
remote sensing

Article

MS-Faster R-CNN: Multi-Stream Backbone for Improved Faster
R-CNN Object Detection and Aerial Tracking from UAV Images

Danilo Avola 1,*, Luigi Cinque 1, Anxhelo Diko 1, Alessio Fagioli 1 , Gian Luca Foresti 2 , Alessio Mecca 1,
Daniele Pannone 1 and Claudio Piciarelli 2

����������
�������

Citation: Avola, D.; Cinque, L.; Diko,

A.; Fagioli, A.; Foresti, G.L.; Mecca,

A.; Pannone, D.; Piciarelli, C.

MS-Faster R-CNN: Multi-Stream

Backbone for Improved Faster

R-CNN Object Detection and Aerial

Tracking from UAV Images. Remote

Sens. 2021, 13, 1670. https://

doi.org/10.3390/rs13091670

Academic Editor: Pedro Melo-Pinto

Received: 17 March 2021

Accepted: 22 April 2021

Published: 25 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Computer Science, Sapienza University, 00198 Rome, Italy; cinque@di.uniroma1.it (L.C.);
diko@di.uniroma1.it (A.D.); fagioli@di.uniroma1.it (A.F.); mecca@di.uniroma1.it (A.M.);
pannone@di.uniroma1.it (D.P.)

2 Department of Mathematics, Computer Science and Physics, University of Udine, 33100 Udine, Italy;
gianluca.foresti@uniud.it (G.L.F.); claudio.piciarelli@uniud.it (C.P.)

* Correspondence: avola@di.uniroma1.it

Abstract: Tracking objects across multiple video frames is a challenging task due to several difficult
issues such as occlusions, background clutter, lighting as well as object and camera view-point
variations, which directly affect the object detection. These aspects are even more emphasized when
analyzing unmanned aerial vehicles (UAV) based images, where the vehicle movement can also
impact the image quality. A common strategy employed to address these issues is to analyze the
input images at different scales to obtain as much information as possible to correctly detect and
track the objects across video sequences. Following this rationale, in this paper, we introduce a
simple yet effective novel multi-stream (MS) architecture, where different kernel sizes are applied
to each stream to simulate a multi-scale image analysis. The proposed architecture is then used as
backbone for the well-known Faster-R-CNN pipeline, defining a MS-Faster R-CNN object detector
that consistently detects objects in video sequences. Subsequently, this detector is jointly used with
the Simple Online and Real-time Tracking with a Deep Association Metric (Deep SORT) algorithm to
achieve real-time tracking capabilities on UAV images. To assess the presented architecture, extensive
experiments were performed on the UMCD, UAVDT, UAV20L, and UAV123 datasets. The presented
pipeline achieved state-of-the-art performance, confirming that the proposed multi-stream method
can correctly emulate the robust multi-scale image analysis paradigm.

Keywords: UAV; object detection; tracking; deep learning; aerial images

1. Introduction

In recent years, Computer Vision has been involved in several, heterogeneous tasks
which include rehabilitation [1–5], virtual/augmented reality [6–10], deception detec-
tion [11–14], robotics [15–19], and much more. Focusing on the latter, one of the most
prominent applications involves the usage of drones (hereinafter, UAVs). Their increasing
use is related to their low price, making them affordable to a large number of users, and
their dimensions, which make them the perfect choice for several tasks. In particular, UAVs
do not require a landing strip, they are easy to transport, and they are easy to pilot. These
characteristics make UAVs the ideal devices for critical operations such as Search and
Rescue (SAR) [20–23], precision agriculture [24–28], and environmental monitoring [29–33].
Thanks to novel machine learning approaches such as Deep Learning (DL), these tasks can
be performed automatically or semi-automatically, with no or little human intervention
during the process. However, despite the excellent results obtained with DL, some tasks
such as image classification/detection and object tracking need further investigation due to
their complexity. For instance, if we consider the object tracking task, the latter is comprised
of two stages. The first stage is strictly related to object detection. In fact, the first step of a

Remote Sens. 2021, 13, 1670. https://doi.org/10.3390/rs13091670 https://www.mdpi.com/journal/remotesensing

https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-8111-9120
https://orcid.org/0000-0002-8425-6892
https://orcid.org/0000-0001-5305-1520
https://doi.org/10.3390/rs13091670
https://doi.org/10.3390/rs13091670
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs13091670
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs13091670?type=check_update&version=2

Remote Sens. 2021, 13, 1670 2 of 18

tracking algorithm is to find the object to track it within the acquired scene. The second
stage consists of continuing to find the same object in the subsequent frames.

Usually, tracking is performed in a video surveillance context, thus using static or
Pan-Tilt-Zoom (PTZ) cameras that have no or limited camera movements. Moving towards
UAVs, this assumption does not hold. With respect to PTZ cameras which have a fixed
mounting point, UAVs can move around a target and can change their flight height. In a
real use case scenario, e.g., a chase, usually only the change of flight height occurs and the
chased object is captured by the same point of view over time (e.g., from behind). In this
paper, we propose a novel DL model, namely, the Multi-Stream Faster R-CNN, to provide
reliable features at different flight heights for improving tracking by UAVs. A standard
Faster R-CNN [34] has, as a backbone, a Convolutional Neural Network (CNN) which
extracts features that will be used in both region proposal and classification stages. In the
proposed model, the CNN, which is usually based on a visual geometry group (VGG) [35]
architecture or a residual neural network (ResNet) [36], is replaced with a multi-stream
CNN network. The several streams work, i.e., train and evaluate, in parallel, and they differ
on the size of the used kernels, starting from 3× 3 up to 7× 7. By using this pyramidal
approach for the feature extraction process, it is possible to detect objects at different scales.
This last aspect creates UAV object detection and tracking the perfect application for the
proposed model. Once the object to track has been identified within the scene, the Deep
SORT [37] algorithm is used to track it across the frames. Extensive experiments were
performed on three state-of-the-art UAV tracking datasets, i.e., UAVDT [38], UAV123 [39],
and UAV20L [39]. In addition, to prove the effectiveness of the pyramidal approach, object
detection tests were performed on the UMCD dataset [40]. In both tracking and object
detection, results line with the state-of-the-art were achieved.

The remainder of this paper is structured as follows. In Section 2, the current literature
regarding tracking is discussed. In Section 3, our novel MS Faster R-CNN model is
presented. In Section 4, the results obtained in the performed experiments are discussed.
Finally, Section 5 concludes the paper.

2. Related Work

The widespread use of machine learning and the always better-performing deep
networks let the tracking accuracy increase year after year. Nowadays, the majority of
novel proposals are based on variations and different combinations of deep architectures. In
general, tracking consists of two important macro phases: the detection of the target(s) and
the tracking itself. This section shows some recent approaches dealing with object(s) and/or
person(s) detection for tracking purposes. Interested readers can find a recent survey in [41]
that explores the problem of tracking and segmentation of objects in video sequences in
general, subdividing the proposals by the level of supervision during the learning.

The work in [42] presents a strategy for improving the detection of targets, in this case
persons, considering the possible presence of occlusions. The proposal uses an automatic
detector to get all the possible targets with a confidence score. After this preliminary phase,
a deep alignment network aims at deleting the erroneous bounding boxes. Moreover, the
network also extracts appearance features. The results of the network are then combined
with a prediction model that, exploiting the previous frames, estimates the more probable
target location. All this information is used to create an association cost matrix and the data
association is done by the real-time Hungarian algorithm. To handle the occlusions, the
strategy relies on the updating of the appearance and motion information frame by frame.
If a target in the previous frames cannot be associated with a target in the current frame,
then it is taken into account for the next frames considering that an occlusion occurs.

The proposal in [43] estimates the locations of the previously detected targets, in
this case persons, by using the Kalman filter combined with temporal information. The
temporal information, in the form of tracklets, avoids the decrease of the Kalman filter
accuracy in the longterm. Any time a target is detected in the scene, its tracklet is updated
and the Kalman filter is reinitialized. In addition, only the confidence score of the last

Remote Sens. 2021, 13, 1670 3 of 18

tracklet is taken into account for the final prediction decision. The data association relies
on unified scores based on non-maximal suppression. For candidates that have not been
associated, they are assigned to the unassigned tracks by using Intersection over Union
with a fixed threshold. The other remaining candidates are then discarded.

The detection strategy presented in [44], instead, is applied to vehicle tracking. In this
case, the authors rely on the state-of-the-art YOLOv2 detector (presented in [45]), trained
on human-annotated frames. The proposed approach exploits the characteristics of the
calibrated camera, which allows the backprojection into a 3D space to construct better
models. The refinement of detection is based on a bottom-up clustering that fuses together
features during the loss computation and relies on histogram-based appearance models to
avoid misassignments between nearby targets. At the same time, the network also extracts
other useful visual semantic information, such as license plates, type of car, and other deep
convolutional features that are then exploited during the tracking.

Moving on to the field of UAV-based tracking, this is increasing its popularity thanks
to the decreasing costs of UAVs and the increasing quality of their built-in equipment.
However, working with UAV raises different challenges because the perspective of the
target in the frames can change even drastically, and also the distance is generally higher,
so that the target can occupy only a few pixels of the frame. For this reason, different kinds
of approaches have been proposed in literature.

The work in [46] presents a strategy devised for vehicle tracking. The detection
step relies on the R-CNN schema, trained on UAV videos. The first part of the strategy
consists of the extraction of the feature maps from all the UAV frames by using sharable
convolutional layers. The second part deals with the generation of a large number of
region proposals on the feature maps created before. This is done by exploiting the region
proposal network (RPN) module of the Faster R-CNN network by using a sliding window
mechanism. The final part is the training of the RPN and the detector modules with the
shared features. Considering that the region proposals are generated by the sliding window
mechanism, each of them can be considered as a possible candidate and can also be marked
for comparing them during training with labeled data.

The proposal in [47] exploits a multi-level prediction Siamese Network for tracking.
The multi-level prediction module aims at identifying the bounding boxes of the targets
in the frame. In this module, each prediction level is made up of three parallel branches.
The first branch is used to estimate the position of the target, also taking into account
the possible motion, while the second branch aims at predicting the target bounding box,
and the last one is devised to distinguish between different possible targets in the case of
cluttered scenes.

The work in [48] presents a strategy for multi-object tracking based on a novel Hi-
erarchical Deep High-Resolution network. This new network combines the Hierarchical
Deep Aggregation network and the High-Resolution Representation network, taking the
best properties from them and increasing the computational speed. The network aims
at obtaining a multi-scale high-resolution feature representation, which is used to train
a prediction network. The quality of the extracted features has been tested feeding three
different state-of-the-art networks, namely a CNN, a Cascade R-CNN, and a Hybrid task
Cascade. This last one, even if slower with respect to the ordinary CNN, demonstrates the
best detection accuracy.

3. Materials and Methods

To correctly track an object across multiple frames of a video sequence, a pipeline
composed of three steps is presented in this work. The proposed object tracking approach
is summarized in Figure 1. First, a novel Multi-Stream CNN extracts multi-scale features
from an object in a given frame, by leveraging its intrinsic architectural design. Second, the
extracted feature maps are used to obtain bounding boxes around the objects, according to
the Faster R-CNN methodology, where a backbone CNN generates features so that a region
proposal network and a region of interest pooling layer can enable a classifier to output the

Remote Sens. 2021, 13, 1670 4 of 18

required bounding boxes. Finally, the bounding boxes associated with the various objects
are matched together across subsequent frames, according to the Deep SORT [37] tracking
algorithm, so that an object can ultimately be followed throughout the video sequence.

… Faster R-CNN
Object Detection

Multi-Stream CNN feature extraction Object tracking

Figure 1. Overview of the proposed object tracking pipeline. Frames from a video sequence are resized to maintain the
original aspect ratio. The proposed Multi-Stream CNN analyzes the image through three separate streams, producing
feature maps on different details. The maps are then used by the Faster R-CNN object detector, while tracking is finally
achieved through the Deep SORT algorithm.

3.1. Multi-Stream CNN Feature Extractor

The core of the proposed approach is the novel multi-stream CNN where the typical
image scaling approach, used to learn object characteristics at different scales, is substituted
by parallel convolutional streams. Intuitively, given an input image containing an object,
each stream analyzes different details by exploiting a specific kernel size during its convo-
lution operations. As a consequence, each filter produced by a specific convolution will
capture aspects that would otherwise be missed in a different stream due to the distinct ker-
nel employed—reproducing, to an extent, the multiple-scale input image analysis rationale.
As a matter of fact, this behavior can be observed by analyzing the convolution operation.
Formally, given an input image I, and a pixel inside this image identified by I(x, y), where
x and y correspond to the pixel coordinates; the filtered pixel f (x, y), obtained by applying
the kernel, is computed through the following equation:

f (x, y) = ω ∗ I(x, y) =
i

∑
δx=−i

j

∑
δy=−j

ω(δx, δy)I(x + δx, y + δy), (1)

where ω corresponds to the kernel weights; δx and δy indicate the x and y coordinates
inside the kernel, as well as the neighborhood of the starting pixel, while i=j={3, 5, 7}
represents the kernel size. From (1), it is straightforward to see that, applying multiple
convolution operations with different kernel sizes to a given image (i.e., the proposed
streams) results in substantially dissimilar output filters due to the employed kernel size
differences. An example showing the different kernel size outputs along the three streams
is reported in Figure 2.

Concerning the MS CNN implementation, the detailed architecture is resumed in
Figure 3. In detail, starting from a resized frame size to maintain the original aspect ratio
as well as improve performances, three distinct parallel streams analyze the image through
different kernel sizes k to ultimately produce feature maps with equal shape. Specifically,
stream 1 contains 10 convolutional layers with kernel size of 3× 3, and four max pooling
operations are inserted after every pair of convolutions (i.e., after layer 2, 4, 6, and 8).
Stream 2 is composed of nine convolutional layers with a kernel shape of 5× 5, and a tenth
convolution with k = 3 is employed to reach the correct feature map size. Furthermore,
four max pooling layers are inserted after the second, fifth, seventh and ninth convolutional
layers to correctly reduce the image size. Lastly, stream 3 includes eight convolutions with

Remote Sens. 2021, 13, 1670 5 of 18

kernel size of 7 × 7, as well as a ninth layer with k = 3 for the final input reduction,
similarly to stream 2. In this case, four max pooling layers are implemented after the
third, sixth, seventh and eighth convolutions to, again, reach the correct feature map size.
Concerning the number of filters, starting from a size of 64, they are doubled after each max
pooling operation (i.e., 64, 128, 256, 512). After the last max pool, instead, a filter bottleneck
is applied by implementing convolutions with 128 channels to reduce the number of
parameters produced. Finally, since the three streams produce similar sized outputs, the
feature maps are concatenated into a single vector representation v, corresponding to the
proposed MS CNN backbone output inside the Faster R-CNN pipeline.

(a) (b) (c)

Figure 2. Filter examples derived from different streams of the proposed pipeline. Kernels of size 3× 3, 5× 5, and 7× 7,
applied to the same image, are shown in (a–c), respectively.

input frame

k=5 k=5 k=5 k=5 k=3

k=3 k=3 k=3 k=3 k=3

k=7 k=7 k=7 k=7 k=3

𝑣

Stream 1

Stream 2

Stream 3

feature maps

convolutional layer

max pooling layer

concatenation

64

64

64

128

128

128

256

256

256

512 128

512 128

512 128

384

…

Figure 3. Detailed multi-stream CNN implementation. Each stream employs a different kernel size to analyze different
image characteristics along the stream. A filter bottleneck is applied to all streams to reduce the number of parameters.

3.2. Object Detection

The Faster R-CNN pipeline, summarized in Figure 4, is employed to detect objects
inside a given frame. Specifically, starting from feature maps extracted by a backbone
CNN, this method first employs a region proposal network to estimate bounding boxes
(i.e., proposed regions) and whether or not a specific region contains a relevant object;
second, it implements a ROI pooling layer that merges the extracted feature maps with the
bounding boxes proposals, and enables a classifier to output both the object class and an
appropriate bounding box containing it.

Remote Sens. 2021, 13, 1670 6 of 18

feature maps

…

RPN

ROI pooling

convolution
dense layer
class detection
box regression

feature map sliding

proposed regions

𝑘 anchor boxes …

Figure 4. Faster R-CNN RPN and ROI pooling scheme.

Concerning the RPN component, it creates bounding boxes proposals by sliding a
small n× n window on the extracted features, and mapping them into a lower-dimensional
feature vector (i.e., 256). This vector is subsequently fed to two parallel fully-connected
layers acting as a box-regressor layer (i.e., reg), to encode the bounding boxes center
coordinates, width and height, and a box-classification layer (i.e., cls), to indicate that a box
contains a relevant object. Furthermore, the sliding window generates proposals, called
anchors, accounting for several scales and ratios, totalling k = 9 proposals for each spatial
location. Therefore, the reg and cls layers contain 4k and 2k elements, respectively, while,
for each feature map, there will be W × H × k proposals, where W × H correspond to the
map size. Notice that, as the original implementation, the sliding window has a size of
n = 3, while reg and cls layers are shared across all spatial locations analyzed by the sliding
window to retain the improved performances.

Regarding the ROI pooling and final object detection, starting from the feature maps
extracted by the backbone CNN (i.e., the proposed multi-stream network), and the pro-
posals computed by the RPN, an adaptive pooling layer is applied to correctly merge the
two inputs into a single vector. Subsequently, the pooled inputs are analyzed through two
fully-connected layers, whose output is fed to two siblings classifiers to obtain the final
bounding box and object class prediction for the input frame, respectively.

3.3. Multi-Stream Faster R-CNN Loss Functions

In accordance with [34], the presented methodology can be trained in an end-to-end
fashion since, in this work, relevant modifications were only applied to the backbone CNN
used to extract features from an input image. More accurately, the Faster R-CNN pipeline
employs a multi-task loss function associated with the bounding box regression and object
classification tasks. Formally, as per the definition by [34], for a given mini-batch, the
function to be minimized is computed according to the following equation:

L({pi}, {ti}) =
1

Ncls
∑

i
Lcls(pi, p∗i) + λl

1
Nreg

∑
i

p∗i Lreg(ti, t∗i), (2)

where i indicates the i-th anchor of a mini-batch; pi and p∗i represent the predicted and
ground truth probability of the anchor being associated with a relevant object; ti and t∗i are
the generated and ground truth vectors containing the parameterized bounding box coor-
dinates (i.e., center x and y, width and height); Ncls and Nreg correspond to normalization
terms based on the batch size and the number of proposed anchors, respectively, while λl
is a balancing parameter to ensure both losses have similar weights. Moreover, Lcls is a

Remote Sens. 2021, 13, 1670 7 of 18

binary cross-entropy loss function, while Lreg is a regression loss using the robust function
defined in [49], namely:

Lreg(ti, t∗i) = ∑
i∈{x,y,w,h}

smoothL1(ti − t∗i), (3)

where the smooth function is computed as follows:

smoothL1(x) =

{
0.5x2 if |x| < 1;
|x| − 0.5 otherwise.

(4)

Finally, concerning the bounding box regression, we employed the same parameteri-
zation defined in [50], described via the following equations:

tx = (x− xa)/wa, ty = (y− ya)/ha,

tw = log(w/wa), th = log(h/ha),

t∗x = (x∗ − xa)/wa, t∗y = (y∗ − ya)/ha,

t∗w = log(w∗/wa), t∗h = log(h∗/ha),

(5)

where x, y, w, and h correspond to the bounding box center coordinates, width, and height,
respectively, while the variables x, xa, and x∗ are associated with the predicted bounding
box, proposed anchor bounding box, and ground truth bounding box, respectively. The
same reasoning applies to the other parameters (i.e., y, w, and h).

3.4. Tracking

Once the MS Faster R-CNN can correctly detect objects inside a video stream, the Deep
SORT [37] algorithm is exploited as is to achieve real-time tracking capabilities from UAV
images. Specifically, the Deep SORT procedure exploits visual appearances extrapolated
from the bounding boxes, in conjunction with a recursive Kalman filtering and frame-by-
frame data association strategy to describe object tracks across a video sequence. The Deep
SORT flowchart is summarized in Figure 5.

Matching
Cascade

Unmatched
Tracks

Unmatched
Detections

Matched
Tracks

IOU
Match

Unmatched
Tracks

Unmatched
Detections

Matched
Tracks

Detections

Kalman Filter
state estimation

Confirmed

Unconfirmed

Confirmed

Unconfirmed

> max_age

< max_age

Deleted

Tracks

New Tracks
(Uncofirmed)

Kalman Filter Update

3 consecutive hits: Uncofirmed à Confirmed

Figure 5. DeepSort tracking algorithm flowchart.

In detail, a tracked object is described via the 8-dimensional space (u, v, w, h, ẋ, ẏ, ẇ, ḣ),
where u, v, w, and h represent, respectively, the bounding box center coordinates, width
and height, while ẋ, ẏ, ẇ, and ḣ indicate the corresponding velocities. Moreover, to

Remote Sens. 2021, 13, 1670 8 of 18

correctly track an object across multiple frames using this space, the Deep SORT algorithm
implements a weighted sum of two distinct metrics inside a matching cascade strategy:
the Mahalanobis distance D1, to provide short-term locations predictions based on a given
object movement; and the cosine distance D2, to embed appearance information into the
tracker and handle long-term occlusions. The association between the current Kalman state
and a new measurement is then optimally solved via the Hungarian algorithm, from which
the Kalman state is updated for usage in the subsequent frame. To provide a clear overview
of how the Hungarian algorithm resolves the assignment problem, its pseudocode for a
general assignment problem is provided in Algorithms 1 and 2.

Algorithm 1 Hungarian Algorithm

1: function HUNGARIAN ALGORITHM
2: Input: BG = Bipartite Graph {V, U, E}, C = n× n matrix containing edge costs
3: Output: M = a complete matching
4: M, α, β← init()
5: for i← 1, n do
6: M, α, β← stage()
7: end for
8: return M
9: end function

10:
11:
12: function INIT
13: Input: BG, C
14: Output M, α, β
15: M← ∅
16: for i← 1, |V| do
17: αi ← 0
18: end for
19:
20: for i← 1, |U| do
21: βi ← mini(cij)
22: end for
23: return M, α, β
24: end function

Formally, for a given i-th track and j-th bounding box, the weighted association sum
is computed as follows:

ai,j = λaD1(i, j) + (1− λa)D2(i, j), (6)

where λa is an hyperparameter regulating the influence of each loss. Finally, the Maha-
lanobis distance D1 and cosine distance D2 are defined as:

D1(i, j) = (tj − zi)
TS−1

i (tj − zi),

D2(i, j) = min{(1− rT
j r(i)k |r

(i)
k ∈ Rk},

(7)

where tj refers to the j-th bounding box detection; zi represents the i-th track projection
onto the measurement space Si; rj is an appearance descriptor for the j-th box, while

Rk = {r
(i)
k }

Lk
k=1 is a gallery containing the last Lk associated descriptors of every track k.

Remote Sens. 2021, 13, 1670 9 of 18

Algorithm 2 Hungarian Algorithm (continued)

1: function STAGE
2: Input: M, α, β, BG, C
3: Output: M, α, β
4:
5: for k in each unmatched node in V do
6: Set k as the root of a Hungarian tree
7: Create the Hungarian tree rooted in k using the equality subgraph
8: I∗ ← each node index from V contained in the tree rooted in k
9: J∗ ← each node index from U contained in the tree rooted in k

10: if ∃ an augmenting path then
11: M← (M− P)∪ (P−M) where P is the set of edges in the augmenting path
12: break
13: else
14: θ = 1

2 mini∈I∗,j∈J∗(cij − αi − β j)

15: α←
{

αi + θ i ∈ I∗
αi − θ i /∈ I∗

16: β←
{

βi − θ j ∈ J∗
βi + θ j /∈ J∗

17: end if
18: end for
19: return M, α, β
20: end function

4. Experimental Results

This section presents the results obtained with the proposed MS model in both object
detection and tracking. Firstly, the used datasets are described. Secondly, implementation
details, together with the obtained results, are discussed.

4.1. Datasets

The data used for this work was taken from four well-known benchmarks in UAV ob-
ject detection and tracking, namely UMCD [40], UAVDT [38], UAV123 [39], and UAV20L [39]
captured on UAV platforms. A total number of 273 sequences was used, which consists
of more than 190,000 frames specifically designed for three of the most important tasks of
Computer Vision like object detection, single object tracking, and multiple object tracking.
The data are also rich in task specific attributes that give the possibility to experiment in
different conditions like different altitudes, occlusion, camera motion, background clutter,
and more.

4.1.1. UAVDT

The UAVDT dataset is a benchmark dataset focused on complex scenarios containing
100 sequences with more than 80,000 frames for three fundamental Computer Vision tasks:
Object Detection (DET), single object tracking (SOT), and multiple object tracking (MOT).
This UAV dataset represents 14 kinds of different task based attributes. For DET tasks, the
defined attributes are three: vehicle-category, vehicle-occlusion, and out-of-view. In case
of MOT, there are also three defined attributes, namely weather condition (WC), flying
altitude (FA) and camera view (CW). Finally, for SOT, there are eight defined attributes:
background clutter (BC), camera rotation (CR), Object rotation (OR), small object (SO),
illumination variation (IV), object blur (OB), scale variation (SV), and large occlusion (LO).

4.1.2. UAV123 and UAV20L

The UAV123 is a benchmark dataset for low altitude UAV target tracking. The dataset
comes with 123 video sequences and more than 110,000 frames suitable for short-term

Remote Sens. 2021, 13, 1670 10 of 18

tracking and also for long-term tracking (UAV20L). Based on their characteristics, videos
are organized in nine attributes such as: aspect ratio change (ARC), background clutter
(BC), camera motion (CM), fast motion (FM), full occlusion (FO), illumination variation
(IV), low resolution (LR), out-of-view (OV), partial occlusion (POC), similar object (SO),
scale variation (SV), and viewpoint change (VC).

4.1.3. UMCD

The UMCD is a recently released dataset used for testing UAV mosaicking and change
detection algorithms. It is comprised of 50 challenging videos acquired at very low altitudes,
i.e., between 6 and 15 m, on different environments, such as dirt, countryside, and urban.
The dataset contains several objects within the several scenes, e.g., persons (both single
and in group), cars, boxes, suitcases, and more. These characteristics make this dataset the
ideal choice for testing the proposed model on the object detection task from UAV.

To provide a better overview of the used datasets, their main characteristics are
resumed in Table 1, while samples taken from each collection are reported in Figure 6. As
shown, each dataset presents several unique features that allow for exhaustively testing
UAV tracking algorithms.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6. Example images from the used datasets. The first row depicts 3 cases from UAVDT datasets, namely, a daylight
urban shot (a), a night urban shot (b), and a daylight urban shot with Nadir view (c). The second row shows 3 examples from
UAV123/20L, namely, a daylight urban shot (d), a daylight shot over the sea (e), and a daylight shot in dirt environment
(f). Finally, the last row depicts 3 images from the UMCD dataset acquired with a Nadir view in different environments,
namely, countryside (g), dirt (h), and urban (i).

Remote Sens. 2021, 13, 1670 11 of 18

Table 1. Summary table of the exploited datasets.

Dataset Task (s) # Sequences #Frames (Approx)

UAVDT [38]
Object Detection

Single Object Tracking
Multiple Object Tracking

100 80,000

UAV123 [39]
UAV20L [39]

Short-Term Tracking
Long-Term Tracking 123 110,000

UMCD [40] Object Detection
(Very Low Altitudes)

50
(challenging) 48,765

Used
in this work

Object Detection
Object Tracking 273 more than 190,000

4.2. Evaluation Metrics

Concerning the object detection task, the standard mean Average Precision (mAP) is
used, and only the frames in which an object is fully visible are considered.

Regarding the tracking task, we use Precision and Success Rate as metrics for quanti-
tative analysis of the performance based on the one-pass evaluation (OPE) process. This
evaluation method consists of running trackers throughout a test sequence with initializa-
tion from the manually annotated ground-truth position in the first frame and reporting
the precision plot or the success rate plot. The tracking precision is calculated in each frame
by the center location error (CLE), which is defined as the Euclidean distance between the
center location of the tracked target and the manually labeled ground truth. The precision
plot measures the overall performance of the tracker by showing the percentage of frames
whose estimated CLE is within a given maximum threshold. Success rate for trackers
is measured by the bounding box overlap. Given the tracked bounding box RT and the
manually annotated bounding box RG, the success rate is calculated as the intersection
over union of RT and RT as follows:

IoU =
|RT ∩RG|
|RT ∪RG|

(8)

To measure the overall performance on a sequence of frames, the number of successful
frames where IoU is higher than a given maximum threshold is counted and the success
rate plot is used to show the percentage or the ratio of successful frames. The final score is
calculated as the AUC to represent the overall tracking performance based on success rate.

4.3. Implementation Details

Considering the used framework and hardware, the proposed method is implemented
in Pytorch [51], and the machine used for the experiments consisted of a AMD Ryzen 1700
processor, 16 GB DDR4 RAM, a 500 GB solid state disk, and an Nvidia RTX 2080 GPU. As
hyper-parameters, a learning rate of 0.001, together with AdamW optimizer, were used.

4.4. Object Detection Performance Evaluation

For the object detection task, the proposed model was compared with the standard Faster
R-CNN. Both of the models were fine-tuned on the object classes contained inside the UMCD
dataset. This step was necessary since some classes, such as tires, bags, suitcases, and so on,
are not present within the datasets on which well-known models are usually pre-trained (e.g.,
VOC, ImageNet, etc.). Even in the case that the class is present, it is not acquired from a UAV
perspective, hence an object may be easily misclassified. In Figure 7, some examples of object
detection on the UMCD dataset are shown. While in Figure 7a,b the two models perform very
similarly, it is noticeable that, in Figure 7c, MS overcomes the standard Faster R-CNN. As it is
possible to see, the latter detects the shadow of the person as the person itself. Concerning the
overall performance, we obtained a mAP of 97.3% with MS and a mAP of 95.6% with Faster
R-CNN on the used dataset. Since the objects present within the videos are acquired by using

Remote Sens. 2021, 13, 1670 12 of 18

a Nadir view, the proposed pyramidal approach allows the extraction of more reliable feature
vectors.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7. Some comparison images resulting from the object detection task. Results from UMCD, UAVDT, and UAV123 are
shown, respectively, on the first, second, and third row. The red, green, orange, and blue bounding boxes are generated,
respectively, by the proposed MS model, standard Faster R-CNN, Fast R-CNN, and simple R-CNN algorithms. The elements
to detect within the several scenes are: a vehicle (a,d–g), a person (c,e–g,i), a suitcase (b), and a boat (h).

In addition, to provide a complete overview concerning the object detection, further
experiments were performed using different R-CNN models and datasets. In detail, for the
former, we added to our comparisons the base R-CNN [50] and the Fast R-CNN [49], while,
for the latter, we have used UAV123 and UAVDT again. Notice that these two datasets are
not as challenging as the UMCD for the object detection task. This is mainly due to the fact
that all the objects in the UMCD collection are acquired with a Nadir view, thus making it
difficult to detect objects especially at higher flight altitudes. In fact, in some images, the
elements present within the scene have a silhouette as if they were acquired by a standard
static camera. This means that it is easier to perform their detection with well-known object
detectors. This fact is noticeable from Figure 7d–i, where only the proposed model correctly
detects the elements within the analyzed scene.

4.5. Tracking Performance Evaluation

The proposed method is compared with 16 state-of-the-art deep-based trackers.
These trackers are, namely, DSARCF [52], ECO-HC [53], CSRDCF [54], STRCF [54], Sta-
ple_CA [55], SRDCF [56], SRDCFdecon [57], BACF [58], KCC [59], SAMF_CA [55], fDSST [60],
SAMF [61], DSST [62], KCF [63], DCF [63], and DRCF [64]. As mentioned in Section 4.2,
the trackers are evaluated with the AUC on the Success Plot and the CLE for the Precision
plot. For the latter, the common 20 pixels threshold is used.

Remote Sens. 2021, 13, 1670 13 of 18

Precision and Success plots are shown in Figure 8. It is possible to observe that the
proposed method is in line with the current state-of-the-art in both plots. More specifically,
MS (i.e., “Ours” in the plots) outperforms all the methods in the UAVDT precision plot by
achieving a precision of 0.710 , followed by DRCF (0.703) and Staple_CA(0.695). This is
again thanks to the MS pyramidal approach that allows for correctly handling the several
altitudes, i.e., low (10–30 m), medium (30–70 m) and high (>70 m), of the UAVDT dataset.
Concerning UAV123 and UAV20L precision plots, MS is places in the second position with
a precision of 0.656 and 0.587, respectively, following DRCF in both cases (0.662 and 0.595)
and followed by CSRDCF (0.643) in the UAV123 dataset and BACF (0.584) in the UAV20L
dataset.

DRCF [0.662]
Ours [0.656] DRCF [0.703]

Ours [0.710] DRCF [0.595]
Ours [0.587]

Ours [0.475]
DRCF [0.481] Ours [0.430]

DRCF [0.422]Ours [0.445]
DRCF [0.452]

Figure 8. Tracking results obtained in the experiments. In the first row, Precision plots are provided, while, in the second
row, the Success plot are shown. The results obtained by the 16 tracker, which we used for comparison, are taken from [64].

Regarding the success plots, MS overcomes the competitors on the UAV20L dataset.
In detail, it achieves a success rate of 0.430, followed by DRCF (0.422) and BACF (0.415).
Instead, on UAV123 and UAVDT, the proposed MS model is the second best tracker with a
success rate of 0.475 and 0.445, respectively, following DRCF with scores of 0.481 and 0.452,
respectively. These success plots highlighted that our model is the best for tracking an
object in long sequences. This is amenable to the pyramidal feature extraction that allows
for better handling the changes in flight altitude.

Finally, in Figure 9, the Frames per Second (FPS) obtained in UAVDT experiments are
depicted. According to [64], these results were obtained by running the several algorithms
on CPU. Hence, to provide a consistent comparison, we executed our MS algorithm on CPU.
As it is possible to observe, our model places itself in the last position. This is amenable
to mainly two factors. The first is that the base model we used, i.e., the Faster R-CNN, is
not the fastest object detection model [65]. Despite this, it has been chosen as a starting
point since it is one of the most accurate object detectors [65]. Nevertheless, it is possible
to speed up the base model by limiting the number of proposed regions at the expense
of the accuracy. Let us consider a standard Faster R-CNN with a ResNet as a backbone.
Usually, the standard RPN outputs 300 region proposals within which the classification
is performed. If we limit these proposals to 50, it is possible to retain up to 96% of the
accuracy, but the running time will be reduced by a factor of 3. The MS approach with the
lower number of proposals is reported in Figure 9 as Ours_RPN@50. The second factor

Remote Sens. 2021, 13, 1670 14 of 18

of why our model has low FPS when running on CPU is the used CPU itself. In fact,
authors in [64] employed an Intel i7-8700k processor. The latter has a base clock frequency
of 3.70 GHz, while the processor used in our experiments has a base clock frequency of
3.0 GHz. In addition, the first generation of AMD Ryzen processors has lower performance
in single threading with respect to Intel ones, thus resulting in the reported results.

Figure 9. FPS obtained with each tracker on UAVDT dataset. On top of each bar, the FPS for the corresponding tracker is
reported. To provide a visually correct data, the latter has been log-scaled before plotting.

4.6. Ablation Study

In this section, an ablation study is conducted to highlight the significance and the
effectiveness of the several streams composing the proposed model. As a baseline, we can
consider the MS model composed by only the first stream, i.e., stream 1. As described in
Section 3.1, this stream is composed by 10 3× 3 convolutional layers and four max pooling
in between each pair of convolutions. Since streams 2 and 3 are removed, the feature
concatenation layer is also removed from the model. It is possible to notice that, in this way,
the proposed model resembles a standard CNN. Due to the small number of levels, we
have a significant drop in performance. Regarding the object detection task, this baseline
model obtains a mAP of 58.7% on the UMCD dataset, while, for the tracking task, it places
last in all the precision and success plots.

By using the same approach but using only stream 2 or stream 3, the obtained results
are even worse. For the model using only the stream 2, i.e., the stream with 5× 5 con-
volution filters, we obtained an mAP of 53.5% on the UMCD dataset and, again, the last
placement on both precision and success plots. For the model using only the stream 3, i.e.,
the stream having 7× 7 convolution filters, a mAP of 52.8% was obtained on the UMCD
and, like the other two reduced models, the last placement on both precision and success
plots. This is amenable to the size of the filters, since filters with a higher size than 3× 3
allow the extraction of less fine-grained features, thus leading to the above-mentioned
results. Moreover, without adding a padding layer, the number of extracted features will

Remote Sens. 2021, 13, 1670 15 of 18

be smaller with respect to the model having only stream 1. This is due to the fact that, with
bigger filters, the image will be analyzed faster.

Next, we tried to use streams in groups of 2, i.e., stream 1 and 2, stream 1 and 3, and
stream 2 and 3. This approach has led to some improvements in both object detection and
tracking. In detail, in the object detection task, we obtained the following mAP values:
75.2% with stream 1 and 2, 72% with streams 1 and 3, and 71.3% with streams 2 and 3. The
best result is the one obtained with the group containing stream 1. This is, again, due to the
most fine-grained features extracted with the 3× 3 sized kernels. In addition, concerning
precision and success plots, some improvements are obtained. In detail, by coupling the
streams, our model ranges between the third and the fourth position from the bottom if we
consider the plots in Figure 8.

In conclusion, to provide the highest results in terms of mAP, precision, and success
plots, all three streams of the model must be used to extract the most reliable features. To
provide the ablation study results clearly, the latter are resumed in Table 2.

Table 2. Summarization of the results obtained in the ablation study.

Streams mAP Precision Success
UMCD UAV123 UAVDT UAV20L UAV123 UAVDT UAV20L

Stream 1 58.3% 0.153 0.146 0.110 0.111 0.098 0.135
Stream 2 53.5% 0.112 0.097 0.092 0.074 0.071 0.067
Stream 3 52.8% 0.105 0.098 0.088 0.072 0.069 0.064

Streams 1, 2 75.2% 0.452 0.568 0.392 0.273 0.295 0.238
Streams 1, 3 72.0% 0.443 0.555 0.386 0.264 0.245 0.227
Streams 2, 3 71.3% 0.438 0.513 0.381 0.259 0.223 0.215

Full Model 97.3% 0.656 0.710 0.587 0.475 0.445 0.430

5. Conclusions

In recent years, UAVs, due to their low cost, small size, and ease of piloting, have been
increasingly used in different tasks such as SAR operations, precision agriculture, object
detection, and tracking. Focusing on the latter, the detection and the tracking of an object
within the environment is strongly influenced by the UAV flight height, especially if it
changes continuously during the acquisition. In this paper, we presented a novel object
detection model designed specifically for UAV tracking. The model, called Multi-Stream
Faster R-CNN, is composed by a multi-stream CNN as a backbone, and by the standard
RPN of the Faster R-CNN. The backbone uses a pyramidal approach, i.e., different streams
with different kernel sizes, to extract features at different scales, allowing for efficiently
detecting objects at different flight heights.

Extensive experiments were performed by comparing the proposed method with
several R-CNN models for the object detection task, and with different tracking methods
on well-known state-of-the-art UAV datasets for the tracking task. With respect to the
object detection task, our MS model was compared with the standard R-CNN, Fast R-CNN,
and Faster R-CNN to highlight the improved precision in detecting elements at different
scales. Object detection experiments were mainly performed on the challenging UMCD
dataset, which comprises elements acquired with a Nadir view, thus allowing to test the
multiscale approach effectively. Regarding tracking experiments, these were performed by
comparing the proposed MS with 16 state-of-the-art tracking methods on three well-known
UAV tracking datasets, namely UAV123, UAV20L, and UAVDT, where in-line performances
with the literature were obtained for both precision and success metrics.

Despite the standard Faster R-CNN model (and, consequently, the proposed MS)
being one of the most accurate object detectors, it is not the fastest. Although it is possible
to speed up the detection by limiting the number of region proposals at the expense of
the precision, our future work aims to improve the speed without penalizing the model
accuracy by focusing either on the base model or on the region proposal.

Remote Sens. 2021, 13, 1670 16 of 18

Author Contributions: Conceptualization, D.A., A.F. and D.P.; methodology, D.A., A.F. and D.P.;
formal analysis, D.A., A.F. and D.P.; investigation, A.F. and D.P.; writing—original draft preparation,
D.A., A.D., A.F., A.M. and D.P.; writing—review and editing, D.A., L.C., A.D., A.F., G.L.F., A.M., D.P.
and C.P. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: This work was partially supported by both the ONRG project N62909-20-1-2075
“Target Re-Association for Autonomous Agents” (TRAAA) and MIUR under grant “Departments of
Excellence 2018–2022” of the Department of Computer Science of Sapienza University.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Avola, D.; Cinque, L.; Pannone, D. Design of a 3D Platform for Immersive Neurocognitive Rehabilitation. Information 2020,

11, 134. [CrossRef]
2. Manca, M.; Paternò, F.; Santoro, C.; Zedda, E.; Braschi, C.; Franco, R.; Sale, A. The impact of serious games with humanoid robots

on mild cognitive impairment older adults. Int. J. Hum. Comput. Stud. 2021, 145, 102509. [CrossRef]
3. Avola, D.; Cinque, L.; Foresti, G.L.; Marini, M.R.; Pannone, D. VRheab: A fully immersive motor rehabilitation system based on

recurrent neural network. Multimed. Tools Appl. 2018, 77, 24955–24982. [CrossRef]
4. Ladakis, I.; Kilintzis, V.; Xanthopoulou, D.; Chouvarda, I. Virtual Reality and Serious Games for Stress Reduction with Application

in Work Environments. In Proceedings of the 14th International Joint Conference on Biomedical Engineering Systems and
Technologies–Volume 5: HEALTHINF, Online Streaming, 11–13 February 2021; pp. 541–548.

5. Torner, J.; Skouras, S.; Molinuevo, J.L.; Gispert, J.D.; Alpiste, F. Multipurpose virtual reality environment for biomedical and
health applications. IEEE Trans. Neural Syst. Rehabil. Eng. 2019, 27, 1511–1520. [CrossRef] [PubMed]

6. Avola, D.; Cinque, L.; Foresti, G.L.; Mercuri, C.; Pannone, D. A Practical Framework for the Development of Augmented Reality
Applications by Using ArUco Markers. In Proceedings of the 5th International Conference on Pattern Recognition Applications
and Methods, Rome, Italy, 24–26 February 2016; pp. 645–654.

7. Ikbal, M.S.; Ramadoss, V.; Zoppi, M. Dynamic Pose Tracking Performance Evaluation of HTC Vive Virtual Reality System. IEEE
Access 2021, 9, 3798–3815. [CrossRef]

8. Blut, C.; Blankenbach, J. Three-dimensional CityGML building models in mobile augmented reality: A smartphone-based pose
tracking system. Int. J. Digit. Earth 2021, 14, 32–51. [CrossRef]

9. Choy, S.M.; Cheng, E.; Wilkinson, R.H.; Burnett, I.; Austin, M.W. Quality of Experience Comparison of Stereoscopic 3D Videos
in Different Projection Devices: Flat Screen, Panoramic Screen and Virtual Reality Headset. IEEE Access 2021, 9, 9584–9594.
[CrossRef]

10. Izard, S.G.; Méndez, J.A.J.; Palomera, P.R.; García-Peñalvo, F.J. Applications of virtual and augmented reality in biomedical
imaging. J. Med. Syst. 2019, 43, 1–5.

11. Avola, D.; Cinque, L.; Foresti, G.L.; Pannone, D. Automatic Deception Detection in RGB Videos Using Facial Action Units. In
Proceedings of the 13th International Conference on Distributed Smart Cameras, Trento, Italy, 9–11 September 2019; pp. 1–6.

12. Khan, W.; Crockett, K.; O’Shea, J.; Hussain, A.; Khan, B.M. Deception in the eyes of deceiver: A computer vision and machine
learning based automated deception detection. Expert Syst. Appl. 2021, 169, 114341. [CrossRef]

13. Avola, D.; Cinque, L.; De Marsico, M.; Fagioli, A.; Foresti, G.L. LieToMe: Preliminary study on hand gestures for deception
detection via Fisher-LSTM. Pattern Recognit. Lett. 2020, 138, 455–461. [CrossRef]

14. Wu, Z.; Singh, B.; Davis, L.; Subrahmanian, V. Deception detection in videos. In Proceedings of the AAAI Conference on Artificial
Intelligence, New Orleans, LA, USA, 2–7 February 2018; Volume 32.

15. Avola, D.; Cinque, L.; Foresti, G.L.; Pannone, D. Visual Cryptography for Detecting Hidden Targets by Small-Scale Robots. In
Proceedings of the Pattern Recognition Applications and Methods, Funchal, Madeira, Portugal, 16–18 January 2019; pp. 186–201.

16. Roy, S.; Hazera, C.T.; Das, D.; Rahman Pir, R.M.S.; Ahmed, A.S. A computer vision and artificial intelligence based cost-effective
object sensing robot. Int. J. Intell. Robot. Appl. 2019, 3, 457–470. [CrossRef]

17. Avola, D.; Cinque, L.; Foresti, G.L.; Pannone, D. Homography vs similarity transformation in aerial mosaicking: Which is the
best at different altitudes? Multimed. Tools Appl. 2020, 79, 18387–18404. [CrossRef]

18. Manzanilla, A.; Reyes, S.; Garcia, M.; Mercado, D.; Lozano, R. Autonomous Navigation for Unmanned Underwater Vehicles:
Real-Time Experiments Using Computer Vision. IEEE Robot. Autom. Lett. 2019, 4, 1351–1356. [CrossRef]

19. Viejo, C.G.; Fuentes, S.; Howell, K.; Torrico, D.; Dunshea, F.R. Robotics and computer vision techniques combined with non-
invasive consumer biometrics to assess quality traits from beer foamability using machine learning: A potential for artificial
intelligence applications. Food Control 2018, 92, 72–79. [CrossRef]

20. Lauterbach, H.A.; Koch, C.B.; Hess, R.; Eck, D.; Schilling, K.; Nüchter, A. The Eins3D project—Instantaneous UAV-Based 3D
Mapping for Search and Rescue Applications. In Proceedings of the 2019 IEEE International Symposium on Safety, Security, and
Rescue Robotics (SSRR), Würzburg, Germany, 2–4 September 2019; pp. 1–6.

http://doi.org/10.3390/info11030134
http://dx.doi.org/10.1016/j.ijhcs.2020.102509
http://dx.doi.org/10.1007/s11042-018-5730-1
http://dx.doi.org/10.1109/TNSRE.2019.2926786
http://www.ncbi.nlm.nih.gov/pubmed/31283482
http://dx.doi.org/10.1109/ACCESS.2020.3047698
http://dx.doi.org/10.1080/17538947.2020.1733680
http://dx.doi.org/10.1109/ACCESS.2021.3049798
http://dx.doi.org/10.1016/j.eswa.2020.114341
http://dx.doi.org/10.1016/j.patrec.2020.08.014
http://dx.doi.org/10.1007/s41315-019-00107-1
http://dx.doi.org/10.1007/s11042-020-08758-0
http://dx.doi.org/10.1109/LRA.2019.2895272
http://dx.doi.org/10.1016/j.foodcont.2018.04.037

Remote Sens. 2021, 13, 1670 17 of 18

21. Ruetten, L.; Regis, P.A.; Feil-Seifer, D.; Sengupta, S. Area-Optimized UAV Swarm Network for Search and Rescue Operations. In
Proceedings of the 2020 10th Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas, NV, USA,
6–8 January 2020; pp. 613–618.

22. Alotaibi, E.T.; Alqefari, S.S.; Koubaa, A. Lsar: Multi-uav collaboration for search and rescue missions. IEEE Access 2019,
7, 55817–55832. [CrossRef]

23. Zhou, S.; Yang, L.; Zhao, L.; Bi, G. Quasi-polar-based FFBP algorithm for miniature UAV SAR imaging without navigational data.
IEEE Trans. Geosci. Remote Sens. 2017, 55, 7053–7065. [CrossRef]

24. López, A.; Jurado, J.M.; Ogayar, C.J.; Feito, F.R. A framework for registering UAV-based imagery for crop-tracking in Precision
Agriculture. Int. J. Appl. Earth Obs. Geoinf. 2021, 97, 102274. [CrossRef]

25. Mazzia, V.; Comba, L.; Khaliq, A.; Chiaberge, M.; Gay, P. UAV and Machine Learning Based Refinement of a Satellite-Driven
Vegetation Index for Precision Agriculture. Sensors 2020, 20, 2530. [CrossRef] [PubMed]

26. Mesas-Carrascosa, F.J.; Clavero Rumbao, I.; Torres-Sánchez, J.; García-Ferrer, A.; Peña, J.; López Granados, F. Accurate ortho-
mosaicked six-band multispectral UAV images as affected by mission planning for precision agriculture proposes. Int. J. Remote
Sens. 2017, 38, 2161–2176. [CrossRef]

27. Popescu, D.; Stoican, F.; Stamatescu, G.; Ichim, L.; Dragana, C. Advanced UAV–WSN system for intelligent monitoring in
precision agriculture. Sensors 2020, 20, 817. [CrossRef]

28. Tsouros, D.C.; Bibi, S.; Sarigiannidis, P.G. A review on UAV-based applications for precision agriculture. Information 2019, 10, 349.
[CrossRef]

29. Avola, D.; Cinque, L.; Fagioli, A.; Foresti, G.L.; Pannone, D.; Piciarelli, C. Automatic estimation of optimal UAV flight parameters
for real-time wide areas monitoring. Multimed. Tools Appl. 2021, 1–23.

30. Avola, D.; Foresti, G.L.; Martinel, N.; Micheloni, C.; Pannone, D.; Piciarelli, C. Aerial video surveillance system for small-scale
UAV environment monitoring. In Proceedings of the 2017 14th IEEE International Conference on Advanced Video and Signal
Based Surveillance (AVSS), Lecce, Italy, 29 August–1 September 2017; pp. 1–6.

31. Piciarelli, C.; Foresti, G.L. Drone swarm patrolling with uneven coverage requirements. IET Comput. Vis. 2020, 14, 452–461.
[CrossRef]

32. Padró, J.C.; Muñoz, F.J.; Planas, J.; Pons, X. Comparison of four UAV georeferencing methods for environmental monitoring
purposes focusing on the combined use with airborne and satellite remote sensing platforms. Int. J. Appl. Earth Obs. Geoinf. 2019,
75, 130–140. [CrossRef]

33. Avola, D.; Cinque, L.; Fagioli, A.; Foresti, G.L.; Massaroni, C.; Pannone, D. Feature-based SLAM algorithm for small scale
UAV with nadir view. In Proceedings of the International Conference on Image Analysis and Processing, Trento, Italy,
9–13 September 2019; pp. 457–467.

34. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Trans.
Pattern Anal. Mach. Intell. 2016, 39, 1137–1149. [CrossRef] [PubMed]

35. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. In Proceedings of the
International Conference on Learning Representations, San Diego, CA, USA, 7–9 May 2015; pp. 1–14.

36. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27 June–1 July 2016; pp. 770–778.

37. Wojke, N.; Bewley, A.; Paulus, D. Simple online and realtime tracking with a deep association metric. In Proceedings of the IEEE
International Conference on Image Processing (ICIP), Beijing, China, 17–20 September 2017; pp. 3645–3649.

38. Du, D.; Qi, Y.; Yu, H.; Yang, Y.; Duan, K.; Li, G.; Zhang, W.; Huang, Q.; Tian, Q. The Unmanned Aerial Vehicle Benchmark:
Object Detection and Tracking. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany,
8–14 September 2018; pp. 1–17.

39. Mueller, M.; Smith, N.; Ghanem, B. A Benchmark and Simulator for UAV Tracking. In Proceedings of the Computer Vision—
ECCV 2016, Amsterdam, The Netherlands, 8–16 October 2016; Leibe, B., Matas, J., Sebe, N., Welling, M., Eds.; Springer:
Berlin/Heidelberg, Germany, 2016; pp. 445–461.

40. Avola, D.; Cinque, L.; Foresti, G.L.; Martinel, N.; Pannone, D.; Piciarelli, C. A UAV Video Dataset for Mosaicking and Change
Detection From Low-Altitude Flights. IEEE Trans. Syst. Man Cybern. Syst. 2020, 50, 2139–2149. [CrossRef]

41. Yao, R.; Lin, G.; Xia, S.; Zhao, J.; Zhou, Y. Video object segmentation and tracking: A survey. ACM Trans. Intell. Syst. Technol.
(TIST) 2020, 11, 1–47. [CrossRef]

42. Zhou, Q.; Zhong, B.; Zhang, Y.; Li, J.; Fu, Y. Deep alignment network based multi-person tracking with occlusion and motion
reasoning. IEEE Trans. Multimed. 2018, 21, 1183–1194. [CrossRef]

43. Chen, L.; Ai, H.; Zhuang, Z.; Shang, C. Real-time multiple people tracking with deeply learned candidate selection and person
re-identification. In Proceedings of the 2018 IEEE International Conference on Multimedia and Expo (ICME), San Diego, CA,
USA, 23–27 July 2018; pp. 1–6.

44. Tang, Z.; Wang, G.; Xiao, H.; Zheng, A.; Hwang, J.N. Single-camera and inter-camera vehicle tracking and 3D speed estimation
based on fusion of visual and semantic features. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition Workshops, Salt Lake City, UT, USA, 18–22 June 2018; pp. 108–115.

45. Redmon, J.; Farhadi, A. YOLO9000: Better, faster, stronger. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 7263–7271.

http://dx.doi.org/10.1109/ACCESS.2019.2912306
http://dx.doi.org/10.1109/TGRS.2017.2739133
http://dx.doi.org/10.1016/j.jag.2020.102274
http://dx.doi.org/10.3390/s20092530
http://www.ncbi.nlm.nih.gov/pubmed/32365636
http://dx.doi.org/10.1080/01431161.2016.1249311
http://dx.doi.org/10.3390/s20030817
http://dx.doi.org/10.3390/info10110349
http://dx.doi.org/10.1049/iet-cvi.2019.0963
http://dx.doi.org/10.1016/j.jag.2018.10.018
http://dx.doi.org/10.1109/TPAMI.2016.2577031
http://www.ncbi.nlm.nih.gov/pubmed/27295650
http://dx.doi.org/10.1109/TSMC.2018.2804766
http://dx.doi.org/10.1145/3391743
http://dx.doi.org/10.1109/TMM.2018.2875360

Remote Sens. 2021, 13, 1670 18 of 18

46. Liu, S.; Wang, S.; Shi, W.; Liu, H.; Li, Z.; Mao, T. Vehicle tracking by detection in UAV aerial video. Sci. China Inf. Sci. 2019,
62, 24101. [CrossRef]

47. Zhu, M.; Zhang, H.; Zhang, J.; Zhuo, L. Multi-level prediction Siamese network for real-time UAV visual tracking. Image Vis.
Comput. 2020, 103, 104002. [CrossRef]

48. Huang, W.; Zhou, X.; Dong, M.; Xu, H. Multiple objects tracking in the UAV system based on hierarchical deep high-resolution
network. Multimed. Tools Appl. 2021, 1–19.

49. Girshick, R. Fast R-CNN. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Santiago, Chile,
11–18 December 2015; pp. 1440–1448.

50. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014;
pp. 580–587.

51. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch:
An Imperative Style, High-Performance Deep Learning Library. In Proceedings of the Advances in Neural Information Processing
Systems 32, Vancouver, BC, Canada, 8–14 December 2019; pp. 8024–8035.

52. Feng, W.; Han, R.; Guo, Q.; Zhu, J.; Wang, S. Dynamic Saliency-Aware Regularization for Correlation Filter-Based Object Tracking.
IEEE Trans. Image Process. 2019, 28, 3232–3245. [CrossRef] [PubMed]

53. Danelljan, M.; Bhat, G.; Shahbaz Khan, F.; Felsberg, M. ECO: Efficient Convolution Operators for Tracking. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 1–9.

54. Li, F.; Tian, C.; Zuo, W.; Zhang, L.; Yang, M. Learning Spatial-Temporal Regularized Correlation Filters for Visual Tracking. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018;
pp. 4904–4913.

55. Mueller, M.; Smith, N.; Ghanem, B. Context-Aware Correlation Filter Tracking. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 1387–1395.

56. Danelljan, M.; Häger, G.; Khan, F.S.; Felsberg, M. Learning Spatially Regularized Correlation Filters for Visual Tracking.
In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 11–18 December 2015;
pp. 4310–4318.

57. Danelljan, M.; Häger, G.; Khan, F.S.; Felsberg, M. Adaptive Decontamination of the Training Set: A Unified Formulation for
Discriminative Visual Tracking. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las
Vegas, NV, USA, 26 June –1 July 2016; pp. 1430–1438.

58. Galoogahi, H.K.; Fagg, A.; Lucey, S. Learning Background-Aware Correlation Filters for Visual Tracking. In Proceedings of the
IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 1144–1152.

59. Wang, C.; Zhang, L.; Xie, L.; Yuan, J. Kernel Cross-Correlator. In Proceedings of the AAAI Conference on Artificial Intelligence,
New Orleans, LA, USA, 2–7 February 2018; pp. 4179–4186.

60. Danelljan, M.; Häger, G.; Khan, F.S.; Felsberg, M. Discriminative Scale Space Tracking. IEEE Trans. Pattern Anal. Mach. Intell.
2017, 39, 1561–1575. [CrossRef] [PubMed]

61. Li, Y.; Zhu, J. A Scale Adaptive Kernel Correlation Filter Tracker with Feature Integration. In Proceedings of the Computer
Vision—ECCV Workshops, Zurich, Switzerland, 6–12 September 2014; pp. 254–265.

62. Danelljan, M.; Häger, G.; Shahbaz Khan, F.; Felsberg, M. Accurate Scale Estimation for Robust Visual Tracking. In Proceedings of
the British Machine Vision Conference, Nottingham, UK, 1–5 September 2014; pp. 1–11.

63. Henriques, J.F.; Caseiro, R.; Martins, P.; Batista, J. High-Speed Tracking with Kernelized Correlation Filters. IEEE Trans. Pattern
Anal. Mach. Intell. 2015, 37, 583–596. [CrossRef] [PubMed]

64. Fu, C.; Xu, J.; Lin, F.; Guo, F.; Liu, T.; Zhang, Z. Object Saliency-Aware Dual Regularized Correlation Filter for Real-Time Aerial
Tracking. IEEE Trans. Geosci. Remote Sens. 2020, 58, 8940–8951. [CrossRef]

65. Huang, J.; Rathod, V.; Sun, C.; Zhu, M.; Korattikara, A.; Fathi, A.; Fischer, I.; Wojna, Z.; Song, Y.; Guadarrama, S.; et al.
Speed/Accuracy Trade-Offs for Modern Convolutional Object Detectors. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 1–10.

http://dx.doi.org/10.1007/s11432-018-9590-5
http://dx.doi.org/10.1016/j.imavis.2020.104002
http://dx.doi.org/10.1109/TIP.2019.2895411
http://www.ncbi.nlm.nih.gov/pubmed/30703022
http://dx.doi.org/10.1109/TPAMI.2016.2609928
http://www.ncbi.nlm.nih.gov/pubmed/27654137
http://dx.doi.org/10.1109/TPAMI.2014.2345390
http://www.ncbi.nlm.nih.gov/pubmed/26353263
http://dx.doi.org/10.1109/TGRS.2020.2992301

	Introduction
	Related Work
	Materials and Methods
	Multi-Stream CNN Feature Extractor
	Object Detection
	Multi-Stream Faster R-CNN Loss Functions
	Tracking

	Experimental Results
	Datasets
	UAVDT
	UAV123 and UAV20L
	UMCD

	Evaluation Metrics
	Implementation Details
	Object Detection Performance Evaluation
	Tracking Performance Evaluation
	Ablation Study

	Conclusions
	References

