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The current rapid loss of biodiversity globally calls for improved tools to predict 
conservation status. Conservation status varies among taxa and is influenced by 
intrinsic species’ traits and extrinsic factors. Among these predictors, the most con-
sistently recognized and widely available is geographic range area. However, ranges 
of equal area can have diverse spatial configurations that reflect variation in threaten-
ing processes and species’ characteristics (e.g. dispersal ability), and can affect local 
and regional population dynamics. The aim of this study is to assess if and how 
the spatial configuration of a species’ range relates to its conservation status. We 
obtained range maps and two descriptors of conservation status: extinction risk and 
population trend, from the IUCN for 11 052 species of amphibians, non-marine 
birds and terrestrial mammals distributed across the World. We characterized spatial 
configuration using descriptors of shape and fragmentation (fragment number and 
size heterogeneity) and used regression analysis to evaluate their role in explaining 
current extinction risk and population trend. The most important predictor of con-
servation status was range area, but our analyses also identified shape and fragmenta-
tion as valuable predictors. We detected complex relationships, revealed by multiple 
interaction terms, e.g. more circular shapes were negatively correlated with popu-
lation trend, and heterogeneity was positively correlated with extinction risk for 
small range areas but negatively for bigger ranges. Considering descriptors of spatial 
configuration beyond size improves our understanding of conservation status among 
vertebrates. The metrics we propose are relatively easy to define (although values can 
be sensitive to data quality), and unlike other correlates of status, like species’ traits, 
are readily available for many species (all of those with range maps). We argue that 
considering spatial configuration predictors is a straightforward way to improve our 
capacity to predict conservation status and thus, can be useful to promote more 
effective conservation.
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Introduction

Anthropogenic activities are causing the loss of many pop-
ulations and species leading to an important reduction in 
natural, economic and social capital (CBD 2010). Estimates 
suggest that current rates of extinction are 3–4 orders of 
magnitude higher than natural rates (Barnosky et al. 2011). 
Approximately 20% of extant vertebrate species are clas-
sified as threatened by the International Union for the 
Conservation of Nature (IUCN, Hoffmann et al. 2010), and 
future scenarios predict further extinctions and increased risk 
(Hurtt et al. 2011, Pereira et al. 2010). As a result, there is 
growing concern regarding how to achieve a significant reduc-
tion in future biodiversity loss (Sala et al. 2000, CBD 2010). 
Predicting which species are at risk is key to achieve that goal 
and develop more effective conservation management actions 
(Safi and Pettorelli 2010, Cardillo and Meijaard 2012).

The best estimates of extinction risk and population trend 
are based on population viability analysis (PVA, Beissinger 
and McCullough 2002). However, PVA generally require 
long-term and detailed data (Wenger  et  al. 2017). Thus, 
estimates of PVA are available for relatively few species and 
regions. To overcome this limitation, many studies have 
searched for correlates of conservation status, including mor-
phological, ecological, life history and behavioral species’ 
traits (Purvis et al. 2000, Cardillo et al. 2008, Davidson et al. 
2009, Fritz et al. 2009, González-Suárez and Revilla 2013, 
González-Suárez  et  al. 2013). Among these correlates, the 
best/more common statistical predictor of status for different 
taxa, is range area which is a measure of the spatial extent of 
the geographical space a species occupies (Keith et al. 2018). 
Everything else being equal, larger range areas can host more 
individuals, and thus, are associated with lower risk of extinc-
tion (Gaston 1994, Cardillo et al. 2005, 2008, Gaston and 
Fuller 2009, Orzechowski  et  al. 2015, Runge  et  al. 2015). 
Species in larger range areas are also at lower risk compared 
with those small ranges because stochastic threats are less 
likely to impact the entirety of a large area (Bland et al. 2016, 
IUCN 2017a).

There are several aspects that determine the risk of extinc-
tion of a species. The IUCN (IUCN 2012) considers the 
following criteria to assess the risk of extinction of a given 
species: the number of individuals, the generation length, the 
population trend and the range size and its spatial aggrega-
tion (IUCN 2012, Joppa  et  al. 2016, Murray  et  al. 2017, 
Keith et  al. 2018). While a useful measure of conservation 
status, a species range size can be difficult to measure (Gaston 
1991, 2003, Gaston and Fuller 2009). Gaston (1991) pro-
posed two metrics: 1) the extent of a species occurrence 
(EOO) defined as the area contained within the shortest 
continuous imaginary boundary which can be drawn to 
encompass all the known, inferred or projected sites of pres-
ent occurrence of a taxon, excluding cases of vagrancy; and 2) 
the area of occupancy (AOO) defined as the area of the EOO 
occupied by a taxon (IUCN 2012, 2017a). Both AOO and 
EOO can be used as criteria to assess extinction risk under 

criterion B of the IUCN Red List. In addition, the degree of 
fragmentation including number of locations (the distribu-
tion of how the individuals are aggregated in subpopulations 
with more or less population size and more or less isolated 
subpopulations), and the number of locations can be used 
under criteria B and D (IUCN 2012, 2017b, Collen et al. 
2016).

At the local/population scale, other spatial configuration 
aspects have been shown to influence extinction risk and 
population trends (MacArthur and Wilson 1967, Levins 
1969, David Tilman and Kareiva 1997, Bascompte and Solé 
1998, Hanski 1999, Crooks et al. 2017, Pfeifer et al. 2017). 
Landscapes are heterogeneous spaces with varying degrees 
of habitat suitability (Forman and Godron 1986, Forman 
1995). Habitat suitability also varies within occupied frag-
ments between the border, where is usually lower, and the 
core areas, where tends to be higher (Bascompte and Solé 
1995). Therefore, for a given area the shape of the fragment 
is important. Fragments with a greater ratio of border to core 
tend to have lower habitat suitability and thus, less carry-
ing capacity, than more compact or circular fragments. The 
viability of spatially structured populations is also influenced 
by the degree of fragmentation, i.e. the size and number of 
fragments, of the available habitat (Gyllenberg and Hanski 
1992, Hanski and Gyllenberg 1993, 1997). Heterogeneity 
in fragment size may also influence vulnerability. When het-
erogeneity is large, with one fragment much larger than the 
rest, vulnerability is mostly determined by the probability of 
extinction of this largest fragment, and larger fragments are 
less likely to become extinct (Hanski et al. 1996). However, 
if threatening impacts concentrate on that larger patch the 
risk could be greater with high heterogeneity than if similarly 
sized fragments (exposed to different risks) existed.

Complete species’ ranges also show diverse spatial configu-
rations, e.g. multiple fragments of varying sizes, located at 
different distances, and with diverse shapes that differ in their 
border to area ratios (Gaston 1990, 1994, 2003, 2008, 2009, 
Lawton 1993, Brown 1995, Channell and Lomolino 2000a, 
b). Some of this variation reflects differences in geographic 
conditions and species’ traits (dispersal abilities or habitat 
specialization). Additionally, variation in spatial configura-
tion can reflect effects of human impacts, such as changes in 
land use or climate change, which can cause local extinctions 
leading to area loss, changes in shape and fragmentation and 
altered patterns of dispersal and colonization (Turvey et al. 
2015, Albrecht et al. 2017). Arguably, ignoring variation in 
the spatial configuration of species’ ranges could lead to over- 
or under-estimation of conservation status and thus, less 
effective use of conservation resources. Previous studies have 
assessed the effects of different spatial metrics on conservation 
status (Cardillo et al. 2008, Joppa et al. 2016, Murray et al. 
2017, Keith et al. 2018), but we lack a comprehensive evalu-
ation covering different taxa and testing multiple descriptors.

Here, we evaluate if conservation status, based on assess-
ments of extinction risk and global population trend, corre-
lates with several spatial descriptors of species’ ranges related 
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to size, shape and fragmentation (defined by fragment num-
ber and size heterogeneity) for three groups of vertebrates: 
amphibians, non-marine birds and terrestrial mammals. Our 
analyses excluded species for which extinction risk assess-
ments were based on spatial criteria to avoid circularity, as well 
as species from marine systems as information on their range 
is sparse compared to those in terrestrial areas (Johnston et al. 
2015). Although potentially important, we did not consider 
fragment isolation because it is largely driven by species’ dis-
persal abilities which are not well-described and are distinct 
within the studied taxonomic groups (so generalizations 
would be inaccurate). Based on metapopulation theory we 
predict that, for a given area, conservation status will be worst 
in ranges with more fragments, higher border to area ratios 
(irregular shapes), and with more homogeneous (equally 
sized) fragments (Fig. 1). We also expect these effects of spa-
tial configuration to be particularly relevant for species with 
small ranges because they presumably have smaller popula-
tion sizes which are more susceptible to extinction (Hanski 
1999).

Methods

Data

Species maps were downloaded from the International Union 
for Conservation of Nature (IUCN 2015) for all available 
species of amphibians, non-marine birds and terrestrial mam-
mals. Reptile and fish data are only available for particular 
clades (assessments are ongoing) and thus, these vertebrate 
groups were not considered for this general study. IUCN 
spatial maps are not perfect representations of each species 
distribution but are the best possible map assessors can make 
considering the available information (IUCN 2018). These 
maps are depicted as polygons, and each polygon has infor-
mation about several attributes including presence, origin 
and seasonality (IUCN 2018). Ideally, polygons for these 
maps should be drawn by assessors using occurrence data, 
but the methods and the quality and quantity of the occur-
rence data can vary across assessment. Using occurrence data 
a species EOO can be directly calculated linking locations by 
a minimum convex polygon, and AOO can be estimated by 
the overlap of species occurrences with a grid with a standard 
cell size (Lee et al. 2019). However, the IUCN provides only 
the polygons defined by the assessor, not the occurrence data. 
Given this limitation we estimated range size here using the 
approach taken by most previous studies (Purvis et al. 2000, 
Cardillo et al. 2008): adding the area of polygons classified 
as native or reintroduced in origin, with extant or probably 
extant presence, and seasonality values of resident, breed-
ing season, or non-breeding season for birds, and all sea-
sonality values for amphibians and mammals (IUCN 2018; 
Supplementary material Appendix 1 Table A1). This esti-
mate approximates AOO in many cases, but could be larger 
(approaching EOO) for species in which species maps were 
defined with poor quality data or making broad assumptions 

about occupancy. We projected the selected polygons using 
the Winkel tripel projection, which aims to minimize the 
three kinds of distortions: area, direction and distance and 
with the Cylindrical equal area projection which maintain 
the area.

From each of the projected maps we used ArcMap 
9.3 (ESRI 2008) to measure geometries and R 3.1.2 (R 
Development Core Team) to process the information, we 
calculated four variables: range size (Area), fragment shape 
(Circularity), number of fragments (N_frag), and fragment 
size heterogeneity (Heterogeneity; definitions in Fig. 1). To 
minimize the error in our variables due to distortions from 
projections, we used Cylindrical equal area to calculate Area, 
N_frag and Heterogeneity, and Winkel tripel to calculate 
Circularity. To better evaluate the role of fragmentation we 
limited our analyses to ranges with > 1 distinct fragments (the 
minimum required to estimate Heterogeneity; Supplementary 
material Appendix 1 Table A1). We tested the correla-
tion among variables for each class and type analysis using 
Spearman correlation (Supplementary material Appendix 
1 Table A2, A3). In addition, because we expected spatial 
descriptors could be affected by Area (e.g. heterogeneity may 
be more likely in widely distributed species) we also explored 
how Circularity, N_frag and Heterogeneity vary with Area 
with correlation plots (Supplementary material Appendix 1 
Fig. A1) and fitting generalized linear mixed models for each 
variable (Supplementary material Appendix 1 Table A4) with 
Area as the predictor and including taxonomic information 
(order, family and genus) as random factors to control for 
evolutionary non-independence of the observations follow-
ing González-Suárez and Revilla (2013), using the function 
lmer from the ‘lme4’ package (Bolker 2018) in R.

To define conservation status we used two different met-
rics from the IUCN (IUCN 2015). First, we considered 
extinction risk as described by the Red List status, an ordinal 
variable with levels (from low to high risk): least concern, 
near threatened, vulnerable, endangered and critically endan-
gered. Because we used species with current ranges only, no 
species in our data were classified as extinct in the wild or 
extinct. Second, we considered population trend using the 
population trend categories, which are an indication of recent 
change in total abundance of the species, with categories: 
increasing, stable, decreasing, or unknown. In our analyses 
population trend categories were considered as ordinal levels 
(decreasing, stable and increasing). Species with data defi-
cient status or unknown population trend were not included 
in our analyses.

Analyses

To avoid circularity in our analyses of extinction risk (based 
on Red List status) caused by using predictors that had been 
used to define the response, we excluded species classified as 
threatened based on criteria B and/or D (small geographic 
range or area of occupancy and possibly fragmented and few 
locations, respectively; Supplementary material Appendix 1 
Table A1). We defined generalized linear mixed regression 
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Figure 1. Hypotheses and description of the studied spatial configuration variables with illustrative examples of values, predicted association 
with increased vulnerability to extinction based on metapopulation and island biogeography theory, and their definition. *Note that threats 
acting on borders can increase circularity (a). Main results (not including all interactions) for the analysis of spatial configuration and extinc-
tion risk, based on the best models for each class showed in Table 1, 2 (b). Main results (not including all interactions) for the analysis of 
spatial configuration and population trend, based on the best models for each class showed in Table 1, 2 (c). For a more detailed description 
and understanding of the interaction effects between different variables consult Fig. 2, 3.
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multinomial models that aimed to predict conservation status 
(modelled as Red List status ordinal categories or population 
trend ordinal categories) as a function of Area, Circularity,  
N_frag and Heterogeneity. Because our objective was to assess 
if additional descriptors of spatial configuration may affect 
the conservation status, we look if these descriptors resulted 
in improved models, using as our null model a regression 
including Area as the single predictor. Increasingly complex 
models that incorporated the other variables describing shape 
and/or fragmentation (Table 1) were compared to this null 
model using an information theoretic approach based on 
AICc (Burnham and Anderson 2002). Because we hypoth-
esized that spatial configuration may have different effects 
depending on the range size, and because we found correla-
tions between Area and the other variables (Supplementary 
material Appendix 1 Table A4), we also defined models includ-
ing interaction terms between Area and shape (Circularity) 
and/or fragmentation (N_frag and Heterogeneity). Inferences 
were based on the best supported model, defined as the one 
with the lowest AICc. If there were several supported models 
(models within two AICc units of the best model) these were 
considered and discussed. Because models included inter-
action terms we could not use model averaging techniques 
(Burnham and Anderson 2002). We fitted separate models 
for each taxonomic class because of their distinct characteris-
tics in dispersal and life-history.

Extinction risk models were fitted as multivariate GLMM 
with cumulative logits for ordered multinomial data and 
random intercepts using the function clmm from the ‘ordinal’ 
package (Christensen 2015) in R. Models included taxonomic 
information (order, family and genus) as random factors to 
control for evolutionary non-independence of the observa-
tions following González-Suárez and Revilla (2013). To 
illustrate results we plotted predicted marginal probabilities 

for both Red List status and population trend exploring the 
observed range of Heterogeneity values in combination with 
two possible values for Area, N_frag and Circularity based 
on percentiles of the observed data (Supplementary mate-
rial Appendix 1 Table A5 for values). We also tested the 
predictability of the models (Mac Nally  et  al. 2017) using 
Nagelkerke pseudo R2 calculated with the nagelkerke func-
tion from the ‘rcompanion’ package in R (Mangiafico 2017). 
We report conditional R2 (representing both fixed and ran-
dom effects), marginal R2 (fixed effects only), and the change 
in R2 compared to our null (Area only) model.

Results

The final database for extinction risk analysis (based on 
Red List status) included data for 11 052 species (55% of 
the recognized diversity of the three taxonomic classes con-
sidered) representing 1482 amphibians, 7147 birds and 
2423 mammals (23, 69 and 46% of each group’s diversity 
respectively. For a summary by Red List status category see 
Supplementary material Appendix 1 Table A6). The data-
base available to predict population trend included 10 495 
species (47% of the recognized diversity) representing 1676 
amphibians, 6979 birds and 1840 mammals (26, 67 and 
35% of each group’s diversity respectively. For a summary 
by trend category see Supplementary material Appendix 1 
Table A7). Initial descriptive analyses of these data showed 
that species with higher risk of extinction and decreasing 
population trend generally had smaller ranges, with more 
circular shapes and possibly fewer, more evenly-sized frag-
ments (Supplementary material Appendix 1 Fig. A2, A3). 
We found Area was associated with all other descriptors of 
spatial configuration (Supplementary material Appendix 1  

Table 1. Results of the GLMM analyses aimed to predict extinction risk as a function of several descriptors of range spatial configuration.  
We report ΔAICc (difference in AICc with the best model. Lower values of ΔAICc represent stronger support) and sample sizes for each 
model. Models in bold are the best supported within each category, with the best overall model in bold and underlined. Het = Heterogeneity.

Model

ΔAICc (AICc)

Red List status Population trend

Amphibians 
(n = 1482)

Birds 
(n = 7147)

Mammals 
(n = 2423)

Amphibians 
(n = 1676)

Birds 
(n = 6979)

Mammals 
(n = 1840)

Size
  Area (Null model) 30.13 55.50 12.81 34.13 101.13 15.80
Size and shape (Circularity)
  Area + Circularity 15.17 54.42 13.55 15.07 92.41 7.09
  Area × Circularity 10.37 25.32 15.22 1.69 33.61 4.19
Size and fragmentation
  Area + N_frag 26.48 57.33 14.35 24.42 103.12 15.58
  Area × N_frag 27.94 58.57 15.27 26.44 94.98 15.74
  Area + Het 31.69 45.32 10.84 35.65 68.83 14.73
  Area × Het 18.51 25.90 0.21 34.71 61.87 10.87
  Area × Het + Area × N_frag 11.91 28.39 0.00 21.54 57.00 6.43
  Area × Het + Area × N_frag + Het × N_frag 13.14 20.55 1.44 22.69 50.55 5.84
Size, fragmentation and shape
  Area × Circularity + Area × Het + Area × N_frag 0.00 – – 0.00 – 0.00
  Area × Circularity + Area × Het + Area × N_frag + N_frag × Het – 0.00 – – 0.00 –
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Table A4, Fig. A1) with smaller range sizes associated with 
higher values of Circularity, lower values of Heterogeneity and 
fewer fragments (N_frag).

Spatial configuration and extinction risk

Models that included descriptors of shape and/or frag-
mentation were identified as improvements over the null 
(Area only models) based on AICc and R2 for all taxonomic 
groups, although the particular descriptors included in the 
best model varied among groups (Fig. 1, 2, Table 1, 2). 
For all three analyzed groups an increase in the range area 
(Area) was associated with a decrease in extinction risk, 
and distinctly-sized fragments (Heterogeneity) were associ-
ated with lower extinction risk in larger ranges, but higher 
risk for small ranges (Fig. 1, 3, Table 2). For birds and 
amphibians both shape and fragmentation were revealed as 
important, but with different associations. In amphibians, 
more circular shapes and fewer fragments were positively 
correlated with risk of extinction; for birds, more circular 
shapes, particularly for larger ranges, were also associated 
with slightly higher risk, and when many fragments existed 
distinctly-sized fragments generally reduced risk (Fig. 1, 2, 
Table 2).

For mammals there were two additional supported mod-
els (falling within a range of 2AICc, Table 1; Supplementary 
material Appendix 1 Fig. A4, Table A8). In both, model 
Mammals (1) and model Mammals (2), having more frag-
ments was associated with lower risk of extinction, espe-
cially for small areas. In model Mammals (2) in addition 
Heterogeneity was associated with higher extinction risk espe-
cially for species with many fragments.

Spatial configuration and population trend

Analyses of population trend also supported the impor-
tance of additional spatial configuration descriptors 
(Table 1, 2). The best models for birds and mammals were 
largely consistent with extinction risk analyses; although 
for amphibians the best model was simpler. For the three 
analyzed taxonomic groups, an increase in the range area 
(Area) was associated with a decline in population trend. 
In contrast to results based on extinction risk, effects were 
generally more noticeable for larger ranges. For exam-
ple, for the three taxonomic groups more regular shapes 
(Circularity) were associated with increasing population 
trends especially those species with bigger range areas. For 
birds and mammals, greater Heterogeneity, in more frag-
mented areas with more irregular shapes, was associated 
with increasing population trend (Fig. 1, 2, Table 2). For 
amphibians, we had a second supported model (falling 
within a range of 2AICc, Table 1; Supplementary mate-
rial Appendix 1 Fig. A5, Table A8) that suggests lower 
values of distinctly-sized fragments (Heterogeneity), fewer 
fragments and more regular shapes were associated with 
decreasing population trend.

Discussion

The spatial configuration of terrestrial vertebrate ranges varies 
by orders of magnitude in total area of occupancy and in the 
number, size and shape of their fragments. This heterogeneity 
is caused by natural and anthropogenic processes that define 
range boundaries and that vary in space and time (Gaston 
2003, Lucas  et  al. 2016). This complexity is often consid-
ered when studying local extinction processes (Pfeifer et al. 
2017), and it is acknowledged in the global assessments of 
the IUCN (IUCN 2012, 2015). However, it has been largely 
overlooked in comparative studies of species’ extinction 
risk (Cardillo et al. 2008, Arbetman et al. 2017). As previ-
ously reported, the best descriptor of conservation status 
is the area of the range, likely due to its direct association 
with total population size: all else been equal, larger ranges 
should have lower risks (Bielby et al. 2008, Harris and Pimm 
2008, Davidson et al. 2009, Giam et al. 2011, Joppa et al. 
2016, Keith  et  al. 2018). In addition, the better conserva-
tion status of large range areas could be associated to a buffer 
effect against stochastic impacts. It is less probable that a big 
range would be entirely affected by a stochastic impact, while 
a catastrophe could affect a whole small range (Bland et al. 
2016, Murray et al. 2017).

The area of the range is also associated with some species 
traits which may explain some of the observed patterns. 
Species with broad ecological niches can occupy and main-
tain populations in a greater number of habitats and use a 
wider range of food resources which can reduce the impact of 
habitat loss and community changes (González-Suárez et al. 
2013). Dispersal ability of the species is also determinant, 
with bigger areas associated with high dispersal and for 
extension high dispersal with a better conservation status 
(McCauley et al. 2014). Therefore, the observed reduced risk 
in wider ranges may reflect the benefits of habitat and diet 
generalism and dispersal capacity, in addition to the more 
direct effects of population size and reduced stochastic risk 
discussed above.

Beyond the known role of area, here we show that other 
descriptors of the spatial configuration of species’ ranges, 
namely shape, number of fragments and heterogeneity 
in fragment size, can improve our understanding of the 
conservation status of the species. We discuss below the 
different mechanisms that may be behind these relationships.

Range shape and conservation status

Metapopulation and island biogeography theory predict 
that higher border to core ratios should increase extinc-
tion risk at the population level, because individuals living 
near the edge due to edge effects are likely to have lower 
expected fitness (Brown 1984, Gaston 1990, Brown  et  al. 
1995, Hanski 1999, Murray  et  al. 2017). However, at the 
much larger spatial scale of ranges, we found the opposite, 
a higher extinction risk in amphibians, birds and mammals 
(the latter only for population trend) with ranges with more 
circular shapes, particularly in larger ranges. It is possible 
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that for global range maps, current circular shapes actually 
reflect past large scale human impacts rather than edge-effect 
risks. Through the process of range contraction, local extinc-
tions change the spatial configuration of ranges, resulting in 

more context-specific spatial configurations, determined by 
the interaction between the distribution of impacts, species 
abundance and the stage of range contraction (Channell and 
Lomolino 2000a, b, Lucas et al. 2016). Border areas are more 

Figure 2. Predicted marginal probabilities for each Red List status (Supplementary material Appendix 1 Table A6) based on the best models 
for each class (Table 1, 2). In some plots, the probably associated to some threat categories was low or zero, partly reflecting the relatively 
small number of species in these categories (see lower right panel). To show interaction effects we explored predictions for the observed the 
range of Heterogeneity values with two possible values for N_frag and Circularity based on percentiles of the observed data (Supplementary 
material Appendix 1 Table A5 for values).
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prone to be extirpated (Lawton 1993, Brown 1995, Channell 
and Lomolino 2000a, b, Lucas et al. 2016) and thus, initially 
irregularly shaped ranges, may increase their circularity as 
border areas become extirpated (Mehlman 1997, Smale and 
Wernberg 2013). Indeed, as we would expect if this was true, 
we found that smaller ranges tended to have more circular 
shapes. Therefore, there may be a link between the mecha-
nistic prediction of metapopulation theory and our results 
but only through an increase in local extinction in areas with 
more edge areas, which is not directly detectable at the whole 
range scale. Fully testing this hypothesis would require long-
term data reflecting temporal variation in distribution ranges, 
which currently are available only for a few species.

A role for range fragmentation: number of fragments 
and size heterogeneity

A priori, and based on the predictions of population ecology 
and metapopulation theory, we expected a higher extinction 
risk for species with more fragmented ranges and with a more 
homogeneous distribution of fragments size (MacArthur and 
Wilson 1967, Gaston 1994, Burkey 1997, Hanski 1998, 
Gaston and Fuller 2009). We found an association between 
the number of fragments and conservation status for all taxo-
nomic classes, especially when describing population trends, 
but with an effect contrary to our expectations. Species with 
better conservation status had more fragmented ranges, with 
a more marked effect for those with small ranges. Range frag-
mentation is common among species suffering contraction 
(Turvey  et  al. 2015, Hooftman  et  al. 2016, Riordan  et  al. 
2016). However, the process of range contraction also leads 
to the extirpation of small fragments so that the total num-
ber of fragments may not actually increase but be stable or 
even decrease. For example, Rodríguez and Delibes (2002) 
showed that the Iberian lynx Lynx pardinus range suffered 
an important contraction in which the largest fragments 
were fragmented, but also the smallest fragments were lost 

such that at the end, the total number of populations/frag-
ments barely changed. At the other extreme, species with 
lower extinction risk, often more abundant, are likely to have 
higher dispersal rates which allow to colonize new areas lead-
ing to an overall more fragmented ranges (Wiegand  et  al. 
2005, McCauley et al. 2014). Dispersal also favors that spe-
cies escape from habitat destruction and/or tracking climate 
so these species are expected to be less affected by impacts and 
would be associated with species with lower extinction risk 
(Sunday et al. 2015).

Moreover, there are situations in which extinction risk may 
not increase with the number of fragments. If the primarily 
causes of extinction are environmental stochastic processes, 
even large populations are vulnerable to extinction, e.g. in the 
spread of invasive species there is a positive spatial autocor-
relation (Veran  et  al. 2016), thus multiple fragments (sub-
ject to independent environmental processes), could act as 
a buffer against perturbations (Gilarranz et al. 2017), reduc-
ing the overall risk (Quinn and Hastings 1987). This buffer 
effect mechanism could be explaining why for amphibians, a 
class where the risk of extinction in many species is associated 
to a contagious disease (Stuart et al. 2004, Hoffmann et al. 
2010, O’Hanlon  et  al. 2018), more fragmented ranges are 
associated with less risk of extinction.

Populations with a fragmented range but with most 
area located in a single fragment (continent-island system) 
would have a substantially lower extinction probability when 
compared with populations with a more homogeneous dis-
tribution of fragment areas (Hanski  et  al. 1996, Thomas 
and Kunin 1999, Wiegand  et  al. 2005). If the population 
is divided into multiple fragments the heterogeneity of the 
network can reduce risk favoring rescue effects (Hanski et al. 
1996, Gilarranz and Bascompte 2012). If we consider that 
connectivity of a fragment is positively correlated with its 
size, a range with high heterogeneity in its area would have a 
high heterogeneity in its connectivity and less risk of extinc-
tion. How the range area was distributed among the existing 

Table 2. T-values (coefficient/SE) and Nagelkerke pseudo R2 of the best overall GLMM models predicting extinction risk as a function of 
several descriptors of range spatial configuration. Models selection results are shown in Table 1. We modeled the probability of increase in 
Red List status (higher risk) and population trend (more declining trend). A dash (–) indicates variables not included in the best models. 
Sample sizes (n) indicate the number of species included in each model. Conditional R2 represents the overall (fixed and random effects) fit 
of the models, marginal R2 represents fixed effects, and improvement in R2 is the change in R2 from the Area only null model.

Variables

T-values (coefficient/SE) Red List status T-values (coefficient/SE) population trend

Amphibians 
(n = 1482)

Birds  
(n = 7147)

Mammals 
(n = 2423)

Amphibians 
(n = 1676)

Birds  
(n = 6979)

Mammals 
(n = 1840)

Area −0.43 −6.745 −3.44 −7.39 −5.84 −2.36
Circularity 0.28 −4.21 – −2.16 −6.08 −1.17
Heterogeneity 2.49 2.24 3.09 – 0.08 0.80
N_frag −1.45 0.30 – – 1.06 −2.23
Area × Circularity 0.66 4.69 – 3.94 6.91 1.86
Area × N_frag 0.93 1.65 – – 0.94 2.00
Area × Heterogeneity −2.91 −1.67 −3.54 – 0.16 −1.31
N_frag × Heterogeneity – −2.93 – – −3.22 –
Conditional R2 0.34 0.30 0.41 0.38 0.18 0.34
Marginal R2 0.18 0.21 0.35 0.17 0.05 0.18
Improvement in R2 0.04 0.02 0.01 0.04 0.02 0.02
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fragments was also a relevant descriptor of conservation sta-
tus with an effect that often depended on the total area of 
the range. As expected, for big range sizes, high heterogene-
ity was generally associated with lower extinction risk, as the 

overall species extinction risk is directly linked to the risk of 
the largest fragment, and because large continuous fragments 
suffer less edge effects (Murray  et  al. 2017). As the size of 
the largest fragment is the main limiting factor, species with 

Figure 3. Predicted marginal probabilities for each category of population trend (Supplementary material Appendix 1 Table A7) based on 
the best models with descriptors of spatial configuration for each class (coefficients in Table 2). Note that in some plots the predicted 
probably of increasing trend was very small or zero, partly reflecting the small number of species in that category. To show interaction effects 
we explored predictions for the observed the range of Heterogeneity values with two possible values for N_frag and Circularity based on 
percentiles of the observed data (Supplementary material Appendix 1 Table A5 for values).
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small ranges cannot show a large effect of the heterogeneity 
of fragment size. Indeed, heterogeneity and number of frag-
ments increased with range area. In birds, the effect was most 
noticeable in species with ranges with many fragments for 
which the potential for higher heterogeneity is greater. On 
the other hand, increased extinction risk in ranges with more 
homogeneously-sized fragments may be a consequence of the 
dynamics of range contraction and expansion. Range con-
traction may lead to range collapse and a high fragmentation 
at the end of the process (Rodríguez and Delibes 1992, 2002, 
2003, Riordan et al. 2016). During contraction, fragments 
may split into smaller fragments, thus reducing maximum 
fragment size. However, minimum fragment size is con-
strained by the minimum size that can support a population 
in the short term. Therefore, the final stages of range contrac-
tion may lead to more homogeneously-sized areas (Rodríguez 
and Delibes 2003).

Future directions

We found clear patterns of association between extinction 
risk and the spatial configuration of species’ ranges. These 
effects can be interpreted as emergent properties of popula-
tion dynamics at smaller spatial scales. In principle, they can 
be used to complement the role of range size in categorizing 
risk of extinction. Current data availability, quality and prac-
tice call for some caution in doing so (Hurlbert and Jetz 2007, 
Maréchaux et al. 2017). The spatial configuration of ranges 
is very sensitive to the method employed to define it. A range 
delineated by experts, using minimum convex polygon or a 
kernel method on the same dataset would look very different 
(Joppa et al. 2016). The large biases in sampling effort across 
the globe, with large areas with few data available also pre-
cludes obtaining good quality ranges (González-Suárez et al. 
2012). We need more systematically and transparently built 
ranges that can offer better information over time, including 
patterns of range expansion and contraction. Current efforts 
compiling information at large scales and in big numbers, 
often with the aid of citizen science, could help in improving 
the quality of the ranges. Improved ranges would allow future 
work considering how species’ traits, distinct threatening pro-
cesses and local environmental conditions may affect range 
dynamics and extinction risk. To advance from correlations 
between spatial pattern of ranges and risk of extinction/
population trend to mechanisms, we need long-term data 
reflecting temporal variation in distribution ranges with dif-
ferent levels and combination of impacts. Looking to the 
past biodiversity responses to climate and human impacts 
will importantly help to fill this gap (Fordham et al. 2016, 
Nogués-Bravo et al. 2018).

Conclusions

Most species ranges are spatially complex, often formed by 
multiple fragments with diverse shapes which change over 
time (Gaston 2003, Wilson et al. 2004). We show that using 
different spatial measures describing this complexity improves 

our understanding of extinction risk, which can in turn help 
policy makers and managers to prioritize actions (Mace et al. 
2008, Cardillo and Meijaard 2012). Our study does not aim 
at improving extinction risk assessments, just determine and 
quantify new factors that may affect the conservation of spe-
cies. While the area of occupancy (Area) contributed most to 
explain variation in the data, including additional descrip-
tors improved model fit and suggested hypotheses regarding 
the spatial consequences of range expansion and contraction. 
In population biology it is widely accepted that spatial com-
plexity affects extinction probability. To our knowledge, this 
is the first time these relationships have been quantified at 
biogeographical scales on a large set of species. Our selected 
variables have a clear ecological basis, are simple to calculate 
and can be used at different scales and taxonomic groups. 
These descriptors are defined from the same ranges maps 
used to estimate area, thus, do not require additional datas-
ets. Admittedly, there are limitations associated to range map 
quality and uncertainty, but these also affect area estimates 
(Hurlbert and Jetz 2007, Maréchaux et al. 2017). Under the 
current biodiversity crisis we believe these caveats should not 
stop us from considering these new factors to predict what 
species are more prone to extinction risk allowing more effec-
tive conservation policies.
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