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Abstract This paper considers a class of probabilistic cellular automata undergoing a phase
transition with an absorbing state. Denoting byU(x) the neighbourhood of site x , the transition
probability is T (ηx = 1|ηU(x)) = 0 if ηU(x) = 0 or p otherwise, ∀x ∈ Z. For any U there
exists a non-trivial critical probability pc(U) that separates a phase with an absorbing state
from a fluctuating phase. This paper studies how the neighbourhood affects the value of
pc(U) and provides lower bounds for pc(U). Furthermore, by using dynamic renormalization
techniques, we prove that the expected convergence time of the processes on a finite space
with periodic boundaries grows exponentially (resp. logarithmically) with the system size if
p > pc (resp. p < pc). This provides a partial answer to an open problem in Toom et al.
(Stochastic Cellular Systems: Ergodicity, Memory, Morphogenesis, pp. 1–182. Manchester
University Press, Manchester, 1990; Topics in Contemporary Probability and its Applications,
pp. 117–157. CRC Press, Boca Raton, 1995).

Keywords Probabilistic cellular automata · Percolation systems · Convergence time ·
Stavskaya’s process · Absorbing-state phase transition

1 Introduction

Probabilistic cellular automata (PCA) are discrete-time Markov processes modelling the time
evolution of a multicomponent system. Their main feature is the synchronous update of the
states of the components, which take values in a finite set and interact with their neighbours
according to a given probabilistic interaction rule.

Probabilistic cellular automata are favourable models to study non-equilibrium phenom-
ena. Indeed, on the one hand, their definition is simple, as the space of realizations is discrete
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and interactions are local. On the other hand, despite this simplicity, they show a variety of
complex behaviours.

One of the interesting phenomena involving probabilistic cellular automata is that they
show a transition from an ergodic to a non-ergodic regime. Namely, after setting a free
parameter above or below a certain critical threshold, at infinite time the process preserves part
of the information on its initial state (non-ergodic behaviour). This means that the probability
measure at infinite time depends on the initial state of the dynamics. On the contrary, if the
process is ergodic, it admits a unique, attracting invariant measure. In [12] it has been shown
that the non-ergodic regime of a PCA is connected to the existence of a phase transition for
the PCA, considered as a statistical mechanics system.

Over the last 50 years, PCA have undergone intense analytical and numerical investiga-
tions (e.g. [4,12,24,25]). However, as far as we know, many questions involving the rate
of convergence to equilibrium or the characterisation of the invariant measures still remain
open, even for the simplest models (see e.g. [23,25] for a survey).

In this paper we consider a class of PCA that has a correspondence with percolation.
These models are refereed to as Percolation Systems in [23] and as Percolation Operators in
[25]. From now on we will refer to them as Percolation PCA. This class includes the well
studied Stavksaya’s process (see e.g. [5,6,19–21,23–25]), in which the neighbourhood of
every site corresponds to the site itself and its right nearest neighbour on the one dimensional
lattice. On the contrary in Percolation PCA the neighbourhood of every site could be any
finite (translation invariant) set.

The reason why we decided to consider Percolation PCA is that their simplicity, combined
with the presence of a phase transition, make them an interesting test case for attempts to
characterise transient behaviour and stationary measures for spatially extended stochastic
dynamics. Namely, Percolation PCA are a prominent model for studying absorbing state
phase transitions [10], i.e. there exists a phase characterised by almost sure convergence into
an “absorbing state” (a realisation where the process remains for ever whenever reached) and
a fluctuating phase, where the process remains active at all times.

In this paper we discuss two distinct aspects of Percolation PCA. In Sect. 3 we consider
Percolation PCA on a finite one dimensional lattice with periodic boundaries and we study
the time the process needs to reach the absorbing state (absorption time). Our main result
is stated in Theorem 2.1. We show that at the critical probability pc there exists a transition
from a fast to a slow convergence regime. Namely, we prove that the expected absorption
time of the model grows exponentially (resp. logarithmically) as the size of the system grows
if p > pc(U) (resp. p < pc(U)). This provides a partial answer to the Unsolved Problem
5.3.3 in [23] and to an open problem mentioned in [25, pp. 80–83]. If compared with [25],
where the fast (resp. slow) convergence behaviour is proved for p small enough (resp. close
enough to 1), our result provides a sharp estimation. The slow convergence regime can be
interpreted as a metastable behaviour of the model, as the process spends an exceptionally
long time into a non-stable state before falling into the absorbing state. Similar studies on the
metastable behaviour of PCA models were recently presented also in [2,3,13], although the
methods used there do not apply in our case, as Percolation PCA are not reversible and do
not have a naturally associated potential. Numerical estimations of pc(U) (e.g. [11,14,18])
are obtained assuming that the metastable regime (the actual regime observed in numerical
simulations, as there is no way to really simulate “infinite space” in computers) is observed
only for all values of p at which the infinite process is in the fluctuating phase. Although this
fact might appear obvious in terms of physical intuition, Theorem 2.1 provides a justification
for this assumption from a rigorous mathematical point of view.
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The proof of our result relies almost entirely on the correspondence between Percolation
PCA and oriented percolation in two dimensions. This connection has been described for the
first time in [22]. The proof of the statement of the theorem involving the case of p < pc is an
application of some percolation estimations presented in [8]. We generalize these estimates
to the percolation model considered here, which differs from [8] as here the neighbourhood
is an arbitrary finite set and because sites (instead of bonds) can be open or closed. The proof
of the statement involving the case of p > pc is more technical and is based on (1) the
generalization of the dynamic-block argument presented in [8] to the case of non symmetric
neighbourhood with more than two elements and (2) the estimation of the probability of a
certain event involving a dual lattice construction provided by [22].

In Sect. 4 we study how the neighbourhood affects the critical probability. We provide a
lower bound for critical probabilities pc(U) and our result is stated in Theorem 2.2. With our
estimations we improve the previous lower bound [17] showing that pc(U) > 1/2 strictly
if the neighbourhood U = {−1, 0, 1}. Furthermore, we provide new bounds in case of
neighbourhoods not considered before (as far as we know). The comparison with numerical
estimations, provided in the last section of this article, shows that our bounds are sharp. In
order to derive the lower bound we studied the temporal evolution of “absorbed sets” (sets
of adjacent sites all in state “zero”). If these sets on average are expanding, the realisation at
infinite time is “all zeros” almost surely. This idea comes from [25, Chapter 6]. Our estima-
tions take into account a certain aspect of the dynamics, i.e. absorbed sets can dynamically
merge one with the other. This leads to an improvement of the bound.

We shall end this introductory section by presenting the structure of the paper. In Sect. 2 we
define the model and we present our main results, Theorems 2.1 and 2.2. In Sect. 3, divided
into three subsections, we prove Theorem 2.1. In Sect. 3.1 we describe the correspondence
between Percolation PCA and oriented percolation in two dimension, following [22,25]. In
Sect. 3.2 we present several percolation estimations from [8] used to prove of the theorem.
Finally in Sect. 3.3 we prove Theorem 2.1. In Sect. 4 we prove Theorem 2.2.

2 Definition and Results

Probabilistic Cellular Automata (PCA) are discrete-time Markov chains on a product space,
� = X S . In this paper we consider both the case of infinite space, S = Z, and of finite space,
S = Sn , Sn := {−n,−n + 1, . . . , n − 2, n − 1}.

We consider the case of boolean variables, X = {0, 1}. Realisations of the process are
denoted by η ∈ �. For any x ∈ S and any K ⊂ S, use ηx to denote the x-th component of
the vector η and ηK to designate the set of components corresponding to the sites of K .

We introduce a neighbourhood function on S. We first fix a finite set U = {s1, s2, . . . , su} ⊂
Z, assuming that s1 < s2 < · · · < su . If S = Z, ∀x ∈ S we define the neighbourhood of x
as U(x) = {s1, s2, . . . , su} + x . If S = Sn we consider periodic boundaries. Namely, for any
∀x ∈ Sn we define the neighbourhood of x as

U(x) = {|x + s1 + n|2n − n, |x + s2 + n|2n − n, . . . , |x + su + n|2n − n
}
, (1)

where |x |2n denotes x (mod 2n). For example, if U = {0, 1}, the neighbourhood of the site
n − 1 is U(n − 1) = {n − 1,−n}. For any set K ⊂ S, we define the neighbourhood of K as
U(K ) = ⋃

x∈K U(x).
In Percolation PCA the states of the process are synchronously updated at every site

according to the following transition probability,
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Fig. 1 Representation of the graph GU with neighbourhood U = {−1, 0, 1}. In this figure only edges between
vertices belonging to the evolution cone of (0, t) have been drawn

Tx
(
η′

x = 1|ηU(x)

) =
{

0 if ηU(x) = 0

p otherwise
, (2)

where p ∈ [0, 1] is a free parameter.1

The temporal evolution of the process can be represented by introducing a linear operator
P , which acts on the space of probability measures M(�). For any μ ∈ M(�), we use μP
to denote the measure obtained applying P to μ. By using Cη′

K
to denote the cylinder set

Cη′
K

= {η ∈ � : ηK = η′
K }, with K ⊂ S, the measure μP is defined as

μP(Cη′
K

) =
∑

ηU(K )∈{0,1}U(K )

μ
(
CηU(K )

) ∏

x∈K

Tx
(
η′

x |ηU(x)

)
. (3)

In order to characterise the time evolution of PCA, it is useful to introduce the set of
space-time realisations, �̃ = {0, 1}V , where V = S × N is the space-time set. The elements
of �̃ are the realisations of the process at all times, η̃ = (ηt )

∞
t=0 ∈ �̃. We then introduce an

oriented graph GU = (V, EU ), whose edges connect any vertex (x, t) ∈ V to the vertices
(k, t − 1) ∈ V , where k ∈ U(x). The vertices that can be reached from (x, t) ∈ V through a
path on GU constitute the evolution cone of (0, t) (Fig. 1).

We now introduce some definitions that will be used along the whole article.

Definition 1 (Evolution Measure) Consider the Percolation PCA (3) with S = Z (respec-
tively S = Sn and periodic boundaries). For every μ ∈ M(�), we define the evolution
measure Eμ (respectively En

μ) as the joint probability distribution of measures μ, μP1, μP2,
. . ..

For example, we use En
δ1

to denote the evolution measure of the Percolation PCA on finite
space, starting from the realisation “all ones”.

Definition 2 (Expectation on the evolution space) Consider the Percolation PCA (3) with
S = Z (respectively S = Sn and periodic boundaries). We use Eμ[·] (respectively E

(n)
μ [·]) to

denote the expectation in relation to the evolution measure Eμ (respectively En
μ).

1 We use a different notation from [23–25]: here p corresponds to 1 − ε and zeroes and ones are inverted.
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Monotonicity It is immediate from the definition of transition probability that the Dirac
measure δ0, where 0 = (0, 0, 0, . . .), is stationary, i.e. δ0 = δ0P . Furthermore, the operator
P of this stochastic process is monotone. Monotonicity of P means that it preserves partial
order among elements of M(�). We first introduce partial order “ ≺ ” in � by defining for
any two realizations η, η′ ∈ �, η ≺ η′ ⇔ ∀x ∈ S ηx ≤ η′

x . We then introduce the functions
ϕ : � 
−→ R, which only depend on a finite number of sites. We call ϕ monotone iff for any
η, η′ ∈ �, η ≺ η′ ⇒ ϕ(η) ≤ ϕ(η′). We then introduce partial order in M(�) by defining
μ ≺ μ′ ⇔ for any monotone function ϕ ,

∫
ϕ dμ ≤ ∫

ϕ dμ′. Finally, we introduce an order
relation between operators and we introduce the notion of monotone operator.

Definition 3 (Monotone operator) An operator P : M(�) 
−→ M(�) is called monotone
if for any pair of measures μ,μ′ ∈ M(�), μ ≺ μ′ ⇒ μP ≺ μ′P .

The operator (3) of the Percolation PCA is monotone. This property follows from the fact
that the transition probability (2) preserves order locally, i.e. for any x ∈ S,

η1
U(x) ≺ η2

U(x) ⇒ Tp
(
ηx = 1|η1

U(x)

) ≤ Tp
(
η=1|η2

U(x)

)
,

(see for example [25, p. 28] for a proof of this). Monotonicity of P implies that the probability
measure,

νp := lim
t→∞ δ1 P t , (4)

exists and it is invariant.

Definition 4 (Critical Probability) Consider the Percolation PCA on Z with finite neigh-
bourhood U ⊂ Z. We define the critical probability as,

pc(U) = sup
p∈[0,1]

{νp = δ0}. (5)

Definition 5 (Ergodic Operator) An operator P : M(�) → M(�) is ergodic if the two
following conditions hold: (a) there exists a unique ϕ ∈ M(�) such that ϕP = ϕ and (b)
∀μ ∈ M(�), lim

t→∞ μPt = ϕ.

For any p > pc the evolution operator of the Percolation PCA is not ergodic. Indeed, in this
case δ0 and νp 
= δ0 (defined in 4) are two distinct invariant measures. For any p < pc, the
Percolation PCA (3) is ergodic.

In [21,22] it has been proved that

pc
(U) ∈ (0, 1)

for the Stavskaya’s process (U = {0, 1}) and a more general proof in case of general neigh-
bourhood can be found in [25]. The proofs are based on two methods widely used in statistical
mechanics, namely, the counting path method and the Peierls argument.

Our main result is stated in Theorem 2.1 and it involves the convergence time into the
absorbing state of the Percolation PCA with finite space and periodic boundaries, as defined
at the beginning of this section.

When S is finite, the process is always ergodic (Definition 5). Indeed, for any realisation
of the process ηt ∈ � at time t , the probability that ηt+1 = “all zeroes” is bounded from
below by the constant (1 − p)|S|. This implies that there exists almost surely a finite time
τ ∈ N such that ηt = “all zeroes” for all t ≥ τ . Hence, for any μ ∈ M(�), lim

t→∞ μP t = δ0.

We define the absorption time τk ∈ N0, representing the first time all sites in the segment
{−k,−k + 1, . . . , k − 1} are in state zero for ητ .
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Definition 6 For all k ∈ N, we call the absorption time of the interval {−k,−k+1, . . . , k−1}
the random variable τk : �̃ → N,

τk(η̃) = min{t ∈ N0 s.t. η̃t
x = 0 ∀x ∈ [[−k, k − 1]]}, (6)

where [[−k, k − 1]] denotes the set of integers in [−k, k − 1].
In case S = Sn , this random variable is well defined only if k ≤ n.
We recall Definitions 1 and 2 and we state our main result.

Theorem 2.1 Consider the Percolation PCA with space Sn, periodic boundaries and finite
neighbourhood U = {s1, s2, . . . su}, where s1, s2, . . . , su are some distinct elements of Z. For
every p ∈ [0, 1] there exist n0 ∈ N and some positive constants K1, K2, K3, K4, c1, c2, c3, c4

(dependent on p) such that for all n > n0,

(a) if p < pc, K1 log(c1 n) ≤ E
(n)
δ1

[τn] ≤ K2 log(c2 n),

(b) if p > pc, K3 exp(c3 n) ≤ E
(n)
δ1

[τn] ≤ K4 exp(c4 n).

The proof of the theorem is presented in Sect. 3.
Our second result is stated in the following theorem and it involves the estimation of pc

as a function of U .

Theorem 2.2 Consider the Percolation PCA on Z with finite neighbourhood U =
{s1, s2, s3, . . . , su}, where s1, s2 . . . , su ∈ Z are such that s1 < s2 < · · · < su. Define
p1 := 2

2+su−s1
and p2 as the unique solution in the interval (0, 1] of the following equation,

p = p1 · 1

1 − ϕ(p)
su−s1+2

, (7)

where ϕ(p) = (1−p)6+(1−p)2(su−s1)

p(2−p)
. Then pc(U) ≥ p2.

The proof of the theorem is presented in Sect. 4. From (7) it follows that p2 > p1, as ϕ(p) is
positive in (0, 1). Our analytical lower bounds can be compared with numerical estimations
in Fig. 2, where Percolation PCA with neighbourhood U = {0, 1, 2, . . . , k}, for some positive
integers k have been considered. Results of numerical simulations can be found also in the
appendix of this article. The numerical estimation of pc in case U = {−1, 0} can be found in
[15] and the numerical estimation in case U = {−1, 0, 1} can be found both in the appendix
and in [17].

3 Absorption Time

In this section we prove Theorem 2.1. In Sect. 3.1 we describe the connection between
Percolation PCA and oriented percolation. We mainly follow [22,25], although propositions
and statement have been reformulated emphasising the differences between Percolation PCA
on a finite and infinite space. In Sect. 3.2 we list some percolation estimates. Some of these
percolation estimates have been proved in [7–9] in the case of oriented bond percolation
with symmetric neighbourhood. In this article we consider a similar model, namely, oriented
site percolation with arbitrary neighbourhood. The proofs of these estimates in our case
are substantially the same of those provided in [7,8]. We sketch them illustrating the small
differences. In Sect. 3.3 we prove the theorem. The proof of the right inequality of statement
(a) of the theorem is an application of the estimates presented in Sect. 3.2. The proof of the
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Fig. 2 Numerical and analytical estimations of critical probabilities of Percolation PCA with neighborhood
U = {0, 1, . . . , k}

left inequality can be found in [21]. The proof of the right inequality of statement (b) is trivial.
The proof of the left inequality uses some of the percolation estimates and the estimation
provided Proposition 8, which is stated in the same section. The original contribution of the
author consists in the proof and the application of Proposition 8 to the proof of the statement
(b), in the estimations based on path constructions used in the proof of statement (b) and in
the generalization of the percolation estimates to the proof of the statement (a).

3.1 Relations with Oriented Percolation

In this section we describe a connection between the Percolation PCA and a certain perco-
lation model. This connection has been pointed out for the first time in [22], as far as we
know. We consider a Percolation PCA with space S ∈ {Sn, Z}, as defined in Sect. 2. We
define an auxiliary space � = {0, 1}V , we denote by ω ∈ � its elements and we introduce in
this space the Bernoulli product measure Pp . Namely, the state of every component is 1 with
probability p and 0 with probability 1 − p independently. We declare a vertex (x, y) ∈ V
“open” if ωx,y = 1 and “closed” otherwise. Percolation PCA are related to percolation as
the probability that the state of the site x ∈ S is 1 at time t ∈ N0 for equals the probability
that the site (x, t) ∈ V is connected by a path of open vertices in GU to the line y = 0. This
is precisely the meaning of the statement of Proposition 2, which is stated below.

In order to describe this connection rigorously, we represent the Percolation PCA starting
from an initial realisation ηi ∈ � by introducing a deterministic mapping

D : � × � −→ �̃.

For every (x, t) ∈ V , the component Dt
x : � × � → {0, 1} of D is defined as

Dt
x :=

⎧
⎨

⎩

min
{
ωx,t−1, max

k∈U(x)

{
Dt−1

k

}}
, if t ∈ Z+

ηi
x , if t = 0,

(8)

where (ωx,t )x∈S,y∈N
are elements of �. This mapping defines any DT

z , z ∈ S, T ∈ Z+,
as a function of the variables ωx,y associated to vertices belonging to the evolution cone of
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(z, T ) ∈ V , and of the initial realisation ηi . One should observe that, recalling (2) and using
independence, for any x ∈ S, t ∈ Z+, a ∈ {0, 1}, ηU(x) ∈ {0, 1}U(x), ηi ∈ �,

Tx
(
a|ηU(x)

) = Pp

(
ω ∈ � s.t. Dt

x

(
ω, ηi ) = a|ω ∈ � s.t. Dt−1

U(x)

(
ω, ηi ) = ηU(x)

)

:= P
ηi

p

(
Dt

x = a|ηU(x)

)
, (9)

where in the last expression we rewrote the second quantity in a more compact form. This
notation will be used also in the proof of the next proposition.

Proposition 1 Consider Percolation PCA with space S ∈ {Sn, Z}, represented by the oper-
ator P : M(�) → M(�). Then, for any ηi ∈ �, a ∈ {0, 1},

δηi P t (ηx = a) = Pp

(
w ∈ �s.t.Dt

x

(
ω, ηi ) = a

)
. (10)

Proof For any x ∈ S, t ∈ Z
+, we define

U t (x) =
t

︷ ︸︸ ︷
U ◦ U ◦ . . . ◦ U (x).

By using Eq. (9), we observe that the following equalities hold,

Pp

(
Dt

x

(
ω, ηi ) = a

)
=

∑

ηt−1
U(x)

∈{0,1}U(x)

P
ηi

p

(
Dt

x = a|ηt−1
U(x)

)
Pp

(
Dt−1

U(x)

(
ω, ηi ) = ηt−1

U(x)

)

=
∑

ηt−1
U(x)

∈{0,1}U(x)

Tx

(
a|ηt−1

U(x)

)
Pp

(
Dt−1

U(x)

(
ω, ηi ) = ηt−1

U(x)

)

=
∑

ηt−1
U(x)

∈{0,1}U(x)

∑

ηt−2
U2(x)

∈{0,1}U2(x)

Tx

(
a| ηt−1

U(x)

)

× P
ηi

p

(
ηt−1

U(x)|ηt−2
U2(x)

)
Pp

(
Dt−2

U2(x)

(
ω, ηi

)
= ηt−2

U2(x)

)

=
∑

ηt−1
U(x)

∈{0,1}U(x)

∑

ηt−2
U2(x)

∈{0,1}U2(x)

Tx

(
a|ηt−1

U(x)

)

×
∏

y∈U(x)

T
(
ηt−1

y |ηt−2
U(y)

)
P

ηi

p

(
Dt−2

U2(x)

(
ω, ηi ) = ηt−2

U2(x)

)
. (11)

By proceeding with the expansion, we obtain the next formula,

Pp

(
Dt

x

(
ω, ηi ) = a

)
=

∑

ηt−1
U(x)

∈{0,1}U(x)

∑

ηt−2
U2(x)

∈{0,1}U2(x)

. . .
∑

η0
U t (x)

∈{0,1}U t (x)

Tx

(
ηt

x = a|ηt−1
U(y)

)

t−1∏

k=1

⎡

⎣
∏

y∈Uk (x)

Ty
(
ηt−k

y |ηt−k−1
U(y)

)
⎤

⎦ Pp

(
D0

U t (x)

(
ω, ηi ) = η0

U t (x)

)
.

(12)

We observe that by definition of D, Pp(D0(ω, ηi ) = η) = 1 if η = ηi and 0 otherwise. By
using the same expansion for the measure δηi P t and cylinder set {η ∈ � : ηx = a } in (3),
one derives again formula (12) and concludes that Eq. (10) holds. ��
The next proposition has been proved in [22].
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Proposition 2 The function Dt
x : � × � 
→ {0, 1} is such that Dt

x = 1 iff there exists a
sequence {x0, x1, x2, . . . , xt } ⊂ Z satisfying the three following properties,

1. xt = x and xi−1 ∈ U(xi ) for any i ∈ {1, 2, . . . , t},
2. ωi−1,xi = 1 for any i ∈ {1, 2, . . . , t},
3. ηi

x0
= 1.

Proof We sketch the proof of the proposition. Assume Dt
x = 1 and assume that properties 1,

2, 3 hold for a sequence of sites xt−k , xt−k+1, . . . , xt . From (8) it follows that Dt−k
xt−k

= 1 ⇔
ωxt−k−1,t−k = 1 and ∃ xt−k−1 ∈ U(xt−k) s.t. Dt−k−1

xt−k−1
= 1. This implies that there exists an

element xt−k−1 ∈ S such that properties 1, 2, 3 hold for the sequence xt−k−1, xt−k, . . . , xt .
The proof of the proposition follows by induction. ��
If we consider the case of infinite space, from the previous proposition it follows that ergodic-
ity for the probabilistic cellular automaton is associated with the existence of an infinite path
of open vertices in the auxiliary space. Indeed, recall Definitions 4 and 5 and observe that,

p > pc �⇒ lim
t→∞ δ1P t (ηx = 1) > 0 (13)

p < pc �⇒ lim
t→∞ δ1P t (ηx = 1) = 0, (14)

Thus the probabilistic cellular automaton is non-ergodic if and only if the limit t → ∞ of
the probability that a vertex (0, t) is connected to the line y = 0 by an open path is positive.

If we consider the case of finite space with periodic boundaries, the previous proposition
shows that there is a connection between the absorption time of the probabilistic cellular
automaton and the existence of an open path in the auxiliary space. This connection is
clarified in the next proposition. Before its statement we introduce some more definitions.

From now on we use P
n
p(·) to denote the Bernoulli product measure in the finite space and

Pp(·) to denote the Bernoulli product measure in the infinite space.

Definition 7 Consider S ∈ {Sn, Z} and consider the event,
{
ω ∈ � s.t. there exists a path of open vertices in GU that connects

(x, t) to one of the vertices belonging to the line y = 0
}
. (15)

If S = Z we denote this event by {(s, t)
GU−→ S0} and if S = Sn we denote this event by

{(s, t)
GU (n)−→ S0}.

Recall the definition of evolution measure (Definition 1) and of absorption time (Eq. 6).
Recall that τk can be considered as a function τk : � × � → N, as, from (8), (Dt

x )x∈S,t∈N it
is a mapping from � × � to �̃.

Proposition 3 Consider the Percolation PCA on a finite space with periodic boundaries.
For every t ∈ N0,

En
δ1

(τn > t) = P
n
p

(
∃x ∈ [[−n, n − 1]] s.t. (x, t)

GU (n)−→ S0
)
, (16)

where S0 denotes the set of vertices of V belonging to the line y = 0.

Proof By the definition of τn (see Definition 6), τn > t if and only if ∃x ∈ [[−n, n − 1]]
such that Dt

x = 1. From Proposition 2, it follows that Dt
x = 1 if and only if (x, t)

GU (n)−→ S0.
��
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Fig. 3 The event {τn > t} (recall
Definition 6) occurs if at least one
open path joins one of the sites
(x, t) such that x ∈ [[−n, n − 1]]
to one of the sites (y, 0), y ∈ S. If
the neighbourhood is periodic,
then the path can leave from one
the two vertical lines x = −n or
x = n − 1 and re-appear at the
same high on the other line (e.g.
see the path a ◦ c)

Remark Recall the definition of the neighbourhood in the case of finite space with periodic
boundaries, provided in Eq. (1). As boundaries are periodic, the site (x, t) is connected to
the line y = 0 also if the path of open vertices leaves one of the vertical boundaries (x = −n
or x = n − 1) from one side and it re-appears at the same high on the other side (see for
example the path a ◦ c in Fig. 3).

3.2 Percolation Estimates

In this section we list some properties involving the cluster of vertices belonging to an open
path in GU starting from (0, t). These properties have been proved in [7–9] in case of a
bond percolation model with symmetric neighbourhood of two elements. In this article we
consider a slightly different percolation model, as sites instead of bonds can be open or closed
and the neighbourhood is an arbitrary (translation invariant) finite set. The proofs of these
propositions in the case considered in this article are similar to those provided in [7–9]. We
sketch their proof describing the small differences.

We start with some definitions. From now on we will consider S = Z. For every t, m ∈ N

we define the sets,

ξ t
m =

{
x ∈ Z : (0, t)

GU−→ (x, t − m)
}
,

ξ
t
m =

{
x ∈ Z : ∃ z ≤ 0 s.t. (z, t)

GU−→ (x, t − m)
}
,

χ t
m =

{
x ∈ Z : ∃ z ≥ 0 s.t. (z, t)

GU−→ (x, t − m)
}
, (17)

Note that ξ t
m ⊂ {s1 m, s1 m + 1, s1 m + 2, . . . , su m}. We define then the variables,

r t
m = sup

{
ξ t

m

}
,


t
m = inf

{
ξ t

m

}
,

r t
m = sup

{
ξ

t
m

}
,



t
m = inf

{
χ t

m

}
, (18)

and we set r t
m = −∞, 
t

m = ∞ if ξ t
m = ∅. As the distributions of r t

m , 
t
m , r t

m , 

t
m , ξ t

m , ξ
t
m

and χ t
m depend only on the difference t − m, from now on we will omit the dependence on t ,

that will be some positive integer. Furthermore, we consider the space GU as before, but with
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Fig. 4 Representation of open
paths

vertices Z × Z instead of Z × N. In the former case, if we consider only paths starting from
(0, t), we allow (0, t) to belong to an infinite open path. Thus we recover the notation of [8]
(rm , 
m , rm , ξm), with the difference that in this article paths are oriented from up to down.

We observe that for every t , m, the probability that ξ
m = ∅ is zero, as every vertex in

{(x, y) : s.t. y = t, x ≥ 0} has a non-zero probability of being connected to S0 by an open
path in GU . The same holds for the event χm,t = ∅. By definition,

rm ≤ rm,


m ≥ 
m . (19)

The following relations hold,

ξm = ξm ∩ [

m,+∞) = χ t

m ∩ (− ∞, rm
]
, (20)

on
{
ξm 
= ∅

}
, rm = rm, (21)

on
{
ξm 
= ∅

}
, 
m = 
m . (22)

Proof Equation (20) is a corollary of Eqs. (21) and (22). We sketch an argument for (22),
that can be also found in [8, Section 3]. By reflection the same argument holds also for (21).
It is trivial from the definition that ξm ⊂ ξm and that ξm ⊂ (−∞, rm]. We have to show that
ξm ∩ (−∞, rm] ⊂ ξm . In this case it is clear from Fig. 4 that if there is a path from some site
(y, t), y > 0 to (x, t − m), x ≤ rm , then there is also a path from (0, t) to (x, t − m). Then
x ∈ ξm . ��

We introduce the following quantities, for all integers n ≥ m ≥ 0,

rm,n = sup
{

x − rm : x ∈ Z and ∃z ∈ Z s.t.

z ≤ rm and (z, t − m)
GU−→ (x, t − n)

}
. (23)


m,n = inf
{

x − 
m : x ∈ Z and ∃z ∈ Z s.t.

z ≥ 
m and (z, t − m)
GU−→ (x, t − n)

}
. (24)

The following relations holds.
rm + rm,n ≥ rn . (25)


m + 
m,n ≤ 
n . (26)
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Fig. 5 Curves represent open
paths

Proof We prove (25) and a similar argument holds for (26). One should observe that rm +rm,n

is the rightmost point on the line y = t − n which can be reached from any of the points
(x, t − m) with x ≤ rm . Instead rn is the rightmost point on the line y = t − n which can be
reached from any of the points (x, t −m) with x ≤ rm and with the additional restriction that
there exists an open path in GU from (z, t) to (x, t −m) for some z ≤ 0. See also Fig. 5. ��

The next proposition involves the random variables defined above and it corresponds to
[7, Theorem 2.1]. It holds for a class of model called growth processes that is more general
than the class of models considered here. We refer to [7] for its proof, which is based on the
subadditivity property of (25) and some arguments similar to those used in the proof of the
Kingman’s Subadditive Ergodic Theorem.

Proposition 4 Let rm and 
m be the quantities defined above. Then there exist two constants
α ∈ [−∞, su] and β ∈ [s1,+∞] such that,

rm/m → α almost surely, (27)


m/m → β almost surely. (28)

Let Et ⊂ � be the following event,

Et := {
“there exists an infinite open path starting from (0,t)”

}
.

Then, if p > pc, conditioning on Et , from Proposition 4 and from Eqs. (20–22) the following
properties hold,

lim
m→∞ rm/m = α almost surely, (29)

lim
m→∞ 
m/m = β almost surely, (30)

β ≤ α. (31)

Proof If p > pc then the event Et occurs with positive probability. Conditioning on Et ,
for all m ≥ 0 rm ≥ 
m . Furthermore, from Eqs. (21) and (22) it follows that rm = rm and

m = 
m . ��
We define now the variable,

γ := α − β, (32)
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which plays the role played by α in [8]. The proof of the next proposition can be found in [8,
Section 3], in case of bond percolation with symmetric neighbourhood. As the statement is
needed for the proof of Theorem 2.1, we sketch its proof, adapting it to the model considered
in this article.

Proposition 5 Let γ be the variable defined in Eq. (32). Then,

pc = inf
{

p : γ (p) > 0
}
. (33)

Proof Observe that Eq. (31) implies that,

α < β �⇒ p ≤ pc. (34)

Then, to prove Eq. (33), first it is necessary to show that,

γ > 0 �⇒ p > pc. (35)

Indeed, Eqs. (34) and (35) imply that

sup
{

p : γ (p) < 0
} ≤ pc ≤ inf

{
p : γ (p) > 0

}
. (36)

Hence, it remains to exclude the possibility that the interval {p : γ (p) = 0} has positive
length. This fact is a consequence of the following property,

p > p′ and α
(

p′) > −∞ �⇒ α(p) − α
(

p′) ≥ (
p − p′). (37)

and of the fact that β(p) is non-decreasing with p. For the proof of (37) we refer to [8,
Section 3], as the symmetry of the neighbourhood does not play any role in the proof. The
proof is based on the construction of two systems with parameter p and p′ on the same
space by assigning an independent random variable Ux,y to each vertex (x, y) ∈ V which is
uniformly distributed on (0, 1). The vertex is open if Ux,y < the parameter value and closed
otherwise. The only difference from [8] is that there these random variables are assigned to
bonds and that the set of vertices of the graph is different, i.e. {(x, y) s. t. x + y is even}.

In the remaining part of the proof we prove Eq. (35). Observe that if γ > 0, then rm −
αm + γ

2 m = rm − α+β
2 m −→ ∞ and 
m − βm − γ

2 m = 
m − α+β
2 m −→ −∞ almost

surely. Then there exists an integer M < ∞ such that,

Pp

(
∀m, rm >

α + β

2
m − M

)
≥ 0.51, (38)

Pp

(
∀m, 
m <

α + β

2
m + M

)
≥ 0.51. (39)

Secondly we introduce the following notation. If A ⊂ (−∞,+∞), then we let

ξ A
m : = {

x : ∃y ∈ A s.t (y, t) → (x, t − m)
}
, (40)

r A
m : = sup ξ A

m , (41)


A
m : = inf ξ A

m , (42)

τ A : = inf
{
m : ξ A

m = ∅
}
. (43)

Repeating the proof of (20–22) (see also [8, Section 3, Equation 10]), it follows that

τ [−M,M] = inf
{

m : r [−M,M]
m < 
[−M,M]

m

}

= inf
{

m : r [−∞,M]
m < 
[−M,∞]

m

}
. (44)

123



866 L. Taggi

The previous equality implies that,

{
τ [−M,M] = ∞

}
⊃
{

[−M,∞)

m ≤ α + β

2
m ≤ r (−∞,M]

m , ∀m
}
.

As

Pp

(
r (−∞,M]

m >
α + β

2
m, ∀m

)
= Pp

(
r (−∞,0]

m >
α + β

2
m − M, ∀m

)
,

and

Pp

(

[−M,+∞)

m <
α + β

2
m, ∀m

)
= Pp

(

[0,+∞)

m >
α + β

2
m + M, ∀m

)
,

it follows that

Pp

(
ξ [−M,M]

m 
= ∅, ∀m
)

≥ 0.02.

Since, ∀M > 0,

Pp

(
ξ0

M ⊃ Z ∩ [−M, M]
)

> 0,

it follows that Pp(Et ) > 0. Then p > pc. ��

The next estimates have been proved in [9]. The proof can be found also in [8, Section 7,
Equations (1) and (2)]. In particular Eq. (45) holds for a wide class of percolation models in
the subcritical regime (see [1] for a proof in a very general setting).

Proposition 6 Recall Definition 7. For every p, let a(p) > α(p) and b(p) < β(p). If
p < pc there exist some positive constants h, h2, h3, C2, C3 (dependent on p) such that,

Pp

(
(0, m)

GU−→ S0
)

≤ exp(−h m), (45)

Pp

(
rm > a m

)
≤ C2 exp(−h2 m), (46)

Pp

(

m < b m

)
≤ C3 exp(−h3 m). (47)

Proof We sketch the proof of (45), which is similar to the proof of (46) and (47). If
p < pc, then from Eq. (33) α <

α+β
2 < β. Thus there exists an N large enough such

that E[r0,N ] <
α+β

2 N , E[
0,N ] >
α+β

2 N . By using the subadditivity property of rm,n and

m,n one can see that,

rm N − α + β

2
m N ≤ Sm := r0,N − α + β

2
N + r N ,2N − α + β

2
N

+ · · · + r (m−1)N ,m N − α + β

2
N ,

α + β

2
m N − 
m N ≤ S′

m := α + β

2
N − 
0,N + α + β

2
N − 
N ,2N

· · · + α + β

2
N − 
(m−1)N ,m N . (48)

The right hand side of the two previous inequalities is a random walk with expectation respec-
tively E[S1] < 0, E[S′

1] < 0. As S1 ≤ su N , S′
1 ≤ su N , then ϕ(θ) := E[exp(θ S1)] < ∞
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and ϕ′(θ) := E[exp(θ S′
1)] < ∞ for all θ > 0. From the considerations in [8] it follows that

we can pick θ0 > 0 with ϕ(θ0) < 1 and ϕ′(θ0) < 1 such that,

Pp
(
Sm ≥ 0

) ≤ E
[

exp(θ0Sm)
] = ϕ(θ0)

m,

Pp
(
S′

m ≥ 0
) ≤ E

[
exp(θ0Sm)

] = ϕ′(θ0)
m .

This implies that Pp(rm N ≥ α+β
2 m N ) −→ 0 and Pp(
m N ≤ α+β

2 m N ) −→ 0 exponentially

fast. Observe also that as Pp(ξm = ∅) ≥ Pp(rm <
α+β

2 m < 
m), then

Pp
(
ξm 
= ∅

) ≤ Pp

(
rm ≥ α + β

2
m
)

+ Pp

(

m ≤ α + β

2
m
)
.

This implies (45). ��

We end this section recalling a property proved in [16]. As the reference is in Russian, we
sketch its proof below.

Proposition 7 Recall Definition 7. For every t, n ∈ N,

P
n
p

(
(0, t)

GU (n)−→ S0
)

≤ Pp

(
(0, t)

GU−→ S0
)
. (49)

Proof Observe that in Z×Z all paths of length t starting from (0, t) lie within � = [s1t, sut]×
[0, t − 1]. At each point we have a random variable ωx,y that is equal to 1 with probability
p and to 0 with probability 1 − p and these random variables are mutually independent.
We consider the same set � but with a different set of random variables zx,y . Each zx,y is
equal to 1 with probability p and 0 with probability 1 − p, but these random variables are
not independent. Namely, for all (x, y), the random variables zx+2kn,y for all integers k such
that (x + 2kn, y) ∈ � have the same outcome (i.e. they are “synchronized”). This model
is equivalent to the model on the cylinder �n × [0, t − 1] (i.e. with periodic boundaries),
where ωx,y are independent, because in these two models their probabilistic spaces and sets
of open paths starting at (0, t) are isomorphic.

Let then W be the set of all possible paths of length t from (0, 0). We will show that
“synchronization” does not increase the probability of the existence of an open path of length
t on �.

Let then θx,y be some random variables with values 0 or 1 associated with (x, y) ∈ �.
Consider the function Z , with arguments θx,y ,

Z =
∑

h∈W

∏

(x,y)∈h

θx,y .

Then Z ≥ 0 and Z > 0 if and only if there exists an open path. Suppose that at the beginning
θx,y = ξx,y , for all (x, y) ∈ � and at each step we “synchronize” the variables θa+2kn,b

for a certain (a, b) until we get θx,y = zx,y for all (x, y) ∈ �. We will show that each
synchronization step does not increase Z . To do this, we write

Z =
∑

k:(a+2kn,b)∈�

θa+2kn,b fk
(
θ̃
)+ g

(
θ̃
)
,

where θ̃ is the set of all (x, y) 
= (a + 2kn, b), i.e. they are independent from the group
θa+2kn,b. The fk and g are some functions with non-negative integer values. Here we use the
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fact that a path can contain only one point of the form (a + 2kn, b), so different θa+2kn,b

don’t multiply. Before the “synchronization” step,

Z = Z1 =
∑

k:(a+2kn,b)∈�

ωa+2kn,b fk
(
θ̃
)+ g

(
θ̃
)
,

and after it,

Z = Z2 = za,b ·
∑

k:(a+2kn,b)∈�

fk
(
θ̃
)+ g

(
θ̃
)
.

It is easy to show that, fixing any value of the set θ̃ , P(Z1 > 0) ≥ P(Z2 > 0). Hence, the
same is true when θ̃ is not fixed. ��
3.3 Proof of Theorem 2.1

Recall the definitions provided just before the statement of the theorem. Along the whole
proof we denote by P

n( · ) the Bernoulli product measure in �, where the space is finite, and
by P( · ) the Bernoulli product measure in �, where the space is infinite. The proof is based
on the estimation of En

δ1
(τn > t), which gives the expectation,

E
(n)
δ1

[τn] =
∞∑

t=0

En
δ1

(
τn > t

)
, (50)

We prepare the reader to the proof of the left inequality of the statement (b). The proofs
of the other inequalities do not need an introduction, as they are simpler. The proof is based
on the estimation of the probability of the event {τn > t}. In order to provide this estimation,
first we define the event Dn,t,a , whose probability is less than the probability of {τn > t}.
The event occurs if a path connects [[−n, n − 1]]× {t} to the line y = 0 without crossing the
diagonal sides of a parallelogram (a rigorous definition is given later). This allows to reduce
the estimation of {τn > t} to the estimation of the probability of an event that is simpler to
study, as periodic boundaries play no role.

As the neighbourhood of the model is in general non symmetric, the cluster of vertices
belonging to an open path starting from (0, t) (which is infinite with positive probability,
as p > pc) will typically have a drift. Indeed, recall Proposition 4 and the fact that r t ∼
t ( α+β

2 + γ
2 ) and 
t ∼ t ( α+β

2 − γ
2 ), β ≤ α. Thus, as p is slightly larger than pc, then

typically the cluster of vertices will be centred around ∼ α+β
2 t . Hence, the diagonal sides of

the parallelogram is chosen in such a way that in the limit t → ∞ the cluster has typically a
non-empty intersection with the parallelogram. With this choice, the probability of the event
Dn,t,a does not go to zero too fast as t grows.

Later we introduce a change of coordinates T t
b that allows to simplify the notation, by

transforming the graph in a new graph, where the cluster of vertices connected by an open
path starting from (0, t) (namely, in the new graph α+β

2 = 0). We provide a lower bound for
the probability of Dn,t,a by introducing a new event Hn and by using the FKG inequality to
bound the probability of Dn,t,a with a product of probabilities of events Hn .

In the last part of the proof we estimate the probability of the event Hn , showing that it
goes to 1 fast enough with n for any p > pc. This estimation is stated in Proposition 8.

Proof of part (a) The proof of the left inequality of the statement (a) can be found in [21,
Section 2] together with an estimation of the constants, so we do not provide it here. Indeed,
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the left inequality holds for any p ∈ [0, 1]. The proof of the right inequality of statement (a)
is an application of the estimates presented in Sect. 3.2. Starting from (50),

E
(n)
δ1

[τn] =
∞∑

t=1

P
n
p

( n−1⋃

s=−n

{
(s, t)

GU (n)−→ S0
})

≤
∞∑

t=1

min

{
1, 2n P

n
(
(0, t)

GU (n)−→ S0
)}

≤
∞∑

t=1

min
{
1, 2n exp(−ht)

}

≤ log(2 n)

h
+ K , (51)

where K is some positive constant. In the first equality we used Proposition 3, in the second
inequality we used the union bound and translation invariance, in the second-last inequality
we used (45) and (49). The algebraic tricks of (51) have been used also in the proof of [25,
Proposition 8.6].

Proof of part (b) The proof of the right inequality of the statement (b) is trivial. We define
a new process (qt

x )x∈Sn where every qt
x is 1 with probability p and 0 with probability 1 − p

independently. Observe that for all x ∈ Sn , t ∈ Z+, qt
x ≥ ηt

x , as long as the two processes are
driven by the same random process. Hence, the expected convergence time for the former
is larger than the convergence time for the latter. By a simple computation, the expected

convergence time for the system qt is 1
1−p

2n
. This implies the inequality.

We start with the proof of the left inequality. For every a ∈ R we define the event,

Dn,t,a := {∃ x ∈ [[−n, n − 1]], such that (x, t) is connected to S0

by an open path in GU that never crosses the lines

y = n − 1 − a(x − t), y = −n − a(x − t) x ∈ R
}
, (52)

which is a subset of �, recalling that S0 denotes the set of vertices belonging to the line
y = 0. See also Fig. 6—up for a representation.

Recall Definition 7 and observe that,

Pp(Dn,t,a) ≤ P
n
p

(
∃x ∈ [[−n, n − 1]] s.t. (x, t)

GU (n)−→ S0
)

= En
δ1

(τn > t). (53)

Observe that the quantity on the left is defined in the infinite system and the quantities in the
middle and on the right are defined on the finite system with periodic boundaries. We provide
a proof of the statement below.

Proof of (53) Consider two graphs, Gi
U and G f

U . The former is defined on the infinite space
Z×N0 and the latter on the finite space Sn ×N0 with periodic boundaries, as defined in Sect.
2. Let Qa,t ⊂ Z × N0 be the region inside the parallelogram identified by the points (−n, t),
(n−1, t), (−n+at, 0), (n−1+at, 0) (see Fig. 7). The event Dn,a,t ⊂ {0, 1}Z×N0 occurs if an
open path connects [−n, n −1]×{t} to [−n +at, n −1+a t]×{0} without ever crossing the
diagonal sides of the parallelograms. We couple the model on the finite space and the model on
the infinite space in the following way. Namely, call ωx,y , for all (x, y) ∈ Z×N0, and zx,y , for
all (x, y) ∈ Sn × N0, the random variables taking values 0 or 1 independently. The coupling
is such that for all (x, y) ∈ Qa,t , ωx,y = zx ′,y′ , where x ′ = |x + n|2n − n, y′ = y, where
|x |n denotes x mod n. The random variables ωx,y associated to sites (x, y) not contained
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Fig. 6 Up Representation of GU in case of neighbourhood U = {−1, 2}. For graphical reasons only edges
belonging to the evolution cone of (0, t) have been drawn. In the figure a = s1+su

2 . Down the same graph of
the figure above, transformed via (54) with parameter b = a

Fig. 7 Representation of the
event Dn,a,t

in Qa,t are not coupled. Observe that for every (x, y) ∈ Qa,t there exists a unique (x ′, y′) in
Sn and vice versa. Recalling that boundaries of G f

U are periodic, one can observe from Fig.
7 that, as long as there exists an open path in Gi

U connecting the top to the bottom of Qa,t

and never crossing its diagonal sites (e.g. the path represented by a continuous curve in the
figure), there exists also an open path in G f

U connecting [−n, n −1]×{t} to [−n, n −1]×{0}
(i.e. the path represented by a dashed curve in the figure). This implies the statement. ��

Consider now the following change of coordinates,
{

x ′ = x − b(t − y)

y′ = y
, (54)
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under which the graph GU is transformed into the new graph T t
b GU . We denote by T t

b Dn,t,a

the event Dn,t,a , defined for the graph T t
b GU , (i. e. replace GU with T t

b GU in the definition
of the event above). See Fig. 6 for an example. The following equation holds,

Pp
(
T t

b Dn,t,a
) = Pp

(Dn,t,a−b
)
, (55)

as the change of coordinates preserves connection between vertices. Now we introduce the
event Hn ,

Hn =
{
∃ y, y′ s.t. y ∈ [[4n, 6n]], y′ ∈ [[0, 2n]]

and (−n, y)
GU−→ (n, y′)

}
, (56)

which is represented in Fig. 8-right. The following proposition is about this event.

Proposition 8 For any p > pc there exist positive constants A, b (dependent on p) such
that for any t ∈ N and for n large enough,

Pp

(
T t

α+β
2

Hn

)
≥ 1 − A exp

(− b n
)
. (57)

As before, the event T t
α+β

2

Hn denotes the occurrence of Hn in the graph T t
α+β

2

GU . We recall

that α and β are defined in Sect. 3.2. We first use Proposition 8 to conclude the proof of
the theorem and later we prove the Proposition 8. Define then the new event Fn,t , which is
represented in Fig. 8. Fn,t occurs iff (a) and (b) hold:

(a) for every odd j ∈ [[0, t
2n ]] there is a vertex (−n, y), with y ∈ [[2nj, 2n( j + 1)]],

connected to (n, y′) by an open path in GU , with y′ ∈ [[2n( j − 2), 2n( j − 1)]],
(b) for any even j ∈ [[0, t

2n ]] there is a vertex (n, y), with y ∈ [[2nj, 2n( j +1)]], connected
by an open path in GU to (−n, y′), with y′ ∈ [[2n( j − 2), 2n( j − 1)]].

Note first that,

Pp

(
T t

α+β
2

Fn,t

)
≤ Pp

(
T t

α+β
2

Dn,t,0

)
, (58)

because if Fn,t occurs, then the top of the box 2n × t is connected to the bottom by a path
that never goes out from the box (compare Fig. 8-left and middle). Secondly, we observe
that the event T t

α+β
2

Fn,t equals the intersection of � t
n � events of type T t

α+β
2

Hn , represented

in Fig. 8-right.
As the event Hn increasing, the FKG inequality is applicable, i.e.

Pp

(
T t

α+β
2

Hn

)� t
n � ≤ Pp

(
T t

α+β
2

Fn,t

)
(59)

Then using (57) finally we get,

Pp

(
T t

α+β
2

Fn,t

)
≥

(
1 − A · n exp(−nb)

)� t
n �

(60)
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Fig. 8 Left representation of the event Dn,t,0. Center representation of the event Fn,t . Right representation
of the event Hn . In all figures the details on the structure of the graph have been omitted

Then, from (50) and for n large enough,

E
(n)
δ1

[τn] ≥
∞∑

t=1

Pp

(
T t

α+β
2

Dn,t,0

)

≥
∞∑

t=1

Pp

(
T t

α+β
2

Fn,t )
)

≥
∞∑

t=1

(
1 − A · exp(−bn)

)� t
n �

≥ j
(

1 − A · e−bn j

n

)
, (61)

where j is an arbitrary integer. In the previous expression we have used Proposition 3, (53)
and (55) for the first inequality, (58) for the second inequality and (60) for the third one.

Choosing finally j = � nebn

2A �, the part (b) of the theorem follows.

Proof of Proposition 8 We prepare the reader to the proof of the proposition and later we
present the proof. We consider two graphs, T t

α+β
2

GU = (V 1, E1
U ) and T t

s1+su
2

GU = (V 2, E2
U ),

recalling the definitions of α and β in Sect. 3.2 and the definition of the transformation T t·
provided in (54). Observe that vertices of both graphs could take non integer positions. The
proof is divided in two parts.

In the first part we generalize the dynamic-block argument presented in [8] to the per-
colation model considered in this article. The idea of the construction is the same of [8],
although parameters of the construction have been adapted to the lack of symmetry. The
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lack of symmetry involves the structure of the graph GU and the slope of rm and 
m , as in
general α 
= −β. Two different spatial transformations have been used in order to recover
the symmetric setting and simplify the construction, namely, T t

s1+s2
2

and T t
α+β

2

.

The argument is based on a coupling between realisations of the graph T t
s1+su

2

GU and

those in T t
α+β

2

GU . The construction depends on a rescaling parameter L and it is such that

the realisation on T t
s1+su

2

is a function of the realisation on T t
α+β

2

GU . In T t
α+β

2

GU every site

is open with probability p or closed with probability 1 − p independently. On the contrary,
the states of sites in T t

s1+su
2

are not independent. The construction is such that if the event

Hn occurs in the former graph, then the event HLn occurs in the latter graph. Secondly, if
p > pc, then for every ε, by choosing L is large enough, every site in T t

s1+su
2

is open with

probability larger than 1 − ε.
The second part we define a sub-graph of T t

s1+su
2

GU , that we call L, for which it is

easy to construct a dual graph. We use Peierls argument for the dual graph and we show that
Pp(HL

n ) ≥ 1−A exp(−b n). As far as we know, this estimation has not been provided in other
works. The dual graph construction can be found in [22]. This implies that Pp(T t

s1+su
2

Hn) ≥
1−A exp(−b n). Recalling the properties of the construction, it follows that Pp(T t

α+β
2

HLn) ≥
1 − A exp(−b n). By rearranging the constants, the statement of the proposition follows.

We start now with the proof of the proposition.
Part 1: Dynamic blocks construction We divide T t

α+β
2

GU into macro-regions Rx,y cen-

tred around the point Cx,y , where (x, y) ∈ V 2 and

Cx,y =
(

x
γ

su − s1
(1 − δ), yL

)
,

Rx,y = Cx,y +
[
(−1 − δ)

γ

2
L , (1 + δ)

γ

2
L
]

×
[
0,−(1 + δ)L

]
. (62)

We recall that from Eq. (33) γ = α − β > 0 for all p > pc. The constants δ and L are
positive and have to be properly chosen. In order the argument to work rigorously, (1−δ)γ L
and L should be even integers. To not complicate the exposition here we ignore these details,
the same as in [8]. Each vertex (x, y) ∈ V 2 is associated to a random variable ϕx,y which
takes value 1 if a certain event Bx,y occurs in the region Rx,y of (V 1, E1

U ) or 0 otherwise. In
order to define such event we introduce the following points in space (see also Fig. 9), for
every s ∈ U ,

u =
(δγ L

2
, 0
)
,

v =
(3δγ L

4
, 0
)
,

−u =
(

− δγ L

2
, 0
)
,

−v =
(

− 3δγ L

4
, 0
)
,

u R
s =

(
δγ L

2
+
(

s − s1 + su

2

)
· (1 − δ)γ L

su − s1
, −L(1 + δ)

)
,
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Fig. 9 Up the rectangle in the figure represents the region R0,t of the graph T t
su+s1

2

GU , for some positive

integer t , in case U = {−2, −1, 1}

vR
s =

(
3δγ L

4
+
(

s − s1 + su

2

)
· (1 − δ)γ L

su − s1
, −L(1 + δ)

)
,

uL
s =

(
− δγ L

2
+
(

s − s1 + su

2

)
· (1 − δ)γ L

su − s1
, −L(1 + δ)

)
,

vL
s =

(
− 3δγ L

4
+
(

s − s1 + su

2

)
· (1 − δ)γ L

su − s1
, −L(1 + δ)

)
, (63)
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and for every s ∈ U \ {s1, su},

uU
s =

(
− δγ L

2
+
(

s − s1 + su

2

)
· (1 − δ)γ L

su − s1
+ γ

2
(1 + δ)L , 0

)
,

vU
s =

(
− 3δγ L

4
+
(

s − s1 + su

2

)
· (1 − δ)γ L

su − s1
+ γ

2
(1 + δ)L , 0

)
, (64)

As one can see in the example in Fig. 9, these points identify some target zones on the
right and on the left of points Cx,y , (x, y) ∈ V 2. Consider now the parallelograms obtained
connecting the following quadruplets of points (see also Fig. 9),

PR =
(

− v, −u, u R
su

, vR
su

)
,

PL =
(

u, v, uL
s1

, vL
s1

)
(65)

Ps =
(

uL
s , vL

s , uU
s , vU

s

)
,

for all s ∈ U \ {s1, su}. Define the translated parallelograms PR(x, y) = PR + Cx,y ,
PL(x, y) = PR + Cx,y , Ps(x, y) = Ps + Cx,y for all s ∈ U \ {s1, su}.
Definition 8 The event Bx,y occurs if and only if the top of all parallelograms PR(x, y),
PL(x, y) and Ps(x, y), for all s ∈ U \ {s1, su}, is connected to the the bottom side by an open
path in T t

α+β
2

GU that remains always inside the parallelogram.

This event is represented in Fig. 9. This construction is such that the following properties are
satisfied. Namely,

1. the random variables ϕx,y are su − s1-dependent. With this we mean that ϕx,y and ϕx ′,y′ ,
with (x, y), (x ′, y′) ∈ V 2, are independent if |x − x ′| > su − s1 or |y − y′| > 1.

2. Denote by z1 . . . zm the vertices of a path in T t
s1+su

2

GU and assume that the path is open,

i.e. ϕzi = 1 for all i ∈ {1, 2, . . . m}. Then there exists an open path in T t
α+β

2

GU that

connects a vertex in the Cz1 + [−v, v] to a vertex in Czm + [−v, v] and which remains
always inside the parallelograms that connect Czi + [−v, v] to Czi+1 + [−v, v], for all
i ∈ {1, 2, . . . m} (note that Cz + [−v, v] denotes the segment [−v, v] translated by Cz).

3. if δ, ε > 0 and p > pc, we can pick L large enough so that for any (x, y) ∈ V 2,
Pp(ϕx,y = 1) > 1 − ε.

Proof of the properties We sketch the proof of the three properties above. The proof can be
found also in [8, Section 9] in the case of bond percolation and symmetric neighbourhoods.
Property 1 follows from the fact that if Rx,y and Rx ′,y′ have empty intersection, then the
variables ϕx,y and ϕx ′,y′ are independent. Property 2 follows by construction (see Fig. 9). In
the example in the figure we represent the graph T t

su+s1
2

GU assuming U = {−2,−1, 1} as a

neighbourhood. One should observe that if the events B0,t and B−1,t−1 occur, then at least
one vertex belonging to the interval C0,t +[−v, v] is connected to at least one of the vertices
belonging to any of the intervals C− 3

2 ,t−2 + [−v, v], C− 1
2 ,t−2 + [−v, v], C 1

2 ,t−2 + [−v, v].
We now prove the third property. Recall that Proposition 4 implies that in the transformed

graph T t
α+β

2

GU , rn/n
n→∞−→ γ /2 a.s. and 
n/n

n→∞−→ −γ /2 a. s. We will prove that ∀ε > 0,

the probability that in all the parallelograms in the box there is a connection from the top
to the bottom that never crosses the diagonal sides is larger than 1 − ε. Let then e be the
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number of parallelograms in the box R0,0. This number depends on the neighbourhood U .
We consider the parallelogram PR and we prove that for every ε there exists L large enough
such that the probability that there is no such open path in the parallelogram is less than ε

e .
As this probability is the same for all parallelograms, this implies that the probability that
such open path is present in all parallelograms is > 1 − ε.

Consider the parallelogram PR defined above and recall then the definitions provided in
Eqs. (40–43). Let then r̃n := sup ξ

(−∞,−0.7δγ L]
n and observe that −0.7δγ L ∈ [−v,−u]. Let

rn := sup ξ
(−∞,0]
n and observe that {r̃n + 0.7δγ L : n ≥ 0} =d {rn : n ≥ 0}. As rn/n → γ

2
a.s. in the transformed graph T t

α+β
2

, then we can pick L large enough such that with probability

≥ 1 − ε
2e we have that,

r̃(1+δ)L > −0.7δγ L + (1 + 0.98δ)
γ

2
L

= −0.71δγ L + (1 + δ)
γ

2
L , (66)

and for all m ≤ (1 + δ)L ,

r̃m ≤ −0.6δγ L + m
1 + 1.08δ

1 + δ

γ

2
. (67)

The two previous equations imply that there is an open path path from (−∞,−0.7δγ L]×{0}
to [−0.71δLγ + (1 + δ)L γ

2 ,−0.56 δLγ + (1 + δ)L γ
2 ]× {−(1 + δ)L} which does not cross

the line [−u, vR
su

]. It remains to show that this path does not cross the line [−v, u R
su

].
We observe that in order a path to travel from the line [−v, u R

su
] to [−0.7δLγ + γ

2 (1 +
δ)L ,∞) × {−(1 + δ)L} a path must have an average slope a >

γ
2 . Thus recall Eq. (46) and

observe that in the transformed graph T t
α+β

2

GU ,

Pp
(
rm > am

) ≤ Ce−h2m .

Consider then M large enough such that,

∞∑

m=M

C exp
(− h2m

) ≤ ε

4e
.

The probability that one of the points on [−v, u R
su

] with −(1+δ)L + M ≤ y ≤ 0 is connected
to [−0.7δLγ + (1 + δ)

γ
2 L ,∞) × {−(1 + δ)L} is then ≤ ε

4e . Furthermore, observe that the
number of points on [−v, u R

su
] with −(1 + δ) ≤ y ≤ −(1 + δ)L + M does not depend on L

and that the distance of any of them from the set [−0.7δLγ + (1+ δ)
γ
2 L ,∞)×{−(1+ δ)L}

is proportional to L . Thus we can pick L large enough so that the probability that there exists
an open path connecting any of these points to [−0.7δLγ + (1 + δ)

γ
2 L ,∞] is less then ε

4e .
Combining the two estimations, we conclude that the probability that the line [−v, u R

su
] is

connected by an open path to [−0.7δLγ + (1 + δ)
γ
2 L ,∞] is less than ε

2e .
Summarising, we showed that with probability ≥ 1 − ε

e , there is an open path from
(−∞,−0.7δγ L]×{0} to [−0.71δLγ +(1+δ)L γ

2 ,−0.56 δLγ +(1+δ)L γ
2 ]×{−(1+δ)L}

which does not cross the line [−u, vR
su

] and the line [−v, u R
su

] is not connected by an open
path to [−0.7δLγ + (1 + δ)

γ
2 L ,∞] × {−(1 + δ)L}. This implies that the probability that

there exists a path joining the top to the bottom of PR without ever crossing its diagonal lines
is ≥ 1 − ε

e . Repeating the argument for all parallelograms in the box, we conclude that if L
is large enough then with probability at least 1 − ε the event B0,0 occurs. ��
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Fig. 10 Left representation of T t
s1+su

2

GU , in case of U = {−2,−1, 1}. Right points correspond to vertices

of T t
s1+su

2

GU , arrows represent edges of L, points connected by an arrow correspond to vertices of L. The

graph L, defined in the text, is a subset of T t
s1+su

2

GU

Part 2: Peierls argument Now we use the Peierls argument for the (su − s1)-dependent
oriented percolation model to prove that there exists p1 > pc and positive constants A′, b′
(dependent on p) such that for all p ∈ (p1, 1],

Pp

(
T t

s1+su
2

Hn

)
≥ 1 − A′ · ne−b′n . (68)

Let us explain first why this is sufficient to prove the proposition. Later we prove (68).
Recall the third property of the dynamic-block construction presented above and observe

that if p > pc, then we can pick L large enough such that, for every (x, y) belonging to
the set of vertices of T t

s1+s2
2

GU , Pp(Bx,y) > p1. Recall that the state of sites belonging to

T t
s1+s2

2

GU is a function of the realization in the graph T t
α+β

2

GU . From the second property

of the dynamic-block construction, if such sites are open with probability > p1, then (68)
implies that with probability not less than 1 − A′ · ne−b′n the event Hn occurs in T t

s1+s2
2

.

Hence, from the second property of the dynamic-block construction, the event HLn occurs
in the graph T t

α+β
2

GU with probability not less than 1 − A′ · ne−b′n . One can rearrange the

value of b′ getting rid of the factor n, for n large enough. Finally, by defining new constants
A = A′/L and b = b′L , the statement of Proposition 8 follows.

We start proving (68). We define a new graph L, that is a sub-graph of Ts1+su
2

GU , whose

vertices (x, y) are,

V ′ =
{
(x, y) : x = (su − s1)z − (y − t)

su − s1

2
, z ∈ Z, y ∈ Z

}
, (69)

and whose edges connect vertices (x, y) to (x ± su−s1
2 , y − 1). The reason shy we introduce

L is that, as every site has only two neighbours, it is easier to construct its dual graph. The
new graph L is represented in the example in Fig. 10 on the right.

As L is a sub-graph of Ts1+su
2

GU , the following inequality holds,

Pp

(
HL

n

)
≤ Pp

(
T t

su+su
2

Hn

)
. (70)
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Fig. 11 The horizontal axis has been rescaled by su−s1
2 in both graphs. A = (−n, 6n), B = (n, 6n), C =

(−n, 4n), D = (n, 4n), E = (−n, 2n), F = (n, 2n), G = (−n, 0), H = (n, 0). Left representation of the
graph L. The event Hn occurs iff the side AB is connected to the side G H by an open path in L that does not
cross the sides AG and B H . Right representation of the graph LD , as defined in the text. The event Hn does
not occur iff one of the sides C E or E H is connected to one of the sides AD or DF by an open path in the
dual lattice

In the previous expression, the superscript L is used to denote that event Hn , defined in (56),
occurs on the graph L. Call then LD the dual graph of L. The graph is represented on the
right of Fig. 11 and its costruction is due to [22,25].

The dual graph is composed of three types of edges, namely, edges pointing down-left,
those pointing up-left and those pointing right. Every edge pointing right is positioned over a
vertex of the original graph L. Edges down-left and up-left are always open, edges pointing
right are open if and only if the corresponding vertex of the original graph is closed. A path
in the dual graph is open if and only if all its edges are open. The following proposition
connects the occurrence of the event Hn in L with the occurrence of a second event on the
dual lattice.

Proposition 9 Consider Fig. 11. For every n ∈ N, there exists an open path in L connecting
AC to F H iff there is no open path in the dual lattice connecting one of the sides C E or E H
to one of the sides AD or DF.

Proof We provide a graphical proof. Consider Fig. 11. On the left we have represented the
graph L and on the right we have represented its dual. Consider a realisation in the auxiliary
space � and recall that if a site is open in L, then the corresponding horizontal edge is closed
in the dual graph and vice versa. The reader should observe that, as long as there is an open
path connecting AC to F H in L, no open path in the dual graph connecting one of the sides
C E or E H to one of the sides AD or DF can exist. On the other hand, as long there exists
an open path in the dual graph connecting one of the sides C E or E H to one of the sides
AD or DF , no open path in L connecting AC to F H can exist. ��
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Both the proposition and the dual construction are analogous to the one presented in [22].
We use this proposition to provide a lower bound for Pp(HL

n ). Consider then a vertex z on
C E or on E H . Call Cz,h the set of paths connecting the vertex z to one of the sides AD
or DF and having h edges pointing to the right. Call Nz,h the total number of such paths.
Consider one of these paths and call dl the number of its edges pointing down-left and ul
the number of edges pointing up-left. As the last edge of the path cannot be on the left of
the first edge, 2h − ul − dl ≥ 0. This implies that for each of these paths sum h + ul + dl
is bounded from above by 3h. As there are only 3 different types of steps, for any vertex
z located on C E or on E H , Nz,h ≤ 33h . Thus Nz,h ≤ 33h for every z. Denote by HL

n the
complementary of HL

n . Recall Proposition 9 and observe the fact that, in order CG to be
connected to AD or to DH , at least � 2n

su−s1
� horizontal steps to the right are needed. Then,

Pp(HL
n ) = Pp(

⋃

z∈C E∪E H

∞⋃
h=2n

⋃

c∈Cz,h

{c is open }). Observe also that, given a path c ∈ Cz,h ,

Pp(c is open ) ≤ (1 − p)
h
2 , considering only the state of one every two edges to the right, as

states of edges located over non-neighbour sites are independent. By using the union bound,
we determine an upper bound for Pp(HL

n ),

Pp
(HL

n

) ≤
∑

z∈C E∪E H

∞∑

h=� 2n
su−s1

�
Nz,h (1 − p)h/2 ≤ A′ · n exp

(− b′n
)
, (71)

where the second inequality is true with A′, b′ positive constants if p > 1 − 1
3

6
. ��

4 Critical Probabilities

In this section we prove Theorem 2.2, which provides a lower bound for pc as a function of
the neighbourhood. The proof of Theorem 2.2 requires Lemma 4.1 and Propositions 10 and
11, which are stated in this section.

Proposition 10 Consider two Percolation PCA in Z with neighbourhoods respectively U
and U ′, both finite subsets of Z, such that U ⊂ U ′. Then

pc(U) ≥ pc
(U ′).

Proof From Proposition 2, stated in Sect. 3.1, and as the edge set of the graph GU is a
subset of the edge set of the graph GU ′ , it follows that ∀x ∈ Z, ∀t ∈ N0, δ1P t

U (ηx = 0) ≥
δ1P t

U ′(ηx = 0) (we added the subscript to the operator in order to distinguish between the
two neighbourhoods). From Definition 4 it follows that,

lim
t→∞ δ1P t

U (ηx = 0) < 1 �⇒ p ≥ pc(U).

Hence, pc(U) ≥ pc(U ′). ��
We introduce some notation.

Definition 9 (Massif of zeros) We call a segment of Z,
{
k, k + 1, . . . , k + 
 − 1

} ⊂ Z

a massif of zeros of length 
 for a given η ∈ �, if ηk−1 = ηk+
 = 1 and ηk = · · · = ηk+
−1

= 0.
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We use [[a, b]] to denote the set of integers in the interval [a, b]. We use η0 ∈ � to denote
the initial realisation of the Percolation PCA (namely, the initial probability measure is δη0 )
and η1, η2, . . . the random realisations of the process at different times. For every T ∈ Z+,
we introduce the following notation (the role of T will be clear later). For every η0, we
enumerate somehow the massifs of zeros of length larger or equal to T (su − s1). This means
that we assign to every massif a label k ∈ I, where I ⊂ N0 is the set of labels. We denote by
R0

k and by L0
k respectively the rightmost and the leftmost zero of the k-th massif. We observe

that, by definition of the transition probability for the process (2), such massifs cannot have
disappeared at time t ≤ T (see also Fig. 12).

For every k ∈ I, we define the random variables (Rt
k)t≥1 and (Lt

k)t≥1 using recursion.
Namely, ∀k ∈ I, ∀t ∈ Z+,

Rt
k :=

⎧
⎨

⎩
max
x∈Z

{
∀y ∈ [[Lt−1

k − s1, x]], ηt
y = 0

}
if Rt−1

k − Lt−1
k ≥ (su − s1)

−∞ otherwise
(72)

Lt
k :=

⎧
⎨

⎩
min
x∈Z

{
∀y ∈ [[x, Rt−1

k − su]], ηt
y = 0

}
if Rt−1

k − Lt−1
k ≥ (su − s1)

+∞ otherwise
. (73)

Namely, Rt
k and Lt

k keep track of the temporal evolution of two extremal sites of the k-th
massif. If the distance between such sites at a given time is less than (su − s1), then at all
subsequent times Rt

k = −∞ and Lt
k = +∞. Instead if at time Rt

k − Lt
k ≥ (su − s1), then at

time t + 1 the massif still exists almost surely. Note that it might happen that two or more
massifs merge at a certain time. In this case more than one label is used to denote the same
massif. The next lemma shows that if the massifs of zeros are “on average” expanding, then
the state of the system at infinite time is zero almost surely. As this happens independently
on the initial realisation, the process is ergodic.

Lemma 4.1 For every T ∈ Z+, the following statement holds. If there exist two families
of independent and identically distributed random variables (π i

k)i,k∈N, (ξ i
k)i,k∈N, such that

∀η0 ∈ �, ∀k ∈ I,∀i ∈ N0, ∀ j ∈ Z, the conditions (74–76) hold,

P
(
π i

k ≥ j
) ≤ Eδ

η0

(
RiT +T

k − RiT
k ≥ j |RiT

k − LiT
k ≥ T (su − s1)

)
(74)

P
(
ξ i

k ≤ − j
) ≤ Eδ

η0

(
LiT +T

k − LiT
k ≤ − j | RiT

k − LiT
k ≥ T (su − s1)

)
(75)

Fig. 12 In this example we consider a Percolation PCA with U = {−1, 0, 1, 2}. If the process starts from
a realisation having a massif of zeros in {L0

k , . . . , R0
k } with R0

k − L0
k ≥ T (su − s1), as in the figure, then

the state of every site in {L0
k − s1, L0

k − s1 + 1, . . . , R0
k − su} for the random realisation at time 1 and in

{L0
k − 2 s1, L0

k − 2s1 + 1, . . . , R0
k − 2su} for the random realisation at time 2 is 0 almost surely
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E
[
π1

1

]
> E

[
ξ1

1

]
(76)

then ∀μ ∈ M(�),
lim

t→∞ μP t = δ0. (77)

In the statement of the lemma P( · ) denotes the probability distribution of the random vari-
ables π i

k or ξ i
k . Such random variables stochastically dominate from below the change of

position of the rightmost and leftmost site of the massif every T steps. We also recall that
Eδ

η0 has been defined in Definition 1. The proof of the lemma is similar to the proof of
Proposition 6.4 in [25].

Proof It is sufficient to prove that ∀η0 ∈ �, ∀x ∈ Z, ∀ε > 0, ∃ t0 such that

∀t > t0, δη0P t (ηx = 0) ≥ 1 − ε, (78)

from which condition (77) follows.

We define c1 := 3E[ξ1
1 ]+E[η1

1]
4 and c2 := E[ξ1

1 ]+3E[η1
1]

4 , where E[·] denotes the expectation,
and we observe that if (76) holds, then c2 > c1. Then for every η0 ∈ �, ∀k ∈ I, ∀n, m ∈ Z

+,
∀i0, j0 ∈ Z such that j0 − i0 ≥ T (su − s1) + m + n, there exists two constants u, v ∈ [0, 1)

such that,

Eδ
η0

(
∀i ≥ 1, LiT

k ≤ c1(i − 1)T + LT
k + n, RiT

k

≥ c2(i − 1)T + RT
k − m | LT

k = i0, RT
k = j0

)

≥ P

⎛

⎝∀i ≥ 1,

i∑

j=1

ξ
j

k ≤ c1(i − 1)T + i0 + n,

i∑

j=1

π
j

k ≥ c2(i − 1)T + j0 − m

⎞

⎠

≥ 1 − um − vn . (79)

In the previous expression P(·) denotes the probability measure defined on the space of
outcomes of the sum of the increments ξ t

k , π t
k . The first inequality follows from (74) and

(75). The second inequality follows from the properties of the one dimensional random
walk, observing that by definition E[ξ i

k ] < c1 and E[π i
k] > c2. The two constants u and v

depend on the probability distribution of the increments of the random walk.
We observe that if for all t multiple of T , Rt

k ≥ c2t + j0 − m and Lt
k ≤ c1t + i0 + n

(event in the first expression in (79)) , then for all t ∈ N0, Rt
k ≥ c2t + j0 − m − su T

and Lt
k ≤ c1t + i0 + n − s1T . Hence, the state of all sites in the space-time region

Y m,n
[i0, j0] := {(x, t) : t ∈ Z+ and c1t + n + i0 − T s1 ≤ x ≤ c2t − m + j0 − T su} is

zero. This region is represented in Fig. 13 on the left. This follows from the observation that
by definition of transition probability of the Percolation PCA the following property holds,
namely,

Rt
k − Lt

k ≥ T (su − s1) �⇒ ∀q < T, Rt+q
k ≥ Rt

k − qsu, Lt+q
k ≤ Lt

k − qs1. (80)

Furthermore, we observe that ∀η0 ∈ �, ∀x ∈ Z, ∀n, m ∈ Z+, the measure δη0PT is such
that the probability that there exists a massif of zeros of length j0 − i0 ≥ T (su − s1)+ n + m
in [y, d] goes to 1 as d → ∞. We choose then n and m such that um + vn < ε

2 and d large
enough such that such probability is larger than 1 − ε

2 for all y.
Simple geometrical considerations show that for any y ∈ Z, d ∈ Z+, all regions Y n,m

[i0, j0],
where [i0, j0] ⊂ [y, y + d], have a non empty common region (dark region in Fig. 13-right).
We call U m,n

[y,d] this region. From (79) and from the previous observations the following
property holds,
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Fig. 13 The variable h on the right is defined as h := j0 − i0 − T (su − s1) − n − m

Eδ
η0

(∀(x, t) ∈ U[y,d], ηt
x = 0

)
> 1 − ε. (81)

Choosing y and d such that (x, t) ∈ U[y,d] implies (78). ��
Proof of Theorem 2.2 We provide a lower bound for the critical probability of the Percolation
PCA with neighbourhood

U := {
s1, s1 + 1, . . . , su − 1, su

}
, (82)

i.e. all elements between the two extremal ones are present. Our bound is a function of su −s1.
By Proposition 10 such bound holds also for Percolation PCA with neighbourhood obtained
removing some sites from (82).

The proof of the theorem is based on an application of Lemma 4.1. We fix a value T ∈ Z+
and by using the monotonicity property of the Percolation PCA, we define the random
variables π t

k and ξ t
k , whose probability distribution satisfies ∀p ∈ [0, 1] the conditions (74)

and (75) of Lemma 4.1. We define,

pT := max
p∈[0,1]

{
E
[
π1

1

]
> E

[
ξ1

1

]}
.

From Lemma 4.1, for all p ≥ pT the Percolation PCA is ergodic. From Definitions 4 and 5,
pT ≤ pc. We fix first T = 1 and we derive p1, later we consider T = 2 and we derive p2. Both
p1 and p2 appear in the statement of the theorem. Higher is the value of T considered, more
challenging is the estimation of pT , as this involves the characterization of the increments of
Lt

k, Rt
k over a larger time interval.

Fix then an integer T ∈ Z
+ and consider an initial realisationη0 ∈ �. Enumerate somehow

the massifs of zeros having length not smaller than T (su − s1) and recall the definitions of
the random variables Rt

k , Lt
k , t ∈ N0, k ∈ I, provided before the statement of Lemma 4.1.

For any A ⊂ Z, let 1t
A : �̃ → �̃ be the function that is equal to 1 if the state of all sites in A

at time t ∈ N0 is zero and zero otherwise. Let 1A : � → � (without the superscript) be the
function that is equal to 1 if the state of all sites in A is zero and zero otherwise. Observe that
1 − 1t

A and 1 − 1A are monotone functions. Let also ρ(x, y) ∈ � be the realisation having
zeros in [[x, y]] and ones everywhere else. Then ∀η0,∀η ∈ �, ∀t ∈ Z+, ∀k ∈ I, ∀x, y ∈ Z

such that y − x ≥ T (su − s1), ∀ j ∈ Z0, the following relations hold,
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Fig. 14 In this example we consider a Percolation PCA with U = {−1, 0, 1, 2}. If the process starts from the
realisation represented in the figure (row below), then the state of the sites above the small horizontal ball is
almost surely 0 at time 1 (row above)

Eδ
η0

(
Rt+T

k − Rt
k ≥ j | Rt

k = y, Lt
k = x, ηt = η

)
(83)

= Eδ
η0

(
1t+T[

[x−T s1,y−T su+ j]
] | Rt

k = y, Lt
k = x, ηt = η

)
(84)

= δηPT (1[[x−T s1,y−T su+ j]]) (85)

≥ δρ(x,y)PT
(
1[[x−T s1,y−T su+ j]]

)
. (86)

Equation (84) follows from the definition of Rt
k , Eq. (85) follows from the Markov property of

the probabilistic cellular automaton, inequality (86) follows from the monotonicity property
of the Percolation PCA, as any realisation η ∈ � having a massif of zeros in [[x, y]] is such
that η ≺ ρ(x, y). Similarly,

Eδ
η0

(
Lt+T

k − Lt
k ≤ − j |Rt

k = y, Lt
k = x, ηt = η

)
(87)

= δηPT
(
1[[x−T s1− j,y−T su ]]

)
(88)

≥ δρ(x,y)PT (1[[x−T s1− j,y−T su ]]
)
. (89)

We also observe that from the definition of transition probability of the Percolation PCA, the
quantities (86) and (89) do not depend on the sites x, y ∈ Z, as long as y − x ≥ T (su − s1).
Thus, we provide the following definitions of the probability distribution of the random
variables π t

k , ξ t
k . Namely, fix y and x such that y − x ≥ T (su − s1) and ∀k,∀t ∈ N0 we

define,

P
(
π t

k ≥ j
) := δρ(x,y)PT (1[[x−T s1, y−T su+ j]]

)
(90)

P
(
ξ t

k ≤ − j
) := δρ(x,y)PT (1[[x−T s1− j, y−T su ]]

)
. (91)

With this definition, from (83)–(89) the first two conditions of Lemma 4.1, namely, (74) and
(75), are satisfied. The maximum among all p ∈ [0, 1] such that condition (76) is satisfied is
pT ≤ pc.

We fix now T = 1 and we provide an estimation for (90) and (91) for any j ∈ Z. After this
we determine which values of p satisfy (76). We consider the Percolation PCA starting from
initial realisation ρ(x, y) and we assign the label 1 to the unique massif of zeros, namely,
R0

1 = y and L0
1 = x . We recall that by definition,

R1
1 ≥ j + R0

1 − su ⇐⇒ ∀z ∈ [[L0
1 − s1, R0

1 − su + j]], η1
z = 0 (92)

(see also Fig. 14). Hence, ∀ j ∈ N0,

δρ(x,y)P
(
R1

1 ≥ j + R0
1 − su

) = (1 − p) j . (93)
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This bound is obtained considering that almost surely ∀z ∈ [[x −s1, y −su]], η1
z = 0 and that

∀z ∈ [[y − su + 1, y − su + j]], independently δρ(x,y)P(ηz = 0) = (1 − p). Analogously,
∀ j ∈ N0,

δρ(x,y)P
(
L1

1 ≤ − j + L0
1 − s1

) = (1 − p) j . (94)

Thus for all j ∈ N0, we define the probability distributions of π t
1 and ξ t

1 respectively as,

P
(
π t

k ≥ j − su
) := (1 − p) j (95)

P
(
ξ t

k ≤ − j − s1
) := (1 − p) j . (96)

With this definition, from the relations (83)–(89), the relations (74) and (75) are satisfied.
It remains to determine for which values of p ∈ [0, 1] the second condition of Lemma 4.1
holds. By a simple computation,

E[π1] = 1 − p

p
− su, (97)

E[ξ1] = 1 − p

p
− s1. (98)

and
E[ξ1] − E[π1] ≥ 0 ⇐⇒ p ≥ p1, (99)

where p1 := 2
2+su−s1

appears on the statement of the theorem. Thus we proved that pc ≥ p1.
��

We fix now T = 2 and we use the same argument. Namely, we consider the Percolation
PCA starting from initial realisation ρ(x, y) ∈ � such that y − x ≥ 2(su − s1) and we assign
label 1 to the unique massif of zeros of ρ(x, y). We recall that by definition of R2

1 ,

R2
1 ≥ j + R0

1 − 2su ⇐⇒ ∀z ∈ [[L0
1 − 2s1, R0

1 − 2su + j]], η2
z = 0.

From definition (3) it follows that

δρ(x,y)P2
(

R2
1 ≥ j + y − 2su

)
=

∑

η1∈AR

δρ(x,y)P
(
Cη1

)

∏

z∈[[y−2su ,y−2su+ j]]
T
(
η2

z = 0|η1
U(z)

)
, (100)

where AR := {0, 1}[[y−2su+s1,y−su+ j]] and C R
η1 = {η′ ∈ � s.t. ∀z ∈ [[y − 2su + s1, y − su +

j]], η′
z = η1

z }. The sum is reduced to the elements of AR ⊂ � because the states of the
sites in the interval [[y −2su, y −2su + j]] for η2 depend only on the states of the sites in the
finite interval [[y − 2su + s1, y − su + j]] for η1. A similar expression holds for the random
variable L2

1,

δρ(x,y)P2(L2
1 ≤ − j + x − 2s1

) =
∑

η1∈AL

δρ(x,y)P
(
C L

η1

)

∏

z∈[[x−2s1− j,x−2su ]]
T
(
η2

z = 0|η1
U(z)

)
, (101)

where AL := {0, 1}[[x−s1− j,x−2s1+su ]] and C L
η1 = {η′ ∈ � s.t. ∀z ∈ [[x − 2s1 − j, x − 2s1 +

su]], η′
z = η1

z }.
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The exact computation of the left hand side of (100) and of (101) for any j is a difficult
combinatorial problem, as for each of the 2 j possible realizations one should determine the
corresponding product of transition probabilities. We present our estimations in the following
proposition.

Proposition 11 Consider the realisation ρ(x, y) ∈ � which has zeros in [[x, y]] and ones
everywhere else, where x, y ∈ Z are such that y − x ≥ 2(su − s1). Assign label 1 to the
unique massif of zeros of ρ(x, y) and recall the definition of (Rt

1)t∈N0 , (Lt
1)t∈N0 . Then,

δρ(x,y)P2(R2
1 ≥ R0

1 − 2su
) = 1, (102)

δρ(x,y)P2(L2
1 ≤ L0

1 − 2s1
) = 1, (103)

δρ(x,y)P2(R2
1 ≥ 1 + R0

1 − 2su
) ≥ 1 − p2, (104)

δρ(x,y)P2(L2
1 ≤ −1 + L0

1 − 2s1
) ≥ 1 − p2, (105)

δρ(x,y)P2(R2
1 ≥ 2 + R0

k − 2su
) ≥ (1 − p)2(1 + 2p), (106)

δρ(x,y)P2(L2
1 ≤ −2 + L0

1 − 2s1
) ≥ (1 − p)2(1 + 2p), (107)

for any 3 ≤ j ≤ su − s1,

δρ(x,y)P2
(

R2
1 ≥ j + R0

1 − 2su

)
≥ j p(1 − p) j + (1 − p) j + (1 − p)2 j , (108)

δρ(x,y)P2
(

L2
1 ≤ − j + L0

1 − 2s1

)
≥ j p(1 − p) j + (1 − p) j + (1 − p)2 j , (109)

and for any j > su − s1,

δρ(x,y)P2
(

R2
1 ≥ j + R0

1 − 2su

)
≥ j p(1 − p) j + (1 − p) j

+ p(1 − p) j+su−s1

(
j − su + s1 − 1

p

)

+ 2(1 − p)2 j , (110)

δρ(x,y)P2
(

L2
1 ≤ − j + L0

1 − 2s1

)
≥ j p(1 − p) j + (1 − p) j

+ p(1 − p) j+su−s1

(
j − su + s1 − 1

p

)

+ 2(1 − p)2 j . (111)

We postpone the proof of Proposition 11 to the next paragraph and we conclude the proof of
Theorem 2.2. We use the lower bounds provided in the proposition to define the probability
distribution of the random variables πk

1 , ξ k
1 . Namely, ∀ j ∈ N0, we define the probability

of the event {π t
1 ≥ j − su} (respectively {ξ t

1 ≤ − j − s1}) as the lower bound of the
probability of the event {R2

1 ≥ j + R0
1 − su)} (respectively {L2

1 ≤ − j + L0
1 − s1)}) provided

in the proposition. With such definition, the expectation of the random variables ξ t
k , π t

k is
equal to

E
[
π t

k

] = 2
(1 − p)

p
− 2su + (1 − p)6 + (1 − p)2su−2s1+2

p(2 − p)
, (112)

E
[
ξ t

k

] = −2
(1 − p)

p
− 2s1 − (1 − p)6 + (1 − p)2su−2s1+2

p(2 − p)
(113)
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By simple computations, the maximum p ∈ [0, 1] such that the inequality E[πk]−E[ξk] ≥ 0
is satisfied (Condition 76 of Lemma 4.1), corresponds to the value p2 defined in the statement
of Theorem 2.1. As the function E[π t

k] − E[ξ t
k ] intersects the line y = 0 only in one point

of the interval [0, 1], p2 is the unique solution of E[π t
k] − E[ξ t

k ] = 0 that falls in this
interval. ��
Proof of Proposition 11 In the proof we present the estimation of the probability δρ(x,y)P2

of the events {R2
1 ≥ j + R0

1 − 2su} j∈N0 . Using the same argument one can estimate the
probability of the events {L2

1 ≤ − j + L0
1 − 2s1} j∈N0 . By definition of R2

1 ,
{

R2
1 ≥ R0

1 − 2su + j
} ⇐⇒ ∀z ∈ [[L0

1 − 2s1, R0
1 − 2su + j]], η2

z = 0.

As observed previously, the state of the sites in [[R0
1 − 2su, R0

1 − 2su + j]] for η2 depends
only on the state of the sites in [[R0

1 − 2su + s1, R0
1 − su + j]] for η1. Furthermore, we

observed that the state of the sites in [[L0
1 − 2s1, R0

1 − 2su]] is zero almost surely for η2.
Hence, from Eq. (100), we obtain the following estimation (see also Fig. 15),

δρ(x,y)P2
(

R2
1 ≥ 1 + R0

1 − 2su

)
= δρ(x,y)P2

(
∀z ∈ [[L0

1 − 2s1, R0
1 − 2su + 1]], ηx = 0

)

= δρ(x,y)P2(ηR0
1−2s1+1 = 0

)

= δρ(x,y)P
(
ηR0

1−2su+1 = 0
)

+ δρ(x,y)P
(
ηR0

1−2su+1 = 1
)
(1 − p)

= (1 − p) + p(1 − p)

= 1 − p2, (114)

which corresponds to the estimation (104). Similarly we obtain the estimation (106),

δρ(x,y)P2
(

R2
1 ≥ 2 + R0

1 − 2su

)
= δρ(x,y)P2

(
∀z ∈ [[L0

1 − 2s1, R0
1 − 2su + 2]]

)

= δρ(x,y)P2
(
ηR0

1−2su+1 = ηR0
1−2su+2 = 0

)

= δρ(x,y)P1
(
ηR0

1−su+1 = 0, ηR0
1−su+2 = 0

)
1

+ δρ(x,y)P1
(
ηR0

1−su+1 = 0, ηR0
1−su+2 = 1

)
(1 − p)

+ δρ(x,y)P1
(
ηR0

1−su+1 = 1, ηR0
1−su+2 = 0

)
(1 − p)2

+ δρ(x,y)P1
(
ηR0

1−su+1 = 1, ηR0
1−su+2 = 1

)
(1 − p)2

≥ (1 − p)2 + p(1 − p)2 + p(1 − p)3 + p2(1 − p)2.

(115)

We provide now the estimation (108) considering all j ≥ 3. We introduce an index
m ∈ [[0, j − 1]], and the mutually disjoint cylinder sets (they will be defined later),

{
Ca,m}

m∈[[0, j−1]],
{
Cb,m}

m∈[[0, j−2]], Cc.

We denote by Cd the set of realisations that are not in the sets just introduced, namely,

Cd := �
/ ⋃

m∈[[0, j−2]]
Ca,m ∪ Cb,m ∪ Cc ∪ Ca, j−1. (116)
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Fig. 15 In the figure we consider
U = {−1, 0, 1, 2}. If the initial
realisation of the Percolation
PCA is the one represented in the
figure (lowest row), then almost
surely the state of the sites above
the short horizontal line is zero

For every m ∈ [[0, j − 2]] we estimate δρ(x,y)P(Ca,m) and δρ(x,y)P(Cb,m), and we also
estimate δρ(x,y)P(Ca, j−1) and δρ(x,y)P(Cc). Furthermore, for each of these sets we provide
some bounds Ba,m ,Bb,m ,Bc. Namely, for every η1 ∈ Cw , where w denotes generically
(a, m), (b, m) or c, the following inequality holds,

Bw ≤
∏

z∈
[
[R0

1−2su ,...,R0
1−2su+ j]

]
T
(
η2

z = 0|η1
U(z)

)
, (117)

We use such estimations to provide a bound for (100).
We start with the introduction of the cylinder set Ca,m ⊂ �,

Ca,m :=
{
η ∈ � s.t. ∀z ∈ [[R0

k − su + 1, R0
1 − su + j]]/{R0

k − su + m + 1
}
,

ηz = 0 and ηR0
k −su+m+1 = 1

}
, (118)

(see also Fig. 16a). By a simple computation,

δρ(x,y)P
(
Ca,m) = p(1 − p) j−1. (119)

Furthermore, we observe that ∀η ∈ Ca,m , the product over the transition probabilities of Eq.
(100) satisfies the following bound,

∏

z∈
[
[R0

1−2su ,R0
1−2su+ j]

]
T
(
η2

z = 0|η1
U(z)

)
≥ Ba,m, (120)

where

Ba,m :=
{

(1 − p)su−s1+1 if 0 ≤ m ≤ j − (su − s1) − 1

(1 − p) j−m if j − (su − s1) ≤ m ≤ j − 1
. (121)

Then we introduce the cylinder sets Cb,m ⊂ �, where 0 ≤ m ≤ j − 2.

Cb,m :=
{
η ∈ � s.t.∀z ∈ [[R0

1 − su + 1, R0
1 − su + m]], ηz = 0, ηR0

1−su+m+1 = 1,

∃y ∈ [[R0
1 − su + m + 2, R0

1 − su + j]] s.t. ηy = 1
}

(122)

(see also Fig. 16b). By using the definition of transition probability for the Percolation PCA
we estimate the probability measure of this cylinder set

δρ(x,y)P
(
Cb,m) = (1 − p)m p

[
1 − (1 − p) j−m−1

]
, (123)
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(a)

(b)

(c)

Fig. 16 In the figures above the neighbourhood is assumed to be U = {−1, 0, 1, 2}. If the initial realisation
of the Percolation PCA (first row) is the one represented in the figure, then the sites underlined by a short
line on the second and third row have state zero almost surely. a The second row represents a realisation η2

belonging to the set Ca,m , m = 4, j = 9. b The second row from below represents a realisation η2 belonging
to the set Cb,m , m = 4, j = 9. c The second row from below represents a realisation η2 belonging to the set
Cc , j = 9

and we observe that ∀η1 ∈ Cb,m the following bound holds

∏

z∈[[R0
1−2su ,R0

1−2su+ j]]
T
(
η2

z = 0|η1
U(z)

)
≥ (1 − p) j−m (124)

Thus we define
Bb,m := (1 − p) j−m . (125)

The bound (124) is obtained considering that T (η2
z = 0 | ηU(z)) = 1 for all z ∈ [[R0

1 − 2su +
1, R0

1−2su+m]] and T (η2
z = 0 | ηU(z)) ≥ (1−p) for all z ∈ [[R0

1−2su+1+m, R0
1−2su+ j]].

Third, we define the cylinder set Cc ⊂ �,

Cc :=
{
η1 ∈ � s.t. η1

z = 0 ∀z ∈ [[R0
1 − su + 1, R0

1 − su + j]]
}
. (126)
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For this set,
δρ(x,y)P

(
Cc) = (1 − p) j , (127)

and ∀η1 ∈ Cc, ∏

z∈
[
[R0

1−2su ,R0
1−2su+ j]

]
T
(
η2

z = 0|η1
U(z)

)
= 1 (128)

(see also Fig. 16c). Thus we define
Bc := 1. (129)

Finally we recall the definition of Cd provided in Eq. (116). We observe that

δρ(x,y)P
(
Cd) = 1 −

j−1∑

m=0

δρ(x,y)P
(
Ca,m)−

j−2∑

m=0

δρ(x,y)P
(
Cb,m)− δρ(x,y)P

(
Cc) (130)

and that ∀η1 ∈ �,
∏

x∈
[
[R0

1−2su ,R0
1−2su+ j]

]
T
(
η2

x = 0|η1
U(x)

)
≥ (1 − p) j . (131)

The inequality is obtained considering that from the definition (2) it follows that ∀z ∈ Z,
T (η2

x = 0|η1
U(x)) ≥ (1 − p). Thus we define

Bd := (1 − p) j . (132)

We finally replace the estimations (119), (121), (123), (125), (127), (129), (132), in the next
expression,

δρ(x,y)P2
(

R2
1 ≥ j + R0

1 − 2su

)
≥

∑

m∈[[0, j−1]]

[
δρ(x,y)P

(
Ca,m) Ba,m

+ δρ(x,y)P
(
Cb,m) Bb,m

]
+ δρ(x,y)P

(
Cc)Bc

+ δρ(x,y)P
(
Cd), (133)

that follows from the fact that cylinder sets are disjoint and from (117). With a simple
computation we derive the bounds (108) and (110). ��
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Appendix: Numerical Simulations

We consider Percolation PCA with space Sn and periodic boundaries. We divide the interval
[0, 1] in smaller intervals of length 0.0002 and for each extremal point p of the smaller
intervals we run the process R times and we compute the ratio,

P R,T,n(p) := N
(
R, T, n, p

)
/R, (134)
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Fig. 17 Up left U = {−1, 0, 1}. Up right U = {−1, 0, 1, 2}. Middle left U = {−1, 0, 1, 2, 3}. Middle right
U = {−1, 0, 2}. Down U = {−1, 0, 3}

where N (R, T, n, p) is the number of times the origin has state 1 at time T among R computer
simulations. As n, T and R are large, P R,T,n(p) converges to the following quantity,

lim
t→∞ δ1 P t

p(η0 = 1),

which is positive if Percolation PCA is supercritical or zero otherwise. For each extremal
point p of the smaller intervals we consider two parameter sets. The first parameter set
is n =100,000, T =100,000, R =2,000 and the second parameter set is n =500,000,
T =500,000 and R = 200 (larger space and less repetitions). For both parameter sets, we
plot in Fig. 17 the quantity (134) obtained by means of numerical simulations. The smallest
p such that P R,T,n(p) is positive represents our numerical estimation for pc. This value is
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different for the two parameter sets, but the fluctuation is small. The estimation of pc(U) for
several neighbourhoods can be found in the table below.

U p1 p2 Num. Est.

{−1, 0} 2/3 0.670 0.705

{−1, 0, 1} 1/2 0.505 0.538

{−1, 0, 1, 2} 2/5 0.407 0.435

{−1, 0, 2} 2/5 0.407 0.490

{−1, 0, 1, 2, 3} 1/3 0.343 0.364

{−1, 0, 3} 1/3 0.343 0.470
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