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Abstract: Silymarin is the standardized extract from the fruits of Silybum marianum (L.) Gaertn.,
a well-known hepatoprotectant and antioxidant. Recently, bioactive compounds of silymarin, i.e.,
silybins and their 2,3-dehydro derivatives, have been shown to exert anticancer activities, yet with
unclear mechanisms. This study combines in silico and in vitro methods to reveal the potential
interactions of optically pure silybins and dehydrosilybins with novel protein targets. The shape and
chemical similarity with approved drugs were evaluated in silico, and the potential for interaction
with the Hedgehog pathway receptor Smoothened (SMO) and BRAF kinase was confirmed by
molecular docking. In vitro studies on SMO and BRAF V600E kinase activity and in BRAF V600E
A-375 human melanoma cell lines were further performed to examine their effects on these proteins
and cancer cell lines and to corroborate computational predictions. Our in silico results direct to new
potential targets of silymarin constituents as dual inhibitors of BRAF and SMO, two major targets in
anticancer therapy. The experimental studies confirm that BRAF kinase and SMO may be involved in
mechanisms of anticancer activities, demonstrating dose-dependent profiles, with dehydrosilybins
showing stronger effects than silybins. The results of this work outline the dual SMO/BRAF effect
of flavonolignans from Silybum marianum with potential clinical significance. Our approach can be
applied to other natural products to reveal their potential targets and mechanism of action.
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1. Introduction

Historically, natural products (NPs) have been a rich source of various medicinal preparations,
and nowadays, they continue to provide leads for compounds that enter clinical trials, mainly as
anticancer and antimicrobial agents [1]. Indeed, about one-third of the FDA-approved drugs over
the past 20 years are based on NPs or their derivatives [2]. Recently, the intensity of NP-based drug
discovery has been reinforced even more by the advent of highly multidisciplinary approaches to
evaluating the therapeutic properties of lead compounds and to studying their molecular effects in
physiological conditions.

Silybum marianum (L.) Gaertn. is a well-known medicinal plant, used since ancient times for the
treatment of liver and gallbladder disorders of different etiologies. The active constituent of the herb,
i.e., silymarin, is a mixture of polyphenolic compounds such as silybin, isosilybin, dehydrosilybin,
silychristin, and silydianin, which are mainly found in its fruit and seeds [3,4]. Silybin, the major
flavonolignan component of silymarin, and its 2,3-dehydro derivative dehydrosilybin naturally occur
as pairs of stereomers, denoted A and B [4]. Compared to silybin, the amount of 2,3-dehydrosilybin is
much lower; however, both, 2,3-dehydrosilybin A and B are present in the silymarin preparations [5]
and their content could reach several percent of the total composition depending on the sample
origin [6,7].

The initial mechanistic studies of silymarin effects in carbon tetrachloride-induced liver damage
attributed its protective action to antioxidant properties [8,9]. Recent studies have indicated a
number of new promising effects of silymarin components related to neurological diseases, such as
Alzheimer’s [10] and Parkinson’s disease [11], metabolic syndrome [12], and cancer [13]. Silybin
improves glycemic homeostasis by positively affecting the activity of pancreatic β-cells, increasing
insulin sensitivity of liver and muscle cells, while decreasing lipid deposition in adipocytes [14]. With
respect to cancer, silybin has been shown to inhibit various cancer cell types by modulating multiple
processes, including growth inhibition, inhibition of angiogenesis, chemosensitization, and modulation
of metastatic capacity [15]. Furthermore, a growing body of evidence demonstrates the higher potency
of silybin dehydro-derivatives in various experimental settings related to therapeutic usefulness [16].

The broad spectrum of biological activities of silymarin components suggests their potential as
lead compounds in the context of multifaceted pathologies such as cancer and metabolic syndrome
and offers an attractive possibility to further enhance the therapeutic potential of these molecules
through suitable chemical modifications of their structure. Moreover, silymarin has shown favorable
safety profiles and is well tolerated at therapeutic doses [17]. In line with this prospect, there is a need
for more focused efforts on elucidating the mechanisms of action as well as the relevant targets of
flavonolignans in the context of human pathologies.

This study combines in silico and in vitro methods in order to give insights into the possible
interactions of flavonolignans from Silybum marianum with target proteins endowed with therapeutic
implications. The chemical similarity between silybin and 2,3-dehydrosilybin diastereoisomers and
approved drugs from the DrugBank database [18] was evaluated, while the potential for the interaction
with targets of chemically similar anticancer drugs (Smootened (SMO) and BRAF kinase) was confirmed
by molecular docking. Further, we performed in vitro studies of the effects of flavonolignans on
mechanisms including the targets of the corresponding drugs—BRAF V600E kinase activity, the viability
of A-375 human melanoma cells (with BRAF V600E mutation), and Hedgehog (HH) signaling pathway,
including SMO.

2. Materials and Methods

2.1. Chemicals

Four compounds (Figure 1), provided by the Laboratory of Biotransformation, Institute of
Microbiology of the Czech Academy of Sciences, Prague, were investigated in vitro: silybin A,
silybin B [19], 2,3-dehydrosilybin A, and 2,3-dehydrosilybin B [20]. Optically pure diastereoisomers
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were studied as it had already been shown that stereochemistry was pivotal for the biological activities
of flavonolignans [21,22]. The purity of flavonolignans was above 96% (HPLC/PDA).
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2.2. Similarity Assessment with ROCS

The chemical similarity between silybin and dehydrosilybin stereomers and approved drugs
from the DrugBank database [18] was evaluated by the ROCS (Rapid Overlay of Chemical Structures)
software (OpenEye 2019.05, Santa Fe, NM, USA) [23]. ROCS is a tool for aligning and scoring a database
of molecular conformers to a query or template of molecule conformers by utilizing the idea that
molecules’ shape similarity could be inferred from their volumes overlay. These scores may then be
used to estimate the probability that molecules share relevant features with a query. For this purpose,
3D conformers of the four flavonolignans and the approved drugs from the DrugBank database
were generated using Open Eye OMEGA in ROCS mode with the following relevant parameters:
the maximum number of conformations = 50, the root-mean-square distance for duplicates = 0.5 Å,
and energy window = 10 kcal/mol. ROCS was run in multiconformer query mode with flavonolignans
as query molecules.

2.3. Docking

The Molecular Operating Environment (MOE 2019.0102) software (Montreal, Canada) [24] was
used for docking studies in the binding pockets of SMO (PDB ID: 5L7I, Structure of human Smoothened
in complex with vismodegib, chain A) and BRAF kinase (PDB ID: 4RZV, Crystal structure of the
BRAF (R509H) kinase domain monomer bound to vemurafenib, chain A). The X-ray structures were
initially prepared using the MOE tool “Protonate3D”. During the preparation, physiologically relevant
parameters were set as follows: temperature = 310 K, pH = 7.4, ion concentration = 0.152 mol/L.
The docking site was defined by ligands’ atoms. The triangle placement method and the London dG
scoring function were applied to score the generated poses of the docked ligands. The best 10 poses
per compound were retained and further analyzed using the MOE tool “Ligand Interactions”.

2.4. HH-Dependent Luciferase Reporter Assay

The luciferase assay was carried out in NIH3T3 Shh-Light II cells, stably incorporating a
Gli-responsive luciferase reporter and the pRL-TK Renilla, treated with SAG (SMO Agonist, 200 nM,
Alexis Biochemicals Farmingdale, NY, USA) and the selected compounds for 48 h. Luciferases activities
from P. pyralisand and R. reniformis were assayed with a dual-luciferase assay system, according to
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the manufacturer’s instructions (Biotium Inc., Hayward, CA, USA). The results were expressed as a
P. pyralisand/R. reniformis luciferase ratio and represent the mean ± S.D. of three experiments, each
performed in triplicate.

2.5. BODIPY-Cyclopamine Binding Assay

Human Myc-DDK-tagged SMO or empty vector was transfected in HEK293T cells. Cells were
washed in phosphate-buffered saline (PBS) supplemented with 0.5% fetal bovine serum, fixed in
4% paraformaldehyde in PBS for 10 min, and incubated for 2 h at 37 ◦C, both in the same medium
supplemented with BODIPY-Cyclopamine (BioVision Inc., San Francisco, CA, USA) (BC, 5 nM) and
the studied compounds. The cells were permeabilized with Triton X100 (Sigma-Aldrich, St. Louis,
MO, USA) 0.2%, and Hoechst reagent was used for cell nuclei staining. Data were expressed as a
percentage of BC incorporation observed with BC alone [25].

2.6. BRAF Kinase Assay

The activities of silybins and dehydrosilybins were tested using a commercial BRAF (V600E)
(serine/threonine-protein kinase B-raf, V600E mutant) Kinase Assay Kit (#48688, BPS Bioscience,
San Diego, CA, USA). Briefly, the BRAF (V600E) enzyme was incubated for 45 min at 30 ◦C with five
different concentrations of each tested compound in logarithmic dilutions (1000, 100, 10, 1, and 0.1 µM).
The reaction mixture was prepared following the instructions of the producer. The luminescence of
the product of the enzyme activity was measured with the Kinase-Glo MAX Kit (#V6071, Promega,
Madison, WI, USA) at a microplate luminometer (Synergy Multi-Mode Reader, BioTek, Winooski,
VT, USA). Higher luminescent signal corresponded to higher enzyme activity. Vemurafenib (PLX4032,
#S1267, Selleck Chemicals, Houston, TX, USA) applied in concentrations 0.1, 1, 10, 100, and 1000 nM
served as a reference compound. The reaction mixture without the test inhibitor represented the positive
control, whereas the mixture without the test inhibitor and without the enzyme was used as blank.

2.7. Cytotoxicity Assay

The cytotoxic activity of the tested compounds was evaluated on non-tumorigenic human keratinocytes
(HaCaT, #300493), skin melanoma malignant cells with BRAF V600E mutation (A-375, #300110), and skin
epidermoid carcinoma cells (A-431, #300112), all purchased from CLS Cell Lines Service (Eppelheim,
Germany). The cell lines were maintained in DMEM (#DMEM-HPA, Capricorn®, Ebsdorfergrund,
Germany) supplemented with 10% fetal bovine serum (#FBS-HI-12A, Capricorn®, Ebsdorfergrund,
Germany) and 4 mM L-glutamine (#G7513, Merck (Sigma-Aldrich), Germany) and incubated under
standard conditions (5% CO2, 37 ◦C, 90%–95% humidity). The experiments were performed between
passages 4 and 15 whereby the cells were sub-cultured every 4th day by splitting 1:8, according to the
protocol of the biobank. Briefly, the cell cultures were rinsed with PBS without calcium and magnesium
(PBS, #D8537, Merck (Sigma-Aldrich), Germany) and incubated for 8–10 min with accutase (#ACC-1B,
Capricorn®, Ebsdorfergrund, Germany) as a detachment agent. After centrifugation, the cells were
counted with trypan blue (0.4% solution, #T8154, Merck (Sigma-Aldrich), Germany).

The antiproliferative effects of SilA, SilB, DHSilA, and DHSilB were tested using the MTT-dye
(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay according to ISO 10993-5-2009,
Annex C [26]. Briefly, the cells were seeded in 96-well plates at a density of 0.1 × 106/mL, incubated for
24 h at 37 ◦C (5% CO2), and treated with ten concentrations of the compounds ranging from 3.9 to
1000 µM in twofold serial dilutions. After 72 h, the MTT-dye (#M5655-1G, Merck (Sigma-Aldrich),
Germany) was added to each sample at a final concentration of 0.05 mg/mL and the plates were
incubated for 2 h at 37 ◦C (5% CO2). The supernatant was aspirated, and the formazan crystals
formed as a product of the enzymatic MTT reduction were dissolved in 2-propranol (#33539, Merck
(Sigma-Aldrich), Germany) supplemented with 5% formic acid (#300415, ChimSpectar/Neuber, Sofia,
Bulgaria). The absorbance of the product was measured at 550 nm (reference filter 690 nm) on an
ELISA Reader BioTek ELx800 (BioTek).
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2.8. IC50 Values and Statistical Analysis

The experiments for evaluation of the BRAF inhibition and cytotoxicity were performed in
triplicate. The IC50 values were calculated by the BfROpenLab’s non-linear regression nodes in the
KNIME analytics platform [27] with the constant slope model.

3. Results and Discussions

3.1. In Silico Studies

The chemical similarity between silybin and dehydrosilybin stereoisomers and approved
drugs from the DrugBank database was assessed using the ROCS software (OpenEye) [28].
The TanimotoCombo index (TCI) was used as a similarity metrics as it combines the shape and
chemical features based on the alignment between known drugs and silybin and dehydrosilybin
queries. Given the known anticancer effect of flavonolignans such as silybins, the structural and
chemical similarity of these molecules with respect to drugs exerting clinical antitumor activity becomes
of particular interest to predict the mechanism of action of these compounds. Therefore, we filtered and
analyzed anticancer drugs for which similarity with silybin and dehydrosilybin isomers was scored with
TCI ≥ 0.9 (Table 1). Vemurafenib is approved for the treatment of metastatic melanoma as a competitive
inhibitor of BRAF kinase bearing a substitution of glutamic acid for valine (V600E mutation) [29].
Vismodegib selectively binds to and inhibits the transmembrane receptor SMO, i.e., the upstream
regulator of the HH signaling pathway, and it is indicated by the FDA for the treatment of metastatic
or locally advanced basal cell carcinoma [30]. ROCS results showed slightly higher TCI values for
dehydrosilybins compared to silybins with respect to both vemurafenib and vismodegib.

Table 1. TanimotoCombo indices for antitumor drugs whose similarity with silybin and dehydrosilybin
stereomers is scored higher than 0.9.

Vemurafenib Vismodegib
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TanimotoCombo Index

SilA 0.963 0.962
SilB 0.943 0.962

DHSilA 0.976 0.979
DHSilB 0.963 0.979

Based on the observed similarity, we can assume that the studied flavonolignans may interact with
the same targets that these antitumor drugs do. To examine this hypothesis, the potential interactions
with targets of vemurafenib and vismodegib, SMO, and BRAF kinase, respectively, were further
studied with in silico methods. Specifically, molecular docking simulations were carried out using
high-resolution X-ray structures of these proteins available in the Protein Data Bank.

Figure 2 illustrates the similarity in the shape and molecular surface properties separately for
DHSilB and vemurafenib (a), and DHSilA and vismodegib (b).
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Shape alignment (color legend): vemurafenib and vismodegib—brown, DHSilA and DHSilB—green.
Surface properties (color legend): H-bonding (magenta), mild polar (blue), and hydrophobic (green).

The docking results demonstrate that silybins and dehydrosilybins can be accommodated into
the binding sites of the studied targets. Docking poses were further analyzed in relation to the best
correspondence of flavonolignans to the X-ray ligands in the protein pocket, and their interaction
energies with the receptor. The results are summarized in Table 2. The most reasonable docking poses
of dehydrosilybins yielded better docking scores than silybins in both receptors. For BRAF kinase,
the docking score of DHSilB is the lowest (−8.354), compared to the other flavonolignans, although it is
higher than the redocked score of vemurafenib. Regarding SMO, DHSilA and DHSilB have the lowest
docking scores, comparable to that of vismodegib.

Table 2. Docking scores (kcal/mol) of silybins, dehydrosilybins, vemurafenib, and vismodegib (docking
in BRAF kinase and SMO; the lower scores suggest higher binding affinities).

Compound BRAF Kinase Smoothened Receptor

SilA −5.787 −7.928
SilB −6.158 −5.545

DHSilA −7.696 −8.090
DHSilB −8.354 −8.490

Vemurafenib −10.196 N.A.
Vismodegib N.A. −8.429
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In all docking simulations, we identified the binding site residues involved in specific interactions
with flavonolignans, including those involved in interactions with vemurafenib (Lys483, Cys532) and
vismodegib (Ser387) (Figures 3 and 4). We also observed multiple interactions that differed from those
specified for the approved anticancer drugs, which were particularly evident for dehydrosilybins in
both receptors. Specifically, DHSilA performs an aromatic interaction with Phe583, while DHSilB
interacts through a hydrogen bond with Thr529 and Ile527, as well as through an aromatic interaction
with Phe595 in the BRAF kinase. Notably, despite the comparable docking scores, only DHSilA forms
two hydrogen bonds with the residues Asn219 and Met301 in the binding site of SMO (Figure 4a).
Inverted (mirror-like) poses were observed for all diastereoisomer pairs in both proteins, with the
exception of SilA and SilB in SMO. Such stereospecific orientation of the compounds in the binding
sites of the studied proteins is not surprising, considering the ability of these compounds to interact in a
stereospecific manner with other receptors [22]. This also clearly demonstrates the utmost importance
of working with the pure stereomers of these flavonolignans.
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3.2. In Vitro Studies

The results of the in silico study pointed to the flavonolignans’ potential to interact with the
identified anticancer drug targets. Therefore, in vitro experiments were further performed to examine
their possible effects on these proteins and cancer cell lines, and to possibly corroborate computational
predictions. With respect to BRAF kinase, we studied the effects of silybins on BRAF V600E kinase
activity as well as on the viability of human malignant melanoma cells expressing BRAF V600E kinase
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and non-tumorigenic skin cells. As for SMO, the effects on the HH pathway were investigated together
with the potential interaction with the SMO receptor. Since it is anticipated that flavonolignans may
act as inhibitors of the target proteins, like chemically similar drugs do, assays for testing inhibitory
activity were selected for this purpose.

Studies of the effects of silybins on the activity of BRAF V600E kinase activity demonstrate that
DHSilB exhibits the highest inhibitory activity, with an IC50 of 24.9 µM, followed by DHSilA, SilB, and
SilA (Figure 5). As for comparison, the reported IC50 value of vemurafenib is 32.4 nM.
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Figure 5. Inhibitory effects of the studied compounds on BRAF V600E kinase activity: (a) SilA
(IC50 = 104.0 µM, 95%, confidence interval, CI = 34.7 ÷ 204.2 µM) and SilB (IC50=73.9 µM,
CI = 32.4 ÷ 112.2 µM); (b) DHSilA (IC50 = 70.6 µM, CI = 30.9 ÷ 131.8 µM) and DHSilB (IC50 = 24.9 µM,
CI = 17.8 ÷ 26.3 µM).

Regarding cell viability, all tested flavonolignans exhibited higher cytotoxicity in the A-375 cell
line, which is representative of malignant melanoma expressing the BRAF V600E mutation, compared
to the non-melanoma tumor cell line A-431 and the non-tumorigenic cell line HaCaT. The IC50 values
obtained for the three tested cell lines are reported in Table 3. DHSilA and DHSilB exhibit higher
cytotoxicity toward the A-375 cell line and appear to be less toxic in A-431 and HaCaT cell lines
compared to SilA and SilB. This trend is especially pronounced for the cell line HaCaT, in which
dehydrosilybins exhibit the lowest toxicity.

Table 3. In vitro cytotoxicity of silybins and dehydrosilybins on malignant skin cell lines and
non-tumorigenic keratinocytes.

Compound

IC50 [µM] (95% Confidence Interval)

Cell Lines

A-375 A-431 HaCaT

SilA 97.0
(38.0 ÷ 245.5)

126.0
(51.3 ÷ 288.4)

120.0
(56.2 ÷ 245.5)

SilB 120.0
(53.7 ÷ 257.0)

166.0
(52.5 ÷ n.d.)

150.0
(57.5 ÷ 426.6)

DHSilA 83.0
(44.7 ÷ 158.5)

97.0
(55.0 ÷ 169.8)

231.0
(91.2 ÷ 457.1)

DHSilB 86.0
(64.6 ÷ 120.2)

130.0
(79.4 ÷ 213.8)

164.0
(75.9 ÷ 309.0)
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With respect to the SMO receptor, the HH inhibitory activity of the compounds, alone and in a
racemate, was investigated in a luciferase reporter assay, which is widely used for characterizing HH
inhibitors. The HH inhibitory activity of synthesized molecules was evaluated in NIH3T3 Shh Light II
cells, stably incorporating a Gli-responsive firefly luciferase [31] treated with the synthetic SMO agonist
SAG [32], alone and in combination with the tested compounds. At the maximum concentration
of 30 µM, SilA and SilB (Figure 6A) showed mild activity as HH inhibitors, while DHSilA and the
racemate of DHSilA and DHSilB (namely, DHSilAB) showed high activity in this assay, having an IC50

of 5–10 µM (Figure 6B). The remaining SilAB and DHSilB proved to be inactive.
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and DHSilAB.

To further investigate the binding properties of the selected compounds to the SMO receptor, we
performed a displacement assay based on the use of BODIPY-Cyclopamine [33,34], which is known to
interact with the binding site of SMO antagonists located within the heptahelical bundle of the receptor.
To this aim, HEK293T cells were transiently transfected for expression of SMO and then incubated
with BC in the presence or absence of increased amounts of DHSilA or DHSilAB. These compounds
inhibited BC binding to cells expressing SMO in a dose-dependent manner (Figure 7).
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Overall, our findings have shown that DHSilA and DHSilAB bind the SMO receptor at the level
of its heptahelical bundle, which is supportive of the SMO antagonism effect, as previously observed
for other natural product chemotypes [35,36].

4. Conclusions

The combined in silico and in vitro approach applied in this study points to novel anticancer
targets for flavonolignans from Silybum marianum (L.) Gaertn. The in silico simulations helped in the
identification of novel potential protein targets relying on: (i) the chemical similarity of the studied
compounds to the well-known antitumor drugs vemurafenib and vismodegib, and (ii) the ability of
flavonolignans to interact with the targets of these drugs, proved by molecular docking simulations.
The in silico results suggest that the active components of silymarin may act as dual inhibitors of BRAF
kinase and SMO, two major targets in current anticancer therapy.

In vitro assays were further performed on the proteins and cell lines, outlining dose-dependent
profiles of the studied compounds and suggesting their possible effects on these targets. As a whole,
we observed a good consistency between the results from the in silico simulations and the in vitro
experiments. The docking scores as a measure of the ligand-receptor interaction energy illustrate a
good correspondence with IC50 values determined in the in vitro assays (Table 2, Table 3, and Figure 5).
Clearly, dehydrosilybins yield better docking values compared to silybins, and they are the more active
compounds in the BRAF kinase and HH pathway assays. This observation is in agreement with other
in vitro studies confirming the higher activity of dehydrosilybins in comparison with silybins [16].
The cytotoxicity experiments additionally corroborate the cytotoxic properties of the compounds in
malignant skin cell lines demonstrating higher activity in A-375 cells than in A-431 and HaCaT.

In summary, our study confirms that BRAF kinase and SMO receptor may be involved in
the mechanisms of the anticancer activities of flavonolignans from Silybum marianum (L.) Gaertn
and outlines dehydrosilybins as potential lead structures for the development of anticancer drugs.
Furthermore, it demonstrates the efficacy of the applied combined in silico/in vitro approach to facilitate
the identification of the potential targets of bioactive compounds from natural sources and to help in
elucidating their molecular mechanism of action. The results of this study pave the way to further
structure-guided optimization of flavolignans from Silyum marianum as anticancer leads. In addition,
they may be a profitable case study in the identification of the possible mechanism of action of other
bioactive compounds.
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Abbreviations

DHSilA dehydrosilybin A
DHSilB dehydrosilybin B
HH Hedgehog signalling pathway
MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
NP natural products
SilA silybin A
SilB silybin B
SAG Smoothened Agonist
SMO Smoothened
TCI TanimotoCombo index
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