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A POLICY ITERATION METHOD FOR MEAN FIELD GAMES

Simone Cacace1, Fabio Camilli2,* and Alessandro Goffi3

Abstract. The policy iteration method is a classical algorithm for solving optimal control problems.
In this paper, we introduce a policy iteration method for Mean Field Games systems, and we study the
convergence of this procedure to a solution of the problem. We also introduce suitable discretizations
to numerically solve both stationary and evolutive problems. We show the convergence of the policy
iteration method for the discrete problem and we study the performance of the proposed algorithm on
some examples in dimension one and two.
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1. Introduction

Mean Field Games (MFGs) models have been introduced in [25, 28] to describe stochastic differential games
with a very large number of agents. They have a wide range of applications in Engineering, Economics, and
Finance [17, 23]. From a mathematical point of view, MFGs theory leads to the study of a system of differential
equations composed, in the finite horizon case, by a backward Hamilton-Jacobi-Bellman (HJB) equation for the
value function of the single agent and a Fokker-Planck (FP) equation governing the distribution of the overall
population, i.e. 

−∂tu− ε∆u+H(Du) = F (m(x, t)) in Q

∂tm− ε∆m− div(mDpH(Du)) = 0 in Q

m(x, 0) = m0(x), u(x, T ) = uT (x) in Td ,
(1.1)

where Q := Td × (0, T ), Td stands for the flat torus Rd/Zd, ε > 0, H is the Hamiltonian term and F is the
so-called coupling term, depending locally on the density.

Apart from some very specific cases such as the linear-quadratic one [7], MFG systems typically have no
closed form solutions, hence they have to be solved numerically (see for example [1, 2, 4, 16] for a review). The
forward-backward structure of the system, the strong coupling among the equations and the nonlinearity of the
HJB equation are important features of the MFG system, and various strategies to solve the finite-dimensional
problems obtained via the discretization of the MFG system have been discussed in the literature [3, 11–14].
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The policy iteration method is usually attributed to Bellman [8] and Howard [24] and it has played a pivotal
role in the numerical solution of deterministic and stochastic control problems, both in discrete and continuous
settings. It can be interpreted as a linearization method for an intrinsically nonlinear problem, and its global
convergence in the finite dimensional case was proved in [24]. Moreover, Puterman and Brumelle [35] observed
that the policy iteration method can be also seen as a Newton’s algorithm for the nonlinear control problem;
therefore, if the initial guess is in a neighborhood of the true solution, then the convergence is quadratic. For
continuous control problems, assuming that the control set is bounded, the convergence of the method has
been obtained by Fleming [22] and Puterman [33, 34], who used this procedure to give a constructive proof
of the existence of classical and weak solutions to quasilinear parabolic differential equations arising in the
control of non-degenerate diffusion processes. Instead, for deterministic control problems with continuous state
space, despite the method is largely used in the computation of the value function and the optimal control, no
general convergence result is known. For recent results about the policy iteration method and its applications,
see [5, 10, 26, 36].

In this paper, we consider the following policy iteration algorithm for the MFG system (1.1). Let L(q) be
the Lagrangian associated to the Hamiltonian H. Fixed R > 0 and given a bounded, measurable vector field
q(0) : Td × [0, T ]→ Rd with ‖q(0)‖L∞(Q) ≤ R, we iterate on k ≥ 0

(i) Solve {
∂tm

(k) − ε∆m(k) − div(m(k)q(k)) = 0, in Q
m(k)(x, 0) = m0(x) in Td. (1.2)

(ii) Solve {
−∂tu(k) − ε∆u(k) + q(k) ·Du(k) − L(q(k)) = F (m(k)) in Q
u(k)(x, T ) = uT (x) in Td. (1.3)

(iii) Update the policy

q(k+1)(x, t) = arg max|q|≤R

{
q ·Du(k)(x, t)− L(q)

}
in Q. (1.4)

At kth-step, frozen the policy q(k), we first update m(k) by means of the forward FP equation (1.2), we plug the
new distribution of agents in (1.3) computing the corresponding value function u(k) and, lastly, we determine
the new policy q(k+1) corresponding to the value function u(k). If the coupling cost F is independent of the
density m, step (ii) and (iii) of the previous algorithm coincide with the classical policy iteration method for
the HJB equation in (1.1).

In our first result, see Theorem 3.1, we prove convergence (up to a subsequence) of the policy iteration
method for the MFG system (1.1) assuming that the Hamiltonian is convex and globally Lipschitz, hence in a
setting similar to [22, 33, 34].
Our second result, see Theorem 3.2, deals with Hamiltonians having polynomial growth and states that, for R
sufficiently large, the sequence (u(k),m(k)) given by (1.2)–(1.4) converges (up to a subsequence) to a solution
of (1.1). Since this result does not suppose the existence of a solution to (1.1) nor monotonicity assumptions, it
can be also seen as a constructive proof of the existence of solutions to (1.1).
As in [22, 33, 34], our approach relies on a priori estimates for the solutions of the linear problems (1.2), (1.3) in
spaces of maximal regularity and on compactness properties of the functional spaces where the solution of the
(nonlinear) problem is defined. With respect to former papers, we have two additional difficulties: the method is
applied to a system of PDEs instead that to a single equation; moreover, in the second result, the Hamiltonian
has polynomial gradient growth and therefore the control variable is defined in the whole Rd. The latter point
is solved by observing that, via an a priori gradient estimates from [19] for the solution to the HJB equation
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obtained via duality arguments, the behaviour of H only matters in a sufficiently large ball B(0, R). Hence, one
can truncate the Hamiltonian, note then that the solution of (1.1) and the one of the corresponding truncated
problem coincide and, finally, solve via policy iteration method the latter problem to obtain an approximation
of the former one.

We also briefly discuss in Section 4 a treatment for the stationary counterpart of (1.1) introduced by Lasry
and Lions [28], i.e. we implement a policy iteration algorithm for the ergodic MFG system


−ε∆u+H(Du) + λ = F (m(x)) in Td

−ε∆m− div(mDpH(Du)) = 0 in Td∫
Td m(x)dx = 1, m ≥ 0,

∫
Td u(x)dx = 0 ,

where λ stands for the ergodic constant. As it is well-known, this system describes the long-time average
asymptotics of solutions to (1.1) and it is widely analyzed in the literature, see e.g. [15, 32] and the references
therein. In this case, the convergence result for the policy iteration algorithm will be proved in Theorem 4.2.

Finally, we introduce suitable discretizations for both stationary and evolutive MFGs, and we employ the
policy iteration method to numerically solve the corresponding discrete systems. We show the convergence of the
policy iteration method for the discrete problem and we explain that it can be interpreted as a quasi-Newton
method applied to the discrete MFG system. Some numerical tests in dimension one and two complete the
presentation, including a performance comparison with a full Newton method.

The paper is organized as follows. In Section 2 we collect definitions and some technical lemmas necessary
to prove the convergence results for the parabolic problem, to which is devoted Section 3. Section 4 describes
the policy iteration method for the stationary ergodic MFG system. Section 5 comprehends the numerical
approximation and the convergence of the policy iteration for the discrete problem, while in Section 6 we show
some tests.

2. Notations and preliminary results

In this section we introduce some functional spaces and state some preliminary results we need in the
forthcoming sections.

We denote by Lr(Td) the space of all measurable and periodic functions on Rd belonging to Lrloc(Rd) equipped
with the norm ‖u‖r = ‖u‖Lr((0,1)d). For µ ∈ (0, 1), r ≥ 1, we denote with Wµ,r(Td) the standard fractional

Sobolev spaces of periodic functions u ∈ Lr(Td) such that the semi-norm

[u]Wµ,r(Td) =

(∫∫
Td×Td

|u(x)− u(y)|r

|x− y|d+µr
dxdy

) 1
r

,

is finite, thus endowed with the natural norm ‖ · ‖Wµ,r(Td) = ‖ · ‖r + [·]Wµ,r(Td). When µ > 1 is non-integer,

one writes µ = k + σ, with k ∈ N and σ ∈ (0, 1) and Wµ,r(Td) comprehends those functions f ∈W k,r(Td) (the
standard integer-order Sobolev space on the torus) whose distributional derivatives Dαf , |α| = k, belong to
Wσ,r(Td) previously defined. We refer the reader to [37] for a treatment of fractional spaces on the torus as well
as to [18, 30] for the definitions via real interpolation in Banach spaces, see also the references therein.

For any r ≥ 1, we denote by W 2,1
r (Q) the space of functions u such that ∂δtD

β
xu ∈ Lr(Q) for all multi-indices

β and δ such that |β|+ 2δ ≤ 2, endowed with the norm

‖u‖W 2,1
r (Q) =

∫∫
Q

∑
|β|+2δ≤2

|∂δtDβ
xu|rdxdt

 1
r

.
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We recall that, by classical results in interpolation theory, the sharp space of initial (or terminal) traces of

W 2,1
r (Q) is given by the fractional Sobolev class W 2− 2

r ,r(Td), cf. Corollary 1.14 of [30]. To treat problems with
divergence-type terms, we first define W 1,0

s (Q) as the space of functions such that the norm

‖u‖W 1,0
s (Q) := ‖u‖Ls(Q) +

∑
|β|=1

‖Dβ
xu‖Ls(Q)

is finite. Then, we denote by H1
s(Q) the space of those functions u ∈W 1,0

s (Q) with ∂tu ∈ (W 1,0
s′ (Q))′, equipped

with the natural norm

‖u‖H1
s(Q) := ‖u‖W 1,0

s (Q) + ‖∂tu‖(W 1,0

s′ (Q))′ .

For α ∈ (0, 1), we denote the classical parabolic Hölder space Cα,
α
2 (Q) as the space of functions u ∈ C(Q) such

that

[u]
Cα,

α
2 (Q)

:= sup
(x1,t1),(x2,t2)∈Q

|u(x1, t1)− u(x2, t2)|
(dist(x1, x2)2 + |t1 − t2|)

α
2
<∞ ,

where dist(x, y) stands for the geodesic distance from x to y in Td. If s > d + 2, then H1
s(Q) is continuously

embedded onto Cδ,δ/2(Q) for some δ ∈ (0, 1), see Appendix A of [31].
We now recall some standard parabolic regularity results we will use in the sequel.

Lemma 2.1. Let g : Q→ Rd be a bounded vector field and m0 ∈ L2(Td), m0 ≥ 0. Then the problem{
∂tm− ε∆m+ div(g(x, t)m) = 0 in Q,
m(x, 0) = m0(x) in Td,

has a unique solution m ∈ H1
2(Q), which is a.e. non negative on Q. Furthermore, if m0 ∈ L∞(Td), then m ∈

L∞(Q) ∩H1
2(Q) and, if m0 ∈W 1,s(Td), s ∈ (1,∞), we have

‖m‖H1
s(Q) ≤ C

for some constant C = C(‖g‖L∞(Q;Rd), ‖m0‖W 1,s(Td)).

Proof. The well-posedness and positivity of m are standard matter that can be found in [27], while integrability
estimates, even under weaker assumptions on the drift, can be found in [9]. When m0 ∈W 1,s(Td), the estimate
in H1

s can be obtained following the arguments in Proposition 2.2 of [19], although one can get the regularity
result even when m0 ∈W 1−2/s,s(Td) via maximal regularity.

Lemma 2.2. Let b ∈ L∞(Q;Rd), f ∈ Lr(Q) and uT ∈W 2− 2
r ,r(Td) for some r > d+ 2. Then the problem{

−∂tu− ε∆u+ b(x, t) ·Du = f(x, t) in Q

u(x, T ) = uT (x) in Td

admits a unique solution u ∈W 2,1
r (Q) and it holds

‖u‖W 2,1
r (Q) ≤ C(‖f‖Lr(Q) + ‖uT ‖

W 2− 2
r
,r(Td)

), (2.1)
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where C depends on the norm of the coefficients as well as on r, d, T and remains bounded for bounded values
of T . Furthermore, we have Du ∈ Cα,α/2 for some α ∈ (0, 1).
Finally, if the coefficients b, f belong to Cα,α/2(Q) and uT ∈ C2+α(Td), then

‖∂tu‖Cα, α2 (Q)
+ ‖D2u‖

Cα,
α
2 (Q)

≤ C(‖f‖
Cα,

α
2 (Q)

+ ‖uT ‖C2+α(Td)) , (2.2)

where C depends on the Cα,α/2-norm of the coefficients as well as on d, T and remains bounded for bounded
values of T .

Proof. The estimate (2.1) is a maximal regularity result that dates back to ([27], Thm. IV.9.1, p. 342), obtained
when b ∈ Lr(Q;Rd), r > d+ 2. The embedding of the spatial gradient in (parabolic) Hölder spaces for r > d+ 2
is proved in ([27], Cor. IV.9.1, p. 342), see also the embeddings in [18] (setting s = 1) for a proof via a slightly
different approach.
The Schauder estimate (2.2) is proved in ([27], Eq. (10.5), p. 352).

3. Convergence of the policy iteration method: the evolutive
problem

In this section, we prove the convergence of the policy iteration method for the evolutive problem. Concerning
the Hamiltonian, we focus on two different settings

(i) H is differentiable, convex and globally Lipschitz continuous, i.e. there exists a constant β > 0 such that

|DpH(p)| ≤ β for all p ∈ Rd . (3.1)

(ii) H is of the form

H(p) = |p|γ , γ > 1. (3.2)

We define the Lagrangian L : Rd → R as the Legendre transform of H, i.e. L(ν) = supp∈Rd {p · ν −H(p)}. In
particular, it holds

H(p) = p · q − L(q) if and only if q = DpH(p) .

Note that, if (3.1) holds, one can write H(p) = sup|q|≤β{p · q −L(q)} and therefore in this case we may assume
that the set of controls is bounded.
Concerning the coupling cost, we consider bounded local couplings by assuming that F : R+ → R is a continuous,
uniformly bounded function, i.e. there exists CF > 0 such

|F (m)| < CF for m ≥ 0. (3.3)

Finally, we suppose that

uT ∈W 2− 2
r ,r(Td), r > d+ 2,

m0 ∈W 1,s(Td), s > d+ 2, is non-negative and

∫
Td
m0(x)dx = 1.

(3.4)

Our first result concerns the case of a globally Lipschitz Hamiltonian, and extends to MFG systems the works
by Fleming and Puterman.
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Theorem 3.1. Let (3.1), (3.3), (3.4) be in force. Then the sequence (u(k),m(k)), generated by the policy iteration
algorithm converges, up to a subsequence, to a (strong) solution (u,m) ∈W 2,1

r (Q)×H1
s(Q) of (1.1).

Moreover, if ∫
Td

(F (m1)− F (m2))d(m1 −m2)(x) > 0 ,∀m1,m2 ∈ P(Td) ,m1 6= m2 , (3.5)

then all the sequence converges to the unique solution of (1.1).

Proof. Due to assumption (3.1), we have

H(p) = sup
|q|≤R

{p · q − L(q)} . (3.6)

for R = β. Moreover, the drift in the Fokker-Planck equation is uniformly bounded (independently of u). Given
the vector field q(k) defined as in (1.4) at step k − 1, by Lemma 2.1, in view of the boundedness of the velocity
field, we infer the existence of a unique weak solution m(k) of (1.2) satisfying

‖m(k)‖H1
s(Q) ≤ C. (3.7)

Moreover, by Lemma 2.2 and (3.3), there exists a unique strong solution u(k) ∈W 2,1
r (Q) such that

‖u(k)‖W 2,1
r (Q) ≤ C(‖F (m(k))‖Lr(Q) + ‖uT ‖

W 2− 2
r
,r(Q)

) , (3.8)

with C depending only on β. Since r > d+ 2, by parabolic Sobolev embeddings we have

‖Du(k)‖
Cα,

α
2 (Q)

≤ C (3.9)

and, by the hypotheses on H, this implies that H(Du(k)) is space-time Hölder continuous. Since the supremum
in (3.6) is attained at DpH(Du(k)), we have that

q(k+1)(x, t) = argmax|q|≤R

{
q ·Du(k)(x, t)− L(q)

}
= DpH(Du(k)).

In view of (3.7) and the continuous embedding of H1
s(Q) in Cδ,

δ
2 (Q) for some δ ∈ (0, 1), then there exists a

subsequence, still denoted by m(k), which uniformly converges to a continuous function m. By (3.8), (3.9), there
exists a subsequence, still denoted by u(k), and a function u such that u(k), Du(k) converge uniformly to u,Du
and ∂tu

(k), D2u(k) converge weakly in Lr(Q) to ∂tu,D
2u.

Consider the subsequence (u(k),m(k)) obtained by first extracting a subsequence m(k) converging to m and then
a subsequence u(k) converging to u. Then, passing to the limit in the weak formulation of (1.1) by means of the
aforementioned convergences, one finds that the limit value (u,m) ∈W 2,1

r (Q)×H1
s(Q) is a solution to (1.1) in

distributional sense.
Finally, if assumption (3.5) holds, by a classical argument in [28], (see [18], Thm. 5.1 CG1 with s = 1 and
observe that it is only necessary to have sufficiently smooth solutions to run the arguments), the system (1.1)
has a unique solution (u,m). Hence, since any converging subsequence of the policy iteration method converges
to the same limit, we get that all the sequence (u(k),m(k)) converges to the unique solution of (1.1).

In the proof of the previous result, we also obtain the uniform convergence of the policy q(k) = DpH(Du(k−1))
to the optimal control for the limit problem q = DpH(Du).
We now consider the case of a Hamiltonian of the form H(p) = |p|γ , for γ > 1. Our second main result is the
following



A POLICY ITERATION METHOD FOR MEAN FIELD GAMES 7

Theorem 3.2. Let (3.2), (3.3), (3.4) be in force. Then, for R sufficiently large in (1.4), the sequence (u(k),m(k)),
generated by the policy iteration algorithm converges, up to a subsequence, to a solution (u,m) ∈ W 2,1

r (Q) ×
H1
s(Q) of (1.1). Moreover, if (3.5) holds, then all the sequence converges to the unique solution of (1.1).

In this case, the main ingredient of the proof is an a priori gradient estimate recently obtained in [19] for
strong solutions to Hamilton-Jacobi equations with H as in (3.2) and unbounded right-hand sides, which is
stated in the next lemma for bounded source terms.

Lemma 3.3. Let f ∈ L∞(Q), H differentiable and, for some γ > 1,

DpH(p) · p−H(p) ≥ cH |p|γ − c̃H

C−1
H |p|

γ − CH ≤ H(p) ≤ CH(|p|γ + 1)

C−1
H |p|

γ−1 − CH ≤ |DpH(p)| ≤ CH(|p|γ−1 + 1)

for all p ∈ Rd and some positive constants cH , c̃H , CH . Then, if u ∈W 2,1
r (Q) is a strong solution to

∂tu− ε∆u+H(Du) = f(x, t) in Q

then there exists a constant C depending only on the data and cH , c̃H , CH such that

‖Du‖L∞(Q) ≤ C. (3.10)

Proof. The proof of this result, based on the Bernstein gradient estimate and the nonlinear adjoint method,
can be found in [19], Theorem 1.3, noting that, since f ∈ L∞(Q), then f ∈ Lq for every q > 1 and that
assumption (3.4) implies uT ∈ W 1,∞(Td) by standard Sobolev embeddings. We emphasize that the Bernstein
procedure can be applied to strong solutions in W 2,1

r arguing as in [20] without need to differentiate the
equation.

We are now in position to prove Theorem 3.2. In the proof, we first introduce a truncated Hamiltonian,
which is globally Lipschitz continuous. This is due to the fact that the solution of the first equation in (1.1)
satisfies the gradient bound in Lemma 3.3, which readily implies that the behaviour of H is important merely
for p ∈ B(0, R), R ∼ ‖Du‖L∞ and therefore, for R large enough in (1.4), a solution of the truncated problem is
also a solution of the original one. As a result, we can apply the convergence result proved in Theorem 3.1 to
the MFG system with H given by (3.2).

Proof of Theorem 3.2. Owing to the bound (3.10) and following e.g. [3], one introduces a truncated Hamiltonian
defined as

HS(p) =

{
|p|γ if |p| < S ,

(1− γ)Sγ + γSγ−1|p| if |p| ≥ S ,

and the problem 
−∂tu− ε∆u+HS(Du) = F (m(x, t)) in Q,

∂tm− ε∆m− div(mDpHS(Du)) = 0 in Q,

m(x, 0) = m0(x), u(x, T ) = uT (x) in Td .
(3.11)
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We observe that HS satisfies

DpHS(p) · p−HS(p) =

{
|p|γ if |p| < S ,

(γ − 1)Sγ−1 if |p| ≥ S .

Given a solution (uS ,mS) of the system (3.11), repeating the same proof of [19], one first proves the bound∫∫
Q

ρS min{|Du|γ , Sγ} dxdt ≤ C

with C independent of S, being ρS the solution to the adjoint problem{
∂tρ− ε∆ρ− div(ρDpHS(DuS)) = 0 in Q,

ρ(x, τ) = ρτ (x) in Td ,

where ρτ ∈ C∞(Td) with ‖ρτ‖1 = 1. Then, using the previous estimate, one gets the bound on
‖DuS(·, τ)‖L∞(Td), independent of S. So, if we take S large enough, we have that a solution of (3.11) is also
a solution of (1.1). Finally, since HS is globally Lipschitz continuous, the convergence of the policy iteration
method to a solution of (3.11), and therefore of (1.1), follows by Theorem 3.1.

Some comments on the previous result and its proof are in order.

Remark 3.4. For a Hamiltonian satisfying (3.2), Theorem 3.2 gives a convergence result for a policy iteration
method obtained by truncating the Hamiltonian at each step, not the original problem. On the other hand,
from the point of view of the numerical resolution of the problem, the truncation of the control space is natural
since the calculation of the optimal control must be performed on a bounded domain.

Remark 3.5. In the case of a regularizing coupling F and regular final data uT ∈ C2+α(Td), the convergence
results for the policy iteration method in Theorems 3.1 and 3.2 hold in the space C2+α,1+α

2 (Q) × H1
s(Q).

Indeed, in this case, it is possible to exploit the Schauder-type estimate in Lemma 2.2 since Du ∈ Cα,α/2(Q)
by parabolic Sobolev embeddings. Therefore the linear HJ equation can be regarded as a linear problem with
space-time Hölder coefficients.

4. The ergodic problem

We consider the stationary MFG system
−ε∆u+H(Du) + λ = F (m(x)) in Td

−ε∆m− div(mDpH(Du)) = 0 in Td∫
Td m(x)dx = 1, m ≥ 0,

∫
Td u(x)dx = 0 .

(4.1)

For fixed R > 0 and given a bounded, measurable function q(0) such that ‖q(0)‖L∞(Td) ≤ R, a policy iteration
method for (4.1) is given by

(i) Solve {
−ε∆m(k) − div(m(k)q(k)) = 0, in Td∫
Td m

(k)(x)dx = 1, m(k) ≥ 0.
(4.2)
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(ii) Solve {
−ε∆u(k) + q(k) ·Du(k) − L(q(k)) + λ(k) = F (m(k)(x)) in Td∫
Td u

(k)(x)dx = 0.
(4.3)

(iii) Update the policy

q(k+1)(x, t) = arg max|q|≤R

{
q ·Du(k)(x)− L(q)

}
in Td. (4.4)

We have the following convergence theorems for the stationary case.

Theorem 4.1. Let (3.1) and (3.3) be in force. Then, the sequence (u(k), λ(k),m(k)), generated by the policy
iteration algorithm converges, up to a subsequence, to a solution (u, λ,m) ∈W 2,r(Td)×R×W 1,s(Td) of (4.1),
uniformly in Td. Moreover, if (3.5) holds, then all the sequence converges to the unique solution of (4.1).

Proof. The proof goes along the same lines as Theorem 3.1 and we omit it. The only difference relies on the
use of the regularity results given in Lemma 2 and 3 in [6], which are the stationary counterpart of Lemma 2.1
and Lemma 2.2.

Theorem 4.2. Let (3.2) and (3.3) be in force. Then, for R sufficiently large, the sequence (u(k), λ(k),m(k)),
generated by the policy iteration algorithm converges, up to a subsequence, to a solution (u, λ,m) ∈W 2,r(Td)×
R×W 1,s(Td) of (4.1), uniformly in Td. Moreover, if (3.5) holds, then all the sequence converges to the unique
solution of (4.1).

Proof. The proof is similar to the one of the parabolic case and we do not give the details. To obtain the
stationary analogue of Lemma 3.3 it is enough to adapt the proof in [19] considering the dual equation

−ε∆ρ+ ρ− div(DpH(Du)ρ) = ψ in Td ,

where ψ ∈ C∞(Td), ‖ψ‖1 = 1 plays the same role of the initial datum of the parabolic adjoint problem in [19].
As alternative, one can use the integral Bernstein gradient estimate in [29], Theorem III.1 (see also [20]) as a
counterpart of that in Lemma 3.3.

5. Numerical approximation

In this section, we present some details on the numerical approximation of the stationary/evolutive MFG
systems, and we prove the convergence of the corresponding discrete policy iteration method in a simple setting.
We consider the reference case of the Eikonal-diffusion HJB equation, namely we choose the Hamiltonian

H(x,Du) =
1

2
|Du|2 − V (x) = sup

q∈Rd

{
q ·Du− 1

2
|q|2 − V (x)

}
,

where V is a given bounded potential, and we focus on the stationary ergodic problem (4.1).
We define a grid G on Td, the vectors U,M approximating respectively u,m at the grid nodes, and the

number Λ approximating the ergodic cost λ. Then, we approximate (4.1) by the following nonlinear problem
on G, 

−ε∆]U + 1
2 |D]U |2 + Λ = V] + F](M)

−ε∆]M − div](M D]U) = 0∫
]
M = 1 , M ≥ 0 ,

∫
]
U = 0

(5.1)
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where, in order to avoid cumbersome notation, we use the symbol ] to denote suitable discretizations of the
linear differential operators, evaluations of functions at the grid nodes, and quadrature rules for the integrals.
Typical choices on uniform grids are centered second order finite differences for the discrete Laplacian, and
simple rectangular quadrature rules for the integral terms, whereas the Hamiltonian and the divergence term in
the FP equation are both computed via the Engquist-Osher numerical flux for conservation laws. For instance,
in dimension d = 1, given a uniform discretization of Td with I nodes xi, for i = 0, . . . , I − 1, and space step
h = 1/I, we have

(∆]U)i =
1

h2

(
U[i−1] − 2Ui + U[i+1]

)
,

(D]U)i = (DLUi , DRUi) =
1

h

(
Ui − U[i−1] , U[i+1] − Ui

)
,

where the index operator [·] = {(·+ I)mod I} accounts for the periodic boundary conditions. Moreover, using
the notation (·)+ = max {·, 0} and (·)− = min {·, 0}, we have

(|D]U |2)i =
(
DLU

+
i

)2
+
(
DRU

−
i

)2
,

(div](M D]U))i =
1

h

(
M[i+1]DLU

+
[i+1] −MiDLU

+
i

)
+

1

h

(
MiDRU

−
i −M[i−1]DRU

−
[i−1]

)
,

(F](M))i = F (Mi) , (V])i = V (xi) ,

∫
]

M = h

I−1∑
i=0

Mi ,

∫
]

U = h

I−1∑
i=0

Ui ,

We refer the reader to [1, 4, 13] and the references therein, for further details on the discretization of MFG
systems.

It is well known that the two-sided gradient D] is designed to approximate viscosity solutions to Hamilton-
Jacobi equations, and to correctly catch, for first order equations, possible kinks in the solution U . It is worth
noting that, at a formal level, D]U acts in the scheme as a vector field with a number of components 2d, doubled
with respect to dimension d of the problem. This suggests a natural way to approximate the policy q in (4.2)–
(4.3) when building the policy iteration algorithm. Indeed, given an initial guess Q = (QL, QR) : G → R2d and
using the notation Q± = (Q+

L , Q
−
R), we set Q(0) = Q and we iterate on k ≥ 0 the following steps:

(i) Solve {
−ε∆]M

(k) − div](M
(k)Q(k)) = 0, on G∫

]
M (k) = 1 , M (k) ≥ 0.

(ii) Solve {
−ε∆]U

(k) +Q
(k)
± ·D]U

(k) + Λ(k) = 1
2 |Q

(k)
± |2 + V] + F](M

(k)) on G∫
]
U (k) = 0 .

(iii) Update the policy

Q(k+1) =

D]U
(k) if |D]U

(k)| ≤ R
D]U

(k)

|D]U(k)|R if |D]U
(k)| > R

on G. (5.2)
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In the following theorem, we prove the convergence of the above discrete policy iteration, in the case of a
quadratic Hamiltonian and in dimension one, but the argument can be extended with similar techniques to any
dimension and more general Hamiltonians.

Theorem 5.1. For R in (5.2) sufficiently large, the sequence (U (k),Λ(k),M (k)), generated by the policy iteration
algorithm, converges, up to a subsequence, to a solution (U,Λ,M) of (5.1). Moreover, if (3.5) holds, then all
the sequence converges to the unique solution of (5.1).

Proof. We first show that the policy iteration algorithm is well defined. To this end, we begin with the discrete
FP equation in (i), namely we consider the following matrix

A(Q) := −ε∆] − div](·Q) ,

for a given Q = (QL, QR) : G → R2 such that |Q| ≤ R for some R > 0. We claim that A(Q) is singular (e.g., for
Q = 0, we simply get the discrete Laplacian with periodic boundary conditions, which has a zero eigenvalue).
More precisely, we show that dim(ker(A(Q))) = 1. For i = 0, . . . , I − 1, the non zero entries of A(Q) are the
following

Ai,i(Q) = 2
ε

h2
+

1

h
Q+
L,i −

1

h
Q−R,i

Ai,[i−1](Q) = − ε

h2
+

1

h
Q−R,[i−1] Ai,[i+1](Q) = − ε

h2
− 1

h
Q+
L,[i+1] .

By Fredholm alternative, dim(ker(A(Q))) = dim(ker(AT (Q))), where the transpose matrix has the following
non zero entries

ATi,i(Q) = 2
ε

h2
+

1

h
Q+
L,i −

1

h
Q−R,i

ATi,[i−1](Q) = − ε

h2
− 1

h
Q+
L,i ATi,[i+1](Q) = − ε

h2
+

1

h
Q−R,i

,

namely

AT (Q) = −ε∆] +Q+
LDL +Q−RDR = −ε∆] +Q± ·D] ,

which is exactly the linear operator appearing in the linearized HJ equation (ii) (conversely this duality is just
exploited in [1], Remark 1 to define the discrete divergence operator div]). Since the Hamiltonian

g(xi, p1, p2) =
1

h
Q+
L,ip1 +

1

h
Q−R,ip2, (p1, p2) ∈ R2, (5.3)

is continuous, non decreasing with respect to p1, non increasing with respect to p2 and convex, it can be proved
that the equation AT (Q)U = 0 admits only constant solutions (C, . . . , C) ∈ R|G| for C ∈ R, see step 1 of [1],
Theorem 1. We conclude that dim(ker(AT (Q))) = 1 and the claim is proved.

We now build a solution M ∈ R|G| of the discrete FP equation A(Q)M = 0 satisfying M ≥ 0 and
∫
]
M = 1.

To this hand, we recall that |Q| ≤ R and we observe that A(Q) has a non negative diagonal and non positive
off-diagonals, since by definition Q+

L ≥ 0 and Q−R ≤ 0. This implies that, for µ > 0 sufficiently large, the matrix
µI +A(Q) is a non singular M-matrix, hence the following iterations on s ≥ 0 are well defined

(µI +A(Q))W (s+1) = µW (s) .

Moreover, if we choose W (0) ∈ R|G| \ {0} such that W (0) ≥ 0 and
∫
]
W (0) = 1, the same properties hold for

every s ≥ 0, respectively due to the monotonicity of the M-matrix and by definition of A(Q). In particular, the
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sequence W (s) is bounded. Therefore it converges, up to a subsequence, to a vector M ≥ 0 satisfying
∫
]
M = 1

and

(µI +A(Q))M = µM ⇐⇒ A(Q)M = 0 .

Since dim(ker(A(Q))) = 1, it follows that M is the unique solution of the discrete FP equation satisfying∫
]
M = 1. In particular, the whole sequence W (s) is convergent and it provides a constructive way to compute

M . Surprisingly, we found out that the condition
∫
]
M = 1 is enough to prevent a change of sign in M , hence,

a posteriori, the condition M ≥ 0 can be omitted.
Summing up, we proved that, for every Q(k) : G → R2 such that |Q(k)| ≤ R, there exists a unique solution to
the problem in step (i) of the policy iteration.

We now consider the problem in step (ii). Using again the Hamiltonian (5.3) with Q(k) in place of Q, it can
be proved (as in step 1 of [1], Thm. 1) that the problem admits a unique solution (U (k),Λ(k)) satisfying the
normalization condition

∫
]
U (k) = 0. Moreover the following estimates hold

|Λ(k)| ≤ C1, max
G

(|D]U
(k)|) ≤ C2,

for two positive constants C1, C2 depending on R, maxG |V]| and maxG |F]|. Hence, also the sequence
{(U (k),Λ(k))}k∈N is bounded in R|G| × R.
Therefore, up to a subsequence, we find that, as k →∞, (U (k),Λ(k),M (k)) converges to (U,Λ,M) ∈ R|G| ×R×
R|G| and Q(k) converges to Q ∈ R|G|×|G|. Moreover, passing to the limit in (i)–(iii), (U,Λ,M) satisfies

−ε∆]U +Q ·D]U + Λ = 1
2 |Q|

2 + V] + F](M)
−ε∆]M − div](MQ) = 0∫
]
M = 1 , M ≥ 0 ,

∫
]
U = 0

(5.4)

and

Q =

D]U if |D]U | ≤ R,
D]U
|D]U |R if |D]U | > R.

By [1], Theorem 3, (5.1) has a solution and, since the problem is discrete, it trivially satisfies

max
G
|D]U | ≤ C, (5.5)

for some constant C, depending on h. Hence, for R sufficiently large, solutions to (5.4) are also solutions to (5.1)
and therefore, for such R, we get the convergence of the policy iteration method. Moreover, if (3.5) holds, then
the solution of (5.1) is unique (see [1], . 3) and therefore we get the convergence of all the sequence.

Remark 5.2. As observed, the estimate (5.5) is not uniform in h. But, since we are studying the convergence
of the policy iteration method for h fixed, this is not an issue at this level. Estimates on the discrete gradient,
uniform in h, are provided in [1, 2], also for more general Hamiltonians. They are important to study the
convergence of the discrete problem to the continuous one, but we do not consider this point here.

For the sake of comparison, we consider here the direct method for stationary MFGs introduced in [13],
which is based on a Newton-like algorithm applied to the full system (5.1), rewritten as a multidimensional
root-finding problem. More precisely, performing a linearization of (5.1) with respect to (U,M,Λ), along a
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direction (WU ,WM ,WΛ) and starting from an initial guess (U (0),M (0),Λ(0)), we get the following Newton
iterations for k ≥ 0,

J [U (k),M (k),Λ(k)]

 WU

WM

WΛ

 = −F(U (k),M (k),Λ(k)) , (5.6)

with updates

(U (k+1),M (k+1),Λ(k+1)) = (U (k),M (k),Λ(k)) + (WU ,WM ,WΛ) ,

where, denoting by |G| the number of nodes of G, the map F : R2|G|+1 → R2|G|+2 is defined as

F(U,M,Λ) =


−ε∆]U + 1

2 |D]U |2 − V] − F](M) + Λ
−ε∆]M − div](M D]U)∫

]
U∫

]
M − 1

 , (5.7)

while the Jacobian matrix J is given by

J [U,M,Λ] =


−ε∆] +D]U ·D] −F ′](M) 1]
−div](M

(k)D] ·) −ε∆] − div](·D]U) 0]∫
]

0 0

0
∫
]

0


with 0] = (0, . . . , 0)T ∈ R|G| and 1] = (1, . . . , 1)T ∈ R|G|.

Note that, for each k ≥ 0, the above linear system consists in 2|G| + 2 equations in the 2|G| + 1 unknowns
(WU ,WM ,WΛ), and its solution is meant in a least-squares sense, see [13] for further details. By rewriting
(WU ,WM ,WΛ) in terms of successive iterations, we readily end up with

−ε∆]U
(k+1) +D]U

(k) ·D]U
(k+1) − F ′](M (k))(M (k+1) −M (k)) + Λ(k+1)

= 1
2 |D]U

(k)|2 + V] + F](M
(k)) ,

−div](M
(k)D](U

(k+1) − U (k)))− ε∆]M
(k+1) − div](M

(k+1)D]U
(k)) = 0 ,

∫
]
M (k+1) = 1 ,

∫
]
U (k+1) = 0 .

Since both U (k) and M (k) are expected to converge, we can neglect, for k large, the two terms F ′](M
(k))(M (k+1)−

M (k)) and div](M
(k)D](U

(k+1) − U (k))). This completely decouples the above system, and yields exactly the
policy iteration algorithm by setting Q(k) = D]U

(k) at each iteration. Thus, we can reinterpret the policy
iteration as a quasi-Newton method for the system (5.1), by dropping the two corresponding off-diagonal blocks
in the Jacobian matrix J .

6. Numerical simulations

Here, we provide some details on the implementation of the policy iteration method. Then we present a
comparison with the direct Newton method (5.6) for a stationary MFG system in dimension one, and a test in
dimension two for the evolutive case.
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Concerning the stationary case, at each iteration k, the solution of the discrete FP equation in step (i) is
obtained by the M-matrix regularization discussed in Theorem 5.1: starting from an initial guessW (0) ∈ RG \{0},
with W (0) ≥ 0 and

∫
]
W (0) = 1, we solve iteratively on s ≥ 0

(µI +A(Q(k)))W (s+1) = µW (s) ,

namely a sequence of linear systems of size |G| × |G|. Note that this introduces an additional (inner) iteration
in the policy iteration algorithm. Moreover, by rewriting each linear system in the form

W (s+1) −W (s)

1
µ

= −A(Q(k)))W (s) ,

we can reinterpret the regularization as an implicit gradient descent scheme with step 1
µ for finding the zeros

of A(Q(k)), via minimization of its associated quadratic form. It is clear that, as we increase µ to recover the
M-matrix property, we dramatically loose the advantage of an implicit scheme, slowing down the convergence
of W (s). In practice we can tune the parameter µ for the specific test, and perform only a fixed number of inner
iterations.

For the remaining steps of the policy iteration algorithm, we observe that step (ii) corresponds to the solution
of a square linear system of size (|G|+ 1)× (|G|+ 1) in the unknowns (U (k),Λ(k)), while the policy update in
step (iii) is explicit due to the particular choice for the Hamiltonian. In the general case, according to (4.4), a
point-wise optimization on G is needed to obtain the new policy.

On the other hand, each iteration in the direct Newton method (5.6) requires the solution of a system of
size (2|G|+ 2)× (2|G|+ 1) in a least-squares sense. Both algorithms are implemented in C language, employing
the free library SuiteSparseQR [21] for solving the linear systems via QR factorization. To check convergence,
given a tolerance τ > 0, we rely on the 2-norm of the residual for the discrete nonlinear system (5.7), requiring
‖F(U (k),M (k),Λ(k))‖2 < τ .

In the following test, we set the problem in dimension d = 1, with τ = 10−8, ε = 0.3, V (x) = sin(2πx) +
cos(4πx) and F (m) = m2. In particular, the choice of the coupling cost satisfies the monotonicity assump-
tion (3.5), ensuring uniqueness of solutions for the MFG system. Moreover, we set the initial guess for the
Newton method as U (0) ≡ 0, M (0) ≡ 1 on G and Λ(0) = 0, while we take the initial policy Q(0) ≡ (0, 0) on G
for the policy iteration algorithm. Finally, for the inner M-matrix iterations, we set µ = 10−3 and s = 1, with
W (0) ≡ 1 for k = 0 and W (0) = M (k−1) for k ≥ 1.

Figure 1 shows the solution computed by the policy iteration algorithm on a grid with |G| = 200 nodes, while
in Figure 2 we compare the performace of the two methods. More precisely, in Figure 2a, we show the residuals
of the two methods, against the number of iterations needed to reach the given tolerance τ . The Newton method
converges in just 5 iterations, while the policy iteration requires 24 iterations. Similarly, in Figure 2b-c-d we
show the differences between the solutions of the two methods in the discrete L2 norm, against the number of
iterations. Due to the particular choice of the initial guess, at the first iteration the two methods compute the
same solution, but the policy iteration algorithm requires more iterations to reach the same accuracy for the
residual. This is clearly expected, since the Newton method employs the descent direction associated to the full
Jacobian matrix J . Nevertheless, as reported in Table 1, the policy iteration exhibits a better performance as
the number of grid nodes increases, due to the reduced size of the corresponding linear systems (see the averaged
CPU times per iteration). We must observe that the comparison is not truly fair, since the update step for the
policy iteration is explicit in this example, with a negligible computational cost. However, in the general case,
we expect that the relevant speed-up of the proposed algorithm on large grids can compensate the efforts for
the optimization process (4.4), since it is a point-wise procedure that can be completely parallelized.

Now, let us consider the evolutive MFG system (1.1), again in the special case of the Eikonal-diffusion
HJB equation, but in dimension d = 2. Spatial discretization is performed in both dimensions as in the one
dimensional case, while, for time discretization, we employ an implicit Euler method for both the time-forward
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Figure 1. Policy iteration solution for the stationary MFG system, (a) the corrector u and
(b) the density m.

Table 1. Policy iteration (PI) vs Newton method (NM) under grid refinement, number of
iterations, averaged CPU times per iteration, and total CPU times.

|G| Its Av.CPU/It (secs) Total CPU (secs)

NM 200 5 0.006 0.034
PI 200 24 0.003 0.079

NM 500 5 0.037 0.189
PI 500 25 0.009 0.247

NM 1000 5 0.173 0.865
PI 1000 25 0.036 0.917

NM 2000 5 0.973 4.869
PI 2000 25 0.241 6.039

NM 5000 5 13.662 68.313
PI 5000 25 1.724 43.115

NM 10000 5 123.769 618.845
PI 10000 25 7.917 197.949

FP equation and the time-backward HJB equation. To this end, we introduce a uniform grid on the interval
[0, T ] with N + 1 nodes tn = ndt, for n = 0, . . . , N , and time step dt = T/N . Then, we denote by Un,Mn and
Qn the vectors on G approximating respectively the solution and the policy at time tn. In particular, we set on
G the initial condition M0 = m0(·) and the final condition UN = uT (·). The policy iteration algorithm for the

fully discretized system is the following: given an initial guess Q
(0)
n : G → R2d for n = 0, . . . , N , initial and final

data M0, UN : G → R, iterate on k ≥ 0 up to convergence,

(i) Solve for n = 0, . . . , N − 1 on G

{
M

(k)
n+1 − dt

(
ε∆]M

(k)
n+1 + div](M

(k)
n+1Q

(k)
n+1)

)
= M

(k)
n

M
(k)
0 = M0
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Figure 2. Policy iteration vs Newton method, (a) MFG system residuals and (b-c-d) differences
in the solutions u, m, λ.

(ii) Solve for n = N − 1, . . . , 0 on G
U

(k)
n − dt

(
ε∆]U

(k)
n −Q(k)

n,± ·D]U
(k)
n

)
= Un+1 + dt

(
1
2 |Q

(k)
n+1,±|2 + V] + F](M

(k)
n+1)

)
U

(k)
N = UN

(iii) Update the policy Q
(k+1)
n = D]U

(k)
n on G for n = 0, . . . , N , and set k ← k + 1.

Note that each iteration of the algorithm now requires the solution of 2N linear systems of size |G| × |G|.
In the following test, we choose a number of nodes I = 50 for each space dimension and N = 100 nodes in

time, corresponding to 200 linear systems of size 2500 × 2500 per iteration. We set the final time T = 1, the
diffusion coefficient ε = 0.3, the coupling cost F (m) = m2 and the potential V (x1, x2) = −| sin(2πx1) sin(2πx2)|.
Moreover, to check convergence, we rely on the discrete L2 squared distance between policies at successive

iterations, i.e. we stop the algorithm when max
n

∫
]

|Q(k+1)
n −Q(k)

n |2 < τ , setting the tolerance τ = 10−8. Finally,

we take the initial policy Q
(0)
n ≡ (0, 0, 0, 0) on G for n = 0, . . . , N , while we define the initial and final data M0

and UN approximating on G the functions m0(x1, x2) = −uT (x1, x2) = C exp
{
−40[(x1 − 1

2 )2 + (x2 − 1
2 )2]

}
,
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Figure 3. Solution of the evolutive MFG system at different times, mass density in gray scales
and optimal dynamics.
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namely two Gaussian with opposite signs centered at the point ( 1
2 ,

1
2 ), with C > 0 such that

∫
T2 m0(x)dx = 1.

The algorithm requires 58 iterations to reach convergence up to τ , with an averaged CPU time per iteration of 7.3
seconds, and a total CPU time of 423 seconds. In Figure 3, we report some relevant frames of the time evolution,
by plotting, for n fixed, the solution density Mn in gray scales, and superimposing the optimal dynamics for the
FP equation, which is obtained by merging the two-sided components of Qn, namely (Q1

n,L+Q1
n,R, Q

2
n,L+Q2

n,R).

We remark that, by definition, the absolute minimum of the potential V is achieved at the points ( 1
4 ,

1
4 ), ( 3

4 ,
1
4 ),

( 1
4 ,

3
4 ), ( 3

4 ,
3
4 ). We observe that the optimal dynamics readily splits the density symmetrically in four parts,

pushing them to concentrate around these minimizers, while, in the final part of the time interval [0, T ], it forces
the density to merge again and concentrate exactly around the point (1/2, 1/2) (i.e. the absolute minimizer of
uT ), in order to to satisfy the final condition for the HJB equation. This configuration corresponds to the so called
turnpike phenomenon [32]. Roughly speaking, it turns out that the solution of the evolutive problem corresponds
to approach the solution of the corresponding stationary ergodic problem, standing on this equilibrium as long
as possible before moving again towards uT .
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