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Abstract. Recently, neural networks (NN) with an infinite number of layers

have been introduced. Especially for these very large NN the training procedure
is very expensive. Hence, there is interest to study their robustness with respect

to input data to avoid unnecessarily retraining the network.

Typically, model-based statistical inference methods, e.g. Bayesian neural
networks, are used to quantify uncertainties. Here, we consider a special class

of residual neural networks and we study the case, when the number of layers

can be arbitrarily large. Then, kinetic theory allows to interpret the network
as a dynamical system, described by a partial differential equation. We study

the robustness of the mean-field neural network with respect to perturbations

in initial data by applying UQ approaches on the loss functions.

1. Introduction. The use of machine learning algorithms has gained a lot of in-
terest in the past decades [42, 43, 74]. Besides the data science problems like
data clustering, regression and classification, image recognition and pattern forma-
tion, there are novel applications in the field of engineering as e.g. for production
processes [57, 68, 78]. The origins of artificial neural networks date back to the
1940s [33, 53]. Neural networks (NN) have been applied to a huge variety of ap-
plications like computer vision, speech recognition or robotics. More recently, also
applications to mathematical problems in numerical analysis [62, 63, 83] and opti-
mal control [65] have been studied. The popularity of NN can be partially explained
by its data driven ansatz and its simplicity. Having collected sufficient experimental
data the NN can be trained and subsequently used as a forward model for nearly all
related applications. Most commonly NN are trained by the backpropagation algo-
rithm [30, 46, 84]. Although several studies deal with reducing the computational
costs of NN [24, 82], the training procedure is usually computationally expensive
especially for large networks. To decide, when a network has to be retrained, quan-
tifying the informative value of the prediction is necessary.

In this work we study the impact of uncertainty in initial data on the NN output.
More precisely, we assume that we have a trained NN. We are interested in quanti-
fying the perturbation of the loss function, when the input signal is perturbed, to
study the robustness of the network.
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This subject has received a lot of attention in the past decade and we refer
to [73] for a detailed review. On the one hand, NN have been used to improve UQ
techniques [44, 81], but also uncertainty quantification methods have been applied
to NN intensively.

Bayesian neural networks provide an extension to posterior inference, which may
be seen as maximum likelihood estimation of the weights [79, 3, 29]. Also priors on
the weights can be imposed [8]. Approximate Bayesian computation (ABC) forms
a class of computational methods, which is linked to Bayesian statistics that can be
used to estimate the posterior distributions of model parameters [7, 49, 52, 6, 39].

In all of these model-based statistical inference methods, the likelihood func-
tion determines the informative value. Namely, it expresses the probability of the
observed data under a particular statistical model.

Typically, the likelihood function causes numerical challenges. ABC methods cir-
cumvent this issue by widening the realm of the models for which statistical inference
can be considered. However, they are based on assumptions and approximations,
which have to be carefully addressed.

In general, these issues become not less challenging if the number of layers in-
creases. For several residual neural networks, however, studying the limit for an
infinite number of layers may result in a simplification. Indeed, we obtain for par-
ticular residual neural networks in the limit a partial differential equation. Then,
uncertainties can be studied by Monte-Carlo, stochastic collocation and stochastic
Galerkin methods.

The proposed stochastic Galerkin method describes a priori a functional depen-
dence on the stochastic input. This can be viewed as a prior, where samples may be
drawn easily. These are propagated deterministically through the hidden layers of
the network. Hence, our approach is closely related to moment matching networks
(MMN) [67, 50]. Having trained a MMN, one can also draw easily independent
random samples from the output [18, 60]. With our approach, a partial differential
equation propagates the uncertainties through the kinetic residual network with
infinite layers.

The outline of the paper is as follows. In Section 2 we review the definition
of neural networks and especially recall a recently introduced kinetic approach to
neural networks. Then, we describe the propagation of uncertainties through the
kinetic model. Finally, the UQ methods are presented in Section 3. Especially,
we compare the three presented methodologies as possible techniques to quantify
the robustness of the residual neural networks. In Section 4, we conduct numerical
examples. We present classical machine learning tasks, such as clustering and re-
gression problems to study the robustness of the network with respect to random
initial data. In particular, uncertainty quantification is performed on the loss func-
tions. We finish the paper in Section 5 with a brief conclusion and an outlook on
future research perspectives.

2. Neural networks and formulation in UQ framework. The crucial building
blocks of an artificial neural network are neurons and layers. Each neural network
consists at least of one input layer, one hidden layer and one output layer. The
input layer ` = 0 is simply characterized by the measurement of d features or input
signals x0 ∈ Rd. A feature is one type of measured data, e.g. temperature of a tool,
length or width of a vehicle, color intensity of an image. The output layer ` = L
contains, after overall application of the network, the output result. Furthermore,
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Figure 1. Illustration of a neural network with L+ 1 = 5 total layers.

a neural network may consist of arbitrary many hidden layers ` = 1, . . . , L − 1.
The total number of layers, i.e. L+ 1 including input and output layer, defines the
deepness of the network’s structure. The number of neurons in each layer is denoted
by N`. We assume for the input and output layers N0 = NL = 1. But the number
of neurons in each hidden layer ` = 1, . . . , L − 1 may vary. We can imagine each
neuron being characterized by a value xk,` ∈ Rd, k = 1, . . . , N`, cf. Figure 1, which
is the result of compositions of function blocks defined by an activation function
σ : R → R. Following [51], the update of a multilayer perceptron neural network
can be written in a general fashion as

xk,`+1 = σ


 1

dN`

N∑̀

j=1

w`
kj x

j,` + b`


 for ` = 1, . . . , L, k = 1, . . . , N`, (1)

where the weight matrices w`
kj ∈ Rd×d and biases b` ∈ Rd are a priori unknown

and need to be obtained by training. Here, the activation function is evaluated
componentwise. Famous examples of activation functions are the sigmoid σS(x) =

1
1+exp(−x) , ReLu σR(x) = max{0, x} or hyperbolic tangent σT (x) = tanh(x) func-

tions. Weights, biases, as well as the size of a NN, implicitly define the structure of
the network. For a comprehensive introduction to NN we refer to [2, 5, 31] and the
references therein.

A popular subclass of artificial neural networks are residual neural networks
(ResNet), where we are interested in. In comparison to (1) the activation energy of
the previous layer is added to the activation function. We assume N` = N for each
layer ` = 1, . . . , L− 1. Thus, the update formula of a ResNet [32, 51] is

xk,`+1 = xk,` + σ


 1

dN

N∑

j=1

w`
kj x

j,` + b`


 . (2)

So far we have neglected the dependence of the input measurement x0. In case of M
different measurements we denote the forward propagation of the i-th measurement

by xk,`1 , . . . ,xk,`M .

2.1. Training of a network. A crucial part in applying a neural network is the
training of the network. Once the structure of the network is established, training
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Figure 2. Illustration of the SimResNet with L+ 1 = 5 total layers.

aims to find weights and biases that minimize the distance of the output layer to
given targets hi ∈ Rd with respect to a suitable loss L, i.e.

(W ,B) ∈ argmin

{
1

M

M∑

i=1

L
(
xLi ,hi

)
}

for L : Rd × Rd → R+
0 . (3)

Here, the collection of weights and biases are denoted by W and B. A typical

example, see e g. [38], is the quadratic loss function L
(
xLi ,hi

)
=
∥∥xLi −hi

∥∥2
, which

is often used for regression problems.
The computational cost of the training procedure depends on the size of the

network and may be expensive. Typically, stochastic gradient descent is used to
perform the optimization of the parameters [30, 46, 84].

2.2. Kinetic formulation of the ResNet. Recently, studying the limit L→∞,
i.e. studying deep neural networks with infinite layers, has gained interest in the
mathematical community [34, 66, 12]. This allows to represent a discrete network
as a continuous function. Similarly to [12] we reformulate the discrete time neu-
ral network as a system of continuous ordinary differential equations. This is the
intermediate step to formulate the discrete ResNet as a kinetic partial differential
equation (PDE) which represents the mathematical cornerstone we consider in this
work.

We shortly summarize the derivation of the mean-field equation for a ResNet.
The kinetic formulations of a ResNet are derived under the crucial assumption that
each hidden layer corresponds to one neuron, i.e. N` = 1 for all ` = 1, . . . , L − 1.
Then, the number of neurons is fixed and prescribed by the dimension of the input
signal only. Therefore, each layer consists of d neurons and each one contains a
scalar activation energy, as illustrated in Figure 2.

We introduce the microscopic model SimResNet from [34]. The time evolution
of the activation energy of a neuron is for each fixed i = 1, . . . ,M defined as

{
xi(t+ ∆t) = xi(t) + ∆t σ

(
1
dw(t) xi(t) + b(t)

)
,

xi(0) = x0
i

(4)

where the discrete time t identifies the layer. In fact we observe that, compared
to (2), the network is reformulated by introducing a parameter ∆t > 0 and a time
discrete concept which corresponds to the layer discretization. More precisely, the
time step is defined as ∆t := 1

L+1 . In this way, we can interpret (4) as an explicit
Euler discretization of an underlying time continuous model, i.e.

{
d
dtxi(t) = σ

(
1
dw(t) xi(t) + b(t)

)
,

xi(0) = x0
i

(5)
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for each fixed i = 1, . . . ,M withw(t) ∈ Rd×d, b(t) ∈ Rd being continuous extensions
of the discrete optimal weights and biases. The simplifications introduced in the
formulation of the SimResNet (4) allow to reduce the complexity of a neural network
drastically, and especially the cost of the training stage. A further simplification,
considering diagonal matrices w ∈ Rd×d, is possible and the resulting network has
been shown to provide a suitable approximation of any function f ∈ L1(Rd), see [51].

The special form of the SimResNet is beneficial to compute kinetic formulations.
We perform the kinetic limit in the number of measurements M , which means that
we consider the case of infinitely many measurements. Since the dimension of a
measurement xi is directly related to the dimension of the variable of the kinetic
distribution function, moderate dimenions d should be considered in applications.
According to [34], the mean field equation, corresponding to the dynamics (5), reads

∂tg(t,x) +∇x ·
(
σ

(
1

d
w(t)x+ b(t)

)
g(t,x)

)
= 0, (6)

where g : R+
0 × Rd → R is the compactly supported distribution function with

normalized initial values

g(0,x) = g0(x),

∫

Rd

g0(x) dx = 1.

The initial data g0(x) describe the distribution of the measured data and the mean
field equation (6) preserves mass, i.e.

∫
Rd g(t,x) dx = 1 for all t ≥ 0. The derivation

is classical and we refer to [27, 37] for general details on mean field theory.

2.3. Propagation of perturbations and robustness of the network in the
kinetic limit. We assume a trained NN with a numerically expensive training
procedure. Thus, the user of a NN aims to avoid unnecessary training runs. Initial
values in real world applications are usually measurements, which are commonly
noisy and hence, are perturbations of the true states. We refer to the perturbations
as uncertainties and we considered only perturbations of inputs. The NN model
propagates the uncertainties forward.

To quantify the forward propagation of the uncertainties through the NN model,
and, consequently, the robustness with respect to input signals, we assume a per-
fectly trained NN, meaning that there have been no measurement errors of the
training set nor numerical errors in the training procedure. The M input signals
x0
i ∈ Rd are perturbed by a d-dimensional random variable η, which is defined on

the probability space
(
Ω,F(Ω),P

)
. The perturbed input signals with different noise

levels εi > 0 read as

X0
i (ω) = x0

i + εiη(ω) for i = 1, . . . ,M and ω ∈ Ω.

Since we consider a trained NN, the structure of the network does not depend on
the uncertainties. Therefore, the dependence of the output signal on the uncertainty
can be expressed by XL

i = F
(
X0
i

)
, where F : Rd → Rd denotes the deterministic,

pre-trained NN. On the macroscopic level, we look for random solutions

g(t,x, ·) :
(

Ω,F(ω)
)
→
(
L1(R),B

(
L1(R)

))
,

were B denotes the Borel set, that satisfy almost surely (P-a.s.) the parameterized
mean field equation

{
∂tg(t,x,η) +∇x ·

(
σ
(

1
dw(t)x+ b(t)

)
g(t,x,η)

)
= 0,

g(0,x,η) = g0

(
x, ε(x)η

)
.
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Moreover, we consider solutions that belong for each fixed g(t,x, ·) to the space

L2(P) :=

{
f, g : Ω→ R

∣∣∣∣
〈
f, g
〉
P :=

∫

Ω

f(ω)g(ω) dP(ω),
∥∥f
∥∥
P :=

√〈
f, f
〉
P

}
.

3. Uncertainty quantification methods. The research field of uncertainty quan-
tification concerns with the estimation and characterization of uncertainties in the
model. Typically, quantifying the impact of uncertain input parameters of a model
is of interest. These inputs might be the initial conditions of a PDE or any model
parameter.

One may distinguish between intrusive and non-intrusive methods. Non-intrusive
methods compute for fixed realisations of the stochastic input the corresponding so-
lutions. Then, the statistics of interest are computed. Since deterministic numerical
solvers need not be changed, non-intrusive methods are often preferred in practice.
For instance, in the case of partial differential equations finite volume based meth-
ods have been proven successful in previous works [69, 76, 17, 80, 54, 77, 64, 1, 55].
Desirable numerical schemes are in smooth regions high-order accurate, but can
also resolve singularities in an essentially nonoscillatory (ENO) fashion. CWENO
schemes consist of a weighted combination of local reconstructions on different sten-
cils and allow unstructured grids [15, 14, 16, 35, 45, 70].

Numerical cost can be substantially decreased if it is possible to state a priori a
functional dependence of the solution on the stochastic input. The dependence can
be expressed by orthogonal functions, e.g. orthogonal polynomials, also known as
polynomial chaos (gPC) expansions [9, 85, 87].

One large class of UQ methods are described by collocation approaches [72, 86].
They have in common to be non-intrusive and to solve the model exactly for discrete
values in the random space. Collocation approaches are very popular and have been
applied to a wide range of problems. The simplest method of this class is the well-
known and widely used Monte-Carlo method. Another collocation approach is the
pseudo spectral or stochastic collocation approach, which can make use of the given
functional dependence on the stochastic input.

Stochastic Galerkin methods are intrusive. They compute directly the gPC coeffi-
cients that determine the functional dependence. Expansions of the stochastic input
are substituted into the governing equations and they are projected to obtain deter-
ministic evolution equations for the gPC coefficients. Applications of this procedure
are challenging for general PDEs, since desired properties like hyperbolicity may be
lost [59, 19, 21, 22, 47, 58]. The resulting systems for linear hyperbolic [28, 61]
and kinetic equations [10, 11, 36, 41, 71, 88, 89] remain well-posed. Furthermore,
convergence results of truncated gPC expansions to the true solution can be derived
by analyzing the regularity of the solution on the uncertain input [23, 36, 89].

For our applications it is natural to choose collocation approaches in the case of
a large artificial NN. The advantage is that any black box solver for the NN can be
used. Besides the non-intrusive methods, also the stochastic Galerkin method will
be applied to kinetic differential equations.

So far, we have specified the quantity of interest (QoI) by a loss function (3).
With the introduction of uncertainties, we obtain the random variables

QoI(ω) :=

∫

Rd

L
(
g
(
t,x,η(ω)

)
, h(x)

)
dx and QoI(ω) :=

1

M

M∑

i=1

L
(
XL
i (ω),hi

)
.
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We are interested in statistics such as mean and variance, i.e.

E
[
QoI

]
:=

∫
QoI(ω) dP(ω) and V

[
QoI

]
:= E

[
QoI2

]
− E

[
QoI

]2
.

In the following we compute these statistics with Monte-Carlo, stochastic colloca-
tion and stochastic Galerkin methods. First, we introduce non-intrusive methods,
namely Monte-Carlo and stochastic collocation.

3.1. Monte-Carlo methods. For M̂ independent and identically distributed ran-
dom variables QoI1, . . . ,QoI

M̂
, having the same distribution as the quantity of in-

terest QoI, we consider the unbiased Monte-Carlo estimators for mean and variance

E
M̂

[
QoI

]
:=

1

M̂

M̂∑

i=1

QoIi,

V
M̂

[
QoI

]
:=

1

M̂ − 1

M̂∑

i=1

(
QoIi − EM̂

[
QoI

])2

.

Since we are mostly interested in the first and second moments, we consider the
root of the mean squared error (RMSE), which satisfies

√
E
[(
E
M̂

[
QoI

]
− E

[
QoI

])2
]

=
1√
M̂

V
[
QoI

]
.

We observe the convergence rate is of order O
(
M̂−1/2

)
. This slow convergence is

the drawback of the MC method, however, the rate is independent of the dimension
of stochastic input. The RMSE can also be decreased by reducing the variance.
Typical variance reduction techniques are control variates, importance sampling,
antithetic variables [26] and Multilevel-Monte-Carlo methods [25].

3.2. Collocation methods. Under the assumption that the probability measure
dP(ω) is absolutely continuous with respect to the Lebesgue measure dω, we can
express the moments as the Lebesgue integral

E
[
QoI

]
=

∫
QoI(ω) dP(ω) =

∫
f
(
QoI(ω)

)
ρ(ω) dω

with Radon-Nikodym derivative ρ(ω) :=
dP(ω)

dω
,

which is almost surely unique defined [56]. Instead of interpreting the quantity of
interest QoI as a random variable, i.e. a measurable function with an associated
probability measure, the Radon-Nikodym derivative allows an interpretation as a
parameterized function, i.e.

QoI : Ωρ → Rd, ω 7→ QoI(ω)

with associated probability density ρ(ω). Note that this assumption is rather re-
strictive, since one cannot define a probability density with respect to an arbitrary
measure. For instance, discrete random variables cannot be parameterized in this
way.

For many practically relevant probability measures, e.g. normal and uniform
distributions, we can compute statistics of interest more efficiently by exploiding
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the functional dependence on the stochastic input. More precisely, we will consider
projections onto the orthogonal subspaces

Ŝk ⊂ L2(ρ) with SK :=

K⊕

k=0

Ŝk −→ L2(ρ) for K →∞.

An orthogonal basis of SK , denoted as (φk)Kk=0, is called generalized polynomial
chaos (gPC) basis. Typical choices are

Legendre polynomials with uniform distribution ρ(ω) = 1
2 , Ωρ ∈ [−1, 1],

φ0(ω) = 1, φ1(ω) = ω, φk+1(ω) =
2k + 1

k + 1
ωφk(ω)− k

k + 1
φk−1(ω),

Hermite polynomials with normal distribution ρ(ω) = 1√
2π
e−

ω2

2 , Ωρ = R,

φ0(ω) = 1, φ1(ω) = ω, φk+1(ω) = ωφk(ω)− kφk−1(ω).

Then, the dependency of a quantitiy of interest on the stochastic input can be
expressed as

GK
[
QoI

]
(ω) :=

K∑

k=0

Q̂oIkφk(ω), Q̂oIk :=

〈
QoIφk

〉
ρ

‖φk‖2ρ
. (gPC)

With a multi-index k := (k1, . . . , kd) ∈ K and an index set K ⊆ Nd0 definition (gPC)
is extended to the multidimensional case by

GK
[
QoI

]
(ω) :=

∑

k∈K
Q̂oIkφk(ω) with φk(ω) := φk1(ω1) · . . . · φkM (ωd), ω ∈ Rd.

Common choices for multidimensional bases, see e.g. [48, 86], are the

tensor basis KT :=
{
k ∈ Nd0 | ‖k‖0 ≤ K

}
with |KT| = (K + 1)d,

sparse basis KS :=
{
k ∈ Nd0 | ‖k‖1 ≤ K

}
with |KS| = (d+K)!(d!K!)−1.

In the following, we use the one-dimensional notation (gPC) with K + 1 = |K|.
According to [9, 13, 20] the truncated expansion converges to the exact solution
with respect to the L2(ρ)-norm under the mild assumption QoI ∈ L2(ρ). The rate
of convergence, however, depence on the regularity with respect to the stochastic
input. In particular for Legendre polynomials, [86, Th. 3.6] gives the estimate

√
E
[(
GK [QoI]−QoI

)2
]
∼
{
K−q for QoI(·) ∈ Hq

ρ ,

e−cK for c > 0 if QoI(·) is analytic.
(7)

Here, Hq
ρ denotes the weighted Sobolev space

Hq
ρ :=

{
QoF ∈ L2(ρ)

∣∣∣∣∣

q∑

k=0

∥∥∥∂kωQoI(ω)
∥∥∥

2

ρ
<∞

}
.

We will exploid this polynomial approximation in several ways.

Gaussian quadrature. A typical approach to compute the integrals in one dimension
is Gaussian quadrature with nodes ξ1, . . . , ξM̂ and weights w1, . . . , wM̂ . According
to [75], we have the error estimates

∣∣∣∣∣∣

M̂∑

i=1

wiQoI(ξi)− E
[
QoI(η)

]
∣∣∣∣∣∣
∼
{

1

(2M̂)!
for QoI(·) ∈ C2M̂ ,

0 for QoI(·) ∈ Pol
2M̂−1

,
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where Polp denotes the set of polynomials with degree equal or smaller than p ∈ N0.
Therefore, this approach can be optimal in one dimension if there is a smooth
dependency on the stochastic input.

In multidimensions, however, when the multidimensional functions are repre-
sented by full tensors and full grids, the computational complexity grows exponen-
tially with the number of dimensions. Unless the problem structure allows for sparse
grids, deterministic quadrature is typically not feasible in higher dimensions.

3.3. Stochastic Galerkin. The stochastic Galerkin (SG) method is built on the
idea of the original Galerkin method, i.e. expanding the solution with the help of
orthogonal polynomials. In contrast, the underlying equations are projected first.
Then, the solution is reconstructed. We consider the general dynamical system
∂tQoI(t, ω) = D

(
QoI(t, ω)

)
. The stochastic Galerkin formulation reads as

∂tQ̂oIk(t) =
1

‖φk‖2ρ

〈
D
(
GK [QoI](t, ·)

)
, φk(·)

〉
ρ

for k = 0, . . . ,K.

The stochastic Galerkin method consists now in solving these systems of equations.
However, there are several challenges. Even if the underlying dynamical system
is for each ω ∈ Ωρ well-posed, there exist in general no unique solution to the
stochastic Galerkin formulation. And even if the stochastic Galerkin formulation is
for each fixed K ∈ N0 well-posed, the solution does not necessarily converge to the
desired solution for K → ∞. We can resolve these issues for solutions to general,
but linear kinetic initial value problems

∂tg(t,x, ω) + T ∇x · g(t,x, ω) = Qg(t,x, ω) with g(0,x, ω) = g0(x, ω), (8)

where the uncertainty arises only from initial values. This means for the mean field
equation T = σ

(
1
dw(t)x+b(t)

)
, Q = 1

dw(t)σ′
(

1
dw(t)x+b(t)

)
. Then, the stochastic

Galerkin formulation consists of K + 1 decoupled systems

∂tĝk(t,x) + T ∇x · ĝk(t,x) = Qĝk(t,x) with ĝk(0,x) :=

〈
g0(x, ·)φk(·)

〉
ρ

‖φk‖2ρ
(9)

and is hence well-posed. Moreover, the convergence for K → ∞ should be rel-
atively fast. We consider L2-solutions [4, Def. A.3] to the linear, kinetic equa-
tions (8) and (9). These are formally given by

g(t,x, ω) =M(t)g0(x, ω) and ĝk(t,x) =M(t)ĝk(0,x).

If the solution operator M(t) is a continuous and hence bounded operator, satisfy-
ing

∥∥M(t)
∥∥ <∞ for all t ≥ 0, we have the a priori estimate

√
E
[∥∥GK [g](t, ·,η)− g(t, ·,η)

∥∥2
]

=
∥∥M(t)

∥∥
√√√√

∞∑

k=K+1

∥∥ĝ(0, ·)
∥∥2

∼
{
K−p for g0(x, ·) ∈ Hq

ρ ,

e−cK for c > 0 if g0(x, ·) is analytic.

Hence, for linear kinetic equations, this approach can provide spectral convergence
if initial values depend sufficiently smooth on the random input.
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4. Numerical examples. In this section we use the previous methods to study
the behavior of uncertainty in the initial input of a neural network model to quantify
its robustness by measuring the deviation from the correct target as function of the
size of the uncertainty.

In particular, we apply Monte-Carlo and stochastic collocation to the discrete
deep artificial neural network, and we apply stochastic Galerkin to the PDE formu-
lation of the deep residual neural network.

We focus on regression and classification problems, which are tasks belonging to
the field of supervised machine learning. Both are based on using known datasets,
usually named as training datasets, to make predictions. The main difference be-
tween the two types of problems is that the output variable in regression is numerical
or continuous, while the output for classification is categorical or discrete.

4.1. Deep artificial neural network.

4.1.1. Regression problem. In machine learning, a regression tasks aims to estimate
or approximate a function h : H ⊆ Rd → Rd, mapping the input variables x ∈ H to
the numerical or continuous output variables y = h(x) ∈ Rd. In the following we
consider one dimension d = 1 and h(x) = tanh(x) on H = [−4, 4].

We make use of the discrete model (1) with 4 total layers and 2 hidden layers,
each one having N1 = N2 = 4 neurons. Moreover, the activation function is chosen
as σ(x) = σT (x) = tanh(x). The training dataset is artificially built using M = 50
equally spaced points x0

i ∈ H, i = 1, . . . ,M as input signals with corresponding
targets yi = h(x0

i ). The network is trained using the gradient descent method as
backpropagation algorithm with learning rate 0.1. The training procedure deter-
mines the optimal weights and bias of the network. The result of the training step
is observed in the top left panel of Figure 3, where the blue circles represent the
true targets yi, i = 1, . . . ,M , while the red stars are the estimated values by the
trained network.

Once we have trained the network, we store the optimal parameters to perform
the forward propagation of the network with given noisy input signals. The uncer-
tain perturbation is added to the input data of the training dataset, as described
in Section 2.3. We consider a uniformly distributed random variable on [−1, 1],
i.e. η ∼ U(−1, 1). We recall that the strength of the perturbation is modeled by
the multiplicative factor ε > 0.

We apply Monte-Carlo and stochastic collocation to compute the evolution of the
network under the uncertain inputs. In particular, with Monte-Carlo we consider

M̂ = 1000 random samples from the given uniform distribution of the uncertain
parameter. Instead, for stochastic collocation we perturb the true input data along
the 4 collocation points of the Legendre polynomials. In both cases, we consider 10
equally spaced values of the noise level ε, from 0.1 to 1. We compute the expected
value and the variance of the quantity of interest, which gives information on the
L2-distance between the true target and the output of the network under uncertain
input data.

In the top left panel of Figure 3 we show the expected value and the standard
deviation from the expected value of the pointwise error, namely computed on each
data input. In Figure 3 we provide the expected value and the variance as functions
of the noise level ε, in the top right panel and in the bottom left panel respectively.
As we expect, the error decreases with the noise level. Moreover, the bottom right
panel shows the convergence rate of the Monte-Carlo method as a function of the
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Figure 3. Top left panel: Regression of the target function
h(x) = tanh(x) on H = [−4, 4] provided by the deep artificial
neural networks with the statistical quantities computed with the
Monte-Carlo method and the stochastic collocation method with
noise level ε = 0.3. Top right panel: Expected value of the quantity
of interest. Bottom left panel: Variance of the quantity of interest.
Bottom right panel: Convergence rate of the Monte-Carlo method.

number of samples M̂ with fixed value of the noise level ε = 0.3. The black dotted
lines represent the rate 1/2.

4.1.2. Classification problem. On the other hand, classification problems attempt
to estimate a function h : H ⊆ Rd → C from the input variables x ∈ H of the
dataset to discrete or categorical target variables y = h(x) ∈ C. Here C is a discrete
set of the categorical variables. In the following we consider d = 1 and

h(x) =

{
0, 3 ≤ x ≤ 5,

1, 5 < x ≤ 8.

From an application point of view, this experiment can be seen as the identi-
fication problem of the type of a vehicle, such as car or truck, depending on the
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Figure 4. Top left panel: classification problem with the statis-
tical quantities computed with the Monte-Carlo method and the
stochastic collocation method with noise level ε = 0.5. Top right
panel: expected value of the quantity of interest. Bottom left panel:
variance of the quantity of interest. Bottom right panel: conver-
gence rate of the Monte-Carlo method.

measurement of its length. Here, we consider cars having label 0 and trucks having
label 1. The interesting question in applications is how low should be the mea-
surement noise level in order to have, for instance, an error below to 5% of wrong
classifications.

We make use of the discrete model (1), with L = 3, which means 4 total layers and
2 hidden layers, each one having N1 = N2 = 4 neurons. Moreover, the activation
function is chosen as σ(x) = σT (x) = tanh(x).

The training dataset is artificially built using M = 20 uniformly distributed
points in H = [3, 8] representing the input signals x0

i with targets yi = h(x0
i ) for

i = 1, . . . ,M . We again train the network using the gradient descent method with
learning rate 0.1. The result of the training step is observed in the left panel of
Figure 4, where the blue circles represent the true targets yi, i = 1, . . . ,M , while
the red stars are the estimated values by the trained network.

The uncertain perturbation is added by considering a uniformly distributed ran-
dom variable on η ∼ U(−1, 1). For the strength of the perturbation, modeled by
the multiplicative factor ε, we choose 7 equally space values between 0.4 and 1.

We perform the evolution of the network under the uncertain inputs using Monte-
Carlo and stochastic collocation. In particular, with Monte-Carlo we consider

M̂ = 1000 random samples from the given uniform distribution of the uncertain
parameter. Instead, for stochastic collocation we perturb the true input data along
the 4 collocation points of the Legendre polynomials. We compute the expected
value and the variance of the quantity of interest that gives information on the
averaged total number of wrong classifications.

In the left panel of Figure 4 we show the expected value and the standard de-
viation from the expected value of the pointwise error, namely computed on each
data input. In Figure 4 we provide also the plot of the expected value and of the
variance as function of the noise level ε, in the center panel and in the right panel
respectively. As we expect, the error decreases with the noise level. We observe
that, for instance, to have less than 5% of wrong classifications, the noise level needs
to be less than 0.6.
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4.2. Kinetic ResNet. Regression problems based on the random mean field equa-
tion (6) consist of the following steps.

1) Determine gPC modes for initial data by an orthogonal projection.
2) Solve the stochastic Galerkin formulation (9).
3) Reconstruct the statistics of interest.

We will perform these steps for the following test cases, where a uniform distributed
random variable η ∼ U(−1, 1) and normalized Legendre polynomials are used. We
consider

Case 1: ∂tg(t, x,η) + ∂x

(
tanh(x− 5)g(t, x,η)

)
= 0 for x ∈ (2, 8),

g0(x,η) =

{
1
4 , x ∈

[
3 + η, 7 + η

]
,

0, else,

where zero flux boundary conditions are used, and

Case 2: ∂tg(t, x,η) + ∂x

(
tanh(x− 5)g(t, x,η)

)
= 0 for x ∈ (−4, 6),

g(t,−4,η) = g(t, 6,η),

g0(x,η) =
1√

2π(1 + η/2)
exp

(
−1

2

( x− 1

1 + η/2

)2
)
.

Orthogonal projection of initial values. In Case 2, there is a smooth dependence
on the stochastic input, i.e. g0(x, ·) ∈ C∞, whereas we have only g0(x, ·) ∈ L2 in
Case 1. Therefore, the gPC modes ĝk(0, x) :=

〈
g0(x, ·)φk(·)

〉
ρ

are computed using

a standard Monte-Carlo method with 105 samples in Case 1 and with Gaussian
quadrature with 100 nodes in Case 2.

The upper panel of Figure 5 shows exact realisations of initial data for Case 1
in black being in the confidence region (gray), which contains all realisations.
The mean (red) and the variance (blue) are calculated exactly by V

[
g0(x,η)

]
=

E
[
g2

0(x,η)
]
− E

[
g0(x,η)

]2
and

E
[
gm0 (x,η)

]
=

1

4m
P
[
3 +

η

2
≤ x ≤ 5 +

η

2

]
=

1

4m

[
1− Fρ(2x− 10)− Fρ(2x− 6)

]

with distribution function Fρ(x) =





0, x ≤ 2,
1
4 (x− 2), 2 < x ≤ 5,

1, 5 ≤ x.

We observe that the moments are smooth although realisations are discontinuous.
This allows a relatively accurate approximation by superpositions of smooth gPC
modes (green), whose evolution is described by equation (9). Indeed, the exact
variance is well approximated from below by

∥∥ĝ1(0, x), . . . , ĝK(0, x)‖2 ↗ V
[
g0(x,η)

]

for K →∞, as illustrated in blue with respect to the right y-axis. The second and
third panel show the root of the mean squared error (RMSE). Due to the non-
smooth dependence on the stochastic input we observe the slow decay rate 1/2,
which is similar to a Monte-Carlo method. Figure 6 is devoted to Case 2. Here
the RMSE decays faster. We even observe exponential decay as guaranteed by the
estimate (7). As reference we have used the truncation K = 15.
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Figure 5. Case 1: Projection of initial data and root mean
squared error (RMSE) with exactly computed mean and variance.
Upper panel: The left y-axis shows the gPC modes ĝk(0, x) :=〈
g0(x, ·)φk(·)

〉
ρ

of initial values. The mean E
[
g0(x,η)

]
= ĝ0(0, x)

is plotted in red, the others in green. The confidence region, which
contains P-a.s. all realisations g0

(
x,η(ω)

)
is gray shaded. The right

y-axis shows the variance corresponding to different gPC trunca-
tions. The upper left panel shows for each fixed signal x the root
mean squared error (RMSE) of the gPC truncations. The right
panel shows the total RMSE for various gPC truncations.

Solving the stochastic Galerkin formulation. To approximate the PDEs (9) a dis-
cretization ∆x > 0 is used to divide an interval H = [xmin, xmax] into N cells Cj :=[
xmin+(j−1)∆x, xmin+j∆x

]
, j = 1, . . . , N such that H = C1∪· · ·∪CN . The evolu-

tion of cell averages is simulated by a third-order CWENO-reconstruction from [15].
It uses a local Lax-Friedrichs flux and a strong stability preserving (SSP) Runge-
Kutta method with three stages [40].
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Figure 6. Case 2: Projection of initial data and root mean
squared error (RMSE) with exactly computed mean and variance.
Upper panel: The blue lines describe deviations from the mean
of initial data (red). Two realisations are shown in black, which
are in the confidence region (gray shaded). The lower left panel
shows for each fixed signal x the root mean squared error (RMSE)
of the gPC truncations. The right panel shows the total RMSE for
various gPC truncations.

The upper panels of Figure 7 show that the solution to Case 1 converges to
a delta distribution in x ∈ {2, 8}. The lower panels investigate the probability
distribution for a fixed signal. The distribution is determined by a Matlab build-
in kernel density estimator with 105 samples from the truncated gPC expansion.
Figure 8 shows the time evolution of the gPC modes for Case 2, likewise. Here the
solution converges to a delta distribution in x = 1.

Reconstructing the statistics of interest. The target of Case 1 is characterized by
two delta distributions located at the binary values x ∈ {2, 8}, the target of Case 2
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Figure 7. Case 1: Solutions to the stochastic Galerkin formula-
tion with truncation K = 30 and discretization ∆x = 0.01. The
upper panels show in red the first gPC mode ĝ0(t, x), which de-
scribes the temporal evolution of the mean. The other modes are
plotted in green, which determine the spread of the stochastic per-
turbations. The lower panels show the probability distributions of
the random quantity g(t, x,η) for a fixed signal x ∈ {2, 8} at time
t = 0 (left), t = 0.5 (middle) and t = 1 (right).

is a delta distribution at x = 1. If N is even, the discrete analogues read as

h(x) =

{
1

2∆x , x ∈ C1 ∪ CN ,
0, else

in Case 1,

h(x) =

{
1

2∆x , x ∈ CN/2 ∪ CN/2+1,

0, else
in Case 2.

We are interested in the random loss

QoI(t, x,η) =
(
GK [g](t, x,η)− h(x)

)2

.

By using the multinomial theorem, we can express moments exactly as

E
[
QoI(t, x,η)2n

]
=

∑

‖k‖1=2n

Ck(2n)!

k0! · . . . · kK !

(
ĝ0(t, x)− h(x)

)k0 K∏

`=1

ĝk`` (t, x)

with precomputed constants Ck := E
[
φk00 (η) · . . . · φkKK (η)

]
.

In particular, we have E
[
QoI(η)

]
=
∥∥ĝ0 − h, ĝ1, . . . , ĝK

∥∥2
. The gPC expansion

GK [g](t, x, εη) gives also samples for general loss functions and noise levels.
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Figure 8. Case 2: Solutions to the stochastic Galerkin formula-
tion with truncation K = 10 and discretization ∆x = 0.01. The
left y-axes of the first and second panel show the mean and devia-
tions. The right y-axes show the gPC modes ĝ1, . . . , ĝ3. The right
panels show the probability distributions of the random quantity
g(t, 1,η) at time t = 0 (left), t = 0 and t = 5.
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Figure 9. Case 1: Mean, variance and distribution for random
loss. The left panels show for each fixed signal x the mean and the
variance of the random loss. The middle panels show for various
noise levels ε the mean and variance of the total random loss. The
right panel shows the probability distributions of the random loss
in x = 2 and x = 8 at time t = 0.5 and t = 1.
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Figure 9 and 10 show the mean, variance and the probability distribution for a
fixed signal x ∈ H, where the target is a delta distribution. In Case 1, a higher
noise level lets realisations be closer to the target. Hence, the mean of quadratic
deviations increases for lower noise levels. In contrast, the mean decreases in Case 2
with the noise level, since realisations are closer to the target for small noise levels.
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Figure 10. Case 2: Mean, variance and distribution for random
loss. The left panels show for each fixed signal x the mean and the
variance of the random loss. The middle panels show for various
noise levels ε the mean and variance of the total random loss. The
right panels show the probability distributions of the random loss
in x = 1, respectively at time t = 0 and t = 5.

5. Conclusion. In this work, we have proposed a technique to use UQ approaches
to quantify the robustness of the model output of a neural network due to the influ-
ence of uncertain inputs. The robustness is measured by the expected distance and
variance of the output to the true target. In particular, the cornerstone of this work
is the use of the mean-field formulation of a discrete time residual neural network.
Several numerical tests have been applied by employing Monte-Carlo, Stochastic
Collocation and Stochastic Galerkin methods. Here, uncertainties arise only from
input data. Uncertainties in the model structure and predictive uncertainty are
topics of interest as well, and possibly subjects of future research.
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