,134]. The flavonoids are a family of compounds with an-
tioxidant activities that can modify specific enzymes, so they can inactivate some agents
such as nitrite peroxide and hydroxide radicals [135].

Ultimately, in advanced PCOS with accompanying disease associated with metabolic
syndrome and the steatosis of internal organs (especially non-alcoholic fatty liver disease),
herbs and their extracts with proven properties should be considered for their hepatopro-
tective activities [136]. These substances include the silymarin contained in milk thistle
(Silybum marianum) [137,138] and sesquiterpenes and antioxidant-active ingredients in
artichoke (Cynara Cardunculus) extract [139,140]. Dandelion (Taraxacum officinale) and its
component taraxasterol may silence the gene of SIRT1, preventing the disruption of hep-
atic cells [141]. Black cumin (Nigella sativa) also has similar properties, which should be
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included in the diet of obese PCOS patients [142]. To summarize, herbs and the substances
they contain offer many possibilities for interventions supporting the treatment of PCOS
at various stages of disease. The selection of the appropriate mixture may be individual-
ized depending on the occurrence of symptoms. Summary information has been added
in Table 1.

Table 1. Table summarizing described interventions of herbs and their effects.

A Symptom
Accompanying

PCOS
Diet Physical

Activity
Sleep

Regulation Supplementation Microbiota Herbs

Hirsutism reduced diet
[26,44,45,54,58]

magnesium, zinc,
calcium [89,108–111],

and vitamin
D [86–90],

myo-inositol [93–96]

green mint [120,121],
licorice smooth [122],

Serenoa repens,
Camellia sinensis,

Rosmarinus officinalis,
and Glycyrrhiza

glabra

The androgens
levels

diet with reduced
GI and calorie

[26,44,45,54,58],
Ketogenic
diet [64]

magnesium, zinc,
calcium [89,108–111],

and vitamin D
[86–90], berberine

[97–102], chromium
[105–107], zinc [110]

green mint [120,121],
licorice smooth [122],

Serenoa repens,
Camellia sinensis,

Rosmarinus officinalis,
and Glycyrrhiza

glabra [124]

Ovulation
disorders

diet with reduced
GI and calorie

[26,44,45,54,58],
Ketogenic
diet [64]

vitamin D [86–90],
myo-inositol [97,98]
berberine [99], zinc

[108], PUFAs
[112,113]

green mint [120,121],
licorice smooth [121],

Vitex agnus-castus
[124], flax-seed

[59,125,126]

Fat mass
reduction

high-fiber diet
with reduced GI

and calorie
[28,46,47,56,60],
ketogenic diet

[64] elimination
SFA [22,58]

daily physical
activity [68–71]

improving
sleep [72–77]

microbiota and
metabolites

[46,47]

Carbohydrate
metabolism

disorders

high-fiber diet
with reduced GI

and calorie
[26,44,45,54,58],

ketogenic
diet [64]

daily physical
activity [68–71]

improving
sleep [72–77]

vitamin B1 [82–84],
vitamin D [86–90],

myo-inositol [91–96],
berberine [97–102],

chromium [105–107],
zinc [109]

SCFA [47,52],
microbiota and
metabolites [50]

Aloe vera, cinnamon
green tea [115],
chamomile and

white mulberry [117]

Insulin resistance

high-fiber diet
with reduced GI

and calorie
[26,44,45,54,58],
elimination SFA

[22,58]

daily physical
activity [71–74]

improving
sleep [72–77]

melatonin [77]

vitamin D [86–90],
myo-inositol [91–96],

berberine [97–102]

Bifidobacteria
[45,50]

Aloe vera, cinnamon,
green tea, chamomile
and white mulberry

[117]

Lipids
metabolism

disorders

high-fiber diet
with reduced GI

and calorie
[26,44,45,54,58],
elimination SFA

[25,60]

daily physical
activity [68–71]

omega 3 [112,113],
berberine [97–102],

zinc [110]

SCFA [47,52];
microbiota and
metabolites [50]

milk thistle [137,138]
artichoke extract

[139,140]. Dandelion
[141], Black cumin

[142]

Steatosis of
organs-liver

profile

high-fiber diet
with reduced GI

and calorie
[46,47,56,60]

silymarin [137,138],
sesquiterpenes

[139,140],
taraxasterol [141]

milk thistle [137,138]
artichoke extract

[139,140]. Dandelion
[141], Black cumin

[142]

Cardiovascular
diseases

high-fiber diet
with reduced GI

and calorie
[46,47,56,60]

intensity
exercise [72]

α-linolenic acid [59],
vitamin B3 [80,81],
vitamin B1 [82–84],
coenzyme Q10 [85]

Intestinal
dysbiosis

high-fiber diet
[49,50]

Bifidobacteria
[45,50]
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Table 1. Cont.

A Symptom
Accompanying

PCOS
Diet Physical

Activity
Sleep

Regulation Supplementation Microbiota Herbs

Chronic
inflammation

high-fiber diet
with reduced GI

and calorie
[28,46,47,56,60]

melatonin [79]

α-linolenic acid [59],
vitamin B3 [80,81],
coenzyme Q10 [85],
vitamin D [88,89],

selenium [112],
flavonoids [135]

Bifidobacteria
[45,50]

Green tea and
Marjoram [117–119],
Turmeric [128–131],

Nettle [133,134],
milk thistle [137,138]

Artichoke extract
[139,140]. Dandelion

[141], Black
cumin [142]

Limiting
predisposition to

cancer

elimination SFA
[25,27]; high-fiber

diet [49,50]
α-linolenic acid [59] Turmeric [128–131],

Nettle [133,134]

Mental health
disorders

daily physical
activity [71–74]

improving
sleep [75]

vitamin D [86–90],
omega 3 (fish oil)

[72,90]

SCFA—short-chain fatty acids; GI—glycemic index; SFA—saturated fat acids; PUFA—Polyunsaturated fatty acid.

3. Conclusions

The analysis of metabolic symptoms occurring in the course of PCOS points to the
need for a multidirectional therapeutic approach. The metabolic pathways leading to the
abnormalities are presented, which requires focusing on the improvement of parameters
related to fertility, hirsutism, the occurrence of carbohydrate-lipid disturbances and the
reduction of insulin resistance. One of the most important pathways for blocking carcino-
genesis is presented. It has been shown that significant improvement of these parameters
depends on modifiable factors related to the improvement of lifestyle, the introduction of a
diet, especially a low-calorie diet with reduced GI, normalization of sleep and the introduc-
tion of daily physical activity. In addition, supplementing the diet with antioxidants and
herbs seems to be highly effective in combating the chronic inflammation (Curcuma longa),
improving liver steatosis (Silybum marianum, Nigella sativa) and the frequently occurring
intestinal dysbiosis (probiotic therapy). Conducting our own research in this area, we
examined how increasing the supply of vitamins and minerals with the diet affects the
supply of these components in patients, so we also searched the literature and described
suggested supplementation (inositol, thiamine, coenzyme Q10, vitamin D, zinc, selenium).
Undoubtedly there is a need for further research to be undertaken to determine the ef-
ficacy and applicability of the ingredients described as a support for traditional PCOS
management.

4. Methods of Searching

In this study, we reviewed the literature focused on PCOS therapy, unrelated to
medical therapy, by searching the records of international PubMed and Embase (Elsevier)
databases from the last 20 years.

All articles collected through the electronic search process used in this article were
reviewed from the abstract. Articles unrelated to the main topic, duplicate papers in both
databases (PubMed and Embase), and conference abstracts were excluded from the review
process. Only articles published in English were considered.

The main core of the issue was the authors’ own 10 years of experience and research
in this patient group. From the authors’ own studies, those that corresponded sequentially
to the intervention steps discussed were selected. The physiological basis was discussed
(searching the database for PCOS and insulin resistance or chronic inflammation or en-
docrine disorders or cancer or microbiota). Lifestyle changes were then discussed. Studies
that examined the association between PCOS and diet or supplementation (pcos + inositol;
PCOS + berberine; PCOS + vitamin D; PCOS + chromium; PCOS + zinc; PCOS + selenium;
PCOS + melatonin) or adjunctive herbs were included in the review. In the case of dupli-
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cation of information in publications, those that contribute most to the main topic were
selected.
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Ankaferd Blood Stopper®on Early Bone Healing. J. Appl. Oral Sci. 2010, 18, 409–414. [CrossRef] [PubMed]

134. Ziaei, R.; Foshati, S.; Hadi, A.; Kermani, M.A.H.; Ghavami, A.; Clark, C.C.T.; Tarrahi, M.J. The Effect of Nettle (Urtica Dioica)
Supplementation on the Glycemic Control of Patients with Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis.
Phytother. Res. 2020, 34, 282–294. [CrossRef] [PubMed]

135. Sarma Kataki, M.; Murugamani, V.; Rajkumari, A.; Singh Mehra, P.; Awasthi, D.; Shankar Yadav, R. Antioxidant, Hepatoprotective,
and Anthelmintic Activities of Methanol Extract of Urtica Dioica L. Leaves. Pharm. Crop. 2012, 3, 38–46. [CrossRef]

136. Ferro, D.; Baratta, F.; Pastori, D.; Cocomello, N.; Colantoni, A.; Angelico, F.; Del Ben, M. New Insights into the Pathogenesis of
Non-Alcoholic Fatty Liver Disease: Gut-Derived Lipopolysaccharides and Oxidative Stress. Nutrients 2020, 12, 2762. [CrossRef]

http://doi.org/10.1007/978-3-030-10811-3_28
http://doi.org/10.1039/C9FO01730E
http://doi.org/10.22159/ajpcr.2018.v11i3.22994
http://doi.org/10.1515/bmc-2020-0005
http://doi.org/10.4103/jehp.jehp_67_15
http://doi.org/10.1111/jhn.12290
http://doi.org/10.1016/j.lfs.2020.118353
http://www.ncbi.nlm.nih.gov/pubmed/32877649
http://doi.org/10.1002/ptr.2900
http://doi.org/10.15171/apb.2017.078
http://doi.org/10.3389/fendo.2019.00484
http://www.ncbi.nlm.nih.gov/pubmed/31379750
http://doi.org/10.1186/1472-6882-14-511
http://www.ncbi.nlm.nih.gov/pubmed/25524718
http://doi.org/10.1007/s11906-019-1007-y
http://www.ncbi.nlm.nih.gov/pubmed/31915940
http://doi.org/10.1111/jocd.12930
http://www.ncbi.nlm.nih.gov/pubmed/30980598
http://doi.org/10.1016/j.jtcme.2018.03.001
http://doi.org/10.1186/s13048-020-00633-8
http://doi.org/10.1016/j.jsbmb.2005.02.002
http://doi.org/10.1016/j.phymed.2020.153395
http://doi.org/10.1080/17512433.2021.1917380
http://doi.org/10.1016/j.dsx.2020.01.002
http://doi.org/10.3389/fphar.2021.643119
http://doi.org/10.1002/jcp.27360
http://doi.org/10.1590/S1678-77572010000400015
http://www.ncbi.nlm.nih.gov/pubmed/20835578
http://doi.org/10.1002/ptr.6535
http://www.ncbi.nlm.nih.gov/pubmed/31802554
http://doi.org/10.2174/2210290601203010038
http://doi.org/10.3390/nu12092762


Nutrients 2021, 13, 2452 18 of 18

137. Wat, E.; Wang, Y.; Chan, K.; Law, H.W.; Koon, C.M.; Lau, K.M.; Leung, P.C.; Yan, C.; Lau, C.B.S. An in Vitro and in Vivo Study of a
4-Herb Formula on the Management of Diet-Induced Metabolic Syndrome. Phytomedicine 2018, 42, 112–125. [CrossRef]

138. MacDonald-Ramos, K.; Michán, L.; Martínez-Ibarra, A.; Cerbón, M. Silymarin Is an Ally against Insulin Resistance: A Review.
Ann. Hepatol. 2020, 23, 100255. [CrossRef]

139. Oppedisano, F.; Muscoli, C.; Musolino, V.; Carresi, C.; Macrì, R.; Giancotta, C.; Bosco, F.; Maiuolo, J.; Scarano, F.; Paone, S.; et al.
The Protective Effect of Cynara Cardunculus Extract in Diet-Induced NAFLD: Involvement of OCTN1 and OCTN2 Transporter
Subfamily. Nutrients 2020, 12, 1435. [CrossRef]

140. Zhao, Y.-M.; Wang, C.; Zhang, R.; Hou, X.-J.; Zhao, F.; Zhang, J.-J.; Wang, C. [Study on literature of artichoke and properties of
traditional Chinese medicine]. Zhongguo Zhong Yao Za Zhi 2020, 45, 3481–3488. [CrossRef] [PubMed]

141. Park, S.; Kim, D.S.; Wu, X.; J Yi, Q. Mulberry and Dandelion Water Extracts Prevent Alcohol-Induced Steatosis with Alleviating
Gut Microbiome Dysbiosis. Exp. Biol. Med. 2018, 243, 882–894. [CrossRef] [PubMed]

142. Azizi, N.; Amini, M.R.; Djafarian, K.; Shab-Bidar, S. The Effects of Nigella Sativa Supplementation on Liver Enzymes Levels: A
Systematic Review and Meta-Analysis of Randomized Controlled Trials. Clin. Nutr. Res. 2021, 10, 72–82. [CrossRef] [PubMed]

http://doi.org/10.1016/j.phymed.2018.03.028
http://doi.org/10.1016/j.aohep.2020.08.072
http://doi.org/10.3390/nu12051435
http://doi.org/10.19540/j.cnki.cjcmm.20200426.601
http://www.ncbi.nlm.nih.gov/pubmed/32726065
http://doi.org/10.1177/1535370218789068
http://www.ncbi.nlm.nih.gov/pubmed/30105955
http://doi.org/10.7762/cnr.2021.10.1.72
http://www.ncbi.nlm.nih.gov/pubmed/33564654

	Introduction 
	Physiological Basis 
	Improvement in Metabolic Pathways 
	Insulin Resistance 
	Oxidative Stress and Chronic Inflammation 
	Anticancer Protection 

	Gut Microbiota Dysbiosis 

	Lifestyle Changes 
	Diet 
	Physical Activity 
	Sleep 
	Supplementation 
	Herbs Supporting Treatment 

	Conclusions 
	Methods of Searching 
	References

