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A B S T R A C T   

Forest fire disaster is currently the subject of intense research worldwide. The development of accurate strategies 
to prevent potential impacts and minimize the occurrence of disastrous events as much as possible requires 
modeling and forecasting severe conditions. In this study, we developed five new hybrid machine learning al
gorithms namely, Frequency Ratio-Multilayer Perceptron (FR-MLP), Frequency Ratio-Logistic Regression (FR- 
LR), Frequency Ratio-Classification and Regression Tree (FR-CART), Frequency Ratio-Support Vector Machine 
(FR-SVM), and Frequency Ratio-Random Forest (FR-RF), for mapping forest fire susceptibility in the north of 
Morocco. To this end, a total of 510 points of historic forest fires as the forest fire inventory map and 10 in
dependent causal factors including elevation, slope, aspect, distance to roads, distance to residential areas, land 
use, normalized difference vegetation index (NDVI), rainfall, temperature, and wind speed were used. The area 
under the receiver operating characteristics (ROC) curves (AUC) was computed to assess the effectiveness of the 
models. The results of conducting proposed models indicated that RF-FR achieved the highest performance (AUC 
= 0.989), followed by SVM-FR (AUC = 0.959), MLP-FR (AUC = 0.858), CART-FR (AUC = 0.847), LR-FR (AUC =
0.809) in the forecasting of the forest fire. The outcome of this research as a prediction map of forest fire risk 
areas can provide crucial support for the management of Mediterranean forest ecosystems. Moreover, the results 
demonstrate that these novel developed hybrid models can increase the accuracy and performance of forest fire 
susceptibility studies and the approach can be applied to other areas.   

1. Introduction 

Forest fire disaster is considered as one of the main causes of dra
matic depletion of the forest ecosystems worldwide (Venkatesh et al., 
2020) due to both anthropogenic or natural processes (Sachdeva et al., 
2018). Fire regimes are becoming even more pronounced in many re
gions due to an increasing effect of recent global warming, with 
increasing impacts on human well-being resources and ecosystem 

function processes (Hantson et al., 2016; Li et al., 2019; Zema et al., 
2020). The impacts include deterioration of soil ecology and water hy
drology (Santana et al., 2014; Zema et al., 2020), and land degradation 
and soil erosion (Zema et al., 2020). Consequently, this disaster makes 
the ecosystem out of balance as an ultimate stage. Despite its dramatic 
impacts, forest fire plays essential roles in many forest processes, for 
example, forest fire influences the composition and successional stages 
(Amit Parashar and Sas Biswas, n.d.; Huebner et al., 2012), and it acts as 
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a selective factor of the traits of plants (Escudero et al., 2000; Fernández- 
García et al., 2019; Keeley et al., 2011; Pausas and Vallejo, 1999). In the 
Mediterranean region, despite their ecological roles and the services 
they provide, forest ecosystems have been heavily impacted by frag
mentation, degradation, and deforestation (Belinchón et al., 2009; 
Scarascia-Mugnozza et al., 2000). Furthermore, climate change exac
erbates the deterioration of these ecosystems, due to rainfall decreasing 
and temperature increasing (Simioni et al., 2020). These phenomena, 
together with anthropogenic disturbance, place the Mediterranean for
est ecosystem in an alarming situation. Not only these factors but also 
forest fire is one of the most issues which affect the Mediterranean forest 
(Oliveira et al., 2018). Olivella et al. (2006) demonstrated that more 
than 50,000 fires burn an average of 600,000–800,000 ha of Mediter
ranean forest annually. Thus, in order to protect the functionalities of 
the forest ecosystems as well as their precious services and benefits for 
people’s well-being, forest fire susceptibility maps remain important to 
fully understand and predict possible hazards that may occur in this 
environment. Moreover, establishing a forest fire susceptibility map as 
early as possible is of the utmost importance of land use planning (Bax 
and Francesconi, 2018). Such a map can also serve as a valuable refer
ence to reduce vulnerability and could help to improve decision-making 
planning in ecological risk prevention (Hong et al., 2018). 

Creating forest fire susceptibility maps requires the establishment of 
forest fire inventory as the target variable and some explanatory vari
ables. Various studies used a set of data composed of climate data 
(rainfall, temperature, humidity, and wind), topography data (eleva
tion, slope, and aspect), and land use data as explanatory variables (Tien 
Bui et al., 2017; Díaz-Avalos et al., 2001; Ganteaume et al., 2013; 
Krawchuk et al., 2006; Vecín-Arias et al., 2016; Verdú et al., 2012). 
Indeed, there is no common agreement to follow for the selection of 
appropriate ignition variables. The processing of explanatory data is the 
most challenging task in the elaboration of forest fire maps in large study 
areas due to various data sources and the modelling complexity (Bon
ham-Carter, 2014; Tien Bui et al., 2017). In an effort to process such 
datasets and to produce forest fire susceptibility maps, geographic in
formation system (GIS) have proven to be useful for processing and 
overlaying geospatial data (El Hafyani et al., 2020; Teodoro and Duarte, 
2013). Furthermore, the remote sensing approach and satellite images 
as a popular means of data collection play a crucial role in constructing 
forest fire susceptibility maps. 

Several statistical bivariate and multivariate methods have been 
used widely for forest fire modeling such as multiple linear regression 
(Oliveira et al., 2012), Poisson regression (Wotton et al., 2003), and 
Monte Carlo simulations (Conedera et al., 2011). In recent years, an 
obvious trend in the use of machine learning algorithms in a wide range 
of natural hazard assessments disciplines such as landslide (Chen et al., 
2017, 2019; Hong et al., 2016; Pham et al., 2018a), flood (Tehrany et al., 
2015b), rainfall modelling (Pour et al., 2020; Pham et al., 2019), 
streamflow modelling (Pham et al., 2020), water quality modelling 
(Pham et al., 2021) and forest fire modeling (Arpaci et al., 2014), has 
been observed. Machine learning algorithms can handle non-linear and 
highly dimensional data and solve serious problems (Chen et al., 2019; 
Knudby et al., 2010; Recknagel, 2001). Pourtaghi et al. (2016) compared 
boosted regression tree (BRT), generalized additive model (GAM), and 
random forest (RF) for forest fire mapping of the Minudasht Township, 
Golestan Province, Iran. The results indicated that BRT had better ac
curacy than GAM and RF. Jaafari et al. (2018) applied five decision 
tree-based classifiers including, Alternating Decision Tree (ADT), Clas
sification and Regression Tree (CART), Functional Tree (FT), Logistic 
Model Tree (LMT), and Naïve Bayes tree (NBT). Their results indicated 
that the ADT classifier performed the best accuracy. However, despite 
the wide use of these models in different fields such as environmental 
and ecological science, the selection of an appropriate model is still 
challenging because each algorithm exhibits some drawbacks leading to 
implications in its outcomes (Jaafari et al., 2019b; Tien Bui et al., 2019). 

Given that the use of ensemble / hybrid models built by a 

combination of Machine learning algorithms and statistical methods 
increases the modeling performance (Tien Bui et al., 2014, 2016, 2019; 
Truong et al., 2018; Akay, 2021), various studies have been extensively 
studied this approach in related researches. For example, for flood sus
ceptibility assessment in the Haraz watershed, Mazandaran province, 
Iran, Shafizadeh-Moghadam et al. (2018) applied eight ML models 
including artificial neural networks (ANNs), classification and regres
sion trees (CART), flexible discriminant analysis (FDA), generalized 
linear model (GLM), generalized additive model (GAM), boosted 
regression trees (BRT), multivariate adaptive regression splines (MARS), 
and maximum entropy (MaxEnt), and seven statistical ensemble models 
including Ensemble Model committee averaging (EMca), Ensemble 
Model confidence interval Inferior (EMciInf), Ensemble Model confi
dence interval Superior (EMciSup), Ensemble Model to estimate the 
coefficient of variation (EMcv), Ensemble Model to estimate the mean 
(EMmean), Ensemble Model to estimate the median (EMmedian), and 
Ensemble Model based on the weighted mean (EMwmean). Their results 
demonstrate that BRT presents the highest performance among indi
vidual models and the ensemble model EMmedian achieved the highest 
performance among all models. Based on this, the authors highlighted 
that the ensemble approaches reduce uncertainty, improve generaliza
tion performance, and they are more stable and less sensitive models. In 
a study on gully erosion in Aghemam watershed, Iran, Pourghasemi 
et al. (2017) used different ML models including ANNs, support vector 
machine (SVM), maximum entropy (ME), and the ensemble ones 
including ANN-SVM, ANN-ME, and SVM-ME. The results showed that 
the ANN-SVM model had the highest performance. Costache and Tien 
Bui (2019) proposed six new hybrid models including, Multilayer 
Perception neural network-Frequency Ratio (MLP-FR), Multilayer 
Perception neural network-Weights of Evidence (MLP-WOE), Rotation 
Forest-Frequency Ratio (RF-FR), Rotation Forest-Weights of Evidence 
(RF-WOE), Classification and Regression Tree-Frequency Ratio (CART- 
FR), and Classification and Regression Tree-Weights of Evidence (CART- 
WOE), to predict flood in a study area in Romania. It was concluded that 
the used hybrid models have high prediction performance (Costache 
et al., 2020a) to assess flash-flood potential. They used a bivariate 
method based on Statistical Index (SI) and its combination with machine 
learning models including LR, CART, MLP, RF, and SVM. They found 
that the MLP-SI hybrid model achieved the highest accuracy in com
parison to other models. Tehrany et al. (2019) used Logitboost 
ensemble-based decision tree (LEDT) and benchmarked it with SVM, RF, 
and Kernel logistic regression (KLR) and found that the LEDT ensemble 
model can achieve the highest predictive accuracy for the susceptibility 
of the forest fire. Nevertheless, few publications have been considered 
the use of the ensemble models for forest fire susceptibility modeling 
(Moayedi et al., 2020). In this study, five novel hybrid models by 
coupling the statistic approach with machine learning algorithms are 
used. Frequency Ratio was integrated into five machine learning 
methods, namely MLP, LR, CART, SVM, and RF for forecasting forest fire 
susceptibility. The research was conducted for the north of Morocco as 
the case study which is most affected by the fire at the national scale. To 
the best of our knowledge, no study so far has been conducted for 
forecasting and assessing of forest fire susceptibility in this area based on 
machine learning algorithms and GIS tools. The main goals of this paper 
are: (i) exploring the effectiveness of the hybrid models for forest fire 
forecasting in this study area (ii) producing spatial susceptibility maps 
using the proposed approaches to identify the critical areas which 
require an emergency intervention. Thus, the findings of this paper are 
expected to be a useful tool for providing a crucial direction for man
agement of Mediterranean forest ecosystem. 

2. Materials 

2.1. Study area 

The study area in this research is located in Tanger-Tétouan-Al 
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Hoceima region, North of Morocco (Fig. 1), covering Fahs-Anjra prov
ince and Tanger-Asilah prefecture with a total area of 1685 km2, which 
has a typical Mediterranean climate with oceanic influence (“DRATT”, 
2015). In this area, the temperature varies between 10 ◦C and 14 ◦C in 
winter and between 20 ◦C and 24 ◦C in summer, the annual precipitation 
can reach 635 mm, and the dry season is from May to mid-September 
(“DRATT”, 2015), based on the Walter-lieth climate diagram, drawn 
by data weather from Climate Chart application, https://climatecharts. 
net/ (Harris et al., 2016) for station Tangier. The study area is charac
terized by different types of forest composed of mixed oak forests of 
evergreen and semideciduous forests (Ajbilou et al., 2006) which are 
characterized by an extend of invasive and flammable species diversity 

(Chebli et al., 2018). This diversity is a catalyst for forest fire disaster. 
Generally, forests in northern Morocco have the highest level and the 
greatest fragility due to fires (Chebli et al., 2018; Zidane et al., 2019). 
According to (Chebli et al., 2018), about 1185 ha of forest ecosystem in 
the north part of Morocco is destroyed by fires annually (43% of the total 
burned forest in Morocco). Though restoration efforts led by the Na
tional Forestry Conservation Agency may offset these losses, forests have 
been also destroyed by various human activities, for example, forest 
resources are exploited for other purposes, like cannabis cultivation, 
collection of fuelwood, and goat grazing (Chebli et al., 2020; Stambouli 
et al., 2005). Also, the north of Morocco experiencing rapid population 
growth, with a total population of approximately 3.2 million in 2014 

Fig. 1. Location of the study area and forest fire inventory points.  
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which is characterized by a highly urbanized population with an in
crease of 2,45% per year. Whereas the rural population increased by 
only 0,21% per year (HCP, 2014), Most of this population development 
has occurred in and around forest areas. These forests have also suffered 
from soil erosion coupled with a decrease of natural vegetation which 
has led to degradation of the forest and pastoral cover and an increase of 
cultivated land (Chebli et al., 2018). Therefore, researches on forest 
ecosystem degradation in this region are necessary to accelerate the 
process of the restoration project and to provide a scientific contribution 
to forest fire modeling. 

2.2. Data 

In this study, and as it is well discussed by several studies (Jaafari 
et al., 2018; Pourtaghi et al., 2016; Tien Bui et al., 2017), the first step to 
model forest fire is the establishment of the forest fire inventory map 
which corresponds to the past-occurred events presenting the target 
variable. In this case, historical data provided by (HCEFLCD, 2011) and 
previous reports, were used for preparing the forest fire inventory map 
of the study area. Moreover, data on fire occurrences can be obtained 
from MODIS (Moderate-Resolution Imaging Spectroradiometer) (Giglio 
et al., 2003). Users can use an existing freely-available hotspot data fire 
occurrences through the exploitation of the Fire Information for 
Resource Management System (FIRMS), https://firms.modaps.eosdis.na 
sa.gov/, to improve the quality of forest fire historical data. The pre
processing of the data was performed to exclude anomalous points based 
on the extent of fire occurrence and the presence of severe collateral 
damage. Moreover, forest fires mostly occurred during March, April, 
May, June, July, August, September, and October during the period 
2005–2015, for this, the remaining months were removed from the 
analysis. A total number of 510 fire event locations were selected for this 
study. Forest fire points were randomly split into a 70% training dataset 
and 30% for validation. For training and testing sets the same number of 
non-forest fire locations were randomly selected using the random point 
tool in ArcGIS 10.4, across the study area. And randomly split into 70% 
training dataset and 30% for validation (Fig. 1). Table 1 summarizes the 
total number of forest fire occurred during each month for the period 
2005–2015. Based on this, all explanatory variables were selected for 
the same period to match fire occurrence period. 

Based on previous studies, the explanatory variables for forest fire 
modeling are composed of four groups of data including topography, 
anthropogenic activities, climate, and vegetation (Jaafari et al., 2018; 
Nami et al., 2018; Pourghasemi, 2016; Pourghasemi et al., 2016; 
Pourtaghi et al., 2016). These include; slope angle, aspect, elevation, 
distance to roads and residential, rainfall, temperature, wind speed, 
Land use, and NDVI (Table 2). All these variables were reclassified 
following the method outlined by (Tsangaratos et al., 2017). 

Topography plays an important role as it can control the distribution 
of vegetation and wind speed as well as it has an important role in the 
velocity of rainfall and soil moisture (Chuvieco and Congalton, 1989; 
Nami et al., 2018; Schmidt et al., 2008; Tehrany et al., 2019). In this 
study, the Digital Elevation Model (DEM) obtained from Shuttle Radar 
Topographic Mission (SRTM) with a pixel size of 30 m, was used to 

derive topography data including slope, aspect, and elevation. Slope 
(Fig. 2a) was calculated and divided into five groups including (1) 0–3◦, 
(2) 3.1◦–7◦, (3) 7.1◦–15◦, (4) 15.1◦–25◦, and (5) 25.1◦–62.2◦. Up-slope 
areas are more affected by intensive fires whereas down slopes areas are 
less affected (Lentile et al., 2006). Aspect (Fig. 2b) was calculated and 
classified into nine classes such as flat zones, north, north-east, east, 
south-east, south, south-west, west, and north-west. The elevation 
(Fig. 2c) was composed of five classes as 0–62 m, 62.1–142 m, 
142.1–243 m, 243.1–370 m, and 370.1–761 m, respectively. All topo
graphic characteristics were calculated using Surface tool in spatial an
alyst tools available in ArcGIS 10.4 software. 

Fire is more pronounced in forest ecosystems close to roads and 
populated areas due to the traffic accidents and the impact of human 
beings on the natural ecosystems uncontrolled (Tien Bui et al., 2019, 
2016). The distance to the roads (Fig. 3a) was calculated and classified 
into five groups including (0–120 m), (120.1–240 m), (240.1–480 m), 
(480.1–840 m), and (840.1–8988 m). The distance to the residential 
area (Fig. 3b) was calculated and divided into five groups including 
(0–1000 m), (1000–2000 m), (2000–3000 m), (3000–4000 m), and 
(4000–10835 m). The Euclidean distance in the Spatial Analyst tool 
available in ArcGIS 10.4, was used to calculate the distance maps. 

Land cover information is widely recognized as a proxy of fuel (Tien 
Bui et al., 2016). Also, the Normalized Difference Vegetation Index 
(NDVI), is used to monitor photosynthetic activity and provides infor
mation on vegetation biomass and phenology (Jiang et al., 2006; 
Mohajane et al., 2018). In this study, two satellite Landsat8-OLI 
(Operational Land Imager) images, covering the study area (paths/ 
rows 201/035 and 201/036) were acquired from the United States 
Geological Survey (USGS) website used to extracted the land cover in
formation. These two images were mosaiced. First, we applied radio
metric and atmospheric corrections for both images using ENVI 5.2 
software based on Dark Object Subtraction (DOS) algorithm (Chavez, 
1996), then we extracted the study area. based on Ground-based survey 
data and high-resolution imagery from Google Earth, a total of 250 
ground truth points were collected and the Maximum Likelihood su
pervised classification method using ArcGIS 10.4 was applied to classify 
the image into four class categories: water bodies, forests, croplands, and 
build-up/Bare lands. The produced land cover achieved an overall ac
curacy of 93% (Fig. 3c). 

The NDVI factor was calculated using the near-infrared (NIR) and 
visible red bands through the following Equation (1) (Freden et al., 
1973): 

NDVI = (NIR − RED)/(NIR+RED) (1) 

The NDVI index ranges from − 1 to 1with the higher values represent 
healthy vegetation, and the lower values indicate non-vegetative cover. 
In our case, the NIR and RED bands are band 5 (0.85–0.88 µm) and band 
4 (0.64–0.67 µm), respectively, of the Landsat 8 OLI image. We applied 
an NDVI thresholding to classify NDVI image (Fig. 3d) and we generated 
six groups: (-1 – 0.05), (-0.05 – 0), (0– 0.05), (0.05 – 0.1), (0.1–0.5), and 

Table 1 
Total number of forest fires that occurred during the period 
2005–2015.  

Month Total number of forest fire 

March 14 
April 33 
May 27 
June 67 
July 105 
August 109 
September 102 
October 53  

Table 2 
Explanatory factors were used in this study.  

Conditioning 
factor 

Unit Source 

Slope Degrees (◦) DEM 30 m from, https://earthexplorer.usgs. 
gov/ Elevation Meters (m) 

Aspect – 
Land cover – Two Landsat8-OLI images from, https://eart 

hexplorer.usgs.gov/ NDVI Ratio 
Rainfall (mm) ERA-Interim, https://apps.ecmwf.int/datasets 
Temperature Degree 

Celsius 
Wind m/s 
Road distance km Road maps 
Residential 

distance 
km Land use map of the study area  
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(0.5 – 0.73). 
Meteorological data downloaded from https://apps.ecmwf.int/datas 

ets, with a spatial resolution of 0.25◦ × 0.25 and resampled to 30 m 
spatial resolution were used in this study. The wind speed map (Fig. 4a) 
was classified into five classes including: (3.00–3.25 m/s), (3.25–3.5 m/ 
s), (3.5–3.75 m/s), (3.75– 4 m/s), and (4 –4.5 m/s). The rainfall map 
(Fig. 4b) was created with six classes as (629–700 mm), (700–750 mm), 
(750–800 mm), (800–850 mm), (850–900 mm), and (900–943 mm). 
The Mean temperature map (Fig. 4c) was created and classified as (15.9– 
16.5 ◦C), (16.6– 17 ◦C), (17.1– 17.5 ◦C), (17.6– 18◦C), (18.1– 18.5 ◦C). 

3. Background of the models 

3.1. Frequency Ratio (FR) 

FR model is one of the bivariate statistical methods, it is used to 
describe the importance of classes of each explanatory factor on forest 
fire occurrence, it is used to define the ratio of the probability of forest 
fire occurrence to the probability of a non-occurrence for given attri
butes (Bonham-Carter, 2014; Lee and Talib, 2005). It has been used in 
different natural environmental hazard studies, for its advantages of 

ease of use and understanding (Costache, 2019a; Pradhan and Lee, 
2009), such as landslide mapping (Nsengiyumva et al., 2019; Zhou et al., 
2016), forest fire mapping (Hong et al., 2017) and groundwater poten
tial mapping. The FR was calculate using the following Equation (2) (Lee 
and Talib, 2005): 

FR =

Np(LXi)∑m

i=1
Np(LXi)

Np(Xj)∑m

j=1
Np(Xj)

(2)  

where: FR is the Frequency Ratio of class i of factor j, Np(LXi) is the 
number of fire locations within class i of factor variable X , Np(Xj) is the 
number of pixels within factor variable Xj, m is the number of classes in 
the factor variable Xi, and n is the number of factors in the study area. 

3.2. Multi-Layer perceptron neural network (MLP NN) 

Artificial neural networks (ANN), inspired by biological neurons, are 
among artificial intelligence methods that recognize convoluted pat
terns in data (Skapura, 1996). ANN consists of various nonlinear 
computational elements which are operating in parallel and organized 

Fig. 2. Fire conditioning factors (a. Slope angle; b. Aspect; c. elevation).  
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in patterns (Lippmann, 1987). ANN has traditionally been designed as a 
structure composed of an input layer and an output layer called a 
multilayer perceptron (Rosenblatt, 1958) which are connected by one or 
more hidden layers This structure can identify non-linear relationships 
(Basheer and Hajmeer, 2000; Rumelhart et al., 1985). MLP NN is trained 
in three phases including the feedforward, the backpropagation, and the 
adjustment of the weights (Basheer and Hajmeer, 2000; Lippmann, 
1987). In the feedforward phase, the data broadcasts to each of the 
hidden layers with multiple weighted summations, then by reaching the 
output layer an activation function computes the output value. In 
backpropagation phase, the initial weights are selected randomly, then 
the predicted output for a given observation and the expected output for 
that observation are compared. When all the observations are given to 
the network, the total calculated error is distributed among the nodes in 
the network, then the weights are updated according to a generalized 
delta rule. The feed-forward and back propagating process is repeated 
iteratively until we achieve a minimal error. 

In this study, we used Adam optimizer (Adaptive Moment Optimi
zation) optimizer, which is developed by (Kingma and Ba, 2017), the 
first and second moments are obtained using the following equations: 

X = v1ni− 1 +(1 − v1)f (3)  

Y = v2ui− 1 +(1 − v2)f 2 (4) 

These two moments X and Y can be corrected using the following 
equations: 

Xb =
X

1 − v1t

(5)  

Yb =
Y

1 − v2t

(6) 

The update the weights U is then expressed as follows: 

Ut=Ut− 1 − ∂ Xb
̅̅̅̅̅̅
Yb

√
+ σ

(7) 

With δ is the initial learning rate, by default is set to 0.001. 
The main advantages of MLP NN are, its ability to process faster a 

large volume of data, pattern recognition, and it is distinguished by its 
ability of learning and parallel processing, data fusion, and handling 
noise (Ni, 2008). 

Fig. 3. Fire conditioning factors (a. Distance to roads; b. Distance to residential; c. Land use; d. NDVI).  
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3.3. Logistic regression (LR) 

LR, a statistical model for solving binary problems, was developed by 
(Cox, 1958). In LR, the target variable is a categorical binary value and 
the output of LR is likelihood values, which specify the probability of the 
occurrence of a certain class based on the feature values. Mathemati
cally, a LR is a special case of linear regression and is based on the 
central mathematical concept of logit, the natural logarithm of an odds 
ratio (Hosmer and Lemeshow, 2000). The plot of the simplest case of 
linear regression for one feature and one dichotomous outcome is two 
parallel lines, each corresponding to a value of the dichotomous 
outcome. It is a linear plot in the middle and curved at the ends, by 
computing the mean of these two outcomes. It is not easy to describe this 
S-shaped plot with a linear equation as the ends are not linear and the 
errors are not normally distributed or constant across the entire range of 
data (Peng et al., 2001). The key to solving this problem is LR as it ap
plies the logit transformation to the target variable and predicts the logit 
of outcomes from features (Peng et al., 2002). The conditional mean of 
the dichotomous outcome in LR is based on the binomial distribution 
which is the only assumption of LR and denotes that there is the same 
probability across the range of feature values. LR describes the effect of 
features by determining the coefficients of them, handles both contin
uous and categorical variables but just binary categorical ones for the 
dependent variable (Menard, 2000). 

3.4. Classification and regression tree (CART) 

CART method, a binary univariate decision tree algorithm and non- 
parametric supervised classification and prediction method, was intro
duced by (Breiman et al., 1984). CART classifies the dataset by con
structing a tree. The procedure is conducted by sorting the whole 
training dataset down from the root to some leaf nodes in a recursive 
manner. At each stage of the process, the root node is the ideal infor
mative feature, and the division of the training dataset into subsets is 
conducted based on the splitting rules applied to a single feature. The 
splitting rules in a CART decision tree algorithm are the Gini Index and 
towing criteria (Karimi et al., 2019a). The splitting procedure maximizes 
the homogeneity of subsets by determining the proper features and their 
corresponding thresholds. CART is applied to the training dataset 
repetitively to complete the tree which happens when three parameters 
of the stopping rules are fulfilled, including 1-the minimum number of 
records in a leaf node, 2- the minimum number of records in a parent 
node, and 3-the maximum number of splits at each node (Quinlan, 
1993). The stopping rules make the CART model robust and efficient 
with the least complexity. Several decision rules can be utilized for 
classification and prediction studies are determined by the constructed 
tree. CART is able to identify the most important features (Delen et al., 
2013). Based on the importance of the features, CART divides a complex 
dataset into smaller subsets hence it creates simple solutions which can 

Fig. 4. Fire conditioning factors (a. Wind speed; b. Rainfall; c. Mean temperature;).  
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be understood and interpreted easily (Quinlan, 1993). Moreover, CART 
handles non-linear relations between the target variable and explana
tory variables, process large datasets of variables including con
tinuous and categorical, without any prior data preparation (Friedl and 
Brodley, 1997), makes no statistical assumptions, analyzes data in 
different measurement scales without the need to normalization (Qin 
et al., 2009), handles missing data and outliers (Delen et al., 2013)) and 
makes good visualizations of the relationships between the features 
(Karimi et al., 2019a)). 

3.5. Random forest (RF) 

RF (Breiman, 2001), a non-parametric supervised method applied for 
both classification and prediction (Costache et al., 2020a; Nefeslioglu 
et al., 2010), was developed by (Breiman, 2001). RF is composed of a 
combination of decision trees (Breiman, 2001). Each decision tree 
individually votes for assigning the most frequent class to the input data 
and the majority vote of the trees determines the class prediction 
(Breiman, 2001). In RF models trees are growing from different training 
data subsets to increase the diversity (Breiman, 1996) as a result, greater 
classifier stability is achieved (Breiman, 2001). The data subsets which 
are not included for the training of a tree are called out-of-bag which can 
be classified by that tree to assess the accuracy and the performance and 
calculate an internal unbiased estimate of the generalization error based 
on the number of trees (Breiman, 2001). Increasing the number of trees 
in the model, lead to the generalization error converges, and avoiding 
overfitting the data by RF. For building RF model, a suitable attribute 
selection measure is required to maximize dissimilarity measures be
tween classes. The most frequent methods for selecting the attributes at 
each node are gain-ratio (Quinlan, 1993), Gini Index (Breiman et al., 
1984), and Chi-square. When a tree is growing, each node is divided 
using the best split of a random subset of input features. This makes each 
tree to be less strong, but at the same time decreases the correlation 
between trees, as the result the generalization error is reduced and the 
model’s accuracy is increased (Breiman, 2001). In addition, RF has the 
ability to run on large datasets efficiently, it can process massive 
amounts of input features, it gives estimates of the importance of the 
features used for modeling, it replaces missing data, and detects outliers 
through computing proximities between pairs of cases, and it is 
approximately robust to outliers and noise (Breiman, 2001; Rodriguez- 
Galiano et al., 2012). 

3.6. Support vector Machine (SVM) 

SVM developed by (Vapnik, 1963) at AT&T Bell Laboratories (Vap
nik, 1995), is used for both classification and regression tasks and then, 
it was enhanced by (Boser et al., 1992) using an idea based on statistical 
learning theory. SVM is a binary classifier developed to find a linear 
hyperplane that separates two classes optimally, but it can be promoted 
to an n-class classifier (Belousov, 2002). SVM finds an optimal hyper
plane for classification by projecting the input data into the higher- 
dimensional Hilbert space (Yang et al., 2008). SVM minimizes an 
upper bound of generalization error by widening the distance of the 
hyperplanes separating the two classes (Huang et al., 2002; Karimi et al., 
2019b). This action guarantees a low generalization error, independent 
of data distribution (Huang et al., 2002; Karimi et al., 2019b). In SVM 
models a penalty parameter beyond the margin of the hyperplanes is 
incorporated to consider misclassification errors (Vapnik, 1998). The 
penalty parameter makes a trade-off between the margin size and the 
number of error instances in which a larger value for the penalty 
parameter leads to smaller misclassification error and smaller margin 
size (Vapnik, 1998). SVM addresses non-linearity uses a mathematical 
function called kernel trick through to explore the data in a higher- 
dimensional space (Statnikov, 2011). The performance of the SVM al
gorithm is dependent on suitable kernel functions which are, the poly
nomial kernel, sigmoid kernel, radial basis function, and linear kernel 

(Chapelle et al., 1999; Choubin et al., 2019). Furthermore, SVM prevents 
overfitting in the model and assures good generalization and classifi
cation performance (Huang et al., 2002). Continuous and categorical 
variables can be both processed by SVM effectively, and it can also 
handle non-linear data, complex and noisy data with outliers (Huang 
et al., 2002; Karimi et al., 2019b). 

4. Methodology for forest fire susceptibility mapping 

The computation of forest fire susceptibility mapping was performed 
through the following steps. Also, the graphical representation of the 
order of methodological steps is highlighted in Fig. 5. 

4.1. Establishment of fire database 

The database containing the 10 fire conditioning factors and 510 fire 
locations was processed in ArcGIS 10.4 software. In order to be included 
in the methodological procedure, all the conditioning variables were 
converted into raster format with the pixel size equal to 30 m. Given the 
fact that forest fire susceptibility represents a binary classification, the 
preparation of another dataset containing the non-fire locations was 
required (Tien Bui et al., 2017). The use of a dataset representing the 
absence of the phenomenon in the modelling process can also increase 
the performance of the applied methods (Costache et al., 2020b). These 
non-fire points were randomly placed within the areas characterized by 
the negative values of NDVI which highlights the presence of water 
bodies and poor vegetation where the fire forest is almost impossible 
(Tien Bui et al., 2017). Also, it should be mentioned that the number of 
non-fire locations is equal to those of fire locations. The fire locations 
were attributed value “1′′ and the non-fire locations were attributed 
value “0”. 

4.2. Setup of training and validating dataset 

The validation is a mandatory step in the forecasting studies as it can 
be affected by a specific phenomenon. Thus, the fire and non-fire sam
ples were divided into training dataset (70%) and validating dataset 
(30%) (Tien Bui et al., 2017; Pourtaghi et al., 2015). Therefore, 714 fire 
and non-fire locations will be used to train the models, while another 
306 fire and non-fire locations will be involved in the validation of fire 
susceptibility maps. The Subset Features tool available in ArcGIS 10.4 
was employed in order to establish both the training and validation 
dataset. 

4.3. Computing FR coefficients 

Since FR coefficients are used as input to the machine learning 
models, these values were calculated only for the training dataset. The 
use of FR coefficients as input in natural hazards modelling is considered 
an effective solution to assign the same type of values to the classes/ 
categories of all (Costache and Tien Bui, 2019; Tehrany et al., 2015a). 
Thus, by involving the FR values within the models the following en
sembles will result MLP-FR, LR-FR, CART-FR, RF-FR and SVM-FR. The 
computation of FR coefficients will be done according to section 3.1. 
Moreover, in order to bring the value of the fire conditioning factor 
within the same range, the FR coefficients were normalized between 0.1 
and 0.9 according to Equation (8) below (Costache, 2019a): 

x =
(v − min(r) )*(max(l) − min(l))

max(r) − min(r)
+min(l)

where x is the standardized value of v; v is the current value of the 
variable; r is the limits of the range value, and l is the limits of the 
standardization range. 
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4.4. Configuration of fire susceptibility models 

The next stage of the modelling process is represented by the 
configuration of the models used to calculate the fire forest suscepti
bility. In this regard, the FR values which characterize the factor classes/ 
categories were assigned to fire and non-fire locations. In this study, 

Python 3.8.2 (“Python Release Python 3.8.2,” n.d.) was used to apply 
machine learning models. Therefore, the fire and non-fire locations 
having attributed the FR coefficient were converted in tabular format in 
order to be read in Python. Then, different amounts of hyperparameters 
were set, and by running the models several times, the best configura
tion was chosen to reach the highest accuracy for each model. For RF 

Fig. 5. Flowchart of the methodology adopted.  

Fig. 6. Structure of the RF model used for forest fire susceptibility in this study.  
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model the number of trees equal to 100 and the random split variable 
equal to 1 leads to the highest accuracy with the minimum time to get 
the results. The advantage of RF comparing to other models is the 
smaller number of hyperparameters to be set. Based on these criteria, the 
structure of the RF model used in this research is shown in Fig. 6. 

For SVM model, the penalty parameter equal to 5 and the kernel 
function of radial basis function and its parameter equal to 1 had the 
highest accuracy. For LR model, the maximum iteration equal to 1000, 
the inverse of regularization strength equal to 3, and the tolerance for 
stopping criteria equal to 0.001were set. However, in this model 
changing the hyperparameters did not change the accuracy meaningful. 
For the NN model (Fig. 7) the optimizer was set to Adam, the activation 
function was set to Relu (Rectification Linear Unit), the number of 
hidden layers was set to 60, and the number of neurons in each layer was 
set to 2 to reach the highest accuracy. For the CART model, the 
maximum number of splits equal to 10, the minimum number of parent 
nodes equal to 10 and the minimum number of leaf nodes equal to 5 
resulted in the highest accuracy. Fig. 8 illustrates the structure of the 
CART used for modelling forest fire in this research. 

4.5. Evaluation of models performance 

Once the models of the forest fire susceptibility are implemented, it is 
necessary to evaluate their performance. To achieve this, we used the 
receiver operating characteristic (ROC) curve (Chen et al., 2019; Jaafari 
et al., 2019b; Tien Bui et al., 2017), The ROC curve is plotted with the 
sensitivity as the y-axis and the 1-specificity as the x-axis (Costache, 
2019b, 2019c; Pourghasemi et al., 2016; Tien Bui et al., 2017). The AUC 
value ranges from 0.5 to 1. The highest AUC value indicates a perfect 
measure of separability, while the lowest AUC value indicates the worst 
measure of separability. 

Additionally, we used statistical measures such as overall accuracy, 
precision, specificity, sensitivity, and Kappa index (Tien Bui et al., 

2017). These statistical criteria were calculated based on the following 
equations: 

OverallAccuracy =
TP + TN

TP + TN + FP + FN
(9)  

Specificity =
TN

FP + TN
(10)  

Sensitivity =
TP

TP + FN
(11) 

In the above equations, TP (true positive) and TN (true negative) are 
the number of pixels which are considered correctly classified as forest 
fire and non-forest fire, respectively. While FP (false positive) and FN 
(false Negative) are the numbers of pixels that are incorrectly classified. 

4.6. Fire susceptibility mapping 

Based on the results obtained, the models for forest fire susceptibility 
mapping for the study area were adopted. To generate forest fire sus
ceptibility maps, the layers obtained were then transformed to GIS 
environment, the five classes of very low, low, moderate, high, and very 
high susceptibility to forest fire were applied (Jaafari et al., 2019b; Tien 
Bui et al., 2017) using natural breaks method in ArcGIS 10.4 (Tehrany 
et al., 2019). 

5. Results and discussion 

5.1. Frequency Ratio weights 

The results of the first of the workflow are represented by the values 
of FR coefficients. FR coefficients equal to 0 were achieved by the mean 
annual temperature between 15.9 ◦C and 16.5 ◦C and the water bodies 
land use category. On the surfaces characterized by these two 

Fig. 7. Architecture of MLP used in this study.  
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parameters, no forest fire location was recorded. Low FR coefficients 
were also achieved by the flat zones (0.215), rainfall class between 629 
and 700 mm/year (0.314), or the north-eastern slopes (0.445). The 
highest FR values were recorded by the areas with rainfall between 900 
and 943 mm/year (3.58), distances to roads between 240.1 m and 480 m 
(3.302), and the surfaces where the average wind speed is between 3.75 
m/s and 4 m/s (2.653) (Table 3). According to the described method
ology, these values were used as input in the 5 machine learning models. 

5.2. Fire susceptibility mapping and models performance 

5.2.1. MLP-Fr 
The statistical metrics were involved in the estimation of MLP-FR 

performance (Table 4). Thus, the accuracy of the training dataset was 
equal to 0.883, the Precision achieved a value of 0.856, the Sensitivity 
was 0.904, the Specificity is 0.863, while the K-index was situated at 
0.766. In terms of validating dataset, the following values of statistical 
metrics were achieved: Accuracy = 0.844, Precision = 0.801, Sensitivity 
= 0.877, Specificity = 0.817 and K-index = 0.689. 

The fire susceptibility map was derived through the MLP-FR model 
(FSM-MLP-FR) after the model performance assessment (Fig. 9). The 
values of FSM-MLP-FR were grouped into five classes using the Natural 
Breaks method. The first class, highlighting the areas with very low 
susceptibility, accounts around 20.2% of the study area, the low fire 
susceptibility is presented at approximately 10.44%, while the medium 
class of FSM-MLP-FR occupies a surface equal to 21.92% of the research 
zone. The high and very high fire susceptibility span on a total of 47.62% 
of the study area. 

5.2.2. CART-Fr 
The same statistical measures were used to assess the performance of 

CART-FR ensemble for both training and validating datasets. The use of 
training sample revealed the achievement of the following results 
(Table 4): Accuracy = 0.9, Precision = 0.907, Sensitivity = 0.894, 
Specificity = 0.905 and K-index = 0.799; while the involvement of 
validating data set helps to achieve the next values: Accuracy = 0.828, 
Precision = 0.795, Sensitivity = 0.851, Specificity = 0.807 and K-index 

= 0.656. In both of the cases, the statistical metrics highlight very good 
performances of CART-FR ensemble. 

Following the performance evaluation, the fire susceptibility map 
(FSM-CART-FR) was computed (Fig. 9). Similar to the previous case, the 
FSM-CART-FR values were grouped into 5 classes using the Natural 
Breaks method. The very low and low susceptibility is spread on around 
22.65% of the research area, while the medium values are encountered 
at approximately 13.39%. The high and very high susceptibility can be 
found around 63.97% of the study area. 

5.2.3. LR-Fr 
The performances achieved by LR-FR ensemble were the lowest 

among all the applied models. Thus, in terms of training dataset the 
following values were achieved (Table 4): Accuracy = 0.766, Precision 
= 0.754, Sensitivity = 0.772, Specificity = 0.76 and K-index = 0.531. 
The validation dataset revealed the following values for statistical 
metrics: Accuracy = 0.768, Precision = 0.781, Sensitivity = 0.761, 
Specificity = 0.776 and K-index = 0.536. 

The classification of Fires Susceptibility Map (FSM-LR-FR) into five 
classes (Fig. 9), according to the Natural Breaks method, highlights the 
following situation: very low susceptibility present on 17.26% of the 
study area, low susceptibility spread on 18.58% of the research area, 
medium values located on 23.4%, and high and very high susceptibility 
with a surface equal to 40.77% of the study area. 

5.2.4. SVM-Fr 
The application of SVM-FR ensemble is characterized by the 

following performances in terms of training dataset (Table 4): Accuracy 
= 0.91, Precision = 0.898, Sensitivity = 0.919, Specificity = 0.901 and 
K-index = 0.819. The use of validating dataset shows that the Accuracy 
= 0.858, the Precision = 0.841, the Sensitivity = 0.870, the Specificity 
= 0.846 while the K-index = 0.715. It should be mentioned that overall 
the SVM-FR ensemble achieved the second-best performance after RF- 
FR model. 

The Forest Fire Susceptibility Map was represented by dividing the 
FSM-SVM-FR values into five classes using the Natural Breaks method 
(Fig. 9). The very low fire susceptibility appears on approximately 

Fig. 8. Structure of the CART model used for forest fire susceptibility in this study.  
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26.74% of the study zone, the low susceptibility is spread on 8.09% of 
the total analyzed territory, the medium FSM-SVM-FR values are present 
on 11.09%, while the high and very high susceptibility accounts around 
54.07% of the Fahs -Anjra province and Tanger-Asilah prefecture. 

5.2.5. RF-Fr 
After the training of the RF-FR ensemble, its performance was 

measured with the help of several statistical metrics (Table 4). Thus, in 
terms of training sample, the accuracy of 0.997 was the highest between 
all the applied models. In this case, the precision, sensitivity and spec
ificity have the same values as the Accuracy while K-index is equal to 
0.994. The involvement of validating sample in the assessment of 
models performance revealed that RF-FR achieved also the best results 
highlighted by the following values: Accuracy = 0.904, Precision =
0.914, Sensitivity = 0.896, Specificity = 0.912 and K-index = 0.808. 

Once the model performance was assessed, the mapping of the Fire 
Susceptibility Index was performed (Fig. 9). Thus, the very low sus
ceptibility has 18.68% of the total study area, the low susceptibility is 
present on 12.47% of the analyzed zone, the medium values are 
encountered on approximately 16.79%, while the areas exposed in a 
high and very high degree to fire occurrence can be found on around 
52.05% of the study area. 

5.3. Results validation 

The results validation was done by using the ROC Curve. In this re
gard, the Success Rate, constructed with the training data, and Predic
tion Rate, constructed with the validating data were employed and their 
plots are shown in Fig. 10a and 10b respectively. Thus, in terms of 
success rate, the highest AUC value (0.998) was achieved by RF-FR 
ensemble followed by SVM-FR (0.973), CART-FR (0.967), MLP-FR 
(0.947), and LR-FR (0.822). The RF-FR ensemble was again the most 
performant in terms of Prediction Rate with an AUC of 0.952, followed 
by SVM-FR (0.928), MLP-FR (0.918), CART (0.905), and LR-FR (0.905). 
Given the fact that all the models, for both success and prediction rate, 
achieved AUC values higher than 0.8, we can assume that the applied 
algorithms were performant concerning the identification of areas sus
ceptible to forest fire occurrence. 

5.4. The importance of conditioning factors 

Machine learning models have recently become the focus of intense 
interest of researchers in several environmental hazards studies. 
Modeling of Forest fire is a complex issue (Tien Bui et al., 2017), its 
propagation is commonly linked to several factors, such as climate, 
topography, human, and vegetation factors. However, at present, there 
is no agreement for the selection of explicative variables for forest fire 
susceptibility. 

In this research, we showed that 10 influencing parameters (i.e. 
slope, aspect, elevation, distance to road, distance to residential, 
normalized difference vegetation index, land use, rainfall, temperature, 
and wind speed) could be used to implement FR-MLP, FR-LR, FR-CART, 

Table 3 
Frequency Ratio values for factors classes/categories.  

Factors Classes Class 
pixels 

Fire 
pixels 

FR 

Slope 0 − 3◦ 350,477 42  0.458  
3.1 − 7◦ 536,399 125  0.890  
7.1 − 15◦ 707,757 223  1.203  
15.1 − 25◦ 285,455 101  1.351  
25.1–62.2◦ 48,361 14  1.105 

Aspect Flat zones 35,581 2  0.215  
North 225,210 44  0.746  
North-East 240,527 28  0.445  
East 234,241 47  0.766  
South-East 205,031 85  1.583  
South 230,302 92  1.525  
South-West 249,841 88  1.345  
West 267,906 62  0.884  
North-West 239,810 57  0.908 

Distance to residential 
areas 

0–1000 m 122,140 23  0.719  

1000–2000 m 282,685 36  0.486  
2000–3000 m 344,728 64  0.709  
3000–4000 m 343,593 123  1.367  
4000–10835 m 835,737 259  1.184 

Distance to road 0–120 m 234,465 40  0.652  
120.1–240 m 120,365 57  1.809  
240.1–480 m 197,782 171  3.302  
480.1–840 m 248,156 45  0.693  
840.1–8988 m 1,128,115 192  0.650 

Main temperature 15.9–16.5 ◦C 773,213 116  0.000  
16.6–17 ◦C 542,856 236  0.587  
17.1–17.5 ◦C 314,498 71  1.353  
17.6–18 ◦C 212,919 51  0.640  
18.1–18.5 ◦C 84,963 31  1.104 

Land use Water bodies 6598 0  0.000  
Forest 536,096 165  1.176  
Croplands 1,023,509 157  0.586  
build-up/Bare 
lands 

362,639 183  1.927 

Rainfall (mm/year) 629–700 194,672 16  0.314  
700–750 359,763 44  0.467  
750–800 553,382 81  0.559  
800–850 513,471 295  2.194  
850–900 291,610 54  0.707  
900–943 16,003 15  3.580 

Wind speed (m/s) 3–3.25 86,078 11  0.488  
3.25–3.5 669,975 85  0.484  
3.5–3.75 625,851 110  0.671  
3.75–4 365,492 254  2.653  
4–4.5 180,327 45  0.953 

Elevation 0–62 m 773,213 116  0.573  
62.1–142 m 542,856 236  1.660  
142.1–243 m 314,498 71  0.862  
243.1–370 m 212,919 51  0.915  
370.1–761 m 84,963 31  1.393 

NDVI − 1 - − 0.05 447,168 206  1.760  
− 0.05–0 412,061 50  0.463  
0–0.05 281,062 47  0.639  
0.05–0.1 189,685 31  0.624  
0.1–0.5 550,391 165  1.145  
0.5–0.73 48,467 6  0.473  

Table 4 
Model performances estimated with training and validating samples.  

Models Sample TN TN FP FN Accuracy Precision Sensitivity Specificity K-index 

RF-FR Training 353 353 1 1  0.997  0.997  0.997  0.997  0.994 
Validating 138 135 13 16  0.904  0.914  0.896  0.912  0.808 

SVM-FR Training 318 326 36 28  0.910  0.898  0.919  0.901  0.819 
Validating 127 132 24 19  0.858  0.841  0.870  0.846  0.715 

LR-FR Training 267 275 87 79  0.766  0.754  0.772  0.760  0.531 
Validating 118 114 33 37  0.768  0.781  0.761  0.776  0.536 

MLP-FR Training 303 322 51 32  0.883  0.856  0.904  0.863  0.766 
Validating 121 134 30 17  0.844  0.801  0.877  0.817  0.689 

CART-FR Training 321 316 33 38  0.900  0.907  0.894  0.905  0.799 
Validating 120 130 31 21  0.828  0.795  0.851  0.807  0.656  
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FR-SVM and FR-RF for mapping forest fire susceptibility in the north of 
Morocco. These models classify the study area into 5 levels of risk. The 
outcomes from this study could be served as a reference to identify areas 
which require emergency intervention. 

As mentioned before, one of the advantages of RF method is its 
ability to estimate the importance of the features used for modeling. 
Fig. 11 shows the result of evaluating the conditioning factors for fire 
forest modeling in the study area using RF method. It is obvious that 
NDVI is the most important conditioning factor, following by distance to 
roads, rainfall and wind speed. Slope has the least importance among the 
conditioning factors. This finding support other previous studies (e.g. 
Holsinger et al., 2016; Tien Bui et al., 2019, 2017, 2016). However, 
(Pourghasemi et al., 2020) emphasized that land use, annual mean 
rainfall, slope, and elevation are the best factors for the forst fire sus
ceptibility. Similar to this finding, in a study developed by (Pourtaghi 
et al., 2016) the most important factors were soil type, average annual 
temperature, and land-cover for forest fire susceptibility. 

In this paper, the RF -FR model achieved the highest accuracy among 
other models, these findings are consistent with prior research (Pour
taghi et al., 2016; Tien Bui et al., 2017). These authors stated that this 
outperformance of RF is due to its advantages to handle and to deal with 
nonlinearities between variables, another essential advantage for RF is 
that it is easy to use and processing large dataset. Indeed, Random Forest 
algorithm has been employed with promising results in other prior 
research related to natural hazards, for example for flood susceptibility 
mapping, (Costache et al., 2020c), in their paper proved that RF ach
ieved high accuracy among other algorithms applied in their case study. 

As discussed above, FR is Followed by SVM-FR model in term of 
accuracy, the SVM, in a way that it can be applied for both classification 
and regression task, has numerous advantages such as its capacity to fix 
complexity of overfitting and its applicability to handle smaller dataset 

with high dimensionality (Chen et al., 2017). Due to these advantages, 
SVM has been widely used in natural hazards assessment proving suc
cessful results. Also, (Tien Bui et al., 2017) reported the predictive 
performance for both RF and SVM for forest fire prediction. MLP showed 
effective results due to the ability to be involved in processing non-linear 
datasets (Huang et al., 2020). 

CART has interesting advantages, Nevertheless, it is worthy to note 
that the CART algorithm is rarely present in the literature review for 
forest fire susceptibility and in general for moderate prediction purposes 
(Jaafari et al., 2018). 

LR achieved also good accuracy. similarly, it has shown successful 
results in other fields, for example, flood mapping (Costache et al., 
2020a) and landslide susceptibility (Nhu et al., 2020). Overall, the 
hybrid models based on ML algorithms and bivariate statistical methods 
provided promising and more performance results in comparison to 
individual models (Costache and Tien Bui, 2019; Pham et al., 2018b). 

To sum up, selecting a suitable ML algorithm for forest fire models 
like for any other environmental hazards assessment is a challenging 
task because each model presents its drawbacks and advantages (Tien 
Bui et al., 2017; Jaafari et al., 2019a). Therefore, all the aforementioned 
developed models in this study are recommended for forest fire sus
ceptibility studies scope. 

Forest ecosystems in the north of Morocco are dramatically influ
enced by a number of natural and anthropogenic disturbance, for 
instance, in a recent work, (Salhi et al., 2020) reported the fragility of 
soil quality, hence, a situation which requires a need of anti-erosion 
activities. Also, the major part of landscape areas in the north of 
Morocco is exploited for cannabis plantations (El Motaki et al., 2019) 
due to its economic value. All these factors increase the widespread 
forest fire disaster. This paper highlights the urgent need for government 
agencies to act for maintaining forest ecosystem prevention and 

Fig. 9. Forest Fire Susceptibility using ensemble models.  
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planning mitigation strategies. Despite a huge effort provided by a 
public agency to cope with this situation even though dealing with local 
conflicts. 

Finally, looking to an ecosystem forest sustainable for our future, 
such efforts could be a powerful tool and they must be accomplished: i- a 
public alarm system could be implemented to secure the urgent situation 
for the forest ecosystem. ii- delivering and communicating the results of 
the forest fire to the public community could be a pathway to reduce the 
influence of population behaviour. 

6. Conclusion 

Forest fire is one of the main causes of ecosystem service losses and 
deterioration of human life. Thus, it is considered one of the pressing 
issues. In many parts of the world governments’ policy on forest pro
tection and management is challenging to meet their goals. With these 
issues in mind, this paper is motivated by the need for preparation 
predictive models of the forest fire risk and identification of areas 
requiring immediate management actions with a goal of “Act Now 
before Tomorrow”. In this paper, five hybrid models have been devel
oped namely, RF-FR, SVM-FR, MLP-FR, CART-FR, and LR-FR for forest 
fire modelling based on 510 forest fire locations and a total of 10 forest 
fire conditioning factors (elevation, slope, aspect, distance to roads, 
distance to residential, land use, Normalized Difference Vegetation 
Index (NDVI), rainfall, temperature, and wind speed). Results of models 
proposed indicate that RF-FR achieved the highest performance (AUC =
0.989), followed by SVM-FR (AUC = 0.959), MLP-FR (AUC = 0.858), 
CART-FR (AUC = 0.847), LR-FR (AUC = 0.809) in the forecasting of 
forest fire, respectively. In light of these results, the maps generated here 
could be a very effective management tool for analyzing and developing 
forest fire management and strategies. Also, the methodology can 
further be extended to other areas with a similar issue. 

CRediT authorship contribution statement 

Meriame Mohajane: Conceptualization, Investigation, Project 
administration. Romulus-Dumitru Costache: Conceptualization, 
Methodology, Investigation, Data curation. Firoozeh Karimi: Concep
tualization, Methodology, Resources, Data curation. Quoc Bao Pham: 
Methodology, Resources, Writing - original draft, Supervision, Project 
administration. Ali Essahlaoui: Validation, Visualization. Hoang 
Nguyen: Validation, Formal analysis, Writing - review & editing, 
Visualization. Giovanni Laneve: Formal analysis, Writing - review & 
editing. Fatiha Oudija: Formal analysis. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

References 
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