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We define and investigate a novel notion of expressiveness for temporal logics that is based on game theoretic equilibria of
multi-agent systems. We use iterated Boolean games as our abstract model of multi-agent systems [Gutierrez et al. 2013;
Gutierrez et al. 2015b]. In such a game, each agent i has a goal γi, represented using (a fragment of) Linear Temporal
Logic (LTL). The goal γi captures agent i’s preferences, in the sense that the models of γi represent system behaviours that
would satisfy i. Each player controls a subset of Boolean variables Φi, and at each round in the game, player i is at liberty
to choose values for variables Φi in any way that she sees fit. Play continues for an infinite sequence of rounds, and so
as players act they collectively trace out a model for LTL, which for every player will either satisfy or fail to satisfy their
goal. Players are assumed to act strategically, taking into account the goals of other players, in an attempt to bring about
computations satisfying their goal. In this setting, we apply the standard game-theoretic concept of (pure) Nash equilibria.
The (possibly empty) set of Nash equilibria of an iterated Boolean game can be understood as inducing a set of computations,
each computation representing one way the system could evolve if players chose strategies that together constitute a Nash
equilibrium. Such a set of equilibrium computations expresses a temporal property—which may or may not be expressible
within a particular LTL fragment. The new notion of expressiveness that we formally define and investigate is then as
follows: what temporal properties are characterised by the Nash equilibria of games in which agent goals are expressed in
fragments of LTL? We formally define and investigate this notion of expressiveness and related issues, for a range of LTL
fragments. For example, a very natural question is the following. Suppose we have an iterated Boolean game in which every
goal is represented using a particular fragment L of LTL: then is it always the case that the equilibria of the game can be
characterised within L ? We show that this is not true in general.
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1. INTRODUCTION
Temporal logics are probably the most successful and widely used class of formalisms for the spec-
ification and verification of computer systems [Emerson 1990]. In particular, temporal logics have
proven to be enormously valuable in model checking, where a standard question is whether all com-
putations of a given system satisfy a particular temporal logic property ϕ [Clarke et al. 2000]. A
natural question relating to temporal logics is that of their expressive power: what system properties
is it possible to express within a particular temporal logic or temporal logic fragment? For example,
the relative expressiveness of linear versus branching time temporal logics was a major research
topic in theoretical computer science for more than a decade, and still generates some debate to the
present day [Emerson and Halpern 1986; Vardi 2001].
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In this article, we are interested in the use of temporal logic for reasoning about multi-agent
systems, and in particular, we are interested in questions relating to expressiveness that arise in such
settings. We use iterated Boolean games as our abstract model of multi-agent systems [Gutierrez
et al. 2013; Gutierrez et al. 2015b]. In this model, each agent exercises exclusive control over a
subset of Boolean variables, and the game is played over an infinite number of rounds, where at
each round each player chooses a valuation for their variables. The result of play is an infinite
computation, which can be understood as a model for Linear Temporal Logic (LTL) [Pnueli 1977;
Emerson 1990]. To represent agent preferences in iterated Boolean games, each player i is assumed
to have a goal γi, expressed using (a fragment of) LTL: the models of γi represent computations that
would satisfy i. Each player is assumed to act strategically, taking into account the goals of other
players, in order to try to bring about computations that will satisfy their goal. For this setting we
use the standard game-theoretic concept of Nash equilibrium [Osborne and Rubinstein 1994]: the
Nash equilibria of an iterated Boolean game can be understood as characterising a (possibly empty)
set of computations, with each computation representing one way the system could evolve if players
in the game chose strategies in equilibrium.

Our main interest in the present paper is as follows. Suppose we have a game G in which each
player i has a goal γi expressed in a fragment L of LTL. Then, what temporal property is expressed
by the equilibria of G? In particular, it is very natural to ask whether the equilibria of a game with the
players’ goals given by formulas in L can be characterised within L itself. We formally define and
investigate this novel notion of expressiveness, which we refer to as expressiveness in equilibrium.
We do this for a range of known fragments of LTL, in particular, the maximal stutter-invariant
fragment without a next-operator.

The problem of reasoning about Nash equilibria of concurrent games has, of course, been con-
sidered elsewhere. For instance, a popular approach is to develop new formalisms for representing
temporal properties of Nash equilibria, and similar game-theoretic solution concepts, in the object
language for example by adding new operators to existing temporal logics [Bulling et al. 2008;
Gutierrez et al. 2014; Gutierrez et al. 2017a]. Alternatively, one might use a very general formal-
ism such as Strategy Logic to reason about equilibrium properties [Chatterjee et al. 2010]. Our
approach—focussing on the temporal properties that Nash equilibrium can distinguish in logic-
based (Boolean) games—is fundamentally different. In the present work, we are not concerned with
questions such as whether an LTL formula holds on some or all Nash equilibrium computations.
Rather, we consider the extent to which Nash equilibria of a game can be characterised using (frag-
ments of) LTL.

Notice that the question of which properties can be expressed by a particular LTL fragment in
equilibrium should be distinguished from the question whether there is a formula of the fragment
that characterises Nash equilibrium runs. The latter question asks whether there is a formula ϕ (or
formula scheme) that holds exactly on the computations sustained by a Nash equilibrium in every
Boolean game G. The former is the question whether for every formula ϕ we can find a game G
such that ϕ is satisfied on exactly those computations of G that are sustained by an equilibrium.

As a motivating example, consider the following temporal variation of the well-known Battle of
the Sexes game [Luce and Raiffa 1957], which we will refer to as Boolean Ballet.

Example 1.1 (Boolean Ballet). Suppose that two friends, whom we denote by i and j, go out
every weekend. Both are dance aficionados and each weekend, either of them has to decide indi-
vidually whether to go to the ballet or to the discotheque, leading to a sequence of evenings going
out. We say they go out together, if they decide to go to the same venue. Assume furthermore that i
wishes always to go out together, be it to the ballet or to the disco, whereas j wants to go out to the
ballet with i sometimes, but also wants to go to the disco alone at some other occasions.

In this game, the sequence in which i and j go to the ballet the first weekend and to the disco
ever after is sustained by a Nash equilibria, but the sequence where they go to the ballet the first two
weekends and to the disco ever after is not. As a matter of fact, the Nash equilibria of this game give
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Fig. 1. Three plays of Boolean Ballet, where, at each time (weekend), the red dot indicates how the friends have decided
which venue (p and q for ballet, and p̄, respectively, q̄ for discotheque) to go to. The first run is sustained by a Nash
equilibrium where i’s goal is satisfied and j cannot profitably deviate. The second run is not sustained by a Nash equilibrium.
To see this, observe that player j would like to deviate from any strategy profile underlying this run by playing along at
time 0, only to sneak off to the discotheque in the second, leaving i alone stranded at the ballet. This is indicated by the third
play.

rise to precisely those sequences of evenings out where i and j always go out together, but at most
once to the ballet.

We find that this situation can be conveniently modelled as an iterated Boolean game, for instance,
by giving i and j each control over a propositional variable, p and q, respectively and assuming that
by setting their variable to true at a particular time, the respective friend goes to the ballet and to
the disco otherwise. The two players’ (binary) preferences can then be expressed using the temporal
operators F (“eventually”) and G (“always”) only: Player i’s goal could for instance be represented
by the LTL-formula G(p↔ q) and player j’s by F(p∧q)∧F(p∧¬q). Also see Figure 1.

The remarkable feature of Boolean Ballet is that the players goals are invariant under repetition of
evenings going out, whereas the set of sequences the Nash equilibria give rise to is not. This means,
for instance, that i is just as satisfied when the friends go out together to the ballet and the disco on
alternate weekends, as i would be if they were to go out, alternately, to the ballet two weekends in
a row and then to the disco two weekends in a row. By contrast, the two friends going out together
to the ballet the first weekend and to the disco ever after is sustained by a Nash equilibrium, but
going out to the ballet the first two weekends and to the disco every after is not! This phenomenon
indicates that, for a given fragment of LTL, the traditional concept of expressiveness for temporal
logics can be quite different from our notion of expressiveness in equilibrium. We will therefore
explore in detail the issue which temporal properties are characterised by the Nash equilibria of
iterated Boolean games with the players’ preferences formulated in various fragments of linear
temporal logic.
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Our work also has a natural bearing on settings where a designer uses temporal logic to specify
the desired behaviour of a system. Consider, for instance, a situation in which a designer is to
design a multi-agent system that is to behave accordingly to a given complex specification, and she
has to distribute over several agents the complex task represented by the specification. Moreover,
these agents may possess only limited computational capabilities, and the designer may want to
allocate them tasks that are as “simple” as possible. In our setting, this translates to the designer’s
specification possibly being formulated in an expressive but possibly computationally expensive
fragment of LTL, and the agents having to be assigned objectives phrased in weaker fragments
with better computational properties. The designer’s task is then to find such “weak” goals for the
agents so that the specification is satisfied in those Nash equilibrium computations of the multi-agent
system that satisfy the specification. The following simple example illustrates this idea.

Example 1.2 (The Rabbit Hunt). Consider the following coordination task for two agents, i
and j who have to catch a rabbit in the dark. One agent holds a torch and the other one has a
gun. At each time, the first agent, i, can light the torch (p) or not (¬p), and the second agent, j, can
fire the gun q or refrain from doing so (¬q). If i lights the torch without j firing the gun, the rabbit
will be alarmed and dash off. Similarly, if j fires the gun without i lighting the torch, agent j will
miss. The only way the two of them can catch the rabbit if they light the torch and fire the gun at the
same time. This situation can be modelled as one where a system designer aims to fulfil the overall
specification that the torch and the gun should not be put to use until a certain time when the torch
should be lighted and the gun be fired simultaneously. This specification can be formulated by the
temporal logic formula γ0 = (¬p∧¬q)U(p∧ q), where U is the until-operator. Assuming that the
computational powers of the two agents are limited and that they can only perform tasks specified
either as safety goals or as reachability goals, which only contains the always-operator G and the
eventuality-operator F as temporal connectives.

Now, the system designer can find an implementation of the specification γ0 by assigning to
player i objective γi = F p and to player j objective γ j = G(p↔ q). Then, as γ0, γi, and γ j are
consistent and neither i nor j would like to deviate from any run satisfying their goals, there clearly
is a Nash equilibrium run in which γ0 is satisfied. Moreover, there are no Nash equilibria in which γ0
does not hold. Observe that player i can achieve his goal on his own by simply lighting the torch (that
is, setting p to true) at some point. Accordingly, this will also happen in all equilibria at some time.
Moreover, due to presuppositions inherent in the definition of Nash equilibrium, we may assume that
player j knows player i’s strategy and can at each time predict whether i is going to light the torch or
not, that is, which truth-value of p assumes, and choose the value for q accordingly. Thus, in every
equilibrium run also player j’s goal γ j will be satisfied. Now, let ρ be an equilibrium run and t the
earliest time that i lights the torch, that is, the first time that p is set to true. Then, simultaneously, j
fires the gun, that is, q is set to true at t as well. Moreover, at all previous times, i does not light the
torch and neither is the gun fired as we know that player j will have her goal achieved. It follows
that the specification γ0 holds in all equilibria.

Clearly, there are also runs satisfying γ0 that are not sustained by an equilibrium, for instance,
every run in which both p and q hold at time t = 0 and p∧¬q at some later time. In that case,
player j would like to deviate, so as to match the truth values of p and q at each time. This simply
means that the specification γ0 is weaker than its implementation in Nash equilibria.

It may furthermore be worthwhile to observe that the conjunction of the players’ goals γi∧ γ j =
F p∧G(p↔ q) implies the specification γ0, but that nevertheless by allocating this formula to both
players, there are equilibrium runs that do not satisfy γ0. For instance, if the players were always to
(myopically) set p and q to false, respectively.

Our paper is organised as follows. Following this introduction, we present the background tech-
nical concepts used throughout the paper. In Section 3, we present the model of iterated Boolean
games and provide a useful characterisation of the computations that are induced by their Nash equi-
libria. Our main contributions are to be found in Section 4, where we introduce the central concept
of expressiveness in equilibrium, explore its ramifications for the full fragment LTL, propositional
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calculus, and the important maximal stutter-invariant fragment without the next-operator. On basis
of the game of Boolean Ballet (Example 1.1), we formally demonstrate that the temporal property
expressed by a Boolean game with players’ goals in a fragment of LTL need not necessarily be
expressible in that fragment itself. This is also the case for the maximal stutter-invariant fragment,
even though we also show that there are still LTL-properties that this fragment cannot express in
equilibrium. This is in contrast to the full LTL-fragment, for which we can show that every non-
empty temporal property expressible in full LTL is also expressed by an iterated Boolean game with
LTL goals, and vice versa. In Section 5, we study the contrasts between the weaker concepts of
projective expressiveness and projective expressiveness in equilibrium. We prove that both full LTL
and the maximal stutter-invariant fragment can projectively express in equilibrium every ω-regular
temporal property. In Section 6, we argue how another weakening of the regular expressiveness
notion, which we refer to as weak expressiveness in equilibrium, chimes in well with the incentive
engineering perspective illustrated by the Rabbit Hunt (Example 1.2). We show how the very weak
fragment LX,F+ , which only allows reachability goals to be formulated, can already weakly pro-
jectively express in equilibrium every ω-regular temporal property. We conclude by reviewing the
related literature (Section 7) and suggesting a number of topics for future research (Section 8).

2. PRELIMINARIES
In this section, we provide the necessary preliminaries, introducing the central formal concepts,
notions, and definitions we will employ throughout the paper.

2.1. Words and Languages
Let Σ be an alphabet set of symbols or letters a,b,c, .... A word w is finite sequence w = a0 . . .an of
letters and an ω-word is an infinite sequence w = a0a1a2, ... of letters. By ε we denote the empty
word. A language is subset L of words over Σ and an ω-language is a subset of ω-words over Σ. For
words w and w′ over an alphabet Σ we use the operations of concatenation (ww′), finite iteration
(w∗), and infinite iteration (wω ). For integers k ≥ 0, we have ak denote the k-fold iteration of
symbol a. The ω-regular expressions over the alphabet Σ are given by the ω-regular expressions
constructed by concatenation (X ;Y ), union (X +Y ), finite iteration (X∗), and infinite iteration
(Xω ), where X and Y are sets of words or ω-words.

An ω-language L over alphabet Σ is stutter-invariant if for all ω-words w = a0a1a2a3 . . . and
every sequence k0,k1,k2, . . . of positive integers, a0a1a2a3 . . .∈ L if and only if ak0

0 ak1
1 ak2

2 ak3
3 . . .∈

L, where vk denotes the k-fold iteration of v.
A finite word w = a0 . . .ak is a prefix of a finite word w = b0 . . .bm with k ≤ m or an ω-word

w′ = b0b1b2b3 . . . if at = bt for all t ≤ k. The set of prefixes of an ω-word w we denote by prefix(w).
We say that a finite word w is the (unique) maximal common prefix of ω-words w′ and w′′ if w is
a prefix of both w′ and w′′ and no prefix of greater length has this property. For instance, ab and abc
are both common prefixes of the ω-words abcccc . . . and abcddd . . ., but only abc is maximal.

For an excellent survey of infinite words, see [Perrin and Pin 2004].

2.2. Propositional Temporal Logic
We make extensive use of Linear Temporal Logic and the iterated Boolean games based on it. In
this section, we present the core concepts of these frameworks and a number of auxiliary notions.

Linear Temporal Logic (LTL). We use the well-known framework of Linear Temporal Logic
(LTL) [Pnueli 1977; Emerson 1990; Thomas 1990; Baier and Katoen 2008; Demri et al. 2016].
The formulas of LTL are constructed in the usual fashion from a non-empty and finite set Φ of
propositional variables p,q,r, . . . using the Boolean connectives negation (¬ϕ) and disjunction
(ϕ ∨ψ), as well as the temporal operators next (Xϕ), eventually (Fϕ), always (Gϕ), and until
(ϕ Uψ). The connectives Truth (>), falsity (⊥), conjunction (ϕ ∧ψ), implication (ϕ → ψ), and
bi-implication (ϕ ↔ ψ), are introduced as the usual abbreviations of p∨¬p, ¬>, ¬(¬ϕ ∨¬ψ),
¬ϕ ∨ψ , and (ϕ → ψ)∧ (ψ → ϕ), respectively. Where p is a propositional variable we sometimes
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write p̄ for ¬p. We also sometimes omit conjunctions in conjunctive clauses and, for instance, de-
note p∧¬q∧ r by pq̄r.

By a valuation v we understand a subset of propositional variables, that is, v⊆Φ. Thus the set of
valuations over Φ is given by 2Φ. Intuitively, a propositional variable p is set to true at valuation v
if p ∈ v, and false otherwise. For a valuation v ⊆ Φ, we have χΦ

v denote the characteristic clause
for v given by χΦ

v =
∧

p∈v p∧
∧

q∈Φ\v q̄. Thus, for w,v⊆Φ, we have w |= χΦ
v if and only if v =w. We

will also identify valuations and their characterising clauses. Accordingly, we, for instance, write
pq̄r for valuation {p,r} if Φ = {p,q,r}.

The formulas of LTL are interpreted with respect to runs ρ = v0v1v2v3 . . . , which we define as
infinite sequences (or ω-words) over valuations in Φ, that is, ρ ∈ (2Φ)ω . We denote the set of runs
over valuations in 2Φ by runsΦ, again omitting the reference to Φ when clear from the context.
Thus every LTL formula defines an ω-language over 2Φ, which could also be characterised by other
means, for instance, by automata or grammars.

The semantics of LTL then interprets LTL-formulas with respect to a run ρ = v0v1v2v3 . . . and
time index t ∈ N as follows.

ρ, t |= p iff p ∈ vt (for p ∈Φ)
ρ, t |= ¬ϕ iff ρ, t 6|= ϕ

ρ, t |= ϕ ∨ψ iff ρ, t |= ϕ or ρ, t |= ψ

ρ, t |= Xϕ iff ρ, t +1 |= ϕ

ρ, t |= Fϕ iff ρ, t ′ |= ϕ for some t ′ ≥ t
ρ, t |= Gϕ iff ρ, t ′ |= ϕ for all t ′ ≥ t
ρ, t |= ϕ Uψ iff for some t ′ ≥ t both ρ, t ′ |= ψ , and ρ, t ′′ |= ϕ for all t ≤ t ′′ < t ′

We say that a run ρ satisfies a formula ϕ if ρ,0 |= ϕ . The set of runs in runsΦ that satisfy formula ϕ

we denote by runsΦ(ϕ). A formula ϕ is satisfiable if some run satisfies ϕ . Observe that ¬Xϕ is
equivalent to X¬ϕ , and Fϕ to ¬G¬ϕ .

We also employ a number of auxiliary concepts. For Ψ⊆Φ and ρ ∈ runsΦ, we write ρ|Ψ for the
restriction (or projection) of ρ to Ψ, that is, if ρ = v1,v2, . . . then ρ|Ψ = w1,w2, . . . where wt =
vt ∩Ψ for each t ≥ 1. For X ⊆ runsΦ and Ψ⊆Φ, we denote by X |Ψ the set {ρ|Ψ ∈ runsΨ : ρ ∈ X}.

By a history we understand a finite and possibly empty sequence π = v0, . . . ,vk in (2Φ)∗. We let
length(π) denote the length of π .

Fragments of Linear Temporal Logic. We study the expressive power of the most natural, and
therefore most widely known, fragments of LTL. Such fragments are the “stutter-invariant” frag-
ment (technically, the X-free fragment), denoted by LU, as well as other fragments where the use
of the “until” operator is restricted to simply being G or F, leading to the following sublogics:
LG,F,X (sometimes also referred to as “restricted LTL”, for instance, by [Perrin and Pin 2004]),
where only G and F and X are allowed, and with similar interpretations, the sublogics LG,F, LX,G+ ,
and LX,F+ , where the “+” notation indicates that negations are allowed only in front of proposi-
tional variables (otherwise, for instance, the LG fragment would be the same as the LF fragment).
The fragment LG,F was briefly discussed in Example 1.1. We will not study the extremely weak
sublogics LG+ , LF+ , LX, and Lø (the latter referring to propositional logic). On the one hand, the
two latter sublogics cannot express interesting properties of infinite runs—all their models are finite
words; on the other hand, the first two sublogics can express only very limited classes of temporal
properties: only “safety” properties in the case of LG+ and only “reachability” properties in the
case of LF+ . Indeed, our study covers the most relevant LTL fragments in the literature. Finally,
by Lω-reg we refer to the set of ω-regular expressions, which are seen as an extension of LTL,
rather than a fragment [Wolper 1983]. Sometimes we refer explicitly to the set Φ of variables over
which L is defined, and write L (Φ) for L .

For a detailed discussion and comparison of expressiveness of the various fragments of LTL, also
see [Strejček 2004].
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3. ITERATED BOOLEAN GAMES AND NASH EQUILIBRIUM
Boolean games were introduced by [Harrenstein et al. 2001] and further developed by, among oth-
ers, Bonzon, Lang, and Wooldridge [Bonzon et al. 2006; Endriss et al. 2011]. In this paper, we adopt
the framework of iterated Boolean games as proposed by [Gutierrez et al. 2015b], where players
play a Boolean game over an infinite number of rounds and where each players’s goal is given by
an LTL-formula.

3.1. Iterated Boolean Games
For L a fragment of LTL over Φ, an L -iterated Boolean game (over Φ) is a tuple

G = (N,Φ,Φ1, . . . ,Φn,γ1, . . . ,γn),

where N is a set of players, each Φi ⊆ Φ is a subset of propositional variables under control of
player i, and γi is a formula in L representing player i’s preferences over runsΦ. We assume
Φ1, . . . ,Φn to partition Φ, that is, Φ1 ∪ ·· · ∪Φn = Φ and i 6= j implies Φi ∩Φ j = ø. Henceforth,
we also refer to an L -iterated Boolean game as an L -game.

Example 3.1 (Boolean Ballet, cont’d). The game Boolean Ballet game in the introduction can
thus be formalised as the tuple Gbb = ({i, j},{p,q},Φi,Φ j,γi,γ j), where Φi = {p} and Φ j = {p},
as well as γi = G(p↔ q) and γ j = F pq∧F pq̄.

An iterated Boolean game takes place in an infinite number of rounds and in every round each
player i simultaneously makes a choice vi ⊆ Φi of values for the propositional variables under
its control based on the values chosen by all players in previous rounds. Formally, a strategy for a
player i is a function fi : (2Φ)∗→ 2Φi which associates with every history π ∈ (2Φ)∗ a choice fi(π)∈
2Φi . A strategy profile is a tuple f = ( f1, . . . , fn) that associates with each player i a strategy fi and
induces an infinite run ρ( f ) = v0v1v2v3 . . . defined as follows:

v0 = f1(ε)∪·· ·∪ fn(ε)

vt+1 = f1(v0, . . . ,vt)∪·· ·∪ fn(v0, . . . ,vt)

With a slight abuse of notation, we also write f (ε) = v0 and f (v0 . . .vt) = vt+1.
A strategy fi as defined above can make player i’s choice at time t dependent on the preceding

path v0 . . .vt−1. It seems, however, natural to assume a player can also simply choose to play a
sequence of valuations in Φi no matter what choices the other players make. Such strategies have
much less structure. Formally, we say that a player’s strategy fi is naive if fi(v0 . . .vt) = fi(v′0 . . .v

′
t)

for all t ≥ 0, all paths v0 . . .vt and v′0 . . .v
′
t of equal length.

A player i strictly prefers runs that satisfy γi to runs that do not and is indifferent otherwise, that
is, i strictly prefers run ρ to run ρ ′ if and only if ρ |= γi and ρ ′ 6|= γi. A player i (weakly) prefers
run ρ to run ρ ′ if it is not the case that i strictly prefers run ρ ′ to ρ . Thus, each player’s preferences
in iterated Boolean games are dichotomous, dividing the set of runs into those that are preferred and
those that are not preferred.

3.2. Nash Equilibrium and Equilibrium Runs
It can easily be seen that with the players, strategies and preferences defined in this way, each
iterated Boolean game defines a strategic game in the game-theoretic sense of the word [Osborne
and Rubinstein 1994; Maschler et al. 2013; Shoham and Leyton-Brown 2008]. Accordingly, the
usual game theoretic solution concepts are available for the analysis of iterated Boolean games.
This in particular holds for (pure) Nash equilibrium, which in our present setting is a strategy
profile f ∗ = ( f ∗1 , . . . , f ∗n ) such that for all players i and all of i’s strategies gi, we have that

ρ( f ∗−i,gi) |= γi implies ρ( f ∗) |= γi,

where ( f ∗−i,gi) denotes the profile ( f ∗1 , . . . , f ∗i−1,gi, f ∗i+1, . . . , f ∗n ).
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1:8 Gutierrez, Harrenstein, Perelli, and Wooldridge

We say a Nash equilibrium f ∗ = ( f ∗1 , . . . , f ∗n ) is naive if every strategy f ∗i is naive. We also
have the following useful fact, which states that to establish whether a strategy profile is a Nash
equilibrium, it suffices to investigate if it does not allow profitable deviations to naive strategies.

LEMMA 3.2. Let G = (N,Φ1, . . . ,Φn,γ1, . . . ,γn) be an iterated Boolean game. Then a strategy
profile f = ( f1, . . . , fn) is a Nash equilibrium if and only if ρ( f ∗−i,gi) |= γi implies ρ( f ∗) |= γi for
all players i and all naive strategies gi.

PROOF. The “only if”-direction is trivial. For the “if”-direction, assume that f = ( f1, . . . , fn)
is not a Nash equilibrium. Then, there is some player i and some strategy gi such that ρ( f ) 6|= γi
and ρ( f−i,gi) |= γi. Let ρ( f−i,gi) = w0w1w2, . . . . Now define the naive strategy g′i for player i such
that g′i(ε) = gi(ε) and g′i(v0 . . .vt) = gi(w0, . . . ,wt) for every history v0 . . .vt . By a straightforward
inductive argument it can then easily be established that ρ( f−i,gi) = ρ( f−i,g′i). It thus follows that
ρ( f−i,g′i) |= γi and ρ( f ) 6|= γi for some player i and some naive strategy g′i, as desired.

We say that a run ρ ∈ runsΦ is sustained by a Nash equilibrium f ∗ in a game G whenever ρ( f ∗)=
ρ . We then refer to ρ as an equilibrium run. The set of equilibrium runs of G—rather than the set
of equilibria itself—we denote by NE(G).

The relationship between the strategy profiles that are Nash equilibria on the one hand and the
equilibrium runs that are sustained by them on the other, is a complex one. Due to the deterministic
character of strategies as we defined them, it is obvious that each Nash equilibrium sustains one
run only, namely, the run it induces. It is also easy to construct examples showing that iterated
Boolean game may have multiple equilibria, which moreover may sustain different runs. Neither
should it come as a surprise that one run can be sustained by two different equilibria. However,
whether a profile is a Nash equilibrium not only depends on its behaviour on prefixes of the run it
induces, but also on its definition on histories that are not a prefix of the equilibrium run. Hence,
it is quite possible for two profiles f = ( f1, . . . , fn) and g = (g1, . . . ,gn) to induce the same run,
that is, ρ( f ) = ρ(g), even though f is a Nash equilibrium and g is not. Put slightly differently, the
fact that a profile f = ( f1, . . . , fn) induces an equilibrium run ρ , does not imply that f has to be an
equilibrium. To see this, consider the following example.

Example 3.3. Consider the following game with two players, i and j controlling variables p
and q, respectively. Let further the players’ goals be given by γi = G pq and γ j = GF pq̄. Now
consider the strategy fi for player i defined such that fi(ε) = p and, for all histories π = w0 . . .wk
(k ≥ 0),

fi(w0 . . .wk) =

{
p if wt = pq for all 1≤ t ≤ k
p̄ otherwise.

Also consider the naive strategies gi and g j, for players i and j, respectively, such that gi(π) = p
and g j(π) = q for all histories π . Then,

ρ( fi,g j) = ρ(gi,g j) = v0v1v2v3 . . . ,

where vt = pq for all t ≥ 0. Thus, on this run, player i’s goal is satisfied on ρ , but player j’s goal is
not. However, ( fi,g j) is a Nash equilibrium, whereas (gi,g j) is not. To see the latter, observe that
player j would like to deviate from (gi,g j), for instance, by playing the naive strategy g′j defined
such that g′j(π) = q̄ for all histories π . Note that ρ(gi,g′j) = w0w1w2 . . . such that wt = pq̄ for all
t ≥ 0, and accordingly ρ(gi,g′j) satisfies j’s goal.

To appreciate that ( fi,g j) is a Nash equilibrium, assume for a contradiction that there is some
strategy g′′j for player j such that ρ( fi,g′′j ) = u0u1u2 . . . satisfies j’s goal γ j. Then, there is a small-
est t ≥ 0 such that vt 6= ut . In particular, ut 6= pq. By definition of fi it then follows that ut ′ 6|= pq̄
for all t ′ > t. Hence, ρ( fi,g′′j ) 6|= GF pq̄, that is, ρ( fi,g′′j ) does not satisfies j’s goal γ j. Therefore,
player j does not want to deviate from ( fi,g j).
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Perhaps more profoundly, we find that that whether a run is sustained by an equilibrium cannot
be reduced to this run satisfying particular players’ goals and not satisfying those of other players.
As the following example demonstrates, it is quite possible for two runs ρ and ρ ′ to satisfy the same
players’ goals—that is, ρ |= γi if and only if ρ ′ |= γi, for all players i—even if ρ is sustained by a
Nash equilibrium and ρ ′ is not.

Example 3.4. Again consider a two-player game where player i controls variable p and player j
variable q. Let the players’ goals be given by γi = F pq and γ j = >, respectively. Then, run ρ =
v0v1v2 . . . with vt = p̄q̄ for all t ≥ 0 is sustained by the Nash equilibrium where the two players play
naive strategies that always set p and q to false. Thus, γ2 is satisfied, but γ1 is not. The latter is also
true of run ρ ′ = w0w1w2 . . . with wt = p̄q for all t ≥ 0. This run, however, is not sustained by any
Nash equilibrium: for every strategy profile f = ( fi, f j) that induces run ρ ′, fi(π) = p̄ and f j(π) = q
for every prefix π of ρ ′. But then, player i would want to deviate to a strategy that sets p to true at
some point, that is, to a strategy gi with gi(π) = p for some prefix π of ρ ′.

We find that, nevertheless, we can obtain a convenient characterisation of the Nash equilibrium
runs in an iterated Boolean game. To this end, we first introduce a couple of auxiliary concepts.

In Example 3.3, the crucial difference between player i’s strategies fi and gi is that the former
precludes player j achieving his goal no matter which strategy j chooses, whereas the latter does
not. In an important sense, by playing fi, player i threatens to punish player j if j were to deviate
and play a strategy that would result in another run than ρ( fi,g j). In this way, player i can ‘coerce’
player j to play g j even if by doing so player j does not achieve his goal: by playing any other
strategy player j would not achieve his aim either! Formally, for a given player j, we say a run ρ is
consistent with a punishment profile against j if there is some strategy profile f j = ( f j

1 , . . . , f j
n )

such that ρ = ρ( f j
1 , . . . , f j

n ) and ρ( f j
− j,g j) 6|= γ j for all strategies g j for player j. Observe that for the

the punishment of player j to be effective, the other players may have to coordinate their strategies.
Lemma 3.5 below characterises an equilibrium run of an iterated Boolean games as a run ρ that

is consistent with a punishment profile against each player that does not achieves his goal ρ . Note
that this allows for each the punishment profile against each ‘losing’ player to be different. In the
proof we therefore face the challenge to combine a profile f = ( f1, . . . , fn) that produces a given
run ρ = v0v1v2 . . . with the punishment profiles against the losing players, if these are available,
into an equilibrium profile f ∗ = ( f ∗1 , . . . , f ∗n ) that also sustains ρ . For every prefix v0 . . .vt of ρ , we
can define fi(v0 . . .vt) = f ∗i (v0 . . .vt) for each player i. If some (losing) player j, however, deviates
from f j, the other players will want to jointly enact a punishment profile f j

− j against j. Note that, as
we are dealing with Nash equilibrium, we are only concerned with individual deviations by a single
losing player.

A specific feature of iterated Boolean games is that a player’s choice of strategy is immediately
reflected in the run that ensues. If ρ( f− j, f j) = v0v1v2 . . . , then we know that f j(ε) = v0 ∩Ψ j and
f j(v0 . . .vt) = vt+1 ∩Φ j for all t ≥ 0. Accordingly, deviations by a single player can be spotted
straightforwardly and immediately: if ρ( f ) = v0v1v2 . . . and at some point a history π = v0 . . .vt−1wt
such that both wt ∩Φ j 6= vt ∩Φ j and wi∩Φi = vi∩Φi for all players i distinct from j materialises,
it is clear that the deviation from ρ can uniquely be attributed to player j.1 Formally, we say that
a history w0 . . .wt is a j-deviation from ρ = v0v1v2 . . . by player j if there is an s ≤ t such that
w0 . . .ws−1 = v0 . . .vs−1 (on the understanding that w0 . . .ws−1 = v0 . . .vs−1 = ε if s = 0), ws∩Φ j 6=
vs ∩Φ j, and ws ∩Φi = vs ∩Φi for all players i distinct from j, that is, if the first deviation from ρ

can uniquely be attributed to j.
On this basis, we now obtain the following characterisation of Nash equilibrium runs in iterated

Boolean games.

1Also compare the concept of attributability of a deviation in [Gutierrez et al. 2015a].
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1:10 Gutierrez, Harrenstein, Perelli, and Wooldridge

LEMMA 3.5. Let ρ = v0v1v2 . . . be a run in an iterated Boolean game G. Then, ρ ∈ NE(G) if
and only if for each player j with ρ 6|= γ j, run ρ is consistent with a punishment profile against j.

PROOF. For the “only if”-direction assume for contraposition that there is a player j with ρ 6|= γ j
against whom there is no punishment profile consistent with ρ . That is, there is no strategy profile
f j = ( f j

1 , . . . , f j
n ) such that ρ = ρ( f j

1 , . . . , f j
n ) and ρ( f j

− j,g j) 6|= γi for all strategies g j. Now consider
an arbitrary strategy profile f = ( f1, . . . , fn) with ρ = ρ( f1, . . . , fn). Then, there is some strategy g j
for j such that ( f− j,g j) |= γi. Accordingly, f is no Nash equilibrium and, with f having been chosen
arbitrarily, it follows that ρ /∈ NE(G).

For the opposite direction, assume ρ = v0v1v2 . . . to be consistent with a punishment profile f j =

( f j
1 , . . . , f j

n ) against each player j with ρ 6|= γ j. Let, moreover, f = ( f1, . . . , fn) be a profile such
that ρ = ρ( f1, . . . , fn); observe that we may assume that such a profile exists. Now define f ∗ =
( f ∗1 , . . . , f ∗n ) as the strategy profile such that for every player i and every history π ,

f ∗i (π) =

{
f j
i (π) if π is a j-deviation from ρ for some player j with ρ 6|= γ j,

fi(π) otherwise.

Observe that f ∗ is well defined because by definition each history can be a j-deviation from ρ for at
most one player j only. As for every player i, neither ε nor any prefix v0 . . .vt of ρ is a j-deviation,
we have fi(ε) = f ∗(ε) and f ∗i (v0 . . .vt) = fi(v0 . . .vt) for every t ≥ 0, and, hence, ρ( f ∗) = ρ( f ) =
ρ . In a similar vein, observe that consistency with ρ = v0v1v2 . . . implies that f j

i (ε) = fi(ε) and
f j
i (v0 . . .vt) = fi(v0 . . .vt) for prefix v0 . . .vt of ρ and all players i (including j).

We conclude the proof by showing that f ∗ is a Nash equilibrium. To this end, consider an arbitrary
player j with ρ( f ∗) 6|= γ j. Then, also ρ( f ) 6|= γ j. Now also consider an arbitrary strategy g j for j. We
demonstrate that ρ( f ∗− j,g j) 6|= γ j, which implies that f ∗ is a Nash equilibrium. As f j = ( f j

1 , . . . , f j
n )

is a punishment profile, ρ( f j
− j,g j) 6|= γ j. Hence, it suffices to show that ρ( f ∗− j,g j) = ρ( f j

− j,g j).

To this end, let ρ( f ∗− j,g j) = w0w1w2 . . . and ρ( f j
− j,g j) = u0u1u2 . . . . We prove by induction that

wt = ut for every t ≥ 0. For the basis t = 0, observe that ε is not a j-deviation from ρ . Hence,

w0 = f ∗1 (ε)∪·· ·∪g j(ε)∪·· ·∪ f ∗n (ε)
= f1(ε)∪·· ·∪g j(ε)∪·· ·∪ fn(ε)

= f j
1 (ε)∪·· ·∪g j(ε)∪·· ·∪ f j

n (ε)

= u0.

For the induction step, we may assume that w0 . . .wt = u0 . . .ut to prove that wt+1 = ut+1. First
assume that w0 . . .wt = v0 . . .vt . Then obviously also u0 . . .ut = v0 . . .vt . Moreover, w0 . . .wt is a
i-deviation from ρ for no player i. Hence,

wt+1 = f ∗1 (w0 . . .wt)∪·· ·∪g j(w0 . . .wt)∪·· ·∪ f ∗n (w0 . . .wt)

= f ∗1 (v0 . . .vt)∪·· ·∪g j(v0 . . .vt)∪·· ·∪ f ∗n (v0 . . .vt)

= f1(v0 . . .vt)∪·· ·∪g j(v0 . . .vt)∪·· ·∪ fn(v0 . . .vt)

= f j
1 (v0 . . .vt)∪·· ·∪g j(v0 . . .vt)∪·· ·∪ f j

n (v0 . . .vt)

=i.h f j
1 (u0 . . .ut)∪·· ·∪g j(u0 . . .ut)∪·· ·∪ f j

n (u0 . . .ut)

= ut+1.

Finally, assume that w0 . . .wt 6= v0 . . .vt . Consider the smallest 0 ≤ s ≤ t such that ws 6= us. Then,
w0 . . .ws−1 = v0 . . .vs−1, on the understanding that w0 . . .ws−1 = ε if s = 0. Accordingly, w0 . . .ws−1
is a k-deviation from ρ for no player k. Hence, for all i distinct from j,

f ∗i (w0 . . .ws−1) = fi(w0 . . .ws−1) = fi(v0 . . .vs−1) = vs∩Φi
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It follows that w0 . . .wt is a j-deviation from ρ . Consequently,

wt+1 = f ∗1 (w0 . . .wt)∪·· ·∪g j(w0 . . .wt)∪·· ·∪ f ∗n (w0 . . .wt)

= f j
1 (w0 . . .wt)∪·· ·∪g j(w0 . . .wt)∪·· ·∪ f j

n (w0 . . .wt)

=i.h. f j
1 (u0 . . .ut)∪·· ·∪g j(u0 . . .ut)∪·· ·∪ f j

n (u0 . . .ut)

= ut+1.

This concludes the proof.

4. EXPRESSIVENESS, ITERATED BOOLEAN GAMES, AND NASH EQUILIBRIUM
In this section, we introduce the central concept of this paper: expressiveness in equilibrium. This
expressiveness notion is based on the equilibria of iterated Boolean games. We find that some LTL-
fragments can express properties in equilibrium that they cannot normally express, showing that the
two expressiveness notions are to be distinguished. For propositional logic and LTL, however, we
show that the two notions are equivalent. Finally, we focus on the next-free fragment LU, which
is known to be the largest stutter-invariant fragment of LTL. We demonstrate and show that the
expressive strength in equilibrium of this important fragment lies strictly between that of full LTL
and LU itself.

4.1. Expressiveness in Equilibrium
Given a suitable model-theoretic semantics, the expressive power of a logic can be measured in
terms of the sets of models it characterises. In the case of temporal propositional logics, the mod-
els are infinite sequences of valuations, and by a linear time property we understand any subset
X ⊆ runsΦ of runs over a set of propositional variables Φ. Thus, we say that an LTL-fragment L
expresses property X ⊆ runsΦ if there is some formula ϕ in the fragment L such that X coincides
with the set of runs that satisfy ϕ , that is, if X = runsΦ(ϕ). We also say in this case that L expresses
property X in formulas so as to distinguish the concept from expressiveness in equilibrium to be
defined below.

Alternatively, each temporal logic formula over propositional variables Φ can be seen to define
an ω-language over 2Φ. Accordingly, every fragment of LTL can also be seen as defining a model
of computation, accepting exactly those ω-languages consisting of those ω-words ρ = v0v1v2 . . .
over 2Φ for which there is a formula ϕ in L such that ρ satisfies ϕ .

We use the notation L ≥L ′ to denote that every property expressible in fragment L can also
be expressed in fragment L ′. We write L ≡L ′ if both L ≥L ′ and L ′ ≥L , and L > L ′ if
L ≥L ′ but not L ′ ≥L . We extend these notations in the natural way to models of computation
in general, and it is easy to see that the relation ≥ is transitive.

In a similar way as do the formulas of a temporal logic, the Nash equilibria of each iterated
Boolean game also define a linear time property, namely, the set of runs these equilibria induce.
Formally, we say that LTL-fragment L expresses in equilibrium property X ⊆ runsΦ, if there
is some L -game G such that X = NE(G). Phrased slightly differently, the equilibrium runs of
each iterated L -games define an ω-language over 2Φ. Accordingly, for each LTL-fragment L , the
class of iterated L -games also defines its own model of computation, which we denote by L NE.
On this basis of expressible properties, respectively, accepted languages, we can now compare the
expressiveness of fragments of linear temporal languages with the expressiveness of the classes of
iterated Boolean games based on LTL-fragments.

Intuitively, one might expect that in general for LTL-fragments L , expressiveness in equilibrium
is a stronger notion than expressiveness per se, that is, that if L can express property X , it can also
express property X in equilibrium. We find that this intuition is generally vindicated, apart from the
one notable exception where the set of propositional variables is a singleton {p}. Then, the empty
property ø, consisting of no runs whatsoever, is obviously expressed by any unsatisfiable formula

ACM Transactions on Computational Logic, Vol. V, No. N, Article 1, Publication date: January 2019.



1:12 Gutierrez, Harrenstein, Perelli, and Wooldridge

of L over p, for instance, p∧¬p. In this borderline case, however, the empty property cannot be
expressed by L in equilibrium.

To see this, consider an arbitrary L -game over Φ = {p}. Then, control over the single variable p
can be assigned to a single player i only. Moreover, if the set of equilibrium runs of this game is to
be empty, it will also have to be this single player who wants to deviate from every strategy profile.
Now, if there is a run satisfying i’s goal, then i does not want to deviate from any strategy profile
that underlies it. Consequently, this run is sustained by an equilibrium. If, on the other hand, i’s
goal is unsatisfiable, then there is no way she can deviate from any strategy profile to have her goal
satisfied. So, in that case, all runs are sustained by a Nash equilibrium. An empty set of equilibrium
runs can therefore not be achieved.

In case Φ contains least two variables, we can construct a two-player L -game with runsΦ(ϕ) as
the set of equilibrium runs, for every formula ϕ in an LTL-fragment L . The underlying idea is to
assign control over one variable p to the one player and control over another variable q to the other.
Then, define the players’ preferences such that they both aim to satisfy the formula ϕ , but failing
that, the first player wants to have the truth-values of p and q to be matched at time t = 0, whereas
the second player wants them to be unmatched. Thus, if a run satisfies ϕ , both players are satisfied
and neither wants to deviate. If on the other hand, a run does not satisfy ϕ the two players will be
caught up in a matching pennies game [Osborne and Rubinstein 1994] on p and q, for which there
is no (pure) Nash equilibrium. Formally, for any formula ϕ in a fragment L , define the two-player
game Gmp

ϕ . Let the two players, i and j, such that i controls p and j all other variables, including q,
that is, Φi = Φ\{q} and Φ j = {q}. Let furthermore the players’ goals be given by:

γi = ϕ ∨ (p↔ q) γ j = ϕ ∨ (p↔ q̄).

By showing that runsΦ(ϕ) is exactly the set of equilibrium runs of Gmp
ϕ , we obtain the following

proposition.

PROPOSITION 4.1. Let L be an LTL-fragment on Φ with |Φ| ≥ 2. Then, every temporal prop-
erty that can be expressed by L in formulas, can also be expressed by L in equilibrium, that is,
L NE ≥L .

PROOF. Consider an arbitrary property X that is expressed by a formula ϕ in fragment L , and
construct the two-player game Gmp

ϕ . It suffices to show that NE(Gmp
ϕ ) = runsΦ(ϕ). To this end,

consider an arbitrary run ρ along with a strategy profile f = ( fi, f j) with ρ = ρ( f ). If ρ satisfies ϕ ,
both players’ goals are satisfied as well. It follows that f is an equilibrium and ρ ∈ NE(Gmp

ϕ ). If,
on the other hand, ρ does not satisfy ϕ , consider fi(ε) and f j(ε). If both p ∈ fi(ε) and q ∈ f j(ε),
player j can get his unsatisfied goal satisfied by deviating to any strategy g j with q /∈ g j(ε), as in
that case ρ( fi,g j) |= p↔ q̄. Player j similarly wants to deviate from f j if p /∈ fi(ε) and q /∈ f j(ε).
If it is not the case that p ∈ fi(ε) if and only if q ∈ f j(ε), it is player i who wants to deviate. In each
of these cases it follows that f = ( fi, f j) is not an equilibrium of Gmp

ϕ , as desired.

Since we have established that in virtually all cases, properties that can be expressed by a frag-
ment L in formulas can also expressed by L in equilibrium, one may wonder if the inverse state-
ment holds as well. The game Boolean Ballet, as presented informally in Example 1.1, shows exactly
that this is not generally the case: there exist LTL-fragments that cannot express certain properties
that they can express in equilibrium. This is in particular the case for the fragment LF,G, which, as
a sublogic LTL-fragment LU, is known to be stutter-invariant. In the proof of this result we buttress
our informal reasoning in the introduction by a formally precise argument.

PROPOSITION 4.2. Let Φ be a set of propositional variables with |Φ| ≥ 2. Then, it is not gener-
ally the case for every LTL-fragment on Φ that every temporal property that can be expressed by L
in equilibrium, can also be expressed by L in formulas. In particular, this does not hold for the
LTL-fragment LF,G, and, hence, L NE

F,G > LF,G.

ACM Transactions on Computational Logic, Vol. V, No. N, Article 1, Publication date: January 2019.



Expressiveness and Nash Equilibrium in Iterated Boolean Games 1:13

PROOF. As we may assume |Φ| ≥ 2, by Proposition 4.1 we immediately have that every prop-
erty that LF,G can express, LF,G can also express in equilibrium. To show that there is a property
that L NE

F,G can express, but LF,G cannot, consider the two-person iterated Boolean game Gbb referred
to as “Boolean Ballet” in Example 1.1 in the introduction. (For expositional convenience, we prove
the statement for the case where Φ = {p,q}. The argument, however, can be easily extended to the
more general case where {p,q} ⊆Φ.) Recall from Example 3.1 that

Φi = {p} Φ j = {q}
γi = G(p↔ q) γ j = F pq∧F pq̄.

We show that for every run ρ = v0v1v2 . . . , we have that ρ ∈ NE(Gbb) if and only if both vt = pq
or vt = p̄q̄ for all t ≥ 0, and vs = pq for at most one s ≥ 0. As the Nash equilibria thus define a
temporal property that is not stutter-invariant—observe that pq p̄q̄ p̄q̄ p̄q̄ . . . is an equilibrium, but
pq pq p̄q̄ p̄q̄ p̄q̄ . . . is not—this suffices for a proof.

To this end, first consider an arbitrary run ρ = v0v1v2 . . . such that vt = pq or vt = p̄q̄ for all t ≥ 0
and vs = pq for at most one s≥ 0. Also consider the naive strategies fi and f j defined such that, for
every t ≥ 0 and history w0 . . .wt−1,

fi(w0 . . .wt) = vt+1∩Φi and f j(w0 . . .wt) = vt+1∩Φ j,

(on the understanding that w0 . . .wt−1 = ε for t = 0). It is then easily appreciated that ρ( fi, f j) =
v0viv j . . . . To see that f = ( fi, f j) is a Nash equilibrium, first observe that ρ( f ) |= γi. Thus player i
has her goal satisfied and she does not want to deviate. For player j, however, ρ( f ) 6|= γ j. Now,
assume for contradiction that there is a strategy g j such that ρ( fi,g j) |= γ j, that is, that player j
would like to deviate from f and play g j. Let ρ( fi,g j) = v′0v′1v′2, . . . . Then, a t∗ ≥ 0 exists such that
v′t∗ = pq̄. Moreover, as we defined fi as a naive strategy, vt∗ = pq and vt = p̄q̄ for for all t 6= t∗.
Again because fi is naive, v′t = p̄q or v′t = p̄q̄ for all t 6= t∗. It follows that ρ( fi,g j) 6|= F pq̄ and,
hence, ρ( fi,g j) 6|= γ j, a contradiction.

For the opposite direction, assume that f = ( fi, f j) is a strategy profile such that ρ( fi, f j) =
v0viv j . . . , and, for contraposition, that either (i) it is not the case that vt = pq or vt = p̄q̄ for all
t ≥ 0, or (ii) there are t ′′ > t ′ ≥ 0 with vt ′ = vt ′′ = pq. We show that f is not a Nash equilibrium.

If (i), observe that ρ( fi, f j) 6|= γi. Now, define strategy gi such that for all t ≥ 0 and histo-
ries w0 . . .wt−1,

gi(w0 . . .wt−1) =

{
p if f j(w0 . . .wt−1) = q,
p̄ if f j(w0 . . .wt−1) = q̄

(again on the understanding that w0 . . .wt−1 = ε for t = 0). Intuitively, gi inspects strategy f j to
predict at each time t to what truth-value player j sets q, and matches p’s truth-value accordingly.
Let ρ(gi, f j) = w′0w′1w′2 . . . . By means of a straightforward inductive argument, which we here omit,
it can then be shown that w′t = pq or w′t = p̄q̄ for all t ≥ 0, and hence ρ(gi, f j) |= γi. Accordingly, f
is not a Nash equilibrium.

If (ii), observe that we may assume that vt = pq or vt = p̄q̄ for all t ≥ 0. Then, obviously,
ρ( fi, f j) 6|= γ j. Now define g j such that for all t ≥ 0 and histories w0, . . . ,wt−1 (on the understanding
that w0 . . .wt−1 = ε for t = 0):

g j(w0 . . .wt−1) =

{
f j(w0 . . .wt−1) if t ≤ t ′′,
q̄ otherwise.

Thus, by using strategy g j, player j makes the same choices as with f j up to time t ′′− 1, where it
deviates by choosing q̄ instead of q. Let ρ( fi,g j) = w′′0w′′i w′′j , . . . . By means of another straightfor-
ward inductive argument, which again we omit, it can then be show that w′′0 . . .w

′′
t ′′−1 = v0 . . .vt ′′−1.

In particular, it holds that w′′t ′ = pq. For t ′′, moreover, we have both

fi(w′′0 . . .w
′′
t ′′−1) = fi(v0 . . .vt ′′−1) = p and g j(w′′0 . . .w

′′
t ′′−1) = q̄,
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that is, w′′t ′′ = pq̄. Accordingly, ρ( f j,g j) |= γ j. Hence, as player j can thus deviate from f by play-
ing g j and satisfy his goal, we may conclude that f is not a Nash equilibrium, as desired.

We conclude this section with the easy but useful observation concerning the relative expressive
power of different fragments: if a fragment L1 is at least as expressive as L2 in formulas, then L1
is also at least as expressive as L2 in equilibrium.

PROPOSITION 4.3. For fragments L1 and L2, we have L1 ≥L2 implies L NE
1 ≥L NE

2 .

PROOF. Assume L1 ≥ L2 and consider an arbitrary temporal property X such that X =
NE(G2) for some L2-game G2 = (N,Φ,Φ1, . . . ,Φn,γ1, . . . ,γn) with γi ∈ L1 for all players i.
Then, for each player i there is an formula γ ′i ∈ L1 such that runsΦ(γi) = runsΦ(γ

′
i ). Let G1 =

(N,Φ,Φ1, . . . ,Φn,γ
′
1, . . . ,γ

′
n). Note that the strategies for each player in G1 and G2 are identical.

Then, clearly, NE(G1) = NE(G2) = X . Consider the following equivalences for every ρ ∈ runsΦ.

ρ ∈ NE(G1)

iff ρ = ρ( f ∗) and f ∗ a Nash equilibrium of G1

iff ρ = ρ( f ∗) and ρ( f ∗−i, f ′i ) |= γi implies ρ( f ∗) |= γi, for all players i and strategies fi

iff ρ = ρ( f ∗) and ρ( f ∗−i, f ′i ) |= γ
′
i implies ρ( f ∗) |= γ

′
i , for all players i and strategies fi

iff ρ = ρ( f ∗) and f ∗ a Nash equilibrium of G2

iff ρ ∈ NE(G2).

This concludes the proof.

4.2. Propositional Logic: The Empty Fragment Lø

In the previous section we saw that an LTL-fragment can be more expressive in equilibrium than it
is in formulas. This, however, is not necessarily the case. A prime example is propositional logic,
that is, the empty LTL-fragment Lø with no temporal operators. A fundamental observation in the
literature on Boolean games is that for any given Boolean game there is a formula characterising the
set of Nash equilibrium outcomes. More formally, given an Lø-game (N,Φ,Φ1, . . . ,Φn,γ1, . . . ,γn),
the set of equilibrium runs is characterised by

η(G) =
∧

i∈N(
∨

θ : Φi→{>,⊥} θ(γi)→ γi),

where θ(γi) results from γi by replacing every occurrence of a propositional variable p in Φi by the
Boolean > or ⊥ as specified by θ(p) [Bonzon et al. 2006]. As an immediate consequence, we find
that Lø can express every property that it can express in equilibria, and—provided that Φ contains
at least two propositional variables—vice versa.

PROPOSITION 4.4. Let L be an LTL-fragment on Φ with |Φ| ≥ 2. Then, Lø can express prop-
erty X in formulas if and only if Lø can express X in equilibrium, that is, Lø ≡L NE

ø .

PROOF. The “only if”-direction is immediate by Proposition 4.1. For the “if”-direction, let X be
an arbitrary temporal property that can be expressed by Lø in equilibrium. Then, there is an Lø-
game G with X = NE(G). Dealing with Lø, it is then well known that X = runsΦ(η(G)). Conclude
by observing that η(G) is a formula of Lø.

It may be worth observing that proof of Proposition 4.4 shows something in addition to the equi-
expressiveness of propositional logic in formulas and in equilibrium: the formula scheme η(G)
provides a uniform way to find a propositional formula characterising the equilibrium runs of a
Boolean game.

4.3. LTL: The Full Fragment
We now turn to the question how expressive LTL is with respect to LTLNE, that is, to what extent
the temporal properties defined by the Nash equilibria of LTL-games can be expressed in formulas
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by LTL itself. Again under the assumption that there be at least two propositional variables, we
show that LTL is just as expressive as it is in equilibrium, that is, LTL≡ LTLNE (see, Theorem 4.8,
below).

Key to this issue are those temporal properties (or, more generally, ω-languages) that are non-
counting [Mateescu and Salomaa 1997; Strejček 2004]. Formally, and adapted to our setting, a
temporal property X over 2Φ is non-counting if there is an index n0 > 0 such that for all k≥ n0 and
histories π , π0, π1, and π2, the following equivalences hold:

(i) π0 πk π1 πω
2 ∈ X if and only if π0 πk+1 π1 πω

2 ∈ X , and
(ii) π0 (π1 πk π2)

ω ∈ X if and only if π0 (π1 πk+1 π2)
ω ∈ X .

Intuitively, the property of being non-counting can be seen as a weak form of stutter-invariance,
where a string can only be ‘stuttered’ after it has been stuttered a large enough number of times
already. As a prime example of a counting property over runsΦ consider the one consisting of all
runs v0v1v2 . . . for which there is an odd t ≥ 0 such that vt ′ = {p} for all t ′ ≤ t and vt ′′ = {q} for
all t ′′ > t, that is the property defined by the ω-regular expression ({p};{p})∗;{q}ω . Whereas for
every even k≥ 0 we have that the run {p}k {q}ω belongs to this property, the run {p}k+1 {q}ω does
not.

[Kučera and Strejček 2005] have characterised the LTL-properties as those that are both ω-regular
and non-counting.

THEOREM 4.5 ([KUČERA AND STREJČEK 2005]). A property X ⊆ runsΦ can be expressed
by LTL if and only if X is ω-regular and non-counting.

In the remainder of this section, we therefore demonstrate that every LTL-game G the set NE(G) of
equilibrium runs is both non-counting and ω-regular, showing the former first.

PROPOSITION 4.6. For every LTL-game G, the set NE(G) of equilibrium runs is non-counting.

PROOF. Consider an arbitrary LTL-game G = (N,Φ,Φ1, . . . ,Φn,γ1, . . . ,γn). As the goal γi of
each player i as well as its negation ¬γi define LTL-properties, by Theorem 4.5, there are in-
dices nγi ,n¬γi ≥ 0 in virtue of which, respectively, runsΦ(γi) and runsΦ(¬γi) are non-counting prop-
erties. Now let

n0 = 1+max{nγi ,n¬γi : i ∈ N}.
Thus for every player i we have nγi ,n¬γi < n0, that is, the index n0 is chosen sufficiently large so as
to apply to all the player’s goals and their negations. To show that the set NE(G) is non-counting
with respect to index n0, we consider an arbitrary k ≥ n0, and arbitrary histories π , π0, π1, and π2,
and show that both:

(i) π0 πk π1 πω
2 ∈ NE(G) if and only if π0 πk+1 π1 πω

2 ∈ NE(G),
(ii) π0 (π1 πk π2)

ω ∈ NE(G) if and only if π0 (π1 πk+1 π2)
ω ∈ NE(G).

Thus, we have to provide proofs for four statements—the “if”-direction and “only if”-direction of
both (i) and (ii). Each of which has a similar structure.

For the “only if”-direction of (i), let ρ = π0 πk π1 πω
2 and ρ ′ = π0 πk+1 π1 πω

2 . As γi defines a
non-counting property for every player i, by choice of n0, we have ρ |= γi if and only if ρ ′ |= γi
for every player i. Assume that there is a Nash equilibrium f ∗ = ( f ∗1 , . . . , f ∗n ) that sustains ρ , that is
ρ( f ∗) = π0 πk π1 πω

2 . On this basis we construct another Nash equilibrium g∗ = (g∗1, . . . ,g
∗
n) of G

that sustains ρ ′, that is, ρ(g∗) = π0 πk+1 π1 πω
2 , and ρ(g∗) ∈ NE(G).

To this end, first observe that every history η is of the form πcom πdev, where πcom is the unique
maximal common prefix of ρ ′ and η , and πdev is a tail piece of η that ‘deviates’ from ρ ′. Note that
both πcom and πdev may be the empty sequence ε . For every history η = πcom πdev there are then
two possibilities: πcom < π0 πk, or πcom = π0 πk π ′ for some π ′ ≤ π π1 πω

2 . That is, η differs (if
at all) from ρ ′ either before the kth iteration of π in ρ ′ is completed, or thereafter. Observe that
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πcom may be the empty sequence. Now define g∗ = (g∗1, . . . ,g
∗
n) such that, for each player i and

history η = πcom πdev,

g∗i (η) =

{
f ∗i (πcom πdev) if πcom < π0 πk,
f ∗i (π0 πk−1 π ′πdev) if πcom = π0 πk π ′ for some π ′ ≤ π π1 πω

2 .

Observe that g∗i is well-defined for each player i because we may assume that k ≥ 1. Intuitively, the
strategy profiles f ∗ and g∗ are the same apart that by playing g∗ the players repeat the kth iteration
of π . Observe that this also includes the behaviour of g∗i on histories that are not a prefix of the run
ρ ′ = π0 πk+1 π1 πω

2 . By means of an inductive argument we defer to the appendix, it can then be
shown that ρ(g∗) = π0 πk+1 π1 πω

2 .
It remains to be shown that g∗ = (g∗1, . . . ,g

∗
n) is also a Nash equilibrium. To this end, assume for

contradiction that there is a strategy g′j for some player j such that ρ(g∗) 6|= γ j and ρ(g∗− j,g
′
j) |= γi.

Recall that γ j defines a non-counting property for index n0. As ρ( f ∗) = π0πkπ1πω
2 and ρ(g∗) =

π0πk+1π1πω
2 , we thus obtain that ρ( f ∗) 6|= γ j.

To see that player j also wants to deviate from f ∗, let ρ(g∗− j,g
′
j) = π ′comρ ′dev, where π ′com is

the maximal common prefix of ρ(g∗) and ρ(g∗− j,g
′
j), and ρ ′com a ‘deviant’ continuation of the run.

Observe that π ′com is finite because ρ(g∗) 6= ρ(g∗− j,g
′
j). We distinguish two cases: either π ′com < π0πk

or π ′com = π0πkπ ′ for some π ′≤ ππ1πω
2 , that is, by playing g′j player j deviates from g∗ either before

or after the kth iteration of π is completed.
If the former, we find that ρ( f ∗− j,g

′
j) = ρ(g∗− j,g

′
j), and hence immediately ρ( f ∗− j,g

′
j) |= γ j.

If the latter, ρ(g∗− j,g
′
j) = π0πkπ ′ρdev for some π ′ ≤ ππ1πω

2 and some ‘deviant’ run ρdev. We
define a strategy f ′j for player j such that ρ( f ∗− j, f ′j) = π0πk−1π ′ρdev. To this end, first observe
that every history is of the form η = π ′′comπ ′′dev, where π ′′com is the maximal common prefix of η

and π0πk−1π ′ρdev, and π ′′dev some ‘deviant’ history. Now define strategy f ′j for player j such that,
for every η = π ′′comπ ′′dev,

f ′j(π
′′
comπ

′′
dev) =

{
g′j(π

′′
comπ ′′dev) if π ′′com < π0πk−1,

g′j(π0πkπ ′π ′′dev) if π ′′com = π0πk−1π ′ with π ′ ≤ ππ1πω
2 .

It can then be shown by an inductive argument here omitted (but see the appendix) that ρ( f ∗− j, f ′j) =
π0πk−1π ′ρdev. As, by definition of n0 we have k−1≥ nγ j , and, moreover, π0πkπ ′ρdev |= γ j, it would
follow that also ρ( f ∗− j, f ′j) |= γ j.

In either case, it would follow that f ∗ is not an equilibrium, a contradiction, as desired.
The “if”-direction of (i) has basically the same structure as the “only if”-direction. Let f ∗ =

( f ∗1 , . . . , f ∗n ) be a Nash equilibrium of G with ρ( f ∗) = π0πk+1π1πω
2 ∈ NE(G). We define strategy

profile g∗ = (g∗1, . . . ,g
∗
n) such that ρ(g∗) = π0πkπ1πω

2 and show that g∗ is a Nash equilibrium of G
as well.

Observe that every history η is of the form πcomπdev, where πcom is the largest common prefix of
π0πkπ1πω

2 . Then, define, for every player i and every history η = π ,

g∗i (πcomπdev) =

{
f ∗(πcomπdev) if πcom < π0πk,
f ∗(π0πkππ ′dev) if πcom = π0πkπ ′ for some π ′ ≤ π1πω

2 .

By means of an inductive argument here omitted it can then be proven that ρ(g∗) = π0πkπ1π∗2 . To
demonstrate that g∗ is also a Nash equilibrium, assume that g∗ is not. Accordingly, there is some
player j with ρ(g∗) 6|= γ j and some strategy g′j for j such that ρ(g∗− j,g

′
j) |= γ j. As ¬γi is a non-

counting property with an index not larger than k, it follows that ρ( f ∗) 6|= γ j.
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If, by playing g′j, player j unilaterally deviates from g∗ before the k-th iteration of π is
completed—that is, if π ′com < π0πk, where π ′com is the maximal common prefix of ρ(g∗) and
ρ(g∗− j,g

′
j)—it can be shown by an inductive argument here omitted that ρ( f ∗− j,g

′
j) = ρ(g∗− j,g

′
j).

Hence, ρ( f ∗− j,g
′
j) |= γ j. It would thus follow that f ∗ were not a Nash equilibrium, a contradiction.

Now assume that, by playing g′j, player j unilaterally deviates from g∗ after the k-th iteration
of π is completed—that is, that π ′com ≥ π0πk, where π ′com is the maximal common prefix of ρ(g∗)
and ρ(g∗− j,g

′
j). Then ρ(g∗− j,g

′
j) = π0πkπ ′′ρdev, where π ′′ ≤ π1πω

2 . We now define strategy f ′j such
that for every history η of the form π ′′comπ ′′dev where π ′′com is the maximal common prefix of η

and π0πk+1π1πω
2 ,

f ′j(π
′′
comπ

′′
dev) =

{
g′j(π

′′
comπ ′′dev) if π ′′com < π0π ,

g′j(π0,π
′,π ′′dev) if π ′′com = π0ππ ′ where π ′ ≤ πkπ1πω

2 .

Defined thus, we find by an inductive argument omitted here that ρ( f ∗− j, f ′j) = π0πk+1π ′′ρdev. As
k > nγ j , it follows that ρ( f ∗− j, f ′j) |= γ j, and again we may conclude that f ∗ is not a Nash equilibrium,
a contradiction.

For the “only if”-direction of (ii), assume that f ∗ = ( f ∗1 , . . . , f ∗n ) is an equilibrium with ρ( f ∗) =
π0(π1πkπ2)

ω . We define profile g∗ = (g∗1, . . . ,g
∗
n) such that ρ(g∗) = π0(π1πk+1π2)

ω , and show
that g∗ is an equilibrium as well. In order to define g∗, first observe that every history is of the
form η = πcomπdev, where πcom is the maximal common prefix of η and π0(π1πk+1π2)

ω , and πdev a
“deviant” continuation. Moreover, either πcom < π0 or πcom = π0(π1πk+1π2)

`π ′ for `≥ 0 and some
π ′ < π1πk+1π2. Given η = πcomπdev, define π̌com such that π̌com = πcom if the former and

π̌com =

{
π0(π1πkπ2)

`π ′ if π ′ < π1πk

π0(π1πkπ2)
`π1πk−1π ′′ if π ′ = π1πkπ ′′ for some π ′′ ≤ ππ2,

if the latter. Subsequently, define for every player i and history η = πcomπdev,

g∗i (πcomπdev) = f ∗i (π̌comπdev).

Defined thus, ρ(g∗) = π0(π1πk+1π2)
ω .

Now assume for a contradiction that g∗ is not a Nash equilibrium. Then, there is a player j with
ρ(g∗) 6|= γ j and some strategy g′j for j such that ρ(g∗− j,g

′
j) |= γ j. As n¬γ j < k, then also ρ( f ∗) 6|= γ j.

Let ρ(g∗− j,g
′
j) = π ′comρ ′dev, where π ′com is the maximum common prefix of ρ(g∗) and ρ(g∗− j,g

′
j),

and ρ ′dev a ‘deviant’ continuation.
If π ′com < π0π1πk, then ρ(g∗− j,g

′
j) = ρ( f ∗− j,g

′
j). Hence, ρ( f− j,g′j) 6|= γ j, which would signify

that f ∗ were not a Nash equilibrium, a contradiction. If, on the other hand, π ′com = π0(π1πk+1π2)
mπ ′

for some m ≥ 0 and π ≤ π1πk+1π2. Then, ρ(g∗− j,g
′
j) = π0(π1πk+1π1)

mπ ′ρ ′dev. We define a strat-
egy f ′j for j such that ρ( f ∗− j, f ′j) = π0(π1πkπ1)

mπ ′ρ ′dev. Now every history is of the form η =

π ′′comπ ′′dev, where π ′′com is the maximal common prefix of η and π0(π1πk+1π1)
mπ ′ρ ′dev. Given η =

π ′′comπ ′′dev, define

π̂
′′
com =


π ′′com if π ′′com < π0,
π0(π1πk+1π2)

`π ′′ if π ′′com = π0(π1πkπ2)
`π ′′, 0≤ `≤ m,

and π ′′ ≤ π1πkπ2.

Subsequently, define f ′j such that for every history η = π ′′comπ ′′dev,

f ′j(π
′′
comπ

′′
dev) = g′j(π̂

′′
comπ

′′
dev).
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Defined thus, ρ( f ∗− j, f ′j) = π0(π1πkπ1)
mπ ′ρ ′dev. As nγ j < k, it now follows that ρ( f ∗− j, f ′j) |= γ j. This

would again signify that f ∗ is not a Nash equilibrium, a contradiction.
Finally, for the “if”-direction of (ii), let f ∗=( f ∗1 , . . . , f ∗n ) be a Nash equilibrium such that ρ( f ∗)=

π0(π1πk+1π2)
ω . We define another strategy profile g∗ = (g∗1, . . . ,g

∗
n) with ρ(g∗) = π0(π1πkπ2)

ω

and show that it is a Nash equilibrium as well. Note that every history has the form η = πcomπdev,
where πcom is the maximal common prefix of η and π0(π1πkπ2)

ω , whereas πdev is some ‘deviant’
continuation. Given η = πcomπdev, moreover, either πcom < π0 or πcom = π0(π1πkπ2)

`π ′ for some
0 ≤ ` ≤ m and π ′ ≤ π1πkπ2. If the former, define π̂com = πcom. If the latter, that is, if πcom =
π0(π1πkπ2)

`π ′, let

π̂com =

{
π0(π1πk+1π2)

`π ′ if π ′ < π1πk,
π0(π1πk+1π2)

`π1πk+1π ′ if π ′ ≤ π2.
Subsequently, define for every player and every history η = πcomπdev,

g∗i (πcomπdev) = f ∗i (π̂comπdev).

Then, ρ(g∗) = π0(π1πkπ2)
ω .

Now assume for a contradiction that g∗ is not a Nash equilibrium. Then, there is some player j
with ρ(g∗) 6|= γ j and some strategy g′j for j such that ρ(g∗− j,g

′
j) |= γ . As n¬γ j < k, then also ρ( f ∗) 6|=

γ j. Let ρ(g∗− j,g
′
j) = π ′comρ ′dev, where π ′com is the maximal common prefix of ρ(g∗) and ρ(g∗− j,g

′
j),

and ρ ′dev some ‘deviant’ continuation.
If π ′com < π0, then ρ( f ∗− j,g

′
j) = ρ(g∗− j,g

′
j). Hence, ρ( f ∗− j,g

′
j) |= γ j, and it would follow that f ∗

is not a Nash equilibrium. If, on the other hand, π ′com = π0(π1πkπ2)
`π ′ for some ` ≥ 0 and some

π ′ ≤ π1πkπ2, then we define a strategy f ′j for j such that ρ( f ∗− j, f ′j) = π0(π1πk+1π2)
`π ′ρ ′dev. To this

end, note that every history is of the form η = π ′′comπ ′′dev, where π ′′com is the maximal common prefix
of η and π0(π1πk+1π2)

mπ ′ρ ′dev, and π ′′dev some ‘deviant’ continuation. Given η = π ′′comπ ′′dev, define
π̌ ′′com = π ′′com if π ′′com < π0πk. Otherwise, that is if π ′′com = π0(π1πk+1π1)

mπ ′′ for some 0≤ `≤m and
π ′′ ≤ π1πk+1π2, let

π̌
′′
com =

{
π0(π1πkπ2)

`π ′′ if π ′′ < π1πk,
π0(π1πkπ2)

`π1πk−1π ′′′ if π ′′ = π0πkπ ′′′ and π ′′′ ≤ πkπ2.

Now define for all histories η = π ′′comπ ′′d ev,

f ′j(π
′′
comπ

′′
dev) = g′j(π̌

′′
comπ

′′
dev).

Then, ρ( f ∗− j, f ′j) = π0(π1πk+1π2)
`ρ ′dev. As nγ j < k, it follows that ρ( f ∗− j, f ′j) |= γ j, which implies

that f ∗ is not a Nash equilibrium, a contradiction.

As an immediate consequence of Proposition 4.6, we thus find that LTL cannot express in equi-
librium every ω-regular property, that is, LTLNE 6≥ Lω-reg. For instance, the property expressed
by the ω-regular expression (ø;ø)∗;{p}ω cannot be obtained as the set of equilibrium runs of any
LTL-game.

In view of the characterisation result by Kučera and Strejček, Proposition 4.6 gives us one half
of the proof that LTL ≥ LTLNE. To prove the second half—namely, that that the set of equilibrium
runs of every LTL-game is an ω-regular set—we adapt a result by [Gutierrez et al. 2017b], which
provides us with a construction of a parity automata that recognises all words corresponding to the
equilibrium runs of a given LTL-game. We saw above how Lemma 3.5 characterised the equilibrium
runs ρ of an iterated Boolean game G as those for which there is a bi-partition {W,L} of the players.
such that W is the group of agents that have goal achieved, whereas L consists of those players for
whom ρ is consistent with a punishment strategy against them. We can now leverage this result
apply the automata-theoretic approach to linear temporal logic as proposed by [Vardi 1996] so as to
obtain the following proposition.
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PROPOSITION 4.7 (AFTER [GUTIERREZ ET AL. 2017B]). For every LTL-game G, the
set NE(G) of equilibrium runs is ω-regular.

PROOF SKETCH. The proof invokes the concepts of deterministic and non-deterministic Rabin
word- and tree automata. For the formal definitions of these, the reader is referred to [Perrin and Pin
2004; Kupferman 2018; Löding 2012; Strejček 2004].

Let {W,L} be any bipartition of the set of players. For every player i in W , we can construct
a non-deterministic Rabin word automaton Aγi that recognises all runs satisfying γi. In a slightly
more complicated way we can also construct for each player j ∈ L a non-deterministic Rabin word
automaton Bγ j that recognises all runs that are consistent with a punishment strategy against j. First,
consider the non-deterministic Rabin word automaton Aγ j that recognises all runs not satisfying γ j.
By virtue of Theorem 2 in [Pnueli and Rosner 1989], we know there exists a non-deterministic Rabin
automaton on trees A′γ j

recognising all trees that represent the execution of a winning strategy by the

coalition N \{ j} against j. Now observe that the branches of the trees recognised by A′γ j
correspond

exactly to those runs of G that are consistent with a punishment strategy against j. Moreover, as
an immediate consequence of Corollary 17 in [Niwinski and Walukiewicz 1998], these branches
are recognised by a non-deterministic Rabin word-automaton Bγ j . As the languages recognised by
non-deterministic Rabin word-automaton are closed under union and intersection, there exists a
non-deterministic Rabin word automaton ANE that recognises exactly those runs ρ of G for which
there is some bipartition {W,L} of the players such that ρ satisfies the goal of each player in W and
is consistent with a punishment strategy against each player in L. By Lemma 3.5 it follows that that
ANE recognises the Nash equilibrium runs of G, and we may conclude that NE(G) is ω-regular.

Together with Theorem 4.5, Propositions 4.6 and 4.7 immediately yield that LTL can express
every temporal property in formulas that LTL can express in equilibrium. That also the opposite
direction holds is an immediate consequence of Proposition 4.1, provided that there are are least
two propositional variables. Hence, we obtain the main result of this subsection.

THEOREM 4.8. Let |Φ| ≥ 2. Then, LTL(Φ) is just as expressive in formulas as it is in equilib-
rium, that is, LTL(Φ)≡ LTLNE(Φ).

PROOF. Having assumed |Φ| ≥ 2, we obtain LTLNE(Φ)≥LTL(Φ) as an immediate consequence
of Proposition 4.1. To see that also LTL ≥ LTLNE, consider an arbitrary temporal property X that
is expressed in equilibrium by LTL, that is, X is expressed by LTLNE. Then, there is an iterated
Boolean game G such that X is the set of Nash equilibrium runs of G. Propositions 4.6 and 4.7 yield
that X is non-counting and ω-regular, respectively. By virtue of Theorem 4.5, we may then conclude
that LTL can express X in formulas as well.

4.4. Stutter-invariant Specifications: The Next-free Fragment LU

We conclude this section by investigating the expressive power in equilibrium of the next-free or
maximally stutter-invariant fragment LU. In the verification and model checking literature, this frag-
ment plays a prominent role because it guarantees stutter-invariant specifications of programs and
concurrent systems, without losing expressiveness otherwise. In this section, we find that there nev-
ertheless are stutter-sensitive properties that LU can express in equilibrium, even though it cannot
express all properties that are expressed by LTL in formulas. That is, LTL > L NE

U > LU (provided
that there are at least two propositional variables).

Recall that formally a temporal property X ⊆ runsΦ is said to be stutter-invariant if, for all
runs ρ = v0v1v2, . . . and every sequence k0,k1,k2, . . . of positive integers,

v0v1v2 . . . ∈ X if and only if vk0
0 vk1

1 vk2
2 . . . ∈ X ,

where vk denotes the k-fold iteration of v. Thus, for instance, consider the property defined by
the ω-regular expression (p;ø)ω , henceforth denoted by toggle(p). This property does not define a
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stutter-free property, as it contains the run {p}ø{p}ø . . . , but not the run {p}{p}øø{p}{p}øø . . . .
Note that toggle(p) is expressed by the LTL-formula p∧G(p↔ X¬p); it cannot be expressed by
a formula of LU though. In a seminal paper, [Peled and Wilke 1997] showed that the so-called
next-free fragment LU is the largest stutter-free fragment of LTL, that is, LU can express every
stutter-free property that LTL can express in formulas, even when also using the next-operator X
[Etessami 2000].

[Lamport 1983] makes a case in favour of stutter-invariant specifications and, in particular, ve-
hemently argued against the inclusion of the next-operator X in the syntax of temporal logic. The
main reason for his opposition is the observation that temporal logics are meant to facilitate reason-
ing about abstract specifications of programs rather than about their concrete implementations, and
that the next-operator enables reasoning about irrelevant aspects of the implementation of a pro-
gram specification. Lamport gives the example of requiring that a program take exactly 17 steps to
implement a queue, which relates to the specification, but can only be expressed by stutter-sensitive
fragments. He furthermore alleged that stutter-invariant specifications still enable reasoning about
“the next state in which a significant change occurs [...] at the level of detail of the specification”
[Lamport 1983, page 661]. Accordingly, including the next-operator would run counter to modular
or hierarchical approaches towards program specification: “you will see that increasing the expres-
siveness of our temporal logic with a next operator would destroy the entire logical foundation for
its use in hierarchical methods” (ibid., page 661).

Elaborating on the topic of stutter-invariant specifications, [Peled and Wilke 1997] furthermore
point to the advantages of stutter-invariant specification of concurrent programs, where the different
ways in which processes can be interleaved is seen as a being essentially part of the implementation.
This invariance under arbitrary interleavings is also the technical basis for state space reduction
techniques for model checking concurrent system.

We find that the stutter-invariance of properties expressed by LU does not extend to the temporal
properties that can be expressed by LU in equilibrium. To see this, let Gtoggle(p) be the iterated
Boolean game on a set Φ of propositional variables containing p and q, and two players, i and j,
such that:

Φi = {p}
Φ j = Φ\{p}
γi = p∧¬γ j

γ j = F((pq∧ pqU pq̄)∨ (p̄q∧ p̄qU p̄q̄)∨ (pq̄∧ pq̄U pq)∨ (p̄q̄∧ p̄q̄U p̄q)).

Note that, for γ j to be satisfied, variable p has to assume the same truth-value at at least two con-
secutive times. The only way player i can prevent this from happening, and thus hope to satisfy her
goal, is by single-handedly toggling the truth-value of p starting by setting p to true. On this basis
we can show that the equilibria runs of Gtoggle(p) are given exactly by toggle(p). Hence, LU can
express stutter-sensitive properties in equilibrium.

This is interesting, because, intuitively, the Nash equilibria of a multi-agent system of which the
players are assumed to interact strategically in pursuit of their LU-goals does not seem to pertain
to the specifics of how the constituent agents are implemented. As such, the result below may cast
a new light on the desirability of stutter-invariant specifications of multi-agent systems. Later, we
will see, however, that the expressiveness of LU in equilibrium does not quite equal the expressive
power of LU in formulas with the next-operator X added, that is, the expressive power of LTL in
formulas.

PROPOSITION 4.9. Let p,q ∈ Φ. Then, NE(Gtoggle(p)) = toggle(p). Hence, LU(Φ) expresses
toggle(p) in equilibrium.

PROOF. It suffices to show that NE(Gtoggle(p)) = toggle(p). To this end, consider an arbitrary
run ρ ∈ runsΦ that toggles p, that is, such that ρ, t |= p if and only if t is even. We first observe
that ρ 6|= γ j. To see this, consider an arbitrary t ≥ 0 and assume ρ, t |= pq. Then, ρ, t +1 6|= p. Now

ACM Transactions on Computational Logic, Vol. V, No. N, Article 1, Publication date: January 2019.



Expressiveness and Nash Equilibrium in Iterated Boolean Games 1:21

consider an arbitrary t ′ ≥ t with ρ, t ′ |= pq̄. Hence, note that t ′ ≥ t + 2, and, as ρ, t + 1 6|= pq, we
obtain ρ, t 6|= pq∧ pqU pq̄. Assuming instead that ρ, t |= p̄q, ρ, t |= pq̄, or ρ, t |= p̄q̄ an analogous
arguments yield ρ, t 6|= p̄q∧ p̄qU p̄q̄, ρ, t 6|= pq̄∧ pq̄U pq, and ρ, t 6|= p̄q̄∧ p̄q̄U p̄q, respectively. We
may conclude that ρ 6|= ρ 6|= γ j.

Now, consider an arbitrary run ρ = v0v1v2v3 . . . in runsΦ that toggles p. We prove that ρ is
sustained by an equilibrium, that is, ρ ∈ NE(Gtoggle(p)). To this end, define strategy f toggle(p)

i for

player i such that f toggle(p)
i (ε) = {p} and for paths v0 . . .vt with t ≥ 0,

f toggle(p)
i (v0 . . .vt) =

{
{p} if t is odd,
ø otherwise.

For player j define strategy f j such that f j(ε) = v0 ∩Φ j and f j(v0, . . . ,vk) = vk+1 ∩Φ j, if k ≥ 0.
Defined thus, it can easily be seen that ρ( f toggle(p)

i , f j) = v0v1v2 . . . . Also, observe that by def-
inition of fi, we find that ρ( f toggle(p)

i ,g j) toggles p for every strategy g j for player j. Hence
ρ( f toggle(p)

i ,g j) 6|= γ j for every strategy g j for player j as well. It follows that player j does not
want to deviate from ( f toggle(p)

i , f j). Moreover, ρ( f toggle(p)
i , f j) |= p as well as ρ( f toggle(p)

i , f j) 6|= γ j.
Hence, ρ( f toggle(p)

i , f j) |= γi, and player i does not want to deviate from ( f toggle(p)
i , f j) either. It

follows that ( f toggle(p)
i , f j) is a Nash equilibrium sustaining ρ .

To conclude the proof, consider an arbitrary run ρ ′ = v′0v′1v′2 . . . that does not toggle p and and
equally arbitrary strategy profile g = (gi,g j) with ρ(gi,g j) = ρ ′. Then there is a t ≥ 0 such that
either (i) both ρ, t |= p and ρ ′, t +1 |= p or (ii) both ρ ′, t |= p̄ and ρ ′, t +1 |= p̄.

If (i), and ρ ′ 6|= γi, then ρ( f toggle(p)
i ,g j) |= γi, that is, player i wants to deviate from g = (gi,g j)

and get her goal achieved. On the other hand, if ρ ′ |= γi, then ρ ′ 6|= γ j. In that case, we may assume
without loss of generality that ρ ′, t |= pq, and define strategy g′j for player j such that for all g′j(ε) =
g j(ε) and, for paths w0 . . .wk with k ≥ 0,

g′j(w0 . . .wk) =

{
g j(w0 . . .wk) if k < t,
ø otherwise.

Let ρ(gi,g′j) = v′′0v′′1v′′2 . . . . Now observe that, v′′0 . . .v
′′
t = v′0 . . .v

′
t . Hence, ρ(gi,g′j), t |= pq Observe

moreover that both p ∈ gi(v′′0 . . .v
′′
t ) and q /∈ g′j(v

′′
0 . . .v

′′
t ). Therefore also ρ(gi,g′j), t + 1 |= pq̄. Ac-

cordingly, ρ(gi,g′j), t |= pq∧ pqU pq̄, and hence ρ(gi,g′j) |= γ j. It follows that g = (gi,g j) is not
a Nash equilibrium. If (ii), the argumentation is analogous, and, as g = (gi,g j) had been chosen
arbitrarily, we may conclude that ρ ′ /∈ NE(Gtoggle(p)), as desired.

As an almost immediate consequence of Proposition 4.9, we obtain that the stutter-invariant frag-
ment LU is strictly more expressive in equilibrium that it is in formulas.

THEOREM 4.10. Let |Φ| ≥ 2. Then LU is strictly more expressive in equilibrium than it is in
formulas, that is, L NE

U (Φ)> LU(Φ).

PROOF. As we may assume that |Φ| ≥ 2, by Proposition 4.1, we immediately obtain L NE
U ≥LU.

For p a propositional variable in Φ, moreover, the stutter-sensitive property toggle(p) cannot be ex-
pressed by LU as this fragment is the largest stutter-invariant fragment of LTL. By Proposition 4.9,
however, toggle(p) can be expressed in equilibrium by LU. Hence, L NE

U > LU.

Even though LU can express in equilibrium some stutter-sensitive LTL-properties, its expressive
power in equilibrium does not match that of full LTL in formulas. We thus find, quite strikingly, that
LU cannot even express in equilibrium the property characterised by the LTL-formula X p.
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PROPOSITION 4.11. Let p be a propositional variable contained in Φ. Then, the frag-
ment LU(Φ) cannot express in equilibrium the temporal property characterised by the LTL-
formula X p.

PROOF. Recall that a run ρ = v0v1v2 . . . satisfies X p if and only if p ∈ v1. Assume for a con-
tradiction that G is an LU-game such that NE(G) = runsΦ(X p). Consider a run ρ = v0v0v1v2 . . .
where p ∈ v0 and p /∈ v1. As ρ ∈ runsΦ(X p), there is an equilibrium f ∗ = ( f ∗1 , . . . , f ∗n ) that sus-
tains ρ , that is ρ = ρ( f ∗). Observe that f ∗i (ε) = f ∗i (v0) for all players i. Now define the strategy
profile f = ( f1, . . . , fn) such that for every player i we have fi(ε) = f ∗i (v0) and, for every x0, . . . ,xk
with k ≥ 0,

fi(x0, . . . ,xk) =

{
f ∗i (v0,x0, . . . ,xk) if x0 = v0,
f ∗(x0, . . . ,xk) otherwise.

A straightforward induction establishes that ρ( f ) = v0v1v2v3 . . . . Having assumed that p /∈ v1,
clearly ρ( f ) /∈ runsΦ(X p). Hence, f = ( f1, . . . , fn) is not an equilibrium of G and there is some
player j such that ρ( f ) 6|= γ j and some strategy g j for j such that ρ( f− j,g j) |= γ j. As γ j expresses
a stutter-invariant property, observe that now also ρ( f ∗) 6|= γ j. Let ρ( f− j,g j) = u0u1u2 . . . .

At this point, define strategy g′j such that g′j(ε) = g j(ε) and, for every path x0 . . .xk,

g′j(x0 . . .xk) =

{
g j(x1 . . .xk) if x0 = v0,
g j(x0 . . .xk) otherwise,

on the understanding that x1 . . .x0 = ε . Let ρ( f ∗− j,g
′
j) = w0w1w2w3 . . . .

At this point, we distinguish two cases. In either one we show that ρ( f ∗− j,g
′
j) |= γ j. Having already

seen that ρ( f ∗) 6|= γ j, this then contradicts that f ∗ is a Nash equilibrium.
First assume that g j(ε) = f j(ε), that is, player j does not deviate from f j immediately. Hence,

u0 = v0. We show that ρ( f ∗− j,g
′
j) = u0u0u1u2 . . . , that is, w0 = u0 and wt = ut−1 for all t ≥ 1.

Since, ρ( f− j,g j) |= γ j and γ j is a stutter-invariant property, it follows that also ρ( f ∗− j,g
′
j) |= γ j, a

contradiction.
Observe that both g′j(ε) = g j(ε) = f j(ε) and f ∗i (ε) = f ∗i (v0) = fi(ε) for all i 6= j. Hence, w0 = v0,

and therefore w0 = u0.
We now show by induction that wt = ut−1 for all t ≥ 1. If t = 1, observe that g′j(w0) = g j(ε), as

w0 = v0. Moreover, f ∗i (w0) = f ∗i (v0) = fi(ε) for all i 6= j. It follows that w1 = u0, as desired. For
the induction step, we may assume that w0 . . .wt = u0u0 . . .ut−1. Then, g′j(w0 . . .wt) = g j(w1 . . .wt)

as w0 = v0, and hence, by the induction hypothesis, g′j(w0 . . .wt) = g j(u0 . . .ut−1). Moreover, for all
players i 6= j, we have f ∗i (w0 . . .wt) = fi(w1 . . .wt) because w0 = v0, and hence, by the induction
hypothesis, f ∗i (w0 . . .wt) = fi(u0 . . .ut−1). It follows that wt+1 = ut , as desired.

Finally, assume that g j(ε) 6= f j(ε), and hence u0 6= v0. We prove by induction that wt = ut for
all t ≥ 0, that is, ρ( f ∗− j,g

′
j) = ρ( f− j,g j). It then immediately follows that ρ( f ∗− j,g

′
j) |= γ j. For

the basis with t = 0, observe that both g′j(ε) = g j(ε) and f ∗i (ε) = f ∗i (v0) = fi(ε). It follows that
w0 = u0. For the induction step we ma assume that w0 . . .wt = u0 . . .ut . Recall that u0 6= v0. Hence,
g′j(w0 . . .wt) = g′(u0 . . .ut) = g j(u0 . . .ut), as well as f ∗i (w0 . . .wt) = f ∗i (u0 . . .ut) = fi(u0 . . .ut) for
all i 6= j. We may conclude that wt+1 = ut+1, as desired.

We are now in a position to conclude this section by showing that LTL is still strictly more
expressive in formulas than LU in equilibrium.

THEOREM 4.12. Let |Φ| ≥ 2. Then, LTL is strictly more expressive in formulas than LU in
equilibrium, that is, LTL(Φ)> L NE

U (Φ).

PROOF. As LTL ≥ LU, by Proposition 4.3 also LTLNE ≥ L NE
U . Having assumed that |Φ| ≥

2, Theorem 4.8 then entails that LTL ≥ L NE
U . Proposition 4.11, moreover, shows that there are
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properties expressible by LTL in formulas that cannot be expressed by LU in equilibrium. Hence,
LTL > L NE

U .

5. PROJECTIVE EXPRESSIVENESS
In this section, we consider projective expressiveness in formulas along with the attendant concept
of projective expressiveness in equilibrium. Projective expressiveness is weaker than regular expres-
siveness in that a property being expressible (either in formulas or in in equilibrium) implies that
property to be projectively expressible, but not necessarily the other way round. We find that projec-
tive expressiveness in equilibrium is a very powerful concept, and as the main result of this section
we show that the next-free fragment LU can express in equilibrium every ω-regular property.

5.1. Projective Expressiveness in Formulas
Projective expressiveness abstracts away from the propositional variables available in the language.
Rather than requiring that a temporal property X coincide with the set of runs satisfying some
formula ϕ in a fragment L (Φ), it demands that X be the set of projections to Φ of the runs satisfying
some formula ϕ of L in an extended set of propositional variables. Formally, we say that LTL-
fragment L (Φ) can projectively express (in formulas) property X ⊆ runsΦ if there is some finite
set Ψ of auxiliary variables and some formula ϕ ∈L (Φ∪Ψ) such that X = {ρ|Φ ∈ runsΦ : ρ ∈
runsΦ∪Ψ(ϕ)}.2

The roots of projective expressiveness go back to the work of Beth [Beth 1953] and Craig [Craig
1957] in the 1950s on definability in first order logic. The concept has numerous applications in
model theory [Chang and Keisler 1990; Hodges 1993] and has recently also been studied in the
context of modal and temporal logics [Gheerbrant and ten Cate 2009; Halpern et al. 2009]. In
our setting, projective expressiveness defines relatively weak constraints on a fragment and should
be carefully distinguished from standard expressiveness. Thus, recall that the properties that LTL
can express in formulas are non-counting and cannot, for instance, characterise temporal property
even(p), the set of runs on 2Φ in which p is set to true at every even state [Wolper 1983]. Still,
q∧G(q↔ X¬q)∧G(q→ p) projectively expresses exactly this property. It is known from the
literature that every ω-regular property can be projectively expressed by LTL, if one can use an
unbounded number of additional propositional variables [Gheerbrant and ten Cate 2009; Thomas
1997]. We reformulate this result for our setting.

PROPOSITION 5.1. LTL can projectively express all ω-regular properties.

PROOF SKETCH. Let A = (Q,2Φ,δ ,Q0,F) be a nondeterministic Büchi automaton [Baier and
Katoen 2008]. We construct a formula ϕA in LTL(Φ∪Q), where Φ and Q are disjoint, as follows:

ϕA
init =

∨
q∈Q0

q

ϕA
trans = G(

∧
q∈Q(q→

∨
{(q′,v) : q′∈δ (q,v)}(χ

Φ
v ∧Xq′)))

ϕA
accept = GF

∨
q∈F q

ϕA
invar = G(

∨
q∈Q(q∧

∧
q′ 6=q q̄′))

Then set ϕA = ϕA
init ∧ϕA

trans ∧ϕA
accept ∧ϕA

invar. By an inductive argument it then follows that LA =
{ρ|Φ : ρ ∈ runsΦ∪Q(ϕA)} = runsΦ(ϕA)|Φ, where LA is the language accepted by A. Recalling that
the class of ω-regular languages over 2Φ is exactly the class of languages accepted by some non-

2Our concept of projective expressiveness should be distinguished from that of projective properties as defined in [Peled
1997]. There, a property over (Σ1×·· ·×Σn)

ω is said to be projective whenever two runs are in the property if and only if
their stutter-free projections on each Σω

i are identical. That means, that each of the n components behave in a stutter-invariant
fashion. Peled writes: “Thus for the temporal logics ETL and LTL properties using the correspondence between properties
expressed in these logics and ω-regular and star-free ω-regular, respectively. Thus for the temporal logics LTL and ETL, the
projective properties are always expressible as a boolean combination of local (stuttering-closed) properties.”

ACM Transactions on Computational Logic, Vol. V, No. N, Article 1, Publication date: January 2019.



1:24 Gutierrez, Harrenstein, Perelli, and Wooldridge

deterministic Büchi automaton, it follows that LTL can express projectively in formulas every ω-
regular property.

It is interesting to note that allowing for additional variables along with projection has a similar
effect as, for instance, extending LTL to Extended Temporal Logic (ETL) by including in the syntax
suitable grammar-operators as proposed in [Wolper 1983].

Moreover, all properties that LTL can express projectively are ω-regular. To see this first observe
that, if a temporal property X ⊆ runsΦ is ω-regular, then so is X |Ψ for every Ψ⊆Φ.

LEMMA 5.2. Let X ⊆ runsΦ be an ω-regular property, and Ψ⊆Φ. Then, X |Ψ is also ω-regular.

PROOF. Let A = (Q,2Φ,δ ,Q0,F) be a nondeterministic Büchi automaton accepting X . Define
A|Ψ = (Q,2Φ,δ |Ψ,Q0,F) as the non-deterministic Büchi automaton with δ |Ψ such that, for all
q,q′ ∈ Q and v ∈ 2Ψ,

q′ ∈ δ |Ψ(q,v) if and only if q′ ∈ δ (q,v∪ v′) for some v′ ∈ 2Φ\Ψ.

It is then easy to see that A|Φ accepts X |Φ. First consider an arbitrary ω-word ρ = v0v1v2 . . .
accepted by A|Φ. Then consider an accepting sequence of states q0q1q2 . . . of A|Φ while reading ρ ,
that is, qt+1 ∈ δ |Φ(qt ,vt) for all t ≥ 0. Then, q0q1q2 . . . is also an accepting sequence of states of
A while reading an ω-word ρ ′ = v′0v′1v′2 . . . with vt = v′t ∩Φ for every t ≥ 0, that is, with ρ ′|Φ = ρ .
Hence, ρ ∈ X |Φ.

Finally, consider an arbitrary ω-word ρ = v0v1v2 . . . in X |Φ. Then, there is an ω-word ρ ′ =
v′0v′1v′2 . . . accepted by A such that ρ ′|Φ = ρ . Let q0q1q2 . . . be an accepting sequence of states
visited by A while reading ρ ′. In particular, qt+1 ∈ δ (qt ,v′t) for all t ≥ 0. Then, however, also qt+1 ∈
δ |Φ(qt ,v′t ∩Φ). Observing that v′t ∩Φ = vt for all t ≥ 0, we find that q0q1q2 . . . is also an accepting
sequence of states visited by A|Φ while reading ρ . Hence, ρ is accepted by A|Φ. We may conclude
that X |Φ is ω-regular.

The following proposition now follows almost immediately.

PROPOSITION 5.3. All temporal properties that are projectively expressed by LTL in formulas
are ω-regular.

PROOF. Consider an arbitrary temporal property X ⊆ runsΦ that LTL expresses projectively.
Then, there is some auxiliary set of variables Ψ and a formula ϕ ∈ LTL(Φ∪Ψ) such that X =
runsΦ∪Ψ(ϕ)|Φ. Observe that runsΦ∪Ψ(ϕ) is an ω-regular property, and, hence, by Lemma 5.2, so
is X .

5.2. Projective Expressiveness in Equilibrium
Projective expressiveness in equilibrium can now be defined analogously to how expressiveness in
equilibrium was defined in Section 4.1 with respect to expressiveness in formulas. In a similar way
as do the formulas of a temporal logic, the Nash equilibria of an iterated Boolean game also defines
a linear time property as the set of runs they sustain. Given a set Φ of propositional variables,
we thus say that LTL-fragment L (Φ) projectively expresses in equilibrium temporal property
X ⊆ runsΦ, if there is some set of Ψ of auxiliary propositional variables and an L (Φ∪Φ)-game G
such that X = NE(G)|Φ. Recall that an L (Φ∪Ψ)-game is an iterated Boolean game whose players’
goals are given by formulas of L (Φ∪Ψ), and that NE(G)|Φ = {ρ|Φ : ρ ∈ NE(G)}. Note that, as
one can always set Ψ = ø, a property being expressible in equilibrium implies that that property can
also be expressed projectively in equilibrium.

In the previous section, Proposition 4.1 esatablished that expressiveness in formulas implies ex-
pressiveness in equilibrium, provided that there are at least two propositional variables. For projec-
tive expressiveness this still holds, but without the caveat of Φ not being a singleton.
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PROPOSITION 5.4. Let L be an LTL-fragment on Φ and X ⊆ runsΦ a temporal property
over 2Φ. Then, if L can projectively express X in formulas, then L can also projectively express X
in equilibrium.

PROOF. Assume that L (Φ) projectively expresses X ⊆ runsΦ in formulas. Then, there is an aux-
iliary set Ψ of propositional variables and a formula ϕ ∈L (Φ∪Ψ) such that X = runsΦ∪Ψ(ϕ)|Φ.
Let p and q be two variables disjoint from Φ∪Ψ, and let X ′ be defined as the set of all runs ρ ∈
runsΦ∪Ψ∪{p,q} such that ρ |= ϕ . Hence, X ′ is expressed by L (Φ∪Ψ∪ {p,q}) in formulas. By
Proposition 4.1, we find that X ′ can be expressed in equilibrium by L (Φ∪Ψ∪{p,q}). Observing
that X = X |Φ finally yields that X can be projectively expressed by L (Φ) in equilibrium.

Using a construction similar to the matching-pennies game Gmp
ϕ , we can furthermore show that,

if a fragment L can express a property X in formulas, it can also projectively express the comple-
ment of X in equilibrium. This result is especially relevant for fragments that are not closed under
negation.

PROPOSITION 5.5. Let X ⊆ runsΦ be a temporal property that can be expressed in formulas by
fragment L . Then, L can projectively express runsΦ \X in equilibrium.

PROOF. Let p,q /∈ Φ and let X be expressed by the L -formula ϕ . Consider the two-player L -
game G with Φi = {p}, Φ j = Φ∪{q} and the players’ goals being given by γi = ϕ ∧ (p↔ q) and
γ j = p̄↔ q. First observe that no equilibrium run in G satisfies ϕ . To see this, let f be an arbitrary
profile with ρ( f ) |= ϕ . If ρ( f ) 6|= γi, player i would deviate by choosing the opposite value for p
in the first round. If, on the other hand, ρ( f ) |= γi, player j would deviate by choosing the opposite
value for q in the first round. Hence, NE(G)|Φ ⊆ runsΦ(¬ϕ). To see that this inclusion also holds
in the opposite direction, assume that ρ 6|= ϕ and that profile f induces ρ . Since, neither p nor q
occurs in ϕ , we may assume without loss of generality that ρ |= p̄↔ q. Therefore, player j has its
goal achieved and will not deviate. As, moreover, player i controls no variables occurring in ϕ , no
deviation from f will satisfy her goal. It follows that f is a Nash equilibrium and ρ ∈ NE(G), as
desired.

Previously, we have shown how LTL is equally expressive in formulas as it is in equilibrium. This
required a rather elaborate proof, especially for LTL-expressible properties being non-countable.
We find that the analogous result for projective expressiveness of LTL can now be show rather
straightforwardly by reference to Propositions 5.1, 4.7, and 5.4, and Lemma 5.2.

THEOREM 5.6. Let X ⊆ runsΦ be a temporal property. Then, LTL can projectively express X in
formulas if and only if LTL can projectively express X in equilibrium. Hence, LTL can projectively
express in equilibrium all and only all ω-regular temporal properties.

PROOF. In virtue of Propositions 5.1 and 4.7, it suffices to prove the first statement. The “only
if”-direction follows immediately from Proposition 5.4. For the “if”-direction, assume that LTL can
projectively express X in equilibrium. Then, there is a set Ψ of auxiliary propositional variables and
an LTL(Φ∪Ψ)-game G such that NE(G)|Φ = X . By Proposition 4.7, we know that the temporal
property NE(G) is ω-regular. Lemma 5.2 then yields that NE(G)|Φ is ω-regular property as well.
In virtue of Proposition 5.1, we may conclude that LTL can projectively express X = NE(G)|Φ in
formulas.

5.3. The Next-free Fragment LU Revisited
In Section 4.4, we saw that LU can express in equilibrium some stutter-sensitive properties—in
particular toggle(p)—something it cannot do in formulas. On the other hand, we also found that
the expressive power of LU in equilibrium does not quite match the expressive power of full LTL
in formulas (or, in reference to Theorem 4.8, that of LTL in equilibrium for that matter). In this
section, however, we show that projectively LU can express in equilibrium every temporal property
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that LTL can express projectively in equilibrium, that is, all and only all ω-regular properties. This
equivalence, however, does not hold for LU’s projective expressiveness in formulas.

To appreciate the latter statement, it can easily be seen that the temporal properties that LU can
projectively express in formulas, are closed under ‘positive’ stuttering in the following sense. For
every property X that LU projectively expresses in formulas, it holds that if run v0v1v2v3 . . . is in X ,
so is vk0

0 vk1
1 vk2

2 vk3
3 . . . for all k0,k1,k2, · · · ≥ 1. (Observe that this captures one half of the definition of

stutter-invariance.) Let X ⊆ runsΦ be a property that LU can projectively express in formulas. Then,
there is some auxiliary set of variables Ψ and some property Y ⊆ runsΦ∪Ψ with Y |Φ = X that LU

can express in formulas. Now, let v0v1v2v3 . . . be in X . Then, there is some run w0w1w2w3 . . .
in Y such that wt ∩Φ = vt for all t ≥ 0. As LU(Φ∪Ψ) can express Y in formulas, it follows that
wk0

0 wk1
1 wk2

2 wk3
3 . . . must be in Y as well. Then, moreover, it follows that vk0

0 vk1
1 vk2

2 vk3
3 . . . in Y |Φ =X , as

desired. Accordingly, LU cannot projectively express in formulas some stutter-sensitive properties
like toggle(p).

The situation is quite different for the properties that LU can projectively express in equilibrium,
which, as the main result of this section, we find are exactly the ω-regular ones. To obtain this
result, we leverage the fact established by Proposition 4.9 that LU can express in equilibrium the
property toggle(p).

Let p be a variable not contained in Φ. We first define the translation τ : LTL(Φ)→LU(Φ∪{p})
inductively such that qτ = q for all q ∈Φ, and

(¬ϕ)τ = ¬(ϕτ)

(ϕ ∧ψ)τ = ϕ
τ ∧ψ

τ

(ϕ ∨ψ)τ = ϕ
τ ∨ψ

τ

(ϕ Uψ)τ = ϕ
τ
Uψ

τ

(Xϕ)τ = (p→ pU(p̄∧ϕ
τ))∧ (p̄→ p̄U(p∧ϕ

τ)).

Then, on every run ρ ∈ Φ∪{p} with ρ|{p} = (pp̄)ω , each formula ϕ and its translation ϕτ will
have the same truth-value.

LEMMA 5.7. Let ϕ be an LTL(Φ)-formula, p a propositional variable not in Φ, and ρ =
v0v1v2 . . . a run in runsΦ∪{p} such that ρ, t |= p if and only if t is even. Then, ρ |= ϕ if and only if
ρ |= ϕτ .

PROOF. The proof proceeds by structural induction on ϕ . The basis is immediate and the induc-
tion hypothesis covers all inductive cases apart from ϕ = Xψ . Consider an arbitrary t ≥ 0 and as-
sume ρ, t |= Xψ . Then, ρ, t+1 |= ψ and by the induction hypothesis also ρ, t+1 |= ψτ . Now either
ρ, t |= p or ρ, t |= p̄. First assume the former. Then immediately ρ, t |= p̄→ p̄U(p∧ψτ). Moreover,
ρ, t+1 |= p̄ by definition of ρ and, therefore, ρ, t |= pU(p̄∧ψτ) and also ρ, t |= p→ (pU(p̄∧ψτ)).
We may conclude that ρ, t |= (Xψ)τ , as desired. The argument if ρ, t |= p̄ is analogous.

For the opposite direction, assume ρ, t 6|=Xψ . Then, ρ, t+1 6|= ψ and by the induction hypothesis
ρ, t+1 6|=ψτ . Now, either ρ, t |= p or ρ, t |= p̄. If the former, both ρ, t 6|= p̄∧ψτ and ρ, t+1 6|= p̄∧ψτ .
It follows that ρ, t 6|= pU(p̄∧ψτ), ρ, t 6|= p→ (pU(p̄∧ψτ)), and eventually ρ, t 6|= (Xψ)τ . As the
argument showing that ρ, t |= p̄ is analogous, we may conclude the proof.

To obtain the main result of this section, we construct for each LTL-formula ϕ a four-player LU-
game with four additional variables. Intuitively, two of the players play the “matching pennies”-like
game Gmp

ϕτ , as it was employed in Proposition 4.1. This guarantees that ϕτ holds at all and only
the equilibrium runs of the game. The other two players play the game Gtoggle(p), which facilitated
the proof of Proposition 4.9. This then ensures that an additional variable p alternately assumes the
truth values true and false, and thus that ϕτ evaluates as intended, namely, as equivalent to ϕ .

THEOREM 5.8. The fragment LU can projectively express in equilibrium every temporal prop-
erty that LTL can express in formulas.

ACM Transactions on Computational Logic, Vol. V, No. N, Article 1, Publication date: January 2019.



Expressiveness and Nash Equilibrium in Iterated Boolean Games 1:27

PROOF. Let X be a property expressible by LTL in formulas. Then there is some LTL(Φ)-
formula ϕ with X = {ρ ∈ runsΦ : ρ |=ϕ}. Let furthermore Ψ= {p,q,r,s} a set of auxiliary variables
disjoint from Φ, and construct LU-game G on Φ∪Ψ with four players, 1, 2, 3, and 4, such that

Φ1 = {p}, Φ2 = {q}, Φ3 = Φ∪{r}, Φ4 = {s}.

Let the players’ goals, moreover, be given by:

γ1 = p∧¬γ2

γ2 = F((pq∧ pqU pq̄)∨ (p̄q∧ p̄qU p̄q̄)∨ (pq̄∧ pq̄U pq)∨ (p̄q̄∧ p̄q̄U p̄q)),

γ3 = ϕ
τ ∨ (r↔ s),

γ4 = ϕ
τ ∨ (r↔ s̄).

Thus, players 1 and 2 play Gtoggle(p). Proposition 4.9 ensures that in every equilibrium run ρ in
runsΦ∪Ψ, we have ρ, t |= p if and only if t is even. Accordingly, by virtue of Lemma 5.7, on all
equilibrium runs ρ in NE(G), we have ρ |= ϕτ if and only if ρ |= ϕ .

Players 3 and 4—quite independently from 1 and 2—play Gmp
ϕτ . In virtue of Proposition 4.1, we

obtain, for every run ρ ∈ runsΦ∪Ψ, that ρ |= ϕτ if and only if ρ is an equilibrium run in NE(G).
Hence, ρ |= ϕ if and only if ρ ∈ NE(G), for all runs ρ ∈ runsΦ∪Ψ. Finally, as ϕ only depends
on Φ, we also have that ρ|Φ |= ϕτ for every equilibrium run ρ ∈ NE(G), and ρ|Φ 6|= ϕτ for every
non-equilibrium run ρ /∈ NE(G). It follows that NE(G)|Φ = X , as desired.

It is worth noting that the size of ϕτ is exponential in the number of nestings of the X-operator, that
is, even if LU can projectively express every LTL-property in equilibrium, this may come at the cost
of having exponentially longer goals for the players. Whether this exponential blowup is inevitable,
we leave as an open question.

COROLLARY 5.9. Let X ⊆ runsΦ be a temporal property. Then, LU can projectively express X
in equilibrium if and only if X is ω-regular.

PROOF.
The “only if”-direction, let X be a temporal property in runsΦ that LU(Φ) can projectively ex-

press in equilibrium. Then, LTL(Φ) can also projectively express X in equilibrium, and, by Theo-
rem 5.6, it follows that X is ω-regular.

For the “only if”-direction, consider an arbitrary ω-regular property X ⊆ runsΦ. By Proposi-
tion 5.1, we know that LTL(Φ) can projectively express X in formulas. Hence, there is a set Ψ

of auxiliary variables and a property Y ⊆ runsΦ∪Ψ that LTL(Φ∪Ψ) can express in formulas with
X = Y |Φ. Theorem 5.8 then gives us that LU(Φ∪Ψ) can projectively express Y in equilibrium.
Accordingly, there is an auxiliary set Θ of variables and a temporal property Z ⊆ runsΦ∪Ψ∪Θ that
is expressed by LU(Φ∪Ψ∪Θ) in equilibrium with Z|Φ∪Ψ = Y . We may conclude the proof by
observing that X = Z|Φ. Hence, LU(Φ) can projectively express in equilibrium property X , as de-
sired.

6. LOGICAL INCENTIVE ENGINEERING: WEAK EXPRESSIVENESS
In this section, we consider another weaker notion of expressiveness pertaining to non-empty tem-
poral properties, which we will refer to as weak expressiveness. Thus, a fragment L (Φ) is said to
weakly express (in formulas) the non-empty property X if it can express in formulas a stronger
non-empty property, that is, if there is a satisfiable formula ϕ of L (Φ) with runsΦ(ϕ)⊆ X .

The concept of weak expressiveness in formulas is much weaker than the standard notion of ex-
pressiveness in formulas, in the sense that, if a fragment can express a property, it can also weakly
express this property. To appreciate how much weaker weak expressiveness is, consider the sem-
inal Ultimately Periodic Model Theorem by Sistla and Clarke [Sistla and Clarke 1985] that every
every satisfiable formula is satisfied on an ultimately periodic run. Here, A run ρ = v0v1v2v3 . . . is
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said to be ultimately periodic if there are integers s, p ≥ 0, called the starting index and period,
respectively, such that for every t ≥ s, we have that vt = vt+p.

THEOREM 6.1 ([SISTLA AND CLARKE 1985]). Every satisfiable LTL-formula is satisfied by
an ultimately periodic run.

Consequently, for an LTL-fragment L to weakly express every non-empty LTL-property in for-
mulas, it already suffices to be able to express {ρ} for every ultimately periodic run ρ . Now observe
that any given ultimately periodic run ρ = v0v1v2v3 . . . over 2Φ with starting index s and period p is
characterised by the formula

χρ =
∧

0≤t≤s+pX
t χvt ∧XsG(

∧
v∈2Φ(χv→ Xpχv)),

where

X
k
ϕ = X · · ·X︸ ︷︷ ︸

k times

ϕ.

Accordingly, we find that every LTL-fragment that is at least as expressive as LX,F,G, can weakly
express in formulas every property that LTL can express in formulas.

Analogously to the other concepts of expressiveness in this paper, we also introduce projective
weak expressiveness in formulas, as well as weak expressiveness in equilibrium, and projective
weak expressiveness in equilibrium. Formally, a fragment L (Φ) is said to be able to projectively
weakly express in formulas a non-empty property X ⊆ runsΦ if there is some finite set Ψ of
variables and some formula ϕ ∈ L (Φ∪Ψ) such that for every run ρ ∈ runsΦ∪Ψ we have that
ρ ∈ runsΦ(ϕ) implies ρ|Φ ∈ X . Moreover, L (Φ) is said to weakly expresses X in equilibrium
if there is an L (Φ)-game G with ø ( X ⊆ NE(G). Finally, L (Φ) projectively expresses X in
equilibrium if there is some finite set Ψ of auxiliary variables and some L (Φ∪Ψ)-game G such
that X = NE(G)|Φ. Finally, L projectively weakly expresses X in equilibrium if there is some
finite set Ψ of auxiliary variables and some L -game G with the players’s goals defined over the
variables Φ∪Ψ such that ø ( X ⊆ NE(G)|Φ.

These weak expressiveness notions mostly pertains are quite natural in settings where a designer
uses temporal logic to specify the desired behaviour of a system. For instance, suppose a designer is
to design a multi-agent system that is to behave accordingly to a given specification. If she manages
to do so in such a way that the system behaves (in equilibrium) according to a stronger but consis-
tent specification, she should still be satisfied: the additional features for the runs generated can be
seen as belonging to the specifics of the implementation. Furthermore, in designing her system the
designer may aim to distribute a possibly complex task over several agents each with limited com-
putational capabilities by allocating to them tasks that are as “simple” as possible. The designer’s
objective as well as the specifications of the allocated tasks could be given by LTL-formulas in
different fragments of LTL. Recall the Rabbit Hunt in Example 1.2 in the introduction, where we
saw how LTL-specification could be implemented by the Nash equilibrium of a game with players
having safety objectives that could be expressed in the weaker fragment LF,G.

For the remainder of this section, we will focus on the very weak fragment LX,F+ , where the F-
operator cannot occur within the scope of a negation. We find that also this, rather weak, fragment
can express more in equilibrium than it can in formulas. First we have the following lemma, which
intuitively says that every LXF+-formula will be satisfied after a finite number of rounds on every
satisfying run. Formally, a temporal property X ⊆ runsΦ is tail-invariant if ρ ∈ X implies the
existence of a prefix π ∈ prefix(ρ) such that π;ρ ′ ∈ X for all ρ ′ ∈ runsΦ.

PROPOSITION 6.2. Every temporal property X ⊆ runsΦ that can be expressed in LX,F+ is tail-
invariant.

PROOF SKETCH OF PROOF. Let ϕ ∈LX,F+ . As the F-operator does not occurs within the scope
of a negation symbol ¬, exploiting the equivalence of ¬Xϕ and X¬ϕ , we can transform ϕ to an
equivalent formula in which all negation symbols occur in front of propositional variables. Hence,
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we may assume that ϕ is in this normal form. Consider an arbitrary run ρ = v0v1v2v3 . . . in runsΦ

such that ρ |= ϕ . We have to show that there is a prefix π ∈ prefix(ρ) such that π;ρ ′ |= ϕ for all
ρ ′ ∈ runsΦ. Define inductively for every formula ψ ∈LX,F+ and every t ≥ 0, the integer κρ,t(ψ) as
follows:

κρ,t(p) = κρ,t(p̄) = 0
κρ,t(χ1∧χ2) = max(κρ,t(χ1),κρ,tκρ,t(χ2))

κρ,t(χ1∨χ2) = min(κρ,t(χ1),κρ,tκρ,t(χ2))

κρ,t(Xχ) = κρ,t(χ)+1

κρ,t(Fχ) =

{
t ′− t +κρ,t ′(χ) if ρ, t |= Fχ ,
0 otherwise,

where t ′ =min{t ′′ ≥ t : ρ, t ′′ |= χ}. By a structural induction on ψ it can then be shown that ρ, t |=ψ

implies the existence of a prefix π ∈ prefix(ρ) with length(π)≤ t +κρ,t(ψ) such that πψ ;ρ ′, t |= ψ

for all ρ ′ ∈ runsΦ. This holds in particular for ϕ and t = 0, which yields the result.

The property defined by the LTL-formula G p may serve as the quintessential property that is
not tail-invariant, and is neither expressible nor weakly expressible in LX,F+ . Observing that tail-
invariance of X ⊆ runsΦ implies tail-invariance of X |Ψ for every Ψ ⊆ Φ, we may even conclude
that G p cannot even be projectively expressed by LX,F+ . Yet, as G p is LTL-equivalent to ¬F p̄, in
virtue of Proposition 5.5, we find that LX,F+ can projectively express G p in equilibrium. That is,
LX,F+ can projectively express in equilibrium strictly more temporal properties than it can express
projectively in formulas.

Leveraging the same ideas, along with the fact that every ultimately periodic run can be charac-
terised in LX,F,G with only one occurrence of the G-operator, we also obtain the following expres-
siveness result for LX,F+ with respect to LTL.

THEOREM 6.3. The fragment LX,F+ can projectively weakly express in equilibrium every prop-
erty that LTL can express in formulas.

PROOF. Let ϕ ∈ LTL. If ϕ is unsatisfiable, we are done immediately, because as p∧¬p is a
formula in LX,F+ . On the other hand, if ϕ is satisfiable then by Theorem 6.1, there is an ultimately
periodic run ρ = v0v1v2v3 . . . with starting index s and period p such that is characterised by the
LTL-formula χρ given by ∧

0≤t≤s+pX
t χvt ∧XsG(

∧
v∈2Φ(χv→ Xpχv)).

By suitably applying the laws of propositional logic, the duality of F and G, as well as the equiva-
lence of ¬Xϕ and X¬ϕ , we find that the negation ¬χρ of χρ is equivalent to∨

0≤t≤s+pX
i¬χvi ∨XsF(

∨
v∈2Φ(χv∧Xp¬χv)),

which is included in the fragment LX,F+ . By Proposition 5.5, we know that LX,F+ can therefore
projectively express χρ in equilibrium. Hence, LX,F+ can weakly projectively express ϕ in equilib-
rium, as desired.

As a corollary of Theorem 6.3, we find that LX,F+ can even weakly express in equilibrium every
ω-regular expression. The proof is analogous to that of the “if”-direction of Corollary 5.9.

COROLLARY 6.4. The fragment LX,F+ can weakly projectively express X in equilibrium every
ω-regular property.

PROOF. Consider an arbitrary ω-regular property X ⊆ runsΦ. By Proposition 5.1, we know
that LTL can projectively express X in formulas. Hence, there is a set Ψ of auxiliary variables and a
property Y ⊆ runsΦ∪Ψ that LTL can express in formulas with X = Y |Φ. Theorem 5.8 then gives us
that LX,F+ can weakly projectively express Y in equilibrium. Accordingly, there is an auxiliary set Θ
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of variables and a temporal property Z ⊆ runsΦ∪Ψ∪Θ that is expressed by LX,F+ in equilibrium and
that is such that Z|Φ∪Ψ = Y . We may conclude the proof by observing that X = Z|Φ. Hence, LX,F+

can weakly projectively express in equilibrium property X , as desired.

7. RELATED WORK
The expressive power of LTL and many of its syntactic fragments has been a research topic for
decades, with work showing connections with other temporal logic languages as well as results
classifying the power of LTL and its fragments [Rabinovich 2002; Strejček 2004]. The most basic
and well known classifications are with respect to sub-languages, that is, LTL fragments where only
some operators are allowed. However, more refined studies have also been conducted, for instance,
LTL fragments with respect to the allowed number of propositional variables or the number of
nested temporal operators [Demri and Schnoebelen 2002].

Most of these studies have focused not only in the expressive power of the resulting sublogics
but also in the implications of imposing such restrictions in the complexity of the model checking
and satisfiability problems of such sublogics. These studies have also made it possible to understand
connections between LTL fragments and standard automata models over infinite words—which in
turn also easily show how to define different automata-theoretic decision procedures for each LTL
sublanguage at hand [Vardi and Wolper 1994].

Despite the very many studies about the expressive power of LTL and related sublanguages, to
the best of our knowledge, there are no results on the expressive power of LTL or its fragments
with respect to the classes of runs that can be sustained by some Nash equilibrium. In this paper,
we address precisely that issue and provide the first known results in the literature. The results are
rather promising: they show that even though some LTL sublanguage, say L1, may be strictly more
expressive than other LTL sublanguage, say L2, when interpreted over the full class of ω-regular
runs, such two sublogics L1 and L2 become equi-expressive when interpreted over a class of runs
that can be sustained by some Nash equilibrium in a given class of games, as many of our results
show.

As this kind of result can usually only be obtained by adding extra propositional variables to
the “weaker” language, we also studied the expressive power, and game-theoretic implications, of
allowing languages interpreted over different sets of propositional variables (projective expressive-
ness). Again, the results were promising in the sense that they show that generally weaker LTL
sublogics can be made as expressive as generally stronger LTL sublogics by the addition of fresh
propositional variables to the weaker language, a notion that goes back to the 1950s [Beth 1953;
Craig 1957] and has proven useful in a number of settings [Hodges 1993; Chang and Keisler 1990;
Gheerbrant and ten Cate 2009; Halpern et al. 2009].

8. FINAL REMARKS AND FUTURE RESEARCH
In this paper, we proposed the concept of expressiveness in equilibrium for linear temporal logics.
Thus, we have explored the temporal properties that are characterised by the equilibrium runs of
iterated Boolean games, where the players’ dichotomous preferences are represented by formulas in
various fragments of Linear Time Logic (LTL). We also introduced weak and projective variations
of this concept. See Figure 2 for a schematic overview of our main findings in Sections 4 and 5.

The Nash equilibria of an iterated Boolean game are fully determined by the goals of the players
and the way control of the propositional variables is distributed over the players. In particular, they
are not dependent on an additional underlying game structure—like, for instance, concurrent game
structures [Alur et al. 2002]. This enabled us to focus on the logical aspects of Nash equilibrium
and accordingly we formulated our research issue in terms of expressiveness.

Apart from specific fragments, the concept of expressiveness in equilibrium gives rise to a number
of more abstract and conceptual questions for future research.

First, in this paper we focussed mainly on the concepts of expressiveness in equilibrium and
projective expressiveness in equilibrium. To highlight their formal features and how these notions
relate to concepts of expressiveness in formulas, we concentrated on the full fragment LTL and the
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LTL, LTLNE, L NE
U , Lω-reg
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Projective expressiveness

Fig. 2. Overview of our main Results. A continuous line between two nodes indicates that the higher fragment is strictly
more expressive than the lower fragment. Dotted line indicated by ¬: as LF,G can express in equilibrium some stutter-
sensitive properties, it is not less expressive in equilibrium than LU in formulas. We conjecture that there are also properties
that LU can express in formulas that LF,G cannot express in equilibrium, which would imply that L NE

F,G and LU are in-
comparable. Dotted line indicated by : as LU is at least as expressive in formulas as LF,G is in formulas, by virtue of
Proposition 4.3, we know that LU is also at least as expressive in equilibria as LF,G is in equilibrium. We conjecture that
LU is strictly more expressive in equilibria than LF,G is in equilibrium.

important maximal stutter-invariant fragment LU. To obtain a complete picture of (projective) ex-
pressiveness in equilibrium, we aim to explore a wider range of fragments. To this end, the hierarchy
of temporal properties as proposed by [Manna and Pnueli 1990], [Chang et al. 1992], and [Černa
and Pelánek 2003] may provide the necessary structure to this research. In particular, this hierar-
chy would allow us to address in a principled fashion fragments that can express safety, guarantee,
obligation, response, persistence, and reactivity properties [Strejček 2004].

Second, another theoretical issue concerns the closure of the ω-languages expressible in equi-
librium under such operations as complement, intersection, and union. For some fragments, like
full LTL and propositional calculus, the issue is trivial because these fragments are equally expres-
sive in formulas as they are in equilibrium. For other fragments, like, for instance, the maximal
stutter-invariant fragment LU, the question is still very much open.

Third, in this paper we considered expressiveness in terms of ω-runs. There is, however, also a
considerable line of research that concerns the expressiveness of temporal logics when semantically
interpreted on finite runs [Giacomo and Vardi 2013]. The model of iterated Boolean games can
likewise be adapted in such a way that their outcomes are finite runs rather than infinite runs, as, for
instance, in [Gutierrez et al. 2017b]. In that way, expressiveness in formulas and expressiveness in
equilibrium with respect to finite runs can be compared. This would potentially allow us to leverage
the work on forbidden fragments as originally introduced by [Cohen et al. 1993], which pertains to
finite runs only and which furnishes us with some interesting characterisations of LTL-fragments
[Strejček 2004].

Fourth, many of our game constructions involve a “matching pennies” game like Gmp
ϕ . These

games establish a crucial link between runs that satisfy a given formula and equilibrium runs in
iterated Boolean games. This feature, however, is due to one player trying to achieve p↔ q and
another p↔ q̄, and as such is largely of a non-temporal nature. An interesting question is if this
is peculiar to the results in this paper or that it points at a more fundamental connection with the
concept of expressiveness in equilibrium. A related question for future research concerns (bounds
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on) the minimal number of players and additional propositional variables that may be needed to
express or projectively express temporal properties in a particular fragment. In particular, it would
be interesting to know if every property that can be expressed by a fragment L in equilibrium
coincides with the equilibrium runs of a two-player L -game.

Fifth, as in most work on model checking and concurrent game structures, the strategies of the
players are functions from histories to choices whereas, in stark contrast, the preferences of the
players are represented by logical formulas. As such the former are much finer grained than the lat-
ter. One may wonder to what extent the gap between expressiveness in formulas and expressiveness
in equilibrium can be attributed to this “mismatch.” For instance, would the phenomenon also occur
in iterated Boolean games, if the players’ strategies or abilities are similarly specified by temporal
formulas?

Sixth, all our notions of expressiveness naturally extend to game-theoretic solution concepts other
than Nash Equilibrium. Investigating some of these concepts is a natural line of future research.

Finally, in Section 6 we briefly dwelt on the topic of allocating tasks to agents so that a given prop-
erty is satisfied in all resulting equilibria. We hope that our study of expressiveness in equilibrium
has shed some light on this issue and the issue of to what extent the design of multi-agent systems
in practice can be simplified by providing “lean” temporal specifications of individual agents who
can be assumed to play strategies that together form an equilibrium.
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Christof Löding. 2012. Basics on Tree Automata. In Modern Applications of Automata Theory, D. D’Souza and P Shankar

(Eds.). IISc Research Monographs Series, Vol. 2. World Scientific, 79–110.
R. D. Luce and H. Raiffa. 1957. Games and Decisions. John Wiley & Sons.
Z. Manna and A. Pnueli. 1990. A Hierarchy of Temporal Properties. In Proceedings of the ACM Symposium on Principels

of Distributed Computing (PODC’90). ACM Press, 377–410.
M. Maschler, E. Solan, and S. Zamir. 2013. Game Theory. Cambridge U.P.
A. Mateescu and A. Salomaa. 1997. Formal Languages: An Introduction and a Synopsis. In Handbook of Formal Languages,

G. Rozenberg and A. Salomaa (Eds.). Vol. I: Word, Language, Grammar. Springer, Chapter 1.
D. Niwinski and I. Walukiewicz. 1998. Relating Hierarchies of Word and Tree Automata. In Annual Symposium on Theoret-

ical Aspects of Computer Science 1998 (STACS’98) (Lecture Notes in Computer Science (LNCS)), Vol. 1373. Springer,
320–331.

M. J. Osborne and A. Rubinstein. 1994. A Course in Game Theory. The MIT Press: Cambridge, MA.

ACM Transactions on Computational Logic, Vol. V, No. N, Article 1, Publication date: January 2019.



1:34 Gutierrez, Harrenstein, Perelli, and Wooldridge

D. Peled. 1997. On Projective and Separable Properties. Theoretical Computer Science 186 (1997), 135–157.
D. A. Peled and T. Wilke. 1997. Stutter-invariant temporal properties are expressible without next-time operator. Inform.

Process. Lett. 63, 5 (1997), 243–246.
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