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Abstract

Interesting and useful applications of Automatic Control can be found/discovered
in many sectors: one of them is the medical, or better the biomedical area.
This work focuses on two notable cases of applications of Automatic Control to
biomedical field: the first one is linked to application of multi-agents systems study
to epidemiological networks, while the second one deals with the use of a real micro-
robotic device.
The interest in epidemiological networks is linked to the spread of Covid-19 in Italy
and around the world in 2020. The research, carried out during PhD, was already
focused on the study of dynamical networks systems but this event led to a focus
on applications to real cases of epidemiological networks.
The second application arises from the possibility of contributing to find a solution
to a real problem, that, if solved, can lead to relevant applications, in biomedical
field. Indeed, introduction of robotics, and even more micro-robotics, has led to
huge innovations in the medical field, that can be improved and integrated over
time.
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Chapter 1

Introduction

This Thesis reports an overview on research activities carried out by the author
within the XXXII PhD program in ABRO (Automatic Control, Bioengineering and
Operation Research), Curriculum Automatic Control, undertaken at the Univer-
sity of Rome “La Sapienza”, Department of Computer, Control and Management
Engineering “Antonio Ruberti”.

1.1 Motivation and Contributions
In last century, advances in studies, have upset the techniques used in medicine
and they have contributed to the birth of new branches of study and research, i.e.
biomedical engineering. Advances in science and technology are also reflected in
medical fields: biomedical applications are used for diagnosis, surgery, monitor-
ing of parameters and vital signs, medical cares, ... In last decades, biomedical
applications have gained an increased importance. Methodologies from different
engineering and scientific fields are applied to biomedical studies and applications;
in particular, methodologies from Automatic Control are used to advance in sec-
tors above mentioned ([1], [2], [3], [4]). There are still many applications on which
studies can be done and there are many techniques, not strictly thought out to
biomedical field, that can be explored in the future research.
In different medical areas, there can be found/discovered interesting and useful ap-
plications of Automatic Control; this work focuses on two remarkable ones: the
first one is linked to application of multi-agents systems study to epidemiological
networks, while the second one deals with the use of a real micro-robotic device.
The interest in epidemiological networks is linked to the spread of Covid-19 in Italy
and around the world in 2020. The research, carried out during PhD, was already
focused on the study of dynamical networks systems but this event led to a focus
on applications to real cases of epidemiological networks.
The second application arises from the possibility of contributing to find a solution
to a real problem, that, if solved, can lead to relevant applications, in biomedical
field. Indeed, introduction of robotics, and even more micro-robotics, has led to
huge innovations in the medical field, that can be improved and integrated over
time.
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Some of the results of the research, done within the PhD program and exposed
in this thesis, can be found in:

• P. Di Giamberardino, M. L. Aceto, O. Giannini, and M. Verotti, "Recursive
least squares filtering algorithms for on-line viscoelastic characterization of
biosamples”, in Actuators, vol. 7, no. 4. Multidisciplinary Digital Publishing
Institute, 2018, p. 74

• P. Di Giamberardino, M. L. Aceto, O. Giannini, and M. Verotti, “Dynamic es-
timation of visco-elastic mechanical characteristics of biological samples under
micro manipulation”* in ICINCO (2), 2018, pp. 513–520

• M.L. Aceto, P. Di Giamberardino, "Multiagent dynamical networks for virus
spread modelling, submitted to ICINCO 2021

*This work has been awarded as "Best Short Paper/Poster Award", in Area of
Robotics and Automation, at ICINCO 2018 (International Conference on Informat-
ics in Control, Automation and Robotics).

1.2 Outline of the Thesis
The thesis is organized as follows:

• Chapter 1 provides this brief introduction;

• Chapter 2 gives an overview of multi-agent systems and new techniques for
topological variations detection;

• Chapter 3 is focused on multi-agent epidemiological networks;

• Chapter 4 describes the real micro-manipulator and its modelling;

• Chapter 5 exposes the results obtained with the estimation technique applied
to the micro-gripper.
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Chapter 2

Multi-agent systems

This Chapter gives an overview of multi-agent systems and new techniques for
topological variations detection.

2.1 Introduction

Network/multi-agent systems study has gained a great relevance in many fields of
recent scientific research, including that of control theory. The increased interest
is due to large number of application fields of this kind of systems. Applications
can be found in power grids, telecommunication, security, medicine, transportation,
biology, Industry 4.0, home automation, Internet of Thinks [5, 6, 7, 8]. A classical
application in biomedical fields can be found in studies and use of sensors networks
[9] for diagnostic or prevention.
One of the branches of mathematics, from which it is started to study and to model
the connections between objects, is the graph theory, firstly introduce by L. Euler in
[10] (for further details refer to [11]). A network/multi-agent system can be viewed
as a graph in which each node is an agent, with its own dynamics, and the interac-
tion between two nodes is represented as a link/edge. An interaction can represent
a connection between nodes, exchange of data, flows of information, materials and
so on, and it can be mono-directional or bi-directional. In general, according to per-
sistence of its edges, a network can be static (the edges are fixed a priori), dynamic
(the edges can vary, in a deterministic way, according to the status of some network
agents) or random (the edges can vary according to a probability distribution). The
connections between nodes and links is the so-called topology of the network, and
studying topology variations is one of the topics to be addressed when dealing with
dynamical network systems. This aspect can helps in many research fields, among
which we can find consensus networks [12], formation control [13], flocking control
[14].
Changes in topology can be caused both by failure, in nodes or link,s and by inten-
tional disconnections, in some cases, aimed to isolate one ore more elements in the
network itself. Usually topological variations, caused by failures, are not desirables
and can lead to a misbehaviour of the network (i.e. in power networks [15]). Inten-
tionally disconnections can be introduced for several reasons, i.e. in order to isolate
one or more nodes, block the communication between agents, in case it’s needed to
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split the network in two or more subnetworks (i.e in epidemic control [16]).
In literature, they can be found different approaches and algorithm related to de-
tectability of topology variations; i.e, in [17] it’s proposed a method based on the
observation of jump discontinuities in the output derivatives, in [18] it’s proposed
a method based on Kalman Filter, in [19] the detection is done considering cross
power spectral densities changes.

2.2 Discernibility

In [20], [21] and [22], the authors propose an approach for detection of topologi-
cal variations in dynamical network systems based on analysis tools from switching
systems theory, in particular the concept of discernibility/ distinguishability/ mode-
observability [23]. This approach aims to identify if it’s possible to detect a network
topology variation, even before the construction of an identification algorithm.
The basic idea is that the network can be viewed as a multi-mode/ switching sys-
tem: a network with different topology, caused by links/nodes disconnections, can
be viewed as a system in different operational mode. When it is in different opera-
tional mode, the network can rise to different dynamics (in this case the operational
modes are said to be discernible) or to same dynamics (in this case the opera-
tional modes are said to be indiscernible). The works deal with networks composed
by homogeneous continuous-time linear systems, with a weighted and undirected
communication graph, and they identify necessary and sufficient conditions, on the
eigenspace components related to the nominal network topology, for discernibility
for this kind of multi-agent networks.
In [24], [25] and [26], this approach is extended focusing on consensus networks.
In [24], the author extends the analysis to edge disconnection problem in case of
discrete-time multi-agent consensus networks. The work shows that, if the commu-
nication graph is connected, edge disconnections, not affecting connectedness of the
network, do not impact the final consensus value reached by the agents. In addition,
it identifies necessary and sufficient conditions for discernibility on the original state
matrix and on its eigenvectors; these conditions are equivalent if the state of some
or all agents are known. Unlike, in case of node disconnections, final consensus
value changes [25], but it can be restored with a distributed control action. In [26],
in addition to edge disconnection problem in a discrete-time multi-agent consensus
network, the authors also investigate how to identify, in a finite number of steps, the
exact edge that got disconnected. They derive necessary and sufficient conditions
for these problems, whether the states of some and all agents are known.
The aforementioned works, on detection of topological variations, deal with multi-
agent networks, in which the systems connected are homogeneous and all their
parameters as well as the weights among each nodes are known.
In [27], the study is extended to networks of not homogeneous nodes, with dynamics
that obey to linear Differential–Algebraic Equations (DAEs) instead of Ordinary-
Differential Equations (ODEs). The authors show that the properties of the nomi-
nal network configuration can be used to identify possible existence of indiscernible
topological changes.
In [28], the study is focused on multi-agent networks, in which the weights among
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each nodes are not known. The authors derive necessary and sufficient conditions
on the graph for generic detectability and isolation.
In this work, we extend the results of detecting topological variations to general
case of multi-agent networks in which:

• the dynamics of each node is linear;

• the nodes are not homogeneous;

• the graph is directed (it can exists edge from not i and j, without edge from
node j and i);

• the connection between nodes are modelled as incoming/ outcoming flows.

Here, we briefly recall the model and approach defined in [21]. Consider a multi-
agent network, composed by N nodes, each one represented by linear system. As
stated previously, the network can be viewed as a graph G = (V,E), with a prede-
fined topology, where the set of nodes is represented by V := {1, 2, ..., N} and the
set of link is represented by E ⊆ (V × V ).
The dynamics of the ith node is the following:ẋi = Axi +B

∑
j∈Ni

wij(xj − xi)

yi = Cxi

i = 1, 2, ..., N (2.1)

where:

• xi/xj ∈ Rn are, respectively, the state vector of node i and j;

• yi ∈ Rm is the output vector of node i;

• the matrices A ∈ Rn×n , B ∈ Rn×n and C ∈ Rn×m are state transition, input
and output matrices of node i;

• wij ∈ R+∪{0} represents the coupling strength between node i and j, wij 6= 0
if node j is in the set Ni of neighbours of node i, so if (j, i) ∈ E. Note that,
being the graph undirected, all edges are bidirectional, and, consequently,
wij = wji.

Recalling the definition of Laplacian matrix L of the graph G:

L = [lij ] ∈ RN×N (2.2)

where

lij :=

−wij j 6= i∑
k∈Ni

wik j = i

the whole network state and output dynamics can be written as:{
ẋ = Φx
y = Hx

(2.3)

where:
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• x ∈ RNn is the aggregated state vector of network;

• y ∈ RNm is the aggregated output vector of the network;

• Φ ∈ RNn×Nn is the transition matrix of the network defined as

Φ := (IN ⊗A)− (L⊗B)

• H ∈ RNm×Nn is the output matrix of the network, defined as H := (IN ⊗C).

Note that, in case of undirected graph, the Laplacian matrix (2.2) is symmetric.
The network, in nominal conditions, namely in predefined topology, can be fully
characterized by the pair (G,Φ). In case of topological variations, a new graph
Ḡ representing the updated status of the connections, a new set of edges Ē and
Laplacian matrix L̄ shall be considered. If the variation is caused by link (i, j)
disconnection, new set of edges will be Ē = E \ (i, j), while if it’s caused by node i
disconnection Ē = E \ (i, j);∀j ∈ Ni. In both cases, whole network state dynamics
becomes: { ˙̄x = Φ̄x̄

ȳ = H̄x̄
(2.4)

where H̄ can be equal or different from H.
The modified network can, therefore, be characterized by the pair (Ḡ, Φ̄).
The basic idea is to consider the system obtained from the parallel interconnection
of nominal and modified network: { ˙̃x = ∆x̃

ỹ = Γx̃
(2.5)

where:

• x̃ ∈ R2Nn is the state vector of the interconnected system;

• ỹ ∈ R2Nm is the output vector of the interconnected system;

• ∆ ∈ R2Nn×2Nn is the state-transition matrix of the interconnected system
defined as ∆ = diag(Φ, Φ̄) ;

• Γ ∈ R2Nm×2Nm is the output matrix of the interconnected system defined as
Γ = [I − I] with I ∈ RNm×Nm.

The following definition should be recalled: two LTI systems of order n, with state
transition matrices Φ and Φ̄, are said to be indiscernible with the respect to state
x0 ∈ Cn, if x(t) = x̄(t) for all t ≥ 0. In linear case, this can be specified as
eΦtx0 = eΦ̄tx0 for all t ≥ 0.
Taking into account definition of indiscernible state, and the interconnected system
dynamics (2.5), the discernibility of state x and x̄ can be considered equivalent to
the observability of the pair (∆,Γ).
The main results in [21], not strictly related to particular node dynamics in (2.1),
are the followings:
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• it’s sufficient to verify if common eigenvalues to Φ and Φ̄, with common eigen-
vectors, exist, in order to verify the existence of not-null indiscernible states
[ref to Corollary 1 in [21]]. If Φ is diagonalizable, the set of all complex
indiscernible states is:

IC = {0} ⊕ (V (λ) ∩ V̄ (λ)); λ ∈ (spec(Φ) ∩ Φ̄)

where V (λ) and V (λ) are, respectively, the eigenspace of λ ∈ spec(Φ) and the
eigenspace of λ ∈ spec(Φ̄).

• the generalized eigenvectors and the corresponding Jordan chains shall be
considered in order to fully determine the set of indiscernible states, if Φ is
not diagonalizable [ref to Proposition 1 in [21]]. In this case, the set of all
complex indiscernible states is:

IC = {0} ⊕ span(W (λ); λ ∈ (spec(Φ) ∩ Φ̄)

where, for each λ ∈ (spec(Φ) ∩ Φ̄), W (λ) is a matrix whose columns form
an orthonormal basis of the set of all the generalized eigenvalues x ∈ Vν(λ)(λ)
satisfying the condition (Φ−λI)ix = (Φ̄−λI)ix, for i = 1, ...,max(ν(λ), ν̄(λ)),
with ν(λ) corresponds to the size of the largest Jordan block associated with
λ, common eigenvalue to Φ and Φ̄.

The other results of interest (Proposition 2/Theorems 1 - 2) show the conditions
under which a node or link disconnection can be detected. They refer to a specific
structure of Φ−Φ̄ and shall be customized, i.e. in case nodes with different dynamics
are considered (refers to Section 3.C of just mentioned work for generalizations of
these results). It shall be noted that, taking into account the specific node dynamics,
if controllability of the pair (A,B) holds, the existence of not-null indiscernible states
via common eigenvalues to Φ and Φ̄, with common eigenvectors, is equivalent to
verification of common eigenvalues to L and L̄, with common eigenvectors (that can
be checked only by looking at the eigenspace of nominal Laplacian L).

2.3 Multi-agent dynamical networks with flows

The dynamics of node i in (2.1) takes into account the coupling between node i itself
and its neighbours, considering that its dynamics is influenced by the difference
of its neighbours states with respect to its state. We now consider a dynamical
network in which each node dynamics is influenced by the flows between itself and
its neighbours.
Consider N nodes, represented as linear systems, with the following dynamics:{

ẋi = Aixi +Biui

yi = Cixi
i = 1, 2, ..., N (2.6)

where:

• xi/xj ∈ Rn are, respectively, the state vector of node i and j;
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• ui ∈ Rn is the input vector of node i;

• yi ∈ Rm is the output vector of node i;

• Ai ∈ Rn×n is the state-transition matrix of node i;

• matrices Bi ∈ Rn×n and Ci ∈ Rm×n are, respectively, input and output
matrices of node i.

We now connect these nodes to each other, considering the possibility to have flows
between them: each node can have input/ output flows from /to its neighbours.
For each node i, we model these flows as the input acting on it:

ui =
∑
j∈Ni

wijxj︸ ︷︷ ︸
incoming flows

−
∑
j∈Ni

wjixi︸ ︷︷ ︸
outcoming flows

(2.7)

where the first part of (2.7) model the incoming flows from all nodes j ∈ Ni to node
i, while the latter the outcoming ones from node i to nodes j ∈ Ni.
In (2.7), the value wij :

• is a non negative real value wij ∈ R+ ∪ {0};

• represents the weight of the flow from node j to node i;

• wij = 0 in case there is no flow from node j to node i;

• in general, in case of directed graph, wij is different from wji: you can have a
flow from node j to node i without flow from node i and node j and viceversa.

In Figure 2.1, it’s depicted the connection of node i and j with the corresponding
flows.

Figure 2.1. Flows between nodes i and j

Considering the input (2.7), the dynamics of each node i becomes:ẋi = Aixi +Bi
∑
j∈Ni

wijxj −Bi
∑
j∈Ni

wjixi

yi = Cixi

i = 1, 2, ..., N (2.8)
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Taking into account that weights of the flows are modelled with values wij and
dynamics of each component of state xi is influenced by flows coming from the
same component of states of its neighbours, it is reasonable to consider matrix Bi
as identity matrix of dimension n.
The state dynamics in (2.8) can be rewritten in the same form of (2.1) as:ẋi = Āixi +Bi

∑
j∈Ni

wij(xj − xi)

yi = Cixi

i = 1, 2, ..., N (2.9)

where:
Āi = Ai +Bi

∑
j∈Ni

wij −Bi
∑
j∈Ni

wji

Considering the node dynamics in (2.8), the whole network state and output dy-
namics, as in (2.3), can be written as:{

ẋ = ∆x
y = Hx

(2.10)

where:

• x ∈ RNn is the aggregated state vector of network;

• y ∈ RNm is the aggregated output vector of the network;

• ∆ ∈ RNn×Nn is the aggregated transition matrix defined as ∆ = Φ + Ψ;

• Φ ∈ RNn×Nn is a block diagonal matrix defined as

Φ = diag {Ai} (2.11)

• Ψ ∈ RNn×Nn is a block matrix defined as

Ψ = [ψik] (2.12)

where:

ψik :=

−Bi
∑
j∈Ni

wji i = k

Biwik i 6= k
(2.13)

in a more extended form:

Ψ =



−B1
∑
j∈N1

wji · · · B1w1,N

B2w2,1 · · · B2w2,N
... . . . ...

BNwN,1 · · · −BN
∑

j∈NN

wjN

 (2.14)

The structure of matrix Ψ (2.14) can help to identify if one node can be reached
starting from one of the other nodes, namely if there is a path πij (a sequence of
distinct edge for which there is a sequence of distinct vertices) from node i and j.
If all ψik are not null, the graph is complete and each node is connected to other
nodes in the network.
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Proposition 1. Consider a dynamical network (G,Φ,Ψ), where the graph is di-
rected, one node i is not reachable if ψik = 0 ∀k 6= i ∈ V . Contrariwise, there are
no outcoming flows from node i if ψii = 0. If the graph is undirected, there are no
flows linked to node i, if ψik = 0 ∀k ∈ V .

Proof. Node i cannot be reached if it has no incoming flows, namely wij = 0 ∀j ∈
Ni. In this case, ψik defined in (2.13), becomes:

ψik :=

−Bi
∑
j∈Ni

wji i = k

0 i 6= k

The null outcoming flows from node i imply wji = 0, ψik defined in (2.13), becomes:

ψik :=
{

0 i = k

Biwik i 6= k

You can easily see that, in case of undirected graph, wij = wji, we have ψik =
0, ∀k ∈ V .

As in (2.4), the dynamics, after node/link becomes:{
ẋ = ∆̄x
y = Hx

(2.15)

where ∆̄ = Φ + Ψ̄: all the modification in the dynamics of the network, due to
disconnections, can be found in Ψ̄.
The following result holds in case of disconnections.

Proposition 2. Consider two dynamical networks (G,Φ,Ψ) (2.10) and (Ḡ,Φ, Ψ̄)
(2.15), with the latter resulting from a disconnection. Consider any eigenvalue–eigenvector
pair (α, v) of ∆. There exist non-null indiscernible states if and only if matrices Ψ
and Ψ̄ corresponding to (G,Φ,Ψ) and (Ḡ,Φ, Ψ̄) have a common eigenvalue–eigenvector
pair (λ, v), with λ 6= α.

Proof. From Corollary 1 in [21], we know that, if ∆ and ∆̄ has no eigenvalue-
eigenvector pair in common, there are no not-null indiscernible states and, in addi-
tion, that an eigenvector v ∈ V (α) of ∆̄ is indiscernible if and only if ∆v = ∆̄v = αv.
Considering the structure of ∆ and ∆̄, we have:

αv = ∆v = ∆̄v =
= Φv + Ψv = Φv + Ψ̄v

and Φv + Ψv = Φv + Ψ̄v if and only if Ψv = Ψ̄v = λv.

Taking into account previous Proposition, disconnections can be detected taking
into account only common eigenvalue-eigenvector pairs of Ψ and Ψ̄.
In next Subsection, the consequences of link/node disconnections are exploited.
Consider the multi-agent network with dynamics (2.10), characterized by the tuple
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(G,Φ,Ψ). In case of disconnection of link (i, j), modified network is described by
updated tuple (Ḡ,Φ, Ψ̄) (2.15).
If graph G is directed, matrix Ψ̄ is modified as follows:

Ψ̄ = Ψ− wij [(ei ⊗ In)Bi − (ej ⊗ In)Bj ](ej ⊗ In)′ (2.16)

where

• ei and ej are, respectively, the i-th and j-th unit vector of RN ;

• In is the identity matrix of dimension n.

The following result holds in case of link disconnection for directed graph.

Theorem 1. Consider two dynamical networks (G,Φ,Ψ) (2.10) and (Ḡ,Φ, Ψ̄) (2.15),
with the latter resulting from a disconnection of link (i, j). Consider any eigen-
value–eigenvector pair (λ, υ) of Ψ. Then, if G is a directed graph, (λ, υ) is also an
eigenvalue–eigenvector pair of Ψ̄, if and only if Biυ(j) = 0 and Bjυ(j) = 0, where
υ(j) is the j-th component of υ.

Proof. Consider any eigenvalue–eigenvector pair (λ, υ) of Ψ. From (2.16),

Ψ̄υ = Ψυ − wij
{
[(ei ⊗ In)Bi − (ej ⊗ In)Bj ](ej ⊗ In)′

}
υ

= λυ − wij
{
[(ei ⊗ In)Bi − (ej ⊗ In)Bj ](ej ⊗ In)′

}
υ

(2.17)

Considering that the Kronecher Product: (ei ⊗ In) = Ei is a block matrix defined
as:

Ei = [εik] ∈ RNn×n (2.18)

where:

εik :=
{
Ii i = k

0 i 6= k

Equation (2.17) becomes:

Ψ̄υ = λυ − wij [EiBi − EjBj ]E′jυ
= λυ − wij [EiBi − EjBj ]υ(j) (2.19)

So eigenvalue–eigenvector pair (λ, υ) of Ψ is also an eigenvalue–eigenvector pair Ψ̄ if
and only if [EiBi−EjBj ]υ(j) = 0. Considering that EpBp = EBp is a block matrix

EBp = [εik] ∈ RNn×n (2.20)

where:

εp :=
{
Bp i = k = p

0 otherwise

So we have, [EiBi − EjBj ]υ(j) = EBi − EBj = 0, if and only if Biυ(j) = 0 and
Bjυ

(j) = 0.
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In case of undirected graph G, matrix Ψ̄ is modified as follows:

Ψ̄ = Ψ− wij [(ei ⊗ In)Bi − (ej ⊗ In)Bj ](ej ⊗ In)′

− wij [(ej ⊗ In)Bj − (ei ⊗ In)Bi](ei ⊗ In)′
(2.21)

where

• ei and ej are, respectively, the i-th and j-th unit vector of RN ;

• In is the identity matrix of dimension n.

The following result holds in case of link disconnection for undirected graph.

Theorem 2. Consider two dynamical networks (G,Φ,Ψ) (2.10) and (Ḡ,Φ, Ψ̄) (2.15),
with the latter resulting from a disconnection of link (i, j). Consider any eigen-
value–eigenvector pair (λ, υ) of Ψ. Then, if G is an undirected graph, (λ, υ) is also
an eigenvalue–eigenvector pair of Ψ̄, if and only if Biυ(i) = Bjυ

(j) and Bjυ(i) =
Biυ

(j), where υ(i) and υ(j) are, respectively, the i-th and the j-th component of υ.

Proof. Consider any eigenvalue–eigenvector pair (λ, υ) of Ψ. From (2.21),

Ψ̄υ = Ψυ − wij
{
[(ei ⊗ In)Bi − (ej ⊗ In)Bj ](ej ⊗ In)′

}
υ

− wij
{
[(ej ⊗ In)Bj − (ei ⊗ In)Bi](ei ⊗ In)′

}
υ

= λυ − wij
{
[(ei ⊗ In)Bi − (ej ⊗ In)Bj ](ej ⊗ In)′

}
υ

− wij
{
[(ej ⊗ In)Bj − (ei ⊗ In)Bi](ei ⊗ In)′

}
υ

(2.22)

Recalling the Kronecher Product defined in (2.18), equation (2.22) becomes:

Ψ̄υ = λυ − wij [EiBi − EjBj ]E′jυ − wij [EjBj − EiBi]E′iυ
= λυ − wij [EiBi − EjBj ]υ(j) − wij [EjBj − EiBi]υ(i) (2.23)

Recalling (2.20), we have wij [EiBi−EjBj ]υ(j)−wij [EjBj−EiBi]υ(i) = 0, and con-
sequently eigenvalue–eigenvector pair (λ, υ) of Ψ is also an eigenvalue–eigenvector
pair Ψ̄, if and only if Biυ(i) = Bjυ

(j) and Bjυ(i) = Biυ
(j).

In case of disconnection of node i, there are no more incoming and outcoming
flows to/from node i; disconnecting node i can be viewed as disconnection of all
edges linked to i: links (i, j) and (j, i) for all j ∈ Ni. The modified network is
described by updated tuple (Ḡ,Φ, Ψ̄) (2.15).
Matrix Ψ̄ is modified as follows:

Ψ̄ = Ψ−
∑
j∈Ni

{
wij [(ei ⊗ In)Bi − (ej ⊗ In)Bj ](ej ⊗ In)′

}
−
∑
j∈Ni

{
wji[(ej ⊗ In)Bj − (ei ⊗ In)Bi](ei ⊗ In)′

} (2.24)

The following result holds in case of node disconnection for directed and undirected
graph.
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Theorem 3. Consider two dynamical networks (G,Φ,Ψ (2.10) and (Ḡ,Φ, Ψ̄) (2.15),
with the latter resulting from a disconnection of node i. Consider any eigenvalue–eigenvector
pair (λ, υ) of Ψ. Then, (λ, υ) is also an eigenvalue–eigenvector pair of Ψ̄, if and
only if the following conditions hold:∑

j∈Ni

{
wijBiυ

(j)
}

=
∑
j∈Ni

{
wjiBiυ

(i)
}

= 0

and
wijBjυ

(i) = wjiBjυ
(j), ∀j ∈ Ni

where υ(j) υ(i) are, respectively, the j-th and i-th component of υ.
If the graph G is undirected, then, (λ, υ) is also an eigenvalue–eigenvector pair of
Ψ̄, if and only if the following conditions hold:∑

j∈Ni

{
Biυ

(j)
}

=
∑
j∈Ni

{
Biυ

(i)
}

= 0

and
Bjυ

(i) = Bjυ
(j), ∀j ∈ Ni

where υ(j) υ(i) are, respectively, the j-th and i-th component of υ.

Proof. Consider any eigenvalue–eigenvector pair (λ, υ) of Ψ. From (2.24),

Ψ̄υ = Ψυ −
∑
j∈Ni

{
wij [(ei ⊗ In)Bi − (ej ⊗ In)Bj ](ej ⊗ In)′

}
υ

−
∑
j∈Ni

{
wji[(ej ⊗ In)Bj − (ei ⊗ In)Bi](ei ⊗ In)′

}
υ

= λυ −
∑
j∈Ni

{
wij [(ei ⊗ In)Bi − (ej ⊗ In)Bj ](ej ⊗ In)′

}
υ

−
∑
j∈Ni

{
wji[(ej ⊗ In)Bj − (ei ⊗ In)Bi](ei ⊗ In)′

}
υ

(2.25)

Considering (2.18), equation (2.25) becomes:

Ψ̄υ = λυ −
∑
j∈Ni

{
wij [EiBi − EjBj ]E′j

}
υ −

∑
j∈Ni

{
wji[EjBj − EiBi]E′i

}
υ

= λυ −
∑
j∈Ni

{
wij [EiBi − EjBj ]υ(j)

}
−
∑
j∈Ni

{
wji[EjBj − EiBi]υ(i)

} (2.26)

So eigenvalue–eigenvector pair (λ, υ) of Ψ is also an eigenvalue–eigenvector pair Ψ̄
if and only if∑

j∈Ni

{
wij [EiBi − EjBj ]υ(j)

}
−
∑
j∈Ni

{
wji[EjBj − EiBi]υ(i)

}
= 0 (2.27)

Equation (2.27) is satisfied if and only if:∑
j∈Ni

{
wijBiυ

(j)
}

=
∑
j∈Ni

{
wjiBiυ

(i)
}
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and
wijBjυ

(i) = wjiBjυ
(j), ∀j ∈ Ni

If the graph is undirected, wij = wj,i, so the conditions become:∑
j∈Ni

{
Biυ

(j)
}

=
∑
j∈Ni

{
Biυ

(i)
}

and
Bjυ

(i) = Bjυ
(j), ∀j ∈ Ni

All results about discernibility, have been applied to case of linear node dy-
namics. Nevertheless, it can be noted that Proposition 2 (and subsequent results)
can be extended to the case in which the internal dynamics of each node i − th is
non-linear, as:ẋi = fi(xi) +Bi

∑
j∈Ni

wijxj −Bi
∑
j∈Ni

wjixi

yi = Cixi

i = 1, 2, ..., N (2.28)

where fi(xi) is a non linear function.
Considering the node dynamics in (2.28), the whole network state and output dy-
namics, as in (2.3), can be written as:{

ẋ = ∆(x)
y = Hx

(2.29)

where:

• x ∈ RNn is the aggregated state vector of network;

• y ∈ RNm is the aggregated output vector of the network;

• ∆(·) is the aggregated non linear function ∆(·) = Φ(·) + Ψ;

• Φ(·) is a block diagonal matrix defined as

Φ(·) = diag {fi(·)} (2.30)

• Ψ ∈ RNn×Nn is a block matrix defined as (2.12)

Proposition 3. Consider two dynamical networks (G,Φ,Ψ) (2.29) and (Ḡ,Φ, Ψ̄)
(2.15), with the latter resulting from a disconnection. There exist non-null indis-
cernible states if and only if matrices Ψ and Ψ̄ corresponding to (G,Φ,Ψ) and
(Ḡ,Φ, Ψ̄) have a common eigenvalue–eigenvector pair (λ, v).

Proof. Consider the eigenvalue–eigenvector pair (λ, v) of Ψ and considering the
structure of ∆(·) and ∆̄(·), we have:

∆(v) = ∆̄(v) =
= Φ(v) + Ψv = Φ(v) + Ψ̄v

and Φ(v) + Ψv = Φ(v) + Ψ̄v if and only if Ψv = Ψ̄v = λv.
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It can be seen that matrix Ψ represents the connections between nodes, so it’s
impacted from any disconnections acting on the network, namely from topological
changes. Understanding if it’s possible to detect network topology variations, it’s
useful in case of problems of Fault-Detection-Isolation or if the disconnections are
intentionally introduced as control actions to be performed on network, i.e. in con-
trol of epidemics.
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Chapter 3

Multi-agent epidemiological
networks

In this Chapter, we apply the results of Chapter 2 to a multi-agent network, in
which each node models a SIR comportamental system (firstly introduced by Ker-
mack and McKendrick in [29]).
Applications of this epidemiological model can be found in different areas [30],
including medicine (epidemics), informatics (P2P networks, computer viruses), eco-
nomics (financial network contagion).

3.1 SIR Epidemiological model

Epidemic models are mathematical representation of diseases, characterized by vari-
ables representing different status of the individuals. Common used status for indi-
viduals are:

• Susceptible for individual who can be infected;

• Infected;

• Removed for those who have already been infected;

• Exposed for infected not yet infectious;

• Deceased due to disease.

Among the different models [31, 32, 33, 34], in this work we deal with SIR (Susceptible-
Infected-Removed) model [29].
The dynamics of an epidemic, with classical SIR model can be represented by the
following system of ODEs: 

Ṡ(t) = −βS(t)I(t)
İ(t) = βS(t)I(t)− γI(t)
Ṙ(t) = γI(t)

(3.1)

where:
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• S(t): number of Susceptible individuals at time t, they can remain susceptible
or move to the Infected population;

• I(t): number of Infected individuals at time t, they can infect the Susceptible
individuals and move to the Recovered population to recover or die;

• R(t): number of Removed individuals at time t, they have been infected and
are healed/immune or died;

• constant β ∈ R+ ∪ {0} is the transmission rate from an infected person; at
time t, each Infected generates βS(t) new Infected per day;

• constant γ ∈ R+∪{0} is the removal rate; at time t, γ fraction of Infected per
day becomes Recovered. It’s inversely proportional to the average infectious
period γ = 1

τ ;

• the initial conditions are: initial number of Susceptible individuals not null
S(0) > 0, while initial numbers of Infected and Recovered are greater or equal
to zero, I(0) ≥ 0 and R(0) ≥ 0.

The properties of (3.1) [35, 36] are the following:

• changing the sign of t, it’s possible to evolve back in time;

• N(t) number of total population is conserved, with N(t) = S(t) + I(t) +R(t);

• the number of Infected grows from a small initial number to an huge one, if
İ(0) ≥ 0, that is if βS(0) > γ;

• transitions from S directly to R and viceversa and from I to S are not allowed.

The transitions among Susceptible, Infected and Recovered are depicted in Figure
3.1, where demographic factors (birth and death rates) are not represented.

Figure 3.1. SIR transitions

SIR model has been extensively studied and applied, in some cases with modi-
fications, to different outbreaks over the years (i.e. for HIV [37], for H1N1 [38], for
Ebola [39] and, in last two years, for Covid-19 [40, 41]).
In Figure 3.2, it’s depicted a classical evolution of Susceptible, Infected and Recov-
ered individuals over time, in ’free running’, without any interventions aimed to
reduce the spread of the epidemic. At the beginning, most of the individuals are
Susceptible, there are no Recovered and a small number of Infected is injected in
the system (hundreds of Infected with respect to million of Susceptible individuals).
In the first phase, the number of Infected has a rapid growth, while the number
of Susceptible falls and the number of Recovered grows, both less rapidly than the
Infected one. After the peak, the number of Infected starts to decrease, while the
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Susceptible individuals continue to decrease and the Recovered ones continue to
increase. At the end, there are no more Infected and Susceptible because all the
individuals are Recovered.

Figure 3.2. Classical SIR evolution

In Figures 3.3 and 3.4, the dependence of SIR model on parameters is shown.
In both Figures, blue lines represent same evolution shown in Fig 3.2, while green
lines show the modified evolutions in case of modifies parameters β (Fig. 3.3) or γ
(Fig. 3.4). The initial conditions (S(0) ≈ 4.3 ·106 individuals, R(0) = 0 individuals,
I(0) = 100 individuals) are the same for all the evolutions. In the baseline evolution
(blue line), we have β = 3.369 · 10−8 day−1 and γ = 0.079 day−1.
In Figure 3.3a and 3.3b, it’s depicted, in green, the evolution of SIR model with,
respectively, increased (β = 6.739 · 10−8 day−1) and decreased (β = 3.032 · 10−8

day−1) value of β, with respect to evolution in blue. It can be see that value β
has effect to speed and force of epidemics: the larger the value of β, the faster the
number of infected grows and reaches a higher peak.
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(a) Increased β (b) Decreased β

Figure 3.3. SIR evolution with different β

In Figure 3.4a and 3.4b, it’s depicted, in green, the evolution of SIR model with,
respectively, increased (γ = 0.095 day−1) and decreased (γ = 0.071 day−1) value
of γ, with respect to evolution in blue. It can be seen that value γ has an infect
inverse effect with respect to effect of β.

(a) Increased γ (b) Decreased γ

Figure 3.4. SIR evolution with different γ

If we add demographic factors ([30, 42]) to (3.1), the dynamical model becomes:
Ṡ(t) = δN(t)− βS(t)I(t)− µSS(t)
İ(t) = βS(t)I(t)− γI(t)− µII(t)
Ṙ(t) = γI(t)− µRR(t)

(3.2)

where:

• constant δ ∈ R+ ∪ {0} is the birth rate of the population;
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• constants µS , µI , µR ∈ R+ ∪ {0} are, respectively, the natural death rate for
Susceptible, Infected and Recovered (independent from the disease).

The dynamics of the infection depends on the reproduction number R0(t) defined
as R0(t) = βS(t)/ γ: if R0(t) < 1 the number of infected will decrease, otherwise it
will increases resulting in the spread of the infection. If the number of deaths from
the virus is small compared with the living population, births and deaths (other
than deaths caused by the infection) can be neglected and removed from the model
(3.1). In case of small variation of susceptible (S(t) almost constant over time), the
product βS(t) can be considered constant, βS(t) = βS .
Variations on SIR lead to different models, in which, for example, cases of epidemics
without immunity, with incubation periods, where infants can be born with immu-
nity, where immunity lasts only for a short period of time, are considered.
Just as there are many studies on the evolution of epidemics, there are also different
studies in the literature about automatic control technique applied to epidemics.
One problem studied is the design and stability analysis of observers for epidemio-
logical models [43, 44]. Various relevant branches of research have focused on con-
trol of the outbreak spread: i.e. effects of different control strategies for Covid-19
has been investigated (preventive quarantine, isolation, antiviral therapy, therapy
against complications, number of tests on population) in [45], optimal control stud-
ies for epidemics can be found in [46, 47].

3.2 Multi-agent SIR network

Most of the works found in the literature deal with a single SIR model, while we
are interested in interactions between different models. In [48] and [49], the au-
thors make use of exact and approximated Markov chain for modelling of epidemic
spread over a given complex network, composed by interconnected SIS/SIRS mod-
els. In [50], a Lyapunov function structure for a two-population SEIR model has
been introduced. In [51], it’s proposed a novel control strategy which ensures that
all agents in a SIS network, exponentially (respectively asymptotically), converge to
the disease-free equilibrium (DFE). In [52], a Markov Decision Process models the
control of an epidemic, with application of different planning algorithms to arrive
at targeted control strategies.
In this section, we introduce the problem of interconnections among different pop-
ulations, each of them modelled as a SIR model with its own parameters.
Consider a multi-agent systems composed by N node, the state of each node i
(taking into account (3.1)) can be expressed as:

ẋi =

ẋ1,i
ẋ2,i
ẋ3,i

 =

Ṡiİi
Ṙi

 ∈ R3 (3.3)

Note that from (3.3) to follow, we remove the dependence on t from the formulas,
in order to improve readability.
From (3.3) and (3.1), the dynamics of node i, belonging to a multi-agent network,
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can be expressed as:

ẋi = fi(xi) +Bi
∑
j∈Ni

wijxj −Bi
∑
j∈Ni

wjixi (3.4)

where

• xi/xj ∈ Rn are, respectively, the state vector of node i and j;

• matrix Bi ∈ Rn×n is the input matrix of node i;

• wij ∈ R+ ∪ {0} represents the weight of the flow from node j to node i and it
is equal to zero in case of absence of the flow;

• the non linear function fi(xi) representing the proper dynamics of node i is
defined as:

fi(xi) =

 βix1,ix2,i − µSix1,i
βix1,ix2,i − γx2,i − µIix2,i

γx2,i − µRix3,i

+ δiNi (3.5)

with

δi =

δi0
0


In case of small variation of susceptible (Si(t) almost constant over time), as already
mentioned, we can consider βiSi(t) = βSi. With this assumption, (3.5) becomes
linear in xi and, without demographic factor (δi, µSi, µIi, µRi), it can be expressed
as:

fi(xi) = Aixi =

0 −βSi 0
0 βSi − γi 0
0 γi 0


x1,i
x2,i
x3,i

 (3.6)

It’s easy to see that matrix Ai in (3.6) has two eigenvalues (λ = 0 with multiplicity
2 and λ = βSi − γi) and the equilibrium points of the system are the disease free
xe,i = (x1,i, 0, x3,i)T and the endemic xe,i = (x1,i, x2,i, x3,i)T with βSi = γi.

It should be noted that this approximation can be used only in case βSi < γi. In
Figure 3.5, we can find the evolution of linearised SIR model with different values
of βSi. The initial conditions (Si(0) ≈ 4.3 · 106 individuals, Ri(0) = 0 individuals,
Ii(0) = 100 individuals) and the value of γi = 0.0795 day−1 are the same. In Fig.
3.5a, we have the evolution with βSi = 0.0148 day−1, while in Fig. 3.5b, we have
the evolution with βSi = 0.0895 day−1. In the first case, we can see the decrease of
the Infected over time, while in the latter case we can see the number of Infected
increasing and the number of Susceptible decreasing (it could become negative over
a longer period of time or if initial value Ii(0) is greater).
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(a) Evolution with βSi < γi (b) Evolution with βSi > γi

Figure 3.5. Linear SIR evolution with different βSi wrt γi

If βSi = γi the number of Infected remains constant Ii(t) = Ii(0) for all t ≥ 0,
while the number of Susceptible decreases linearly with respect to Ii(0) in βSi and
the number of Recovered increases linearly with respect to Ii(0) in γi. The dynamics
of node i (3.4), with the assumption of small variations of Si over time and without
considering demographic factor, can be rewritten in same form of (2.8), as:

ẋi = Aixi +Bi
∑
j∈Ni

wijxj −Bi
∑
j∈Ni

wjixi (3.7)

3.3 Simulations
When studying the evolution of an epidemics in a population, effects of migrations
and travelling shall be taken into account. The ’internal’ dynamics of each SIR
model changes if there are flows of incoming or outcoming individuals. These effects
shall be considered, for example, when some control strategies should be designed
in order to reduce the spread of the epidemics.
In last years, most researches, in different scientific areas, has been focused on
Covid-19 from different points of view. Works as [53], [54], [55], [56] corroborate,
with real data analysis, the statement that travelling and/ or measure act to reduce
travels have impacts of global and local evolution of epidemics.
In this Chapter, we expose the results of numerical simulations of the evolution of
an epidemics in Italy, performed using Matlab®.
We consider a multi-agent network composed by N = 20 nodes, where each node
is a region of Italy, whose dynamics is expressed by (3.7) and (3.6). The whole
network dynamics, according to (2.10) is:{

ẋ = ∆x = (Φ + Ψ)x
y = Hx

(3.8)

where:

• number of nodes is N = 20;
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• state and output dimensions of each node are, respectively, n = 3 and m = 3;

• x ∈ R60 is the aggregated state vector of network;

• y ∈ R60 is the aggregated output vector of the network;

• ∆ ∈ R60×60 is the aggregated transition matrix, with Φ and Ψ defined in
(2.11) and (2.12);

• H ∈ R60×60 is the aggregated output matrix.

The dynamics of each node can be expressed with:

ẋi = Aixi +Bi
∑
j∈Ni

wijxj −Bi
∑
j∈Ni

wjixi

yi = Cixi

(3.9)

with the following assumptions:

• there are small variations of Si, hence the approximated linear dynamics;

• all the node outputs are known, thus Ci = I3, ∀i;

• the input matrix of each node is the identity matrix of dimension equal to each
node state dimension, Bi = I3, ∀i. The matrices Bi have no values different
from 0 out of the diagonal, because we consider that dynamics of Susceptible,
Infected and Recovered of each node are impacted, respectively, only from
flows of Susceptible, Infected and Recovered to/ from its neighbouring nodes.

Parameters βi and γi in Ai are assumed different for each node and they are listed
in Table 3.1.
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Region i Par. βSi [day−1] Par. γi [day−1]
Abruzzo 1 0.0040935318 0.0440041908
Basilicata 2 0.0018282933 0.0033003300
Calabria 3 0.0057069471 0.0221650504
Campania 4 0.0150376410 0.1626349926

Emilia-Romagna 5 0.0137731242 0.0415926265
Friuli Venezia Giulia 6 0.0039372300 0.0429280397

Lazio 7 0.0159976514 0.0325700529
Liguria 8 0.0060039173 0.0836653386

Lombardia 9 0.0274487836 0.0329042563
Marche 10 0.0048459267 0.0276870995
Molise 11 0.0010291597 0.0475737392

Piemonte 12 0.0148022109 0.0795896975
Puglia 13 0.0110226003 0.0224210314

Sardegna 14 0.0047555938 0.0185849555
Sicilia 15 0.0148235777 0.0197086003
Toscana 16 0.0120988374 0.0626676420

Trentino-Alto Adige 17 0.0025916312 0.0283706747
Umbria 18 0.0028737300 0.0293032786

Valle D’Aosta 19 0.0003858634 0.0876132930
Veneto 20 0.0134452849 0.0968906720

Table 3.1. Regional parameters

For the connections, we assume, that there are flows between two regions if they
are neighbouring (i.e no flows for regions that are islands) and that the weights of
all flows are constant wij = 0.001.
In Table 3.2, the connections for each node are shown. Different simulations are
performed with different initial values Ii(0), while the initial Recovered populations
are assumed to be null in all regions and the initial Susceptible populations (official
data of the resident population in each region in 2019 [57]) are listed in Table 3.2.
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Region i Neighbouring regions S(0) [p] R(0) [p]
Abruzzo 1 7 10 11 1322247 0
Basilicata 2 3 4 13 570365 0
Calabria 3 2 1965128 0
Campania 4 2 7 11 13 5839084 0

Emilia-Romagna 5 8 9 10 12 16 20 4448841 0
Friuli Venezia Giulia 6 20 1217872 0

Lazio 7 1 4 10 11 16 18 5898124 0
Liguria 8 5 12 16 1565307 0

Lombardia 9 5 12 17 20 10018806 0
Marche 10 1 5 7 16 18 1538055 0
Molise 11 1 4 7 13 310449 0

Piemonte 12 5 8 9 19 4392526 0
Puglia 13 2 4 11 4063888 0

Sardegna 14 1653135 0
Sicilia 15 5056641 0
Toscana 16 5 7 8 10 18 3742437 0

Trentino-Alto Adige 17 9 20 1062860 0
Umbria 18 7 10 16 888908 0

Valle D’Aosta 19 12 126883 0
Veneto 20 5 6 9 17 4907529 0

Table 3.2. Regional connections and initial values

Figure 3.6 shows the multi-agent network used for simulation, in which each
node correspond to one of region labelled according to column i in Table 3.2. Note
that for readability, a bidirectional flow between neighbouring regions is represented,
instead of two different flows.

Figure 3.6. Epidemiological network
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All the simulations, in linearised case, helps to understand the effect of epidemics
propagation in the network in a short time interval. For the long term evolution, it
shall be considered the case of non linear SIR models.

3.3.1 Simulation in linear case

In first simulation, we compare the evolution of each node dynamics (S depicted in
Figure 3.7 and I depicted in Figure 3.8) in case 1000 infected individuals are injected
in the system in node number 9 (Ii(0) = 1000 if i = 9 and Ii(0) = 0 otherwise), if
there are (green lines) or not (blue lines) connections between regions.

Figure 3.7. Evolution of Si without/with connections
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Figure 3.8. Evolution of Ii without/with connections

From the analysis of Figures 3.7 and 3.8, it’s easy to see the effects of connections
between regions (green lines) with respect to evolutions without them (blue lines).
Note that the evolutions of population of islands (here considered as isolated nodes)
are the same in both cases.
It’s interesting to see how number of Infected for regions with flows change in the
different scenarios. In Lombardia (region number 9), number of Infected decreases
faster in case of flows, because it’s assumed that some of them move in other regions
over time. As the Infected number in Lombardia is reduced, same quantities increase
for all the connected regions. However, it can be noted that the speed of the
epidemics is different from one region to another. Of course, each region has it’s
own parameters βSi and γi, that lead its epidemics dynamics but also the distance
with respect to Lombardia impacts the evolutions. We can see that, regions with
shorter path from it, has a faster increase of Infected population with respect to
time (see, for example, Veneto and Piemonte with respect to Lazio).
Taking into account previous considerations, different control actions, related to
connections, can be performed on the network in order to reduce the spread of
the epidemics. These actions imply only disconnections in the network and they
can be added to different control action acting on one or all populations (i.e. local
lockdown). The dynamics of each node, taking into account a generic control action
ui, can be expressed with:ẋi = Aixi +Bi

∑
j∈Ni

wijxj −Bi
∑
j∈Ni

wjixi + ui

yi = Cixi

(3.10)

Firstly, we consider that, at certain time tc, when the epidemics starts to spread,
a control action is taken, which consists in prohibiting all travels between regions,
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namely in (3.10):

ui = θ(tc)

−Bi ∑
j∈Ni

wijxj +Bi
∑
j∈Ni

wjixi

 (3.11)

where θ(·) is the unit step function, different from 0 for t ≥ tc.
Theorem 3 gives the necessary and sufficient conditions under which the disconnec-
tion of one node is not discernible, but in this case, we disconnect all nodes in the
network. Instead of checking the conditions for all the node, we start checking them
for node i = 19 (it has only one neighbouring node). We let the tool compute the
eigenvalues and eigenvectors and we, easily, discover that v(19) 6= 0, so the discon-
nection of node 19 is discernible. Considering that this disconnection is discernible,
it derives that the applied control action leads to a discernible state of the overall
network.
In Figure 3.9, we can see the evolutions of Infected in all regions: the green lines de-
pict the evolutions in nominal connections, while the red lines depict the evolutions
after disconnections at tc = 10 day.

Figure 3.9. Evolution of Ii with disconnections

The evolution of overall Infected in the network, without control action (green
line) and with control action (red line) is depicted in Figure (3.10): in Fig. 3.10a
we can see that the overall number of Infected decreases after the control action
thanks to the blocking of propagation in many regions; in Fig 3.10b, we can see the
overall Infected evolution without I9, from which it can be seen that the number of
infected in all other nodes decreases rapidly.
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(a) With I9 (b) Without I9

Figure 3.10. Total number of I in the network

One of the most impacting factor, it’s the time of application of control action:
the earlier it is applied, the less there is propagation on the network. In Figure
3.11, we can see the evolutions of Infected in all regions (without I9), if the control
action 3.11 is applied at different tc.

Figure 3.11. Evolution of Ii with disconnections at different tc

Taking into account this analysis, we modify the control action, which now
consists in prohibiting all travels to and from node 9 (node with higher number
of Infected with respect to other regions). The control action in (3.10), shall be
applied only to node 9 and it becomes:

ui =


θ(tc)[−B9

∑
j∈N9

w9jxj +B9
∑
j∈N9

wj9x9] i = 9

θ(tc)[−Biwi9x9 +Biw9ixi] i ∈ N9

0 otherwise

Theorem 3 gives the necessary and sufficient conditions under which the disconnec-
tion of one node is not discernible. As before, we let the tool compute the eigenvalues
and eigenvectors and we, easily, discover that v(9) 6= 0, so the disconnection of node
9 is discernible, hence the applied control action leads to a discernible state of the
overall network.
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In Figure 3.12, we can see the evolutions of Infected in all regions: the green lines de-
pict the evolutions in nominal connections, while the red lines depict the evolutions
after disconnections of node 9 at tc = 10 day.

Figure 3.12. Evolution of Ii with disconnections of node 9

The evolution of overall Infected in the network, without control action (green
line) and with control action (red line) is depicted in Figure (3.13): in Fig. 3.13a
we can see that the overall number of Infected decreases after the control action
thanks to the blocking of propagation in many regions; in Fig 3.13b, we can see the
overall Infected evolution without I9, from which it can be seen that the number of
infected in all other nodes decreases rapidly. So this control action, with impacts
only on a restricted number of nodes, has quite the same effects of overall Infected
in the network.

(a) With I9 (b) Without I9

Figure 3.13. Total number of I in the network with disconnection of node 9

As seen in Figure 3.11, the impact on epidemic propagation, due to control
actions, depends on time tc on which we disconnect the node. In real cases, we have
some constraint on this tc, i.e. this time cannot be less than the number of days it
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takes to notice the initial spread of the pandemic. A problem can be which control
action should be taken at fixed time tc in order to reduce the propagation.
Consider the case in which 1000 infected individuals are injected in the system in
node number 3 and 9 (Ii(0) = 1000 if i = 3, 9 and Ii(0) = 0 otherwise) and a control
action should be applied at time tc = 10 days in order to stop the propagation of
the epidemics. In this case, the weights of all flows are constant wij = 0.01. We
don’t know the initial state of each node, but the rounded number of Infected in
each region at tc, listed in Table 3.3.

Region Number of Infected [p]
Abruzzo 1
Basilicata 75
Calabria 771
Campania 2

Emilia-Romagna 57
Friuli VeneziGiulia 3

Lazio 1
Liguria 5

Lombardia 646
Marche 3
Molise 1

Piemonte 51
Puglia 4

Sardegna 0
Sicilia 0
Toscana 3

Trentino-Alto Adige 66
Umbria 1

Valle D’Aosta 2
Veneto 49

Table 3.3. Number of Infected in each region at tc = 10 days

A different control action can be applied in this case, which now consists in
splitting the network in sub-group, prohibiting all travels between some regions.
In order to avoid propagation, in regions with longer paths from node with higher
number of Infected, we disconnect the links, namely stop flows between nodes 5
and 16, 5 and 10, 8 and 16, 2 and 13, 2 and 4. The split network is depicted in
Figure 3.14, refers to Figure 3.6 for original topology. Note that the dotted lines
corresponds to the edge disconnected.
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Figure 3.14. Epidemiological ’split’ network

The control action in (3.10), shall be modified as follows:

ui =



θ(tc)[−B2(w2,4x4 + w2,13x13) +B2(w4,2 + w13,2)x2] i = 2
θ(tc)[−B4(w4,2x2) +B4(w2,4)x4] i = 4
θ(tc)[−B5(w5,16x16 + w5,10x10) +B5(w16,5 + w10,5)x5] i = 5
θ(tc)[−B8(w8,16x16) +B8(w16,8)x8] i = 8
θ(tc)[−B10(w10,5x5) +B10(w5,10)x10] i = 10
θ(tc)[−B13(w13,2x2) +B13(w2,13)x13] i = 13
θ(tc)[−B16(w16,5x5 + w16,8x8) +B16(w5,16 + w8,16)x16] i = 16
0 otherwise

(3.12)

Theorem 2 gives the necessary and sufficient conditions under which the disconnec-
tion of one link is not discernible. As the graph corresponding to our network is
undirected, all the weights are equal and for all nodes Bi = I3, we know that the
control action has a not discernible effect if an only if vi = vj where i, j correspond
to edge (i, j) disconnected. As previous cases, we let the tool compute the eigen-
values and eigenvectors. We verify that previous condition does not hold, i. e. , for
link (2, 4), so the control action leas to a discernible state.
In Figure 3.15, we can see the evolutions of Infected in all regions: the green lines
depict the evolutions in nominal connections, while the red lines depict the evolu-
tions after disconnections at tc = 10 day. It can be noted that, applying this control
action, the spread of epidemics, in part of the network, can be avoided.
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Figure 3.15. Evolution of Ii with network split

We can apply the control action (3.12) to the network in case of wij with different
values (in this simulation, we set wij as random values from 0.01 and 0.1). In
Figure 3.16, we can see the evolutions of Infected in all regions: the red lines depict
the evolutions after disconnections at tc = 10 day with wij equal for all i and j,
while cyan lines depict the evolutions with different wij . It can be noted that, the
evolutions of Infected differ in two cases.

Figure 3.16. Evolution of Ii with network split and different wij
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In last simulation, we simulate what happened, in Italy, at the beginning of
2020, when Covid-19 started to spread in northern Italy, and more slowly in central
and southern Italy. We show the propagation of an epidemic in the network in case
30 (and then 100) infected individuals are injected in the system in Lombardia,
node number 9. We consider the flows between northern regions to be greater
with respect to central and southern ones (wij = 0.1 if i/j = 5, 6, 9, 12, 17, 19, 20
and wij = 0.01 otherwise). In Figures 3.17 and 3.18, we can see the evolution of
Infected, in all node, at the beginning of spread of epidemic. It can be seen that,
in both cases, the epidemics spreads rapidly in northern region and, in simulation
time (30 days), starts to spread in central ones while it does not start to spread in
southern ones. In the second case, Figure 3.18, we see number of Infected greater
in some regions with respect to first case, Figure 3.17.

Figure 3.17. Spread of an epidemic in Italy starting from 30 I in Lombardia
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Figure 3.18. Spread of an epidemic in Italy starting from 100 I in Lombardia

3.4 Conclusions
In Chapter 3.2, the evolution of a disease in a multi-agent epidemiological network
is exploited, in which the state of each node represents the evolution of the epidemic
in its population and it is considered affected by flows of incoming and outcoming
people from its neighbouring nodes. The effects of some control actions, acting on
the connections between nodes, are also exploited, checking also the discernibility
of network state obtained after different disconnections.
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Chapter 4

Micro-gripper model

This Chapter describes the real micro-manipulator, including its modelling, subject
of some studies for tissue parameter estimation.

4.1 Introduction

Applications of robotics in medical area are more and more frequent and they are
becoming standard techniques, in particular in some branch of surgery (references
to some of these applications and studies can be found in [58, 59, 60, 61, 62]). In
some cases, the robot in use is of human scale, but in several cases the dimensions
of the robotic devices shall be very small (i.e. mini invasive interventions).
The main differences, between working with macroscopic or microscopic scale in
gripping [63], are:

• dominance of adhesion forces at microscale (whereas at macroscale, the dom-
inating force is gravitational force) caused by the scaling effect and contact
hysteresis;

• risk of damaging objects manipulated and end-effectors;

• importance of visual feedback, for which microscopes are needed as a part of
manipulation system, but they can cause problems due to restrict space and
complexity of visual information processing;

• very high positioning accuracy required.

Just as the difficulty in manufacturing, actuating and using micro and nano devices,
increases [64], so does the possibility of applying this type of device in different ar-
eas.
In this work, it’s proposed the use of a real micro-gripper for estimation of the me-
chanical characteristics of the samples under examination, specifically their visco-
elastic properties.
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4.2 Experimental micro-gripper

A novel micro-gripper has been studied and fabricated as described in [65]. The
fabrication method adopted makes use of Deep Reactive-Ion Etching applied on
Silicon on Insulator wafer. The micro-device is depicted in Figure 4.1.

Figure 4.1. The real device

The device is fabricated as a silicon monolithic structure, arranged with a comb
drive at the anchor of each jaw. The comb actuators exert the input torques that,
through the deflections of a flexure hinge [66, 67], move the jaws during the gripping
tasks [68].
An operative scenario is drawn in Figure 4.2. In this Figure we can see the gripper
pinching a tissue sample, kept between the jaws. The points B and C are the contact
points between the jaws and the sample, while the points A and D represent the
hinges/actuators.

Figure 4.2. The gripping system
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The problem has been already described and investigated in [69] and [70].
In the initial configuration, the gripper pinches the sample, so the two jaws are
coupled by the presence of the handled sample. Therefore, this system can be
modelled by introducing an equivalent 4-bar linkage as in Figure 4.3 (a), where
link BC has lost the rigidity property. Considering the revolute centers and the tip
contact positions, the two jaw lengths of AB and DC are assumed to be equal to l.
The frame link length AD corresponds to the distance between the centers of the
CSFHs and it can be assumed to be equal to d. Finally, the length BC is not fixed
and it can be obtained as the sum of the initially undeformed length plus a variable
deformation.

Figure 4.3. The gripping schema

In Figure 4.3 (b),(c), the gripper is represented in an operative condition different
from the initial one. In Figure 4.3 (c), following the notation introduced in [70], the
angles θi represent the relative angular displacements of the two links from their
neutral configuration, with i = 2 for the left link AB and i = 4 for the right one DC.
With reference to Figure 4.3 (c), θ3 represents the relative angular displacements
of the link BC from its neutral configuration. The angles are defined according to
the counter clockwise rule.

4.3 Gripper mathematical model
Note that, in this work, each length/ orientation in its final configuration is ex-
pressed with tilde ,̃ while the reference value by hat .̂ Following this notation, the
actual angles θ̃2, θ̃3 and θ̃4 can be expressed as sum of their reference values plus
their deformation:

θ̃2 = θ2 + θ̂2

θ̃4 = θ4 + θ̂4

θ̃3 = θ3 + θ̂3

Simple geometric considerations give θ̂2 = π − θ̂4.
The reference value for the distance BC, corresponding to zero elastic reaction force
of the sample, is denoted by û, and its actual value by ũ. Therefore, the deformation
is equal to u = ũ− û. The values of the variables in the neutral condition are given
in Table 4.1.
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Variable name Numerical value
θ̂2 1.44 rad
θ̂4 1.70 rad
θ̂3 0 rad
û 150 · 10−6 m
Table 4.1. Constants

The following parameters are defined:

• l is the common length of the two links which constitutes the jaws, i.e. the
distances AB and CD;

• d is the distance between the hinges (AD);

• k2, k4 and k are the torsional stiffness of the two jaws and the stiffness coef-
ficient of the tissue sample, respectively;

• r2, r4 and r (or c2, c4 and c) are the viscous damping coefficients of the two
jaws and of the sample, respectively;

• I2 and I4 are the two jaws moments of inertia around A and D;

• τ2 and τ4 are the input torques generated by the comb drives.

Figure 4.4 clarifies all the listed parameters: in initial (a) and operational (b) con-
ditions.

Figure 4.4. Detailed gripping schema

Numerical values of the parameters are given in Table 4.2.
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Parameter Numerical value
d 5.47 · 10−4m
l 1.496 · 10−3m

I2, I4 1.25 · 10−14 kg m2

k2, k4 0.30 · 10−6 (Kg m2) / (s2 rad)
r2, r4 1.24 · 10−12 (Kg m2) / (s rad)

Table 4.2. Numerical values of the parameters

With reference to 4.3, with i =
√
−1, it can be write the following closed loop

vector equation:
leiθ2 + ~BCeiθ3 − d− leiθ4 = 0 (4.1)

From 4.1, ~BC, expressed as complex number x = ~BCeiθ3 , is

x = d− leiθ2 + leiθ4

= ~BCeiθ3

= ~BC(cos θ3 + ı sin θ3)

whose real and imaginary part are, respectively:

<x = d− l cos θ̃2 + l cos θ̃4

=x = −l sin θ̃2 + l sin θ̃4
(4.2)

From 4.2, the following expressions can be derived:

θ3 = arctan =x
<x

(4.3)

ũ =
√

(=x)2 + (<x)2 − û (4.4)

By simple mathematical operations, the velocity u̇ can be computed:

u̇ = θ̇2l sin
(
θ̃2 − θ3

)
− θ̇4l sin

(
θ̃4 − θ3

)
. (4.5)

It follows the angular dynamical model of each of the two links.
For the first joint, from the torque balance condition and assuming the inertia of
the sample negligible, one has:

I2θ̈2 = −r2θ̇2 − k2θ2 − rl sin
(
θ̃2 − θ3

)
u̇− kl sin

(
θ̃2 − θ3

)
u+ τ2 (4.6)

while for the second one, the corresponding expression is :

I4θ̈4 = −r4θ̇4 − k4θ4 + rl sin
(
θ̃4 − θ3

)
u̇+ kl sin

(
θ̃4 − θ3

)
u+ τ4 (4.7)

It should be noted that computation of θ̇3 is not needed.
In next Chapter, different techniques are applied for tissue parameter estimations
with the described micro-gripper.
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Chapter 5

Micro-gripper parameters
estimation

This Chapter exposes the results obtained with the estimation technique applied to
the micro-gripper.

In [69], a solution is proposed, for the measurement of the elastic coefficient
of a sample by gripping it and evaluating the reaction elastic force generated. The
technique proposed makes use of the actuation of one of the two gripper jaws, leaving
the second one passive, and controlling the angular displacement of the passive jaw,
by means of a feedback control scheme, in order to keep the variation of the angle at a
certain, sufficiently small, value which may assure that only a small force acts on the
sample tissue. In [70], the solution is expanded in order to allow to obtain both the
viscosity and the damping coefficients of the sample. The solutions proposed in [69]
and [70] need a particular input signal waveforms to perform such measurements,
that is compatible with clinical diagnostic tests applications, but it is not suitable
for a tissue manipulations during surgery operations. The necessity of works with
different inputs and in the most heterogeneous operating conditions possible, has
driven the research of an online parameters estimator for the microgripper. In
the following sections, different solutions are exploited and applied to the system
described in previous Chapter.

5.1 Recursive Least Square Filters

The first approach, for system parameters identification [71], is based on recursive
least square methods. It makes use of numerical solution and it can be successfully
applied under the condition that the set of parameters to be estimated appear
linearly in the dynamics. RLS algorithms are adaptative filtering algorithms that
recursively finds the coefficients that minimize a weighted linear least squares cost
function relating to the input signals. For convergence analysis of RLS estimation
algorithms refers to [72].
The micro-gripper model is non-linear but it can be rearranged in the form of a linear
time varying systems in which the parameters to be identified are the unknowns, and
all the other terms are function of the state and of the output variables, supposed



54 5. Micro-gripper parameters estimation

measurable. This technique has been fruitfully used in several applications, as for
example in [73, 74, 75, 76]. The application of these technique to the device has
also been described in two works [77, 78].
Equations 4.6 and 4.7 can be rewritten in the following linear parametric form
(linear with respect to the unknown parameters):

yi(t) = Mi(t)ωi(t) , i ∈ [1, . . . ,m], (5.1)

where m are the degrees of freedom of the system; in our case, m = 2. The term
ωi(t) is one of the of unknown parameters, whereas yi(t) and Mi(t) are known
quantities coming from the dynamics expressions.

All the quantities in (5.1) are time varying, since they are computed during
the dynamics evolution; this means that also ωi(t), despite it is referred as the
parameters vector, is a function of time because the estimated values change at
each update of the procedure, converging to the constant values of the parameters.
Equations 4.6 and 4.7, in form of 5.1, become:

yi(t) = Iiθ̈i + riθ̇i + kiθi − τi i = 1, 2 (5.2)

where:
Mi(t) = ∓lsin(θi + θ̂i − θ3)(u̇ u) i = 1, 2 (5.3)

and
ωi(t) =

(
r(t)
k(t)

)
i = 1, 2 (5.4)

With reference to (5.2),(5.3) and (5.4), the general expressions to be defined for a
generic recursive least squares (RLS) filtering [79] algorithm, for i = 1, 2, are:

ω̂i(t) = ω̂i(t− 1) +Ki(t)εi(t)
εi(t) = yi(t)− ŷi(t)
ŷi(t) = φTi (t)ω̂i(t− 1)
Ki(t) = Qi(t)φi(t) (5.5)

where

• ω̂i(t) are the current estimation values of ωi(t);

• ŷi(t) are the current estimation values of yi(t);

• εi(t) is the current prediction error;

• the gain Ki(t) determines how much the prediction error affects the update
in the parameters estimation;

• φi(t) represents the gradient of the predicted model output with respect to
ωi(t).

According to 5.5, the current estimation values ω̂i(t) are updated recursively as new
data are available online.
Two different recursive last squares (RLS) filtering algorithms are adopted for the
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on–line identification of the viscous damping and the stiffness coefficient of the tissue
sample. The symmetric structure of the dynamics implies that, under a full state
measurement, the results obtained choosing m = 1 are the same as the case m = 2.
After having proved the equivalence and the effectiveness of both the cases, the
choice in real applications should be driven by the simplicity of the measurement.
The difference in the two approaches, with respect to the formulation in equations
(5.5), consists in the choice of Qi(t). The first of the two cases addressed is designed
and simulated for i = 2 and the second one with i = 4.
The first method used, is a forgetting factor based RLS algorithm, that implies, in
(5.5) (for i = 1, 2), the following choice:

Qi(t) = Pi(t− 1)
λ+ φi

T (t)Pi(t− 1)φi(t)
(5.6)

where the covariance matrix Pi(t) is:

Pi(t) = 1
λ

(Pi(t− 1)−Ri(t)) (5.7)

with:

Ri(t) = Pi(t− 1)φi(t)φTi (t)Pi(t− 1)
λ+ φi

T (t)Pi(t− 1)φi(t)
The value λ ∈ R is the so-called forgetting factor.
According to previous equations, estimation values ω̂i(t) are computed in order to
minimize the cost function, selected as the sum of residuals squares, weighted by
the forgetting factor:

ω̂i(t) = arg min
θ

t∑
k=1

λt−kε2i (t) (5.8)

It’s assumed that the residual εi(t), the difference between the estimated and the
measured value for yi(t), is affected by a white noise with covariance equal to 1.
The forgetting factor (0 < λ ≤ 1) is introduced in the cost function 5.8 in order to
weight the time sequence of the errors εi(t), according to an exponentially decreas-
ing weight. The smaller λ is, the smaller is the contribution of previous samples to
the covariance matrix in 5.7. This choice is effective in case of time varying param-
eters. When dealing with constant parameters, the choice λ = 1 is usually adopted.
Note that the performance of RLS is often sensitive to the chosen forgetting factor
value and some extensions are, also, proposed for a variable value of λ [80]. The
forgetting factor method is a particular case of the Kalman filter.
The second method used, is a normalized gradient based RLS algorithm, that im-
plies, in equations (5.5) (for i = 1, 2), the following choice:

Qi(t) = γ

|φi(t)|2 + β
, (5.9)

where γ is the adaptation gain scaled by the gradient φi(t). The bias β is added to
the square norm of the gradient vector in the denominator of the previous expression,
in order to prevent critical situations in the values estimation in case φi(t) is close to
zero. This algorithm requires only the initialization for the values of the parameters
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to be estimated.
It should be noted that RLS filtering algorithm are for static/slowly time varying
data: the estimation is more accurate with the increasing number of data.
The two, above described algorithms, are applied in order to validate the approach.
The forgetting factor based RLS [77, 78] is applied to the case of i = 2, while the
normalized gradient RLS [78] is applied to the case of i = 4.

5.1.1 Numerical simulations

Numerical simulations, using Matlab® and Simulink® tools, have been performed
in order to show effectiveness, benefits and differences of the proposed estimation
methods [78].
Three cases have been exploited and simulated:

A. a realistic case with elastic and damping coefficient much greater than the ones
of the mechanical structure, with r = 8.4 · 10−6 N m s/rad and k = 2.5 · 10−3

N m/rad. Note that,in this case, the elastic coefficient is greater than the
damping one;

B. a realistic case with elastic and damping coefficient much greater than the ones
of the mechanical structure, with r = 8.4 · 10−3 N m s/rad and k = 2.5 · 10−6

N m/rad. Note that, unlike the previous case, the damping coefficient is
greater than the elastic one: this choice has been made in order to check,
by comparison, the dependency of the algorithms convergence from the two
different mechanical characteristics;

C. a case used for testing the behaviour of the RLS algorithms in when dealing
with a very poorly damped factor, with r = 8.4 · 10−11 N m s/rad while
k = 2.5 · 10−5 N m/rad.

For all the simulations and for both the algorithms, the initial coefficients values
have been chosen as r(0) = 10−9 N m s/rad and k(0) = 10−7 N m /rad.
The following additional choices has been made:

• For the forgetting factor based RLS algorithm (5.5), (5.6), the square co-
variance matrix P has been set as a 2 × 2 diagonal matrix, with both the
diagonal elements equal to 1020, while the forgetting factor λ has been chosen
as λ = 0.99;

• For the normalized gradient based RLS algorithm (5.5), (5.9), the adaptation
gain γ has been set as γ = 0.9 and the normalization bias has been chosen as
β = 2.2 · 10−16.

In Figures 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, the solid line refers to the estimation evolution
with the first algorithm (5.5) - (5.6), whereas the dashed one is referred to the
second algorithm (5.5) - (5.9); the dotted line corresponds to the true values of the
parameters, plotted as a reference.
Simulation results obtained for the first case (k = 2.5·10−3 Nm/rad and r = 8.4·10−6

Nms/rad) are depicted in Figure 5.1. As expected, both the algorithms converges
in a very small time, but the first faster than the second one.



5.1 Recursive Least Square Filters 57

0 0.05 0.1 0.15 0.2
0

0.5

1

1.5

2

2.5

3
x 10

−3

Time (s)

Pa
ra

m
et

er
 k

(a) Time evolution of k

0 0.05 0.1 0.15 0.2
−8

−6

−4

−2

0

2

4
x 10

−4

Time (s)

Pa
ra

m
et

er
 c

(b) Time evolution of r

Figure 5.1. Time evolution of the estimated values, first case, k = 2.5 · 10−3 Nm/rad and
r = 8.4 · 10−6 Nms/rad

However, from Figure 5.2 that depicts the time update estimation of parameter
r after the transient, it is possible to observe that the normalized gradient based al-
gorithm (dashed), despite the slower convergence to the true value, is more uniform
that the forgetting factor based one (solid).
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Figure 5.2. r after the transient in first case

Simulation results obtained for the second case ( k = 2.5 · 10−6 Nm/rad and
r = 8.4·10−3 Nms/rad) are depicted in Figure 5.3. As expected, both the algorithms
converges in a very small time, but the first faster than the second one. The
difference in the convergence rate for the two approaches is confirmed.
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Figure 5.3. Time evolution of the estimated values, second case, k = 2.5 · 10−6 Nm/rad
and r = 8.4 · 10−3 Nms/rad

In this case the higher uniformity of the result obtained by the forgetting fac-
tor based algorithm (solid line) with respect of the normalized gradient based one
(dashed line) is evidenced by Figure 5.4, where the evolution of the estimations of
k with the two algorithms after the transient is reported.
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Figure 5.4. r after the transient in first case

Simulation results obtained for the third case (k = 2.5 · 10−5 Nm/rad and r =
8.4 · 10−11 Nms/rad) are depicted in Figure 5.5. As expected, both the algorithms
converges in a very small time, but the first faster than the second one.
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Figure 5.5. Time evolution of the estimated values, third case, k = 2.5 ·10−5 Nm/rad and
r = 8.4 · 10−11 Nms/rad

As in the first case, the higher uniformity of the result obtained by the forgetting
factor based algorithm (solid line) with respect of the normalized gradient based
one (dashed line) is confirmed and evidenced by Figure 5.6, where the evolution of
the estimations of k with the two algorithms after the transient is reported.
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Figure 5.6. r after the transient in third case

The above described simulations, confirm the possibility of using the classical
recursive least square algorithms for parameters estimation with the micro-gripper.
However, these techniques are not robust with respect of the presence of noise and
model parameters uncertainties. For this reason, the possibility of using a Kalman
Filter is exploited in next Section.
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5.2 Extended Kalman Filter
In last decades, the Kalman Filter (firstly introduced in [81]) becomes a standard
in the area of state estimation. It is an optimal linear estimator for linear systems,
in presence of additive white noise in the process and in the measurements. An
extension of Kalman Filter to non linear systems is the so-called Extended Kalman
Filter [82], based on linearisation of state equations at each time step. It follows a
description of EKF algorithm [82, 83].
Consider a non-linear discrete-time system:{

x(k + 1) = f(x(k), u(k + 1)) + w(k + 1)
y(k + 1) = h(x(k + 1)) + v(k + 1)

(5.10)

where

• x(k + 1) ∈ Rn is the state vector at step k + 1;

• y(k + 1) ∈ Rm is the output vector at step k + 1;

• u(k + 1) ∈ Rp is the input vector at step k + 1;

• w(k+1) ∈ Rn is the process noise vector at step k+1, assumed to be Gaussian
with covariance matrix Q(k + 1);

• v(k + 1) ∈ Rm is the measurement noise vector at step k + 1, assumed to be
Gaussian with covariance matrix R(k + 1).

The Extended Kalman Filter computes, recursively, the estimation of state, denoted
by x̂(k + 1), upon observations y up to time k. It can be divided in two phases:
Predict phase, in which the estimation of state at current step is computed from
previous state estimation, and Update phase, in which the estimation of step com-
puted is refined and updated taking into account observations at current step. Such
recursive form of this algorithm allows fast estimation in real-time.
EKF algorithm can be summarized as follows:

• Predict phase

– Compute the predicted state estimation of x at step k + 1 with obser-
vations up to step k, by applying the function f to previous step state
estimation and taking into account current step inputs:

x̂(k + 1|k) = f(x̂(k|k), u(k + 1))

– Compute the covariance matrix of the predicted state estimation, at step
k + 1 with observations up to step k, as:

P (k + 1|k) = F (k + 1)P (k|k)F ′(k + 1) +Q(k + 1)

where the state transition matrix is defined as the Jacobian of function
f , computed in previous step state estimation:

F (k + 1) = ∂f

∂x

∣∣∣∣
x̂(k|k),u(k+1)
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• Update phase

– Compute the output prediction error, the so-called innovation:

ỹ(k + 1) = y(k + 1)− h(x̂(k + 1|k))

– Compute the Kalman gain:

K(k + 1) = P (k + 1|k)H ′(k)[H(k + 1)P (k + 1|k)H ′(k + 1) +R(k + 1)]′

where the output matrix is defined as the Jacobian of function h, com-
puted in previous step state estimation:

H(k + 1) = ∂h

∂x

∣∣∣∣
x̂(k|k)

– Update covariance matrix:

P (k + 1|k + 1) = [I −K(k + 1)H(k + 1)]P (k + 1|k)

This update is susceptible to numerical errors, which can cause loss of
positive definiteness of covariance matrix P (k+1|k+1). In order to avoid
this issue, P can be computed in the so-called Josephform [84, 85] as:

P (k + 1|k + 1) = [I −K(k + 1)H(k + 1)]P (k + 1|k)[I −K(k + 1)H(k + 1)]′

+K(k + 1)R(k + 1)K ′(k + 1)

– Update state estimation, taking into account current step observation:

x̂(k + 1|k + 1) = x̂(k + 1|k) +K(k + 1)ỹ(k + 1)

It should be noted that EKF has two main drawbacks:
• linearisation can lead to unstable filters if there is no the condition of local

linearity;

• Jacobian matrix derivation can be not trivial in practical applications.
The choice of initial values P (0) and x̂(0) has a fundamental role in the convergence
of the estimation ([86, 87]). If the user is confident that the initial estimates x̂(0)
are close to the true values x(0), low values for elements in P (0) should be chosen. If
there are uncertainty on the initial estimation, the elements in P (0) should be high,
in order to reflect the lack of confidence in x̂(0). A proposal for P (0) initialisation,
made in [88], if true initial value x(0) is known, is:

P (0) = diag((x̂(0)− x(0))′(x̂(0)− x(0)))

If true initial value x(0) is not known, often reasonably accurate lower (xl(0)) and
upper (xu(0)) bounds for it can be used to approximate x̂(0) as x̂(0) = 0.5(xl(0) +
xu(0)).
The dynamics (4.6) and (4.7) of the micro-gripper system, in order to be reconducted
to form in (5.10), can be rewritten as:{

ẋ(t) = f(t, x) +Guτ (t)
y(t) = Hx(t)

(5.11)

where
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• the state vector x ∈ R6 is defined as follows:

x(t) =



x1(t)
x2(t)
x3(t)
x4(t)
x5(t)
x6(t)


=



θ2(t)
θ̇2(t)
θ4(t)
θ̇4(t)
r(t)
k(t)


(5.12)

Note that the two unknown parameters r and k are considered as states of
the system itself;

• the input vector uτ ∈ R2 is composed by the torque:

uτ (t) =
(
τ2(t)
τ4(t)

)
(5.13)

• the displacement angles θ2 and θ4 compose the output vector y ∈ R2:

y(t) =
(
θ2(t)
θ4(t)

)
(5.14)

• the function f(t, x) is:

f(t, x) =



x2(t)
1
I2(−l sin θ̂2 + x1(t)− θ3(t)(x5(t)u̇(t) + x6(t)u(t))− r2x2(t)− k2x1(t))
x4(t)
1
I4(l sin θ̂4(t) + x3(t)− θ3(t)(x5(t)u̇(t) + x6(t)u(t))− r4x4(t)− k4x3(t))
0
0

(5.15)

• the input matrix G ∈ R6×2 is:

G =



0 0
1 0
0 0
0 1
0 0
0 0


• H ∈ Rm×6 is the output matrix to be defined according to the test to be

performed and the m state variables available.

As the EKF is a discrete filter, the system (5.11) has been discretized by means
of Euler method, obtaining the following expressions (to which the noises can be
added to be in same form of (5.10)):{

x(k + 1) = x(k) + δt(f(k, x(k)) +Guτ (k + 1))
y(k + 1) = Hx(k + 1)

(5.16)
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where δt is the step size. An Extended Kalman Filter algorithm can be applied
to system (5.16) in order to estimate its state variables taking into account the
measurements available.

5.2.1 Numerical simulations

Numerical simulations, using Matlab® tools, have been performed in order to show
the estimation of EKF to micro-gripper system.
In real cases, it could be useful to estimate one of the viscoelastic parameter of
the issue, assuming that other one is known. This estimation can find applications
when you want to distinguish a healthy tissue from a diseased one: a diseased tissue
differs from the healthy one in different characteristics, often the difference relies in
viscoelastic properties [89], i.e. in stiffness or viscous damping coefficient. Since we
simulate the evolution of the system, all the errors and noise affecting the system are
modelled as Gaussian process and measurement noises. A sinusoidal wave torque
τ2 is applied to the first joint, while no torque τ4 is applied to second one.
In the following simulations, we assume in first case the damping coefficient known
with some uncertainties modelled as noise, while in the latter case the stiffness
known with some uncertainties modelled as noise.
In first simulation, it’s assumed to have measurements of displacements θ2 and θ4,
velocities θ̇2 and θ̇4 and the viscous damping coefficient of the sample r. The matrix
H ∈ R2×6, in this case, is defined as follows:

H =


1 0 0 0 0 0
0 1 0 0 0 0
1 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0


The following values have been set for the simulation:

• real values of parameters r = 1 · 10−8 Nms/rad and k = 0.5 · 10−6 Nm/rad ;

• initial estimated state x̂(0) = [θ̂2, 0, θ̂4, 0, 0, 0]′;

• initial value of covariance matrix of the predicted state estimation P (0) =
diag([1, 100, 1, 100, 1 · 10−8, 1]);

• Noise covariance matrices:

Q =



4 · 10−6 2 · 10−5 2 · 10−6 4 · 10−5 0 0
2 · 10−5 1 · 10−4 1 · 10−5 2 · 10−4 0 0
2 · 10−6 1 · 10−5 1 · 10−6 2 · 10−5 0 0
4 · 10−5 2 · 10−4 2 · 10−5 2 · 10−4 0 0

0 0 0 0 2 · 10−10 0
0 0 0 0 0 1 · 10−9


R = diag([2 · 10−5, 1 · 10−4, 1 · 10−5, 1 · 10−8])

In Figure 5.7 and 5.8 the blue lines correspond to the true values of the parameters,
plotted as a reference, while the red lines represents the estimated values.
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Figure 5.7. Time evolution of the estimated damping coefficient - simulation 1

Figure 5.8. Time evolution of the estimated stiffness coefficient - simulation 1

In Figures 5.9 and 5.10, they are depicted the mean squared errors (MSE) of all
estimated states.
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Figure 5.9. Time evolution of mse of angles and velocities - simulation 1

Figure 5.10. Time evolution of mse of parameters - simulation 1

In second simulation, it’s assumed to have measurements of displacements θ2
and θ4, velocities θ̇2 and θ̇4 and the stiffness coefficient of the sample k. The matrix
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H ∈ R2×6, in this case, is defined as follows:

H =


1 0 0 0 0 0
0 1 0 0 0 0
1 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1


The following values have been set for the simulation:

• real values of parameters r = 0.6 · 10−9 Nms/rad and k = 1 · 10−6 Nm/rad ;

• initial estimated state x̂(0) = [θ̂2, 0, θ̂4, 0, 0, 0]′;

• initial value of covariance matrix of the predicted state estimation P (0) =
diag([1, 100, 1, 100, 1, 1 · 10−8]);

• Noise covariance matrices:

Q =



4 · 10−6 2 · 10−5 2 · 10−6 4 · 10−5 0 0
2 · 10−5 1 · 10−4 1 · 10−5 2 · 10−4 0 0
2 · 10−6 1 · 10−5 1 · 10−6 2 · 10−5 0 0
4 · 10−5 2 · 10−4 2 · 10−5 2 · 10−4 0 0

0 0 0 0 2 · 10−10 0
0 0 0 0 0 1 · 10−9


R = diag([2 · 10−5, 1 · 10−4, 1 · 10−5, 1 · 10−8])

In Figure 5.11 and 5.12 the blue lines correspond to the true values of the parame-
ters, plotted as a reference, while the red lines represents the estimated values.

Figure 5.11. Time evolution of the estimated damping coefficient - simulation 2
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Figure 5.12. Time evolution of the estimated stiffness coefficient - simulation 2

In Figures 5.13 and 5.14, they are depicted the mean squared errors (MSE) of
all estimated states.

Figure 5.13. Time evolution of mse of angles and velocities - simulation 2
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Figure 5.14. Time evolution of mse of parameters - simulation 2

5.3 Conclusions
In this Chapter, the possibility of using a recently constructed micro gripper device
for the estimation of the elastic and the damping coefficients of a sample element by
pinching it is proved. In Section 5.1, two classical recursive least squares algorithms
for the parameter estimation is proposed, while in Section 5.2 an Extended Kalman
Filter algorithm for state estimation is proposed. The simulations in 5.1.1 and 5.2.1
show how it is possible to obtain the values of the parameters without the necessity
of a specific testing operation, but also during any operative conditions for the
gripper.
Next step should be the application of estimation technique to real data, instead of
simulated ones, in order to validate the approach also in a real environment. Then,
the EKF algorithm applied could be improved, in order to have a parallel estimation
of both viscoelastic parameters, exploiting the possibility of applying a dual EKF
([90, 91]) or an Unscented KF ([92]).
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