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Abstract

The development of fast and reliable optimization algorithms is required in or-

der to obtain real-time optimal trajectory on-board spacecraft. In addition, the

wide spread of small satellites, due to their low costs, is leading to a greater num-

ber of satellite formations in space. This paper presents an Improved version of

the Magnetic Charged System Search (IMCSS) metaheuristic algorithm to com-

pute time-suboptimal manoeuvres for satellite formation flying. The proposed

algorithm exploits some strategies aimed at improving the convergence to the

optimum, such as the chaotic local search and the boundary handling technique,

and it is able to self-tune its internal parameters and coefficients. Moreover, the

inverse dynamics technique and the differential flatness approach, through the

B-splines curves, are used to approximate the trajectory. The optimization

procedure is applied to the circular J2 relative model developed by Schweighart

and Sedwick and to the elliptical relative motion model developed by Yamanaka

and Ankersen. The results of this paper show that the convergence is better

achieved by using the proposed tools, thus proving the efficiency and reliability

of the algorithm in solving some space engineering problems.
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1. Introduction

The interest in satellite formations has rapidly increased in the last years

due to the wide dissemination of small satellites, which are cheaper than the

traditional ones: this feature has also allowed small companies and universities

to have their own access to space. Satellite formations can be exploited for

many different fields, such as Earth and planetary science, astronomy and as-

trophysics, technology demonstration and exploration. They are also important

to have the possibility to distribute scientific instruments over many satellites.

Indeed, the effective observation baseline can be expanded and the sensitiv-

ity of scientific instruments can be increased consequently. Moreover, since

multiple scientific instruments often present competing and conflicting require-

ments on one satellite design and its operation, using a formation flying made

up of simpler satellites having one instrument each can accomplish the same

complex missions without the added design and operational overhead, while

risking only one payload at a time (Xiang & Jørgensen, 2005). Therefore, it

is essential to know how to manage a satellite formation. In particular, the

design of the manoeuvres is fundamental in order to reconfigure and replace

the satellites. This must be done by studying very accurately the GNC and,

in particular, the requested optimal manoeuvres in terms of the minimum time

of flight and/or the minimum fuel consumption. Two different approaches can

be exploited to solve these optimization problems: deterministic and stochastic

algorithms. The main difference is represented by the final result; in fact, with

the same initial condition, deterministic algorithms always provide the same

result, whereas stochastic algorithms always follow different paths, because of

their typical randomization process, which cause the results not to be certainly

the same. Among the advantages of stochastic algorithms, are their simplicity

and global search capability. Moreover, there is no need to provide an initial
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guess to start the optimization, that is a drawback for classical deterministic

optimization algorithms for which the results can be significantly affected by the

choice of the initial guesses. Since it is not possible to search for all the possible

solutions, the aim of stochastic algorithms is to have a practical, efficient and

fast algorithms that work most of the time providing feasible and good quality

solutions. Thus, it is expected that some of them are nearly optimal, although

there is no guarantee for such optimality (Yang, 2018).

Within the framework of stochastic algorithms, metaheuristics represent a

very widely spread category. Many metaheuristic algorithms, inspired both

by physic processes and animal biology/behaviour, have been proposed in re-

cent years (some of them are reported in (Bandaru & Deb, 2016)). Among

the most famous and employed metaheuristics, there are: Genetic Algorithm

(GA) (Holland, 1975; Goldberg, 1989), inspired by Darwin’s theory of evolu-

tion; Differential Evolution (DE) (Storn & Price, 1997), based on the concepts

of mutation/recombination/selection; ant colony optimization (Dorigo et al.,

1996), inspired by the behaviour of ants; Particle Swarm Optimization (PSO)

(Clerc, 2010), based both on the social behaviour of humankind and on swarms

of birds; Harmony Search (Geem, 2009), inspired by music; Gravitational Search

Algorithm (GSA) (Rashedi et al., 2009), based on the Newton’s law of gravita-

tion; Charged System Search (CSS) (Kaveh & Talatahari, 2010), which exploits

the electric force and the uniformly accelerated motion laws to make the parti-

cles move through the domain and Magnetic Charged System Search (MCSS),

which is an improved version of the CSS, where the electric force is combined

with the magnetic force to obtain a more realistic and efficient algorithm.

Metaherustic algorithms have already been demonstrated to succeed in fac-

ing optimization problems for space applications (Pontani & Conway, 2013; Kim

& Spencer, 2002; Zhang et al., 2008; Wang & Zheng, 2012). Within the field

of spacecraft formation flying, DE and PSO have already been used to study

optimal manoeuvres (Parente et al., 2018)); PSO has been applied to reconfig-

uration manoeuvres considering perturbation forces (Spiller et al., 2017a), to

passive formation reconfiguration using attitude control (Spiller et al., 2018a),

3



to energy-optimal trajectory planning for spacecraft formation reconfiguration

with collision avoidance (Huang et al., 2012); Inverse PSO has been used to

study the rendezvous of nanosatellites taking into account the differential drag

(Spiller & Curti, 2015). In particular, in the latter, the inverse dynamics (Ross

& Fahroo, 2002; Boyarko et al., 2011; Spiller et al., 2016, 2018b), along with the

differential flatness approach (Fliess et al., 1995; Louembet, 2007), has been used

to achieve a reasonable compromise between the computational time and the

optimality of the results. Thanks to this method, the state and the control are

expressed as a function of a minimum number of optimization parameters named

flat outputs. The advantage of using this approach is that the dynamical con-

straints are a priori satisfied and the flat output can be chosen to automatically

fulfil the boundary constraints. Moreover, the approximate and sub-optimal

control policy is obtained in an analytical closed form. In particular, B-spline

curves are employed to accomplish this task because they provide very good

results using a minimal number of support functions (Boor, 1972).

In order to model the relative motion of spacecraft within a formation flying,

the reference trajectory of the chief satellite is usually considered. The well-

known Clohessy-Wilthshire (CW) equations (Clohessy, 1960) are very often

employed to study spacecraft formations, although other more complex models

can be used. Among these, there are: the circular J2 relative model developed

by Schweighart and Sedwick (Schweighart & Sedwick, 2001, 2002) and all the

models that take into account also the chief elliptical orbits. In particular,

we can distinguish between two different approaches to deal with the relative

elliptical motion: the first uses orbital elements to describe the trajectory (Cao

& Misra, 2015; Schaub, 2004; Schaub & Alfriend, 2001; Hamel & Lafontaine,

2007; Kuiack & Ulrich, 2018; Sengupta & Vadali, 2007), whereas the second

exploits the time as the independent variable (Melton, 2000; Broucke, 2003;

Yamanaka & Ankersen, 2002). Since in this work B-spline curves are employed

to approximate the trajectory (and thus the velocity and the acceleration), the

second approach is considered because it allows the use of differential equations

written directly in terms of position and velocity.
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Thus, the goal of this paper is to compute and analyse time suboptimal

formation flying manoeuvres, considering the circular and elliptical relative mo-

tion models, by means of a new improved version of MCSS metaheuristic al-

gorithm, called Improved Magnetic Charged System Search (IMCSS), which is

self-adaptive and autonomous in the determination of the internal parameter

and coefficients. In addition, some useful tools, such as the chaotic local search,

the boundary handling technique and the entropy of the system, are introduced

to speed up and improve the convergence. Obviously, there are some parame-

ters appearing in the formulation of IMCSS which are intended to be suggested

numbers for non-expert users that work well for the problems analyzed in this

paper. However, they could be further optimized and tuned.

This paper is organized as follows. In Sections 2 and 3, an overview of the

original MCSS and the improvements of the proposed algorithm are provided;

Section 4 presents the optimal control problem and the employed mathematical

models; finally, Section 5 shows the numerical simulations and results.

2. MCSS Overview

In this section, an overview of the original Magnetic Charged System Search

algorithm (Kaveh et al., 2013) is provided. MCSS is a physics-inspired algorithm

that exploits the electro-magnetic force and the Newtonian mechanics laws to

make the charged particles (CPs) move through the search space to look for the

best optimal solution.

Some preliminary parameters should be introduced before starting the algo-

rithm. Let Xi be the position vector associated with each CP, i.e., the vector

that contains the optimization variables, and D the dimension of the problem

(equal to the length of the vector Xi). In addition, an objective function, also

called the performance index or fitness function (Ji), is computed for each CP.

Throughout this paper the subscript i (and also j) is used to indicate the i(j)-th

CP and therefore it varies in the range [1, NCP ], where NCP is the number of

CPs. Moreover, let Gk be the maximum iterations number. Once the itera-
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tions numbers and the number of CPs have been defined, it is possible to start

with the actual optimization procedure. At the beginning, each component of

the position vector associated with each CP is initialized randomly within the

range [LBm, UBm], where the subscript m refers to the m-th component of the

particle, with m ∈ [1, D]. The initial velocity of all the CPs (V0
i ) is set equal to

the null vector. Afterwards, the performance index is assigned to each CP and

the objective functions, along with the corresponding CPs, are sorted increas-

ingly. The first best CPs are stored in the Charged Memory (CM), and they are

updated at each iteration. The number of the CPs stored in CM is defined as

CMS (throughout this paper CMS is set equal to NCP /5). Other information

that must be stored (and updated accordingly during the whole algorithm) are

the best and worst objective functions.

The charge qki of each CP at the step k is computed by taking into account

the current performance index of the CP (Ji), the so far best (Jg) and worst

(Jworst) fitnesses among all the CPs, i.e.

qki =
Jki − Jworst
Jg − Jworst

. (1)

The charges must be stored because they are subsequently used to obtain the

electric current. The indices k and g are used to indicate respectively the current

iteration and the best CP, i.e., the CP with the best performance index. As can

be seen from Eq. (1), the values of the charges are normalized within the range

[0; 1], where 0 is associated with the worst CP and 1 with the best CP.

Supposing that CPs move in a virtual straight wire of radius Rw, based on

physical laws, they create a magnetic field in space, which generates magnetic

forces on the other CPs. According to (Kaveh et al., 2013), the average electric

current (Iavg) can be computed as

(Iavg)
k
i = sign(Jki − Jk−1

i ) · dfki − dfkmin
dfkmax − dfkmin

, (2)

dfki =
∣∣Jki − Jk−1

i

∣∣ . (3)

In Eq. (2), the function df represents the absolute value of the objective function

variation of the i-th CP in the k-th movement (iteration), the function sign(·) is
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the sign function, and dfkmax and dfkmin are respectively the maximum and the

minimum values of df .

In order to obtain the electric and magnetic forces acting on all CPs for each

iteration, the separation distance between each pair of CPs and the separation

distance between the i-th wire and the j-th CP must be computed. In this work,

these two characteristic distances are supposed to be equal and are indicated

with rij . The explicit expression of rij is given by (Kaveh & Talatahari, 2010;

Kaveh et al., 2013)

rij =
||Xi −Xj ||

||(Xi + Xj)/2−Xg||+ ε
(4)

As already stated, Xi/j represents the position of the generic CP (i.e., the vector

of optimized variables) and ε is a small positive constant to prevent singularity.

One should note that Eq. (4) does not represent a real physical distance; thus, it

is conceptually different from the actual distance between the position vectors of

the CPs in the optimization procedure, computed as ||Xi −Xj ||. The particular

expression of the separation distance is employed to adapt the physical equations

of the electric and magnetic forces, described later in the current section, to

the physics-inspired metaheuristic algorithms equations. Indeed, the separation

distance is important since it takes into account not only the actual distance

between particles, but also the position of the best particle, which is a crucial

for the exploitation phase of metaheuristic algorithms.

Let us consider now an insulating solid spheres of radius Ra with a uniform

volume charge density, each of which carries a total charge qi. As already well-

known from physical laws, the electric force acting on the j-th CP and produced

by multiple CPs is

FE,j = keqj
∑
i,i6=j

(
qi
R3
a

rijw1 +
qi
r2
ij

w2

)
ri − rj
||ri − rj ||

(5)

where  w1 = 1, w2 = 0 ⇐⇒ rij < a

w1 = 0, w2 = 1 ⇐⇒ rij ≥ a

and ri,j are the positions of the charges. There are two contributions within

the brakets of the right-handed side of Eq. (5): the first one is valid inside
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the sphere and it is a linear function of rij , the second one is valid outside the

sphere and it is proportional to the inverse of the square of rij . In analogy with

the real electric force, the equation is adapted for the case of this metaheuristic

algorithm in the folowing way

FE,j = qj
∑
i,i 6=j

(
qi
R3
a

rijw1 +
qi
r2
ij

w2

)
· pij · (Xi −Xj) (6)

where  w1 = 1, w2 = 0 ⇐⇒ rij < Ra

w1 = 0, w2 = 1 ⇐⇒ rij ≥ Ra

and

pij =

1 if
Ji−Jg
Jj−Ji > r or Jj > Ji

0 otherwise

Here, pij indicates the probability of attraction of the i-th CP by the j-th CP

and r represents a real uniformly-distributed random number within the range

[0,1]. Throughout this work, the radius of the insulating sphere Ra is set equal

to 1. The magnetic force acting on the jth CP is

FB,j = qj
∑
i,i 6=j

(
Ii
R3
w

rijz1 +
Ii
rij
z2

)
· pmij · (Xi −Xj) (7)

where  z1 = 1, z2 = 0 ⇐⇒ rij < Rw

z1 = 0, z2 = 1 ⇐⇒ rij ≥ Rw

and

pmij =

1 if Jj > Ji

0 otherwise

In Eq. (7), Rw is set equal to 1 and pmij is the probability of the magnetic

influence (attracting or repelling) of the i-th wire on the j-th CP. This factor is

very important because only a good CP can influence a bad CP. Instead, this

does not happen for the electric force, where good and bad CPs can influence

each other. In addition, in order to emphasize the best CPs and give them

much more importance in the algorithm, the number of “active” CPs (the CPs
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which actually attract/repel) is not assumed to be equal to NCP , but only to a

fraction of the whole population. This fraction can be a free parameter decided

by the user and it can affect significantly the optimization procedure; thus, it

must be set carefully. A reasonable choice for the active CPs, found during this

work, is NCP /10, which is the value used throughout this paper. The total force

acting on the j-th CP is then

Fj = prFE,j + FB,j (8)

pr =

1 if r > kar · (1− k/Gk)

−1 otherwise

(9)

where pr is the probability that an electrical force is a repelling force. The

expression kar · (1−k/Gk) decreases with the iterations: this means that the re-

pelling forces ensure the exploration at the beginning of the algorithm, whereas,

at the end, the electric forces become more and more attractive, so that the ex-

ploitation is increased. Once the forces are computed, the motion of the CPs

has to be considered. Even in this case, the equations of motion are inspired by

the physics laws, in particular by the uniformly accelerated motion laws.

Xk+1
j = rj1 · ka ·

Fj
mj
·∆t2 + rj2 · kv ·Vk

j ·∆t+ Xk
j (10)

Vk+1
j =

Xk+1
j −Xk

j

∆t
(11)

In Eqs. (10) and (11), rj1 and rj2 are two random numbers that are uniformly

distributed in the range [0,1] and they replace the real physics coefficients deter-

mined by the double integration of the acceleration (in particular, rj1 replaces

1/2 and rj2 replaces 1). In addition, the time interval ∆t is set equal to the

unity and the mass of each CP (mj) is indeed substituted by its charge (qj).

This last choice makes the simplification of a fraction (Fj/qj) occurs and allows

to take into account also the electric and magnetic accelerations (Eqs. (6),(7))

acting on the worst CP (for which qj = 0); otherwise, a null force would be

applied on it. The remaining coefficients are respectively the coefficient of the

acceleration (ka) and the coefficient of the velocity (kv). In the original MCSS,
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kar is set equal to 0.1, whereas ka and kv start from a magnitude of 0.5 and are

linearly increased and decreased, respectively.

3. Improved Magnetic Charged System Search

One of the efforts computed in this work consists of trying to make MCSS

autonomous in the choice of its internal parameters and coefficients. This results

in a useful tool to optimize problems also for users who are not expert within

the field of metaheuristic algorithms. Thus, this section focuses on the proposed

new version (IMCSS) of the original MCSS. The global flow chart of IMCSS is

illustrated in Fig. 1, where the white blocks indicate the common parts between

IMCSS and the original MCSS, whereas the light and dark grey blocks indicate,

respectively, the novelties and the modifications introduced. Basically, IMCSS

inherits the core of MCSS, described in section 2, which involve the computation

of the electric and magnetic forces, along with the equations for the electric

charge and current, and the particles position and velocity updates.

Figure 1: IMCSS flow chart.

All the novelties and modifications with respect to the original MCSS are
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described in detail in the rest of this section. In particular, some strategies for

the selection of equations coefficients and hyperparameters of the algorithm,

such as the initial number of CPs and the maximum iterations number, are pro-

posed. Furthermore, the introduction of the chaotic local search, the boundary

handling technique and the concept of entropy of the system are presented.

3.1. Novel Strategies for Hyperparameters and Coefficients Selection

Let W be the maximum order of magnitude of the problem, computed as

the order of magnitude of the maximum value among the components of the

difference vector between the upper bound (UB) and the lower bound (LB)

vectors of the optimization variables, i.e.

W = |blog10(max(UB− LB))c| , (12)

where bc computes the nearest integer towards minus infinity and | | the absolute

value. The idea of IMCSS is to link the number of CPs and the maximum

iterations number to the only parameters defined by the (non-expert) user, i.e.,

UB and LB. The number of CPs is set equal to

NCP = 10 · {W + rin[2, 3dln(D + 1)e]} (13)

In Eq. (13), d e and rin represent respectively the nearest integer towards in-

finity and a random integer number between the two in brackets. Since it is

not appropriate to have a too large number of CPs because of the slow com-

putational time, it is necessary to set a maximum number of CPs (NCP,max).

Thus, in this work, NCP,max is reasonably set equal to 50, which represents

a good compromise between the computational time and the effectiveness of

the algorithm. The choices behind Eq. (13) are related to the fact that if the

dimension increases, also the complexity of the problem increases and thus a

greater number of CPs could be required for the success of the algorithm.

Another novelty with respect to the original MCSS is that the proposed

algorithm is divided into external and internal loops. The internal loops exploit

the fast convergence (even for a low number of iterations) of the original MCSS,

11



whereas the external loops emphasize the exploration ability, reducing at the

same time the possibility to obtain a premature stall of the algorithm. In order

to ensure a continuity in the search of the optimized variables and preserve

the results of the previous iterations, starting from the second external loop,

the first particle (the current re-initialized best particle) is replaced with the

last best particle of the whole previous external loop. The maximum internal

iterations number (Gk) is set to

Gk = 600− 3NCP (14)

Also in this case, a maximum number of internal iterations is implicitly set for

the same aforementioned reason. The choice of the decreasing law in Eq. (14),

instead of having a constant value, provides some guarantees for the exploration

of the search space even if the number of CPs chosen by the algorithm is too

small. Indeed, if NCP is low, Gk is high to compensate for the reduced number

of particles with the possibility to have more iterations to explore the search

space. On the contrary, if NCP is high, the search space is better explored

from the beginning of each internal loop, because the particles are more widely

distributed. The external iterations number (GK) is

GK = max(d12−Gk/10blog10(Gk)ce ; 3), (15)

where the function 10blog10(Gk)c extracts the order of magnitude of Gk. In order

to improve the convergence at the end of the algorithm, the iterations number

of the last internal loop (Gkf ) is

Gkf = 5Gk. (16)

New expressions are also introduced for some coefficients appearing in the

equations of the previous section. First, the value of kar in Eq. (9) is now

defined as

kar = min(Gk/1000 + 10/NCP ; 0.5). (17)

The reason behind the form of Eq. (17) is due to the fact that when Gk is high,

there is more ”time” (iterations) to explore the search space, thus it is possible
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to have a great repulsion (high value of kar). On the contrary, when Gk is not so

high, the exploration phase is reduced in favor of a faster exploitation, in order

to ensure the convergence. For what concerns the parameter NCP , if its value is

high, the exploration is already ensured at the beginning by the wide diffusion

of the CPs in the search space; thus, the exploitation is more encouraged (this is

the reason why an inverse proportionality is chosen). The maximum admitted

value for kar is equal to the probability of 50% between attraction and repulsion.

The expressions of the acceleration and velocity coefficients, appearing in

Eqs. (10) and (11), are chosen to be

ka = ka,0 + (ka,f − ka,0) · k/Gk (18)

kv = kv,f + (kv,0 − kv,f ) · k/Gk (19)

As it can be seen from Eqs. (18) and (19), considering ka/v,f > ka/v,0, ka is a

linearly increasing function, while kv is linearly decreasing. The initial and final

values of ka and kf are set equal to

kv,f = 1 + r ·
(

1

NCP
+

Gk
10dlog10(Gk)e

)
kv,0 = 0.8

ka,0 = dkv,fe − kv,f
ka,f = 2 · ka,0

(20)

The reasons behind the increasing and decreasing laws of ka and kv needs to

be searched in Eq. (10), which shows that the new position of each CPs is

determined by three main contributions: the old position and the terms related

to both the velocity and the acceleration. The term related to the velocity can

be thought of as the inertia term which appears in the velocity equation of the

PSO (Clerc, 2010); thus kv plays here the role that w plays in the PSO. It’s

important that the inertia (velocity) term is more relevant at the beginning

of the algorithm to ensure the exploration, but then it should be decreased

in favor of the exploitation. On the other hand, the acceleration term should

be more relevant at the end of the iterations to improve the exploitation in

the neighborhood of the best CP: this idea can also be clearly seen from Eqs.
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(8) and (9), where the probability of attraction increases with the iteration

number. The inverse and direct proportionalities, with respect to NCP and Gk,

appearing in the first of Eq. (20), have basically the same explanation provided

for Eq. (17). As already stated in the introduction, some parameters appear

in the previous equations. These are suggested parameters that work well for

the analyzed problems and they can be helpful for non-expert users. However,

they could eventually be modified by the user in the attempt to obtain better

performances.

3.2. Chaotic Local Search

To enhance the performance of the IMCSS, a chaotic local search (CLS) is

introduced. Chaotic search strategy is inspired by the chaos phenomenon in

nature, modelled as a classic nonlinear dynamical system with the properties

of ergodicity, randomness, and sensitivity to its initial conditions (Jia et al.,

2011). Thanks to these features, a chaotic system can randomly generate a

long-time sequence that is able to traverse through every state of the system

without repetitions in certain ranges (Guo et al., 2015). In order to achieve a

better balance between exploration and exploitation abilities of the IMCSS and

improve the convergence of the whole algorithm, more heuristic information

is integrated, such as the search direction provided by the best particles in

the current population. The chaotic local search employed for the proposed

algorithm is inspired by the work of (Junkai et al., 2017). Thus, the main

features of their chaotic local search are employed, but with some differences.

The chaotic local search is exploited in order to improve the best CP within the

current iteration by searching in its neighborhood. This strategy could help to

reach faster the global best. Therefore, the following criterion is applied

Xk
g1 = Xk

g + (Z − 0.5) · (Xk
CMri1

−Xk
CMri2

) ⇐⇒ r2
1 < r2 (21)

In Eq. (21), Xk
g1 is a new possible global best, Xk

CMri1/2
are two random CPs

chosen among the Charged Memory, and r1/2 are two real random numbers.

The condition r2
1 < r2 makes the local search occur with enough probability,
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since r1/2 varies within the range [0; 1] and therefore r2
1 is generally smaller

than r2. The chaotic local search is not performed at each iteration in order

to achieve a good compromise between the effectiveness of the search and the

required computational effort; in fact, since the success of the local search is

not guaranteed, it is more reasonable to make it happen randomly to save

compuational time. Z is also a real number which is initialized randomly in the

range [0; 1] and it is updated with the rule

Zt+1 = 4Zt · (1− Zt). (22)

The value of Z is updated only if the chaotic local search succeds in finding a

new global best, i.e., Jkg1 < Jkg (for a minimzation problem). In this case, the

index t is increased by 1 and the new best CP (Xk
g1) replaces the old one (Xk

g).

3.3. Boundary Constraints Handling

The update of the position vectors of the CPs, expressed by Eq. (10), can

cause the optimization variables to exceed the user-defined boundaries, repre-

sented by the vectors UB and LB. This can lead the algorithm to diverge or to

explore a region which is not of interest for the user. Thus, the components of

the position vectors of each CP that exceed their respective boundaries must be

collocated again inside the feasible search space. These boundary violations can

be managed in very different ways. For example, the variables exceeding the

boundaries could be directly re-initialized or substituted by the lower or upper

bound values. More complex strategies could be adopted, such as the harmony

search-based algorithm (Kaveh & Talatahari, 2010; Kaveh et al., 2013; Lee &

Geem, 2004; Kaveh & Talatahari, 2009), also employed in the original MCSS. In

this case, when a variable exceeds the lower/upper bound defined by the user,

it is either re-initialized or substituted with the corresponding value belonging

to a CP chosen among the CM (or among its neighborhood). This strategy is

ruled by two parameters: the CMCR, which is the Charged Memory Consid-

ering Rate, and the PAR, that is the Pitching Adjusting Rate. However, two

further values should be determined. In order to make the algorithm automat-
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ically choose the best way to handle these violations, the following strategy is

exploited instead,Xi,m = XCMri
,m if r2

1 < r2,

Xi,m = LBm + r · (UBm − LBm) otherwise.

(23)

The index m is used to indicate the dimension associated with the outbound

variable, while r, r1 and r2 are three real random numbers. Every time a

variable violates its corresponding boundary, a counter is updated (cLB,m in

the case of a lower bound violation and cUB,m for an upper bound violation).

At the end of an internal loop (i.e. before starting the successive external loop),

these counters are used to make the algorithm understand if the boundaries

could have been badly defined by the user. If these counters exceed a maximum

value Cmax, the corresponding boundary is enlarged (Eq. (24)).

UBm = UBm · 10 + ε ⇐⇒ cUB,m > Cmax ∧ UBm ≥ 0

LBm = LBm/10− ε ⇐⇒ cLB,m > Cmax ∧ LBm ≥ 0

UBm = UBm/10 ⇐⇒ cUB,m > Cmax ∧ UBm ≤ 0

LBm = LBm · 10 ⇐⇒ cLB,m > Cmax ∧ LBm ≤ 0

(24)

Note that Cmax = 0.1 · kf · NCP , where kf represents the index of the last

internal iteration. This value could be different from Gk (kf ≤ Gk) because

two exit strategies are considered, i.e., when the maximum iterations number

(Gk) is reached or when a pre-defined tolerance is satisfied. In Eq. (24), ε

represents a small positive constant. This tool is very useful and could help

the algorithm to find a global minimum when it is located on the boundaries

or when it is not inside the search space (in these cases the CPs tend to move

much more towards the boundaries and this could be an indication of a bad-

defined boundary). In addition, this approach could be essential in some cases

in which the optimization variable do not have a direct physical meaning, as it is

for example for the coefficients of polynomials that approximate the trajectory.

Certainly, if the objective function has local minima inside the search space, it
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could be more difficult for the IMCSS to realize that the boundaries have been

ill defined.

3.4. Entropy of the System

In order to have an idea of how the optimization is being performed by the

IMCSS, a parameter, called “entropy” (S), can be introduced. As in physics,

the idea of entropy is associated to the disorder of the system. Within IMCSS

framework, this quantity is supposed to measure the disorder of the whole pop-

ulation of CPs with respect to the best one. This is strictly connected to the

stall of the algorithm, i.e. when the objective functions of the CPs are no more

significantly improved through the iterations, creating convergence problems.

In the D-dimensional search space, the stall problem corresponds to have the

CPs wandering around without finding better solutions. The concept of entropy

here defined aims at overcoming stall problems, thus leading to better results.

The entropy can be defined as

S = median(Jk) (25)

Eq. (25) associates the entropy of the population with the median element of

the objective functions vector. Obviously, if S decreases, it means that the

CPs are closer to the best CP; thus, the algorithm is going to converge. It

is important to note that, in order to state that the algorithm is performing

well, the entropy needs to be decreasing. However, this is in contrast with the

concept of entropy in physics, which is always a non-decreasing function for

natural transformations (the analogy with the physical entropy is just related

to the concept of disorder).

At each iteration, if S is non-decreasing, a counter (cS) is updated. At the end

of an internal loop, the NCP is increased if cS exceeds a defined maximum value,

as follows:

NK+1
CP =min[NK

CP+rin[W ; 3dlog(D+1)e] ; dNCP,max·(1+0.1)e] if cS/kf > 0.5

(26)
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In Eq. (26), rin represents a random integer number between the two in brack-

ets. It is important to notice that this strategy based on the entropy is not

directly essential and determinant in finding the optimum, but it could be a

helpful tool for the algorithm to avoid possible stalls. Indeed, a greater number

of CPs can support the following loops of the algorithm to be more successful

with respect to the previous ones.

3.5. End of the Algorithm

As already mentioned, the internal loop ends when the maximum iterations

number is reached or when a pre-defined tolerance (δuser) is achieved. The

same occurs with the external loop. The tolerances can be defined in many

different ways by taking into account the objective functions of the CPs, such

as by computing the absolute error, the relative error, the standard deviation

among a set of CPs (Nδ), etc.. Throughout this paper, the tolerance (δ) must

be lower than 10−10 and it is defined as the standard deviation of the last Nδ

objective functions.

δ =

√∑Nδ
k=1(Jkg − Jmeang )2

Nδ
(27)

where Jmeang is the mean value of the last Nδ objective functions. Furthermore,

if NCP < NCP,max, the last external loop is performed with an increased number

of CPs, which is updated with the same law as the one in Eq. (26), in order to

ensure a better convergence.

4. Optimal Control Problem Statement

The description of the optimal control problem dealing with satellite forma-

tion time-optimal manoeuvres is provided in this Section. Hereafter, a formation

made up of two satellites is considered: the main spacecraft is called chief (c)

and the other one deputy (d). Two different models are presented. The first one

is the circular J2 model developed by Schweighart and Sedwick, referred to as

the SS model (Schweighart & Sedwick, 2001, 2002), which takes into account the

J2 perturbation due to the non-spherical shape of the Earth. This perturbation
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Figure 2: ECI coordinate system I and LVLH coordinate system L .

is significant when low-Earth orbits are considered, for which the orbital period

is low. In this framework, the time of flight of the manouvres could represent

a significant fraction compared to the entire orbital period. The second model

deals with elliptical relative motion with arbitrary eccentricity, referred to as

the Yamanaka-Ankersen model (YA) (Yamanaka & Ankersen, 2002).

4.1. Circular Model Including the J2 Perturbation

The equations of motion of the system, referred to an Earth-centered inertial

(ECI) coordinate system I = {XI , YI , ZI } and shown in Fig. 2, are

r̈ = − µ
r3

r + u + f (28)

where µ = 3.986 ·105 km3/s2 is the Earth gravitational parameter, r is the posi-

tion vector of the satellite, and r is its magnitude, u is the external acceleration

(provided by the engines), and f is the perturbation acceleration (depending on

the environmental forces).

The relative motion is usually described in the local-vertical/local-horizontal

(LVLH) reference frame L = {XL , YL , ZL }, shown in Fig. 2, with XL

pointing from the center of the Earth to the origin of L , ZL perpendicu-

lar to the orbital plane and YL completing the right-hand Cartesian coor-

dinate system. This reference system is centered on the chief satellite. Let

ρ = rd − rc = [ρx, ρy, ρz]
T be the relative distance between the chief and
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the deputy. Considering the chief satellite on a circular orbit (which implies

ω =
√
µ/r3), including the J2 gravitational effect in f and imposing uc = 0 (the

chief is not controlled), the relative motion is described by the SS model
ρ̈x − 2m̄ρ̇y − (4m̄2 − n̄2)ρx = ux

ρ̈y + 2m̄ρ̇x = uy

ρ̈z + (2m̄2 − n̄2)ρz = uz

(29)

where m̄ = ω
√

1 + kJ2 , n̄ = ω
√

1− kJ2 and kJ2 = (3J2R
2
e/8r

2
c )[1 + 3 cos(2ic)].

It is possible to obtain closed relative trajectories within the SS model by

setting the no along-track shift condition ρ̇y(t0) = −2m̄ρx(t0). In particu-

lar, three characteristic types of closed trajectory can be derived: along-track

formation (ATF), general circular formation (GCF), and projected circular for-

mation (PCF). In these cases, the general satellite trajectory can be written in

magnitude-phase form as
ρx(t) = 1

2R sin(n̄t+ α0)

ρy(t) = ρy,0 +R cos(n̄t+ α0)

ρz(t) = χzx
2 R sin(n̄t+ α0)

(30)

where R dictates the dimension the trajectory, α0 is the initial phase angle, and

ρy,0 is the center of the close trajectory along the y axis. For the PCF, χzx = 2;

for the GCF, χzx =
√

3; and for the ATF, R = 0 and ρy,0 6= 0.

4.2. Elliptical Relative Motion

In this section, the elliptical relative motion model is introduced consider-

ing the work of Yamanaka and Ankersen (Yamanaka & Ankersen, 2002). The

equation of motion are given here in the LVLH rotating reference frame shown

in Fig. 2, whereas in the original work the same equations are reported for a

different reference frame, where the Z axis points the nadir direction (in the

opposite direction of the current XL axis), the Y axis is normal to the orbital

plane and opposite to the angular momentum vector (in the opposite direction

of the current ZL axis), and the X axis completes the right-hand system (in

the same direction of the current YL axis). However, only a simple rotation
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is required to pass from one frame to the other. Supposing that all the per-

turbation forces are the same for the chief and the deputy and considering to

have thrusters only on-board the deputy satellite, the linearized equations for

the elliptical relative motion are


ρ̈x − 2 µ

h3/2ω
3/2ρx − 2ωρ̇y − ω̇ρy − ω2ρx = ux

ρ̈y + µ
h3/2ω

3/2ρy + 2ωρ̇x + ω̇ρx − ω2ρy = uy

ρ̈z + µ
h3/2ω

3/2ρz = uz

(31)

where h is the angular momentum, ω and ω̇ are in this case the angular velocity

and its variation, whose expressions are provided in Eq. (32) ω = µ2

h3 (1 + e cos θ)2

ω̇ = −2µ
2

h3 eω sin θ(1 + e cos θ)
(32)

Note that ω and ω̇ are both function of the true anomaly (θ); thus, in order to

retrieve those value at each time instant, the true anomaly must be computed

from the time by using the well-known Kepler equation. This is accomplished by

means of the Newton-Raphson method. Moreover, the only assumption made in

Eq.(31) is that the distance between the deputy and the chief is small compared

to the distance between the chief and the center of the Earth. Therefore, the

equations are applicable to orbits of arbitrary eccentricity (e).

A state transition matrix (Φ(θ,ρ0, ρ̇0)) can be obtained for Eq. (31) under

the assumption of free motion (both the chief and the deputy are not controlled).

This matrix is not reported here for the sake of conciseness, but it can be found

in (Yamanaka & Ankersen, 2002). In the case of elliptical relative motion, it is

still possible to find closed relative trajectories if the orbital periods (and thus

the semi-major axes) of the chief and the deputies are the same. Assuming

that the relative orbit radius is small compared to the chief orbit radius, the

condition for closed periodic relative trajectory, written in the frame represented
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in Fig. 2, is (Sengupta & Vadali, 2007)

(2 + e cos θ)(1 + e cos θ)2

(
ρx
p

)
+ e sin θ

(
ρ̇x

√
p

µ

)
− e sin θ(1 + e cos θ)2

(
ρy
p

)
+

(1 + e cos θ)

(
ρ̇y

√
p

µ

)
= 0

(33)

In Eq. (33), p represent the semi-latus rectum of the reference orbit. In order

to have a closed relative trajectory, the condition expressed by Eq. (33) must

be fulfilled at each point of the orbit. If the previous equation is computed at

the perigee of the chief orbit, the condition becomes easier:

ρ̇y,0
ρx,0

=
−n(2 + e)√

(1 + e)(1− e)3
(34)

where n is the mean motion of the reference orbit. It is important to note that

Eq. (33) is satisfied for an infinite combination of initial conditions, except when

θ0 = 0 or θ0 = π. Furthermore, when e = 0, this reduces to the well-known

Hill’s condition for periodicity.

4.3. Optimal Control Problem Definition

It is easy to see that Eqs. (29) and (31) can also be written in the state-space

form in the following form

ẋ = Ax + Bu (35)

where matrices A and B can be easily computed from Eqs. (29) and (31),

x = [ρT , ρ̇T ]T and u = [ux, uy, uz]
T . Let t0 and tf be the initial and the desired

final relative state; the time-optimal problem considered in this paper is defined

as follows 

Find (x,u, tf )∗

minimizing J = tf − t0
subject to, ∀t ∈ [t0, tf ],

dynamical constraints : ẋ = Ax + Bu

boundary conditions : x(t0) = x0, x(tf ) = xf ,

control constraint : ||u(t)||∞ − umax ≤ 0

(36)
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where the infinity norm is defined as ‖u(t)‖∞ = max{|ux(t)|, |uy(t)|, |uz(t)|}.

The reconfiguration manoeuvre must be accomplished in the shortest final time

t∗f . The reason why the time-optimal control problem is addressed in this paper,

rather than the energy or fuel-optimal problems, is that the minimum time

requires and exploits much faster dynamics. Hence, to the best of the authors’

knowledge, who have already faced the three optimal problems (Spiller et al.,

2017b) with metaheuristic algorithms, time-optimal problem is more complex

to deal with for this kind of optimization approaches. However, energy and

fuel-optimal problems could be faced as well with the proposed methodology by

simply changing the cost function.

4.4. Inverse Dynamics Technique

The direct dynamics formulation is usually employed for most of the appli-

cations; it consists on obtaining the trajectory via an integration process under

an applied control. Instead, the inverse dynamics technique is exploited in this

paper. This method can be used only if the external control (u(t)) can be writ-

ten as a function of the state. In this case, the state vector x is approximated

by some curves and the optimization algorithm searches for the optimal values

of the NP coefficients, which describe the curve, of each state component. The

inverse dynamics approach overcomes some direct-dynamics issues such as low

computational speeds and integration numerical errors and has a reduced num-

ber of optimization parameters with respect to traditional methods (collocation

and pseudospectral). All these features permit to have a very good compromise

between the computational time and the optimality of the results. It is impor-

tant to note that, because of the approximation of the position vector and its

first and second derivatives with the inverse dynamics technique, the solution is

defined to be suboptimal. Within the frame of the inverse dynamics technique,

a particular subclass is the differential flatness (DF) formulation (Fliess et al.,

1995), which is based on the so-called flat output y(t) (with the same dimension

of the control u(t)). If such a flat output exists, then the state and the control
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can be written as functions of y,

x = a(y, ẏ, ...,y(β)), u = b(y, ẏ, ...,y(β+1)) (37)

For our optimization problem, let y = ρ. According to this choice, β = 1 and

the full state x is obtained via time differentiation of ρ, whereas u = b(ρ, ρ̇, ρ̈).

Therefore, the optimization problem, illustrated in Eq. (36), can be rewritten

as a function of the flat output as

Find (ρ, tf )∗

minimizing J = tf − t0
subject to, ∀t ∈ [t0, tf ],

boundary conditions : ρ(t0) = ρ0, ρ(tf ) = ρf ,

ρ̇(t0) = ρ̇0, ρ̇(tf ) = ρ̇f ,

control constraint : ||b(ρ, ρ̇, ρ̈)||∞ − umax ≤ 0

(38)

As can be seen, the dynamics constraint no longer appears in the new formu-

lation of the optimization problem, because it is satisfied a priori. In order to

make the problem as simple as possible, the approximation curves can be cho-

sen also to directly fulfill the boundary conditions, which are linked to a clever

choice of the approximating polynomials coefficients. Thus, calling with DB the

set of approximating function ρN (t) satisfying the boundary constraints, the

problem is reformulated as follows

Find (ρN , tf )∗ such that ρN ∈ DB

minimizing J = tf − t0
subject to, ∀t ∈ [t0, tf ],

control constraint : ||b(ρN , ρ̇N , ρ̈N )||∞ − umax ≤ 0

(39)

By employing the DF formulation, three main advantages can be highlighted:

1) the minimum number of optimization parameters is employed, 2) the control

policy is obtained in an analytical closed form avoiding the integration of dy-

namics equations (thus saving also computational time), and 3) the initial and

final conditions are automatically respected since they are imposed a priori in

the polynomial approximation of ρ.
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4.5. B-spline Curves Approximation

Many interpolating functions can be chosen to approximate the trajectory of

the deputy satellite: this choice can strongly affect the results of the optimization

problem. Among the most used approximation, there are the Chebyshev poly-

nomials and the B-spline curves. In this paper, B-spline curves are employed,

instead of Chebyshev polynomials, because it has already been demonstrated

that B-spline curves perform better and result in more accurate results in this

kind of optimization problem (Parente et al., 2018). The B-spline B(λ;a,K)

is characterised by a strictly increasing independent variable 0 ≤ λ ≤ 1, the

coefficient vector a = [a0, a1, ..., aNP−1] and the Knot vector K, made up of

m+ 1 components,

K = {kn, n = 0, ...,m|k0 = 0, km = 1, kn ≤ kn+1}. (40)

Here, NP is the number of interpolating parameters and m = NP +D, where D

is the degree of the polynomials. Hence, the approximated relative displacement

ρN ;l and its first and second time derivatives (ρ̇N ;l and ρ̈N ;l) can be expressed

as

ρN ;l(λ) = B(λ;a,K) =

NP−1∑
n=0

anNn,D(λ; K), (41)

ρ̇N ;l(λ) = Ḃ = ∆λB′ = ∆λ

NP−2∑
n=0

a′nNn+1,D−1(λ; K), (42)

ρ̈N ;l(λ) = B̈ = ∆2
λB′′ = ∆2

λ

NP−3∑
n=0

a′′nNn+2,D−2(λ; K), (43)

In Eqs. (41)-(43), Nn,D(λ; K) represent the basis functions and are defined

through the Cox-de Boor recursion formula (Boor, 1972), ∆λ = t−1
f , (·)′ is the

derivative with respect to λ and a′n and a′′n are given by the following finite

differences:

a′n = D an+1 − an
kn+D − kn

, a′′n = (D − 1)
a′n+1 − a′n
kn+D−1 − kn

. (44)

To build a B-spline, a polyline defined over the control points Aj = [jtf/(NP −

1), aj ], j = 0, ..., NP − 1, is introduced. In the sequel, clamped B-spline will
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be employed: in this case, the curve passes through A0 and ANP−1 and it is

obtained using non-uniform knot points given by

kn = 0 if 0 ≤ n ≤ D ,

kn =
n−D
NP −D

if D < n ≤ NP − 1 , (45)

kn = 1 if NP − 1 < n ≤ m.

Initial and final conditions on the lth component of the state xl(t) are imposed

by setting

a0 = xl(t0) , a1 = a0 +
tf

NP − 1
ẋl(t0) ,

aNP−1 = xl(tf ) , aNP−2 = aNP−1 −
tf

NP − 1
ẋl(tf ) .

(46)

Finally, the time can be defined from λ as t = tfλ.

5. Numerical Results

The optimal control problem explained before is applied to the case of a

controlled deputy and a non-cooperative chief spacecraft. This section is divided

as follows: first, an analysis about the SS circular J2 relative motion model is

performed; secondly, the YA elliptical relative motion model is considered and

finally the effectiveness of some techniques introduced in the proposed algorithm

is tested through some simulations concerning with the two models.

For all the cases, the initial time instant (t0) is set equal to 0. Moreover, non-

dimensional units are used; consequently, distances are divided by Kx, that is

the initial relative distance between the two satellites, and the control is divided

by Ku = umax. The manoeuvre time is normalized by Kt =
√
Kx/umax, and

velocities are divided by Kv = Kx/Kt. The maximum value of the thrust has

been set to umax = 5 · 10−4 m/s2. For what concerns with the B-spline, NP is

set equal to 8; whereas the trajectory is discretized over Nt = 100 points. The

tolerance is computed by means of Eq. (27) with Nδ = 3 for both the internal

and external loops. The objective function is defined as
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J = t̄f +

3∑
l=1

Nt∑
k=0

ηl,k(al, tk) + 100 ·Nviol

ηl,k(al, tk) =


0 if

|ul,k(al, tk)|
umax

≤ 1 ,

|ul,k(al, tk)|
umax

otherwise .

(47)

Note that t̄f is the normalized manoeuvre time and Nviol represent the number

of violated constraints, which makes the algorithm prefer those CPs that violate

a small number of constraints than the others. In particular, Nviol is set equal

to 1 if ux or uy or uz exceeds the maximum admitted value umax, otherwise it

is set equal to 0. Using basic B-splines, the vector Xi, associated to each CP of

IMCSS, is made up of 13 variables. Indeed, 3(NP−4) are the parameters needed

for the B-spline approximation of the trajectory (along the three dimensions),

and the last variable represents the time of the manoeuvre.

Table 1 and Table 2 show respectively the boundaries chosen for the opti-

mization variables and the orbital elements of the chief satellite for both the

test cases. For the YA test case, the orbital parameters of the chief satellite are

chosen to be equal to those of the Coronograph spacecraft of the ESA mission

Proba 3. This mission consists on a formation of two spacecraft, the Corono-

graph and the Occulter, flying in a close proximity in the range [25,250] m. This

close distance allows the Coronograph to study the inner solar corona while the

Sun is occulted by the Occulter (Kramer, 2014).

Table 1: Boundaries of the optimization variables.

Model Variables Boundaries

SS Coefficients for the displacements [−5, 5]

SS Manoeuvre time [0.25, 4] · Torb/Kt

YA Coefficients for the displacements [−10, 10]

YA Manoeuvre time [0.01, 4] · Torb/Kt
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Table 2: Orbital parameters of the chief satellites.

Model a (km) e i (deg) Ω (deg) ω (deg) θ0 (deg) Torb (s)

SS 7000 0 45 0 0 0 5828.52

YA 36943 0.8111 59 84 188 170 70665.79

5.1. Application to SS Model

Two different reconfiguration manoeuvres are analysed for the case of the

SS model.

1. ATF-ATF: the deputy starts from −0.4 km and arrives at −1 km.

2. GCF-PCF: the deputy satellite starts from a GCF with R = 1.5 km and

an initial phase angle α0 equal to 150 deg, and arrives at a PCF with

R = 1 km. For both the trajectories ρy,0 = 0.

It is important to notice that if a GCF or a PCF are considered as arrival

trajectories, the final condition does not correspond to one point, but to an

infinite set of points fulfilling Eq. (30). In that case, another optimization

parameter, which is the phase angle α0 varying within the range [0, 2π], must

be introduced. The results of the ATF-ATF manoeuvre are shown in Fig. 3. The

normalization parameters for this first case are: Kx = 0.4 km, Kt = 894.43 s and

Kv = 4.4721·10−4 km/s. As it can be seen, the dimensionless control ux is quite

constant and equal to +1, whereas the control uy basically switches from -1 to

+1. This behaviour can be thought as it was an ideal two impulsive manoeuvre:

a first impulse, which makes the deputy leave its starting position, and a second

one, which is needed to stop the deputy when it reaches the final position. The

value of the computed optimal manoeuvre time, which is equal to 2005.92 s, is

consistent with the value found in literature (about 2000 s in (Parente et al.,

2018)), thus proving the realiability of the proposed algorithm. Regarding the

GCF-PCF manoeuvre, the normalization parameters are: Kx = 1.3521 km,

Kt = 1644.43 s and Kv = 8.2222 · 10−4 km/s. The results of the optimization

are reported in Fig. 4. In this case, ux and uz present quite a constant control
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close to -1 and +1 respectively (for most of the manoeuvre duration), while

uy basically switches from +1 to -1. The computed optimal manoeuvre time

is 2842.85 s. It has to be noticed that extremal controls are a good evidence

about the effectiveness of the optimization procedure, since the control is a

good approximation of the bang-bang manoeuvre, which is shown to be the

analytical optimum by the Pontryagin Maximum Principle (PMP) applied to

the Hamiltonian written for the SS model (Kirk, 2012).
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Figure 3: Normalized control policy (a) and trajectory (b) for ATF-ATF manoeuvre.
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Figure 4: Normalized control policy (a) and trajectory (b) for GCF-PCF manoeuvre.
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5.2. Application to YA Model

In this Section, the elliptical relative motion is considered. In order to per-

form the tests for useful and interesting orbits, the orbit of the chief satellite,

chosen as the reference orbit for the formation, is assumed to have the orbital

parameters of the Coronograph spacecraft of the Proba 3 mission. As it can

be seen from Table 2, the reference orbit is eccentric with a high apogee. This

choice allows to minimize the propellant consumption of the formation flying

manoeuvres. The orbit has a period of 19.63 hour and the formation flying will

take place over a 12 hours arc centered near the apogee, allowing a minimum

of 6 hours/day of coronal observations (Kramer, 2014). For this reason, the

initial true anomaly is arbitrarily set equal to 170 deg. This indicates that the

formation is flying towards the apogee, which is where most of the operations

will be performed.

The goal of this optimization is to reach a closed relative trajectory, gener-

ated with the condition expressed by Eq. (33). Thanks to the closed relative

trajectory, the deputy can orbit around the chief and the operations for the

occulation can be prepared accurately. As already mentioned, since the two

satellites have a relative distance varying within the range [25,250] m, the ar-

rival closed trajectory is chosen to be generated by the following relative state:

x0,ref = [0.1 km, 0.1 km, 0.05 km, 0 km/s,−1.0149 · 10−5 km/s, 0 km/s]T , where

the norm of the relative position vector (ρ) is set equal to 150 m and ρ̇y is

computed by means of Eq. (33). The reference closed relative trajectory, shown

in Fig. 5, is then obtained by propagating x0,ref with the free motion state

transition matrix Φ(θ,x0,ref ). This allows to determine the relative position

and velocity that the deputy satellite should have at each time instant to re-

main along this orbit without using any further control. Therefore, the deputy

satellite must match the proper final relative state (xf ) during the optimiza-

tion, taking into account the time required for the manoeuvre (tf ). Thus, the

required final condition can be expressed as a function of the manoeuvre time

through xf = Φ(θf ,x0,ref ) · x0,ref , where θf is the true anomaly of the chief

corresponding to tf .
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Figure 5: Reference closed relative trajectory.

The first analysis performed on the YA model is presented below. The initial

relative state (x0) is chosen to be equal to x0 = [0.13826 km, 0.43803 km, 0.46379

km,−4.6002 · 10−5 km/s,−8.7233 · 10−5 km/s,−8.8844 · 10−5 km/s]. The nor-

malization parameters are: Kx = 0.65276 km, Kt = 1142.59 s and Kv =

5.71295 · 10−4 km/s. In order to test the proposed optimization algorithm, a

Monte Carlo analysis consisting of 1000 simulations has been carried out by

keeping the initial relative state fixed. The results are shown in the histogram

of Fig. 6, which displays the occurrences of the computed optimal normalized

manoeuvre time (t̄f ). As can be noticed, most of the simulations is able to

reach low manoeuvre times; in particular, 77% of cases provides a value lower

than 2 (corresponding to 2285.18 s). Taking into account that the bin edges are

about 0.1 wide (which corresponds to 114.26 s), the difference in time between

the best and the worst case is about 30 minutes. However, the histogram shows

that the highest times only occur with a very low frequency, thus proving the

reliability of IMCSS. Among all the simulations, the results for the best case

are illustrated and commented.

Indeed, Fig. 7 shows the optimal trajectory to reach the arrival closed

trajectory and the corresponding control policy for the best case. As can be

seen, the dimensionless control uy and uz switch from -1 to +1 after a short
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Figure 6: Monte Carlo over 1000 simulations by fixing the initial relative state.

transient needed to reach the value -1. For what concerns with ux, it basically

represents a bang-off-bang manoeuvre, since it switches from +1 to a little

negative value and then comes back to +1. The point where the reference

closed relative trajectory is reached is depicted as a black point in Fig. 5. The

computed optimal manoeuvre time is equal to 1689.07 s. During this time,

the chief satellite has traveled about 1.71 deg in true anomaly. Thus, the final

configuration is obtained before reaching the apogee and the formation would

ideally be ready to perform the operations close to the apogee, as it is planned for

the Proba 3 mission. Even for this analysis, the presence of switching between

extremals controls is a good evidence of the good reliability of the algorithm.

In addition, a new Monte Carlo simulation, made up of 2000 tests, is per-

formed by varying the initial condition. The initial relative state (x0) is chosen

such that the relative position is obtained randomly among all the points lying

on a sphere centered at the origin of the reference frame and having a radius

varying from 0.05 to 0.5 km, ρ̇x,0 and ρ̇z,0 are determined randomly within

the range [-0.1,0.1] m/s, whereas ρ̇y,0 is computed in order to satisfy Eq. (33).

The results of the analysis are summarized in Fig. 8, where the normalized

optimal manoeuvre times are plotted as functions of the initial position and

velocity norms. In this analysis, the algorithm has been able to find a feasi-
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Figure 7: Normalized control policy (a) and trajectory (b) for the case of elliptical motion.

ble optimal solution for each test. As can be seen from Fig. 8, a surface has

been found to well represent the upper boundary of the distribution of the cost

functions. This surface has been generated by considering the following 2D

parabola: y = 63.20x2 − 16.38x+ 4.54. It is found that only 1.61% of the cost

functions lie above that surface. Moreover, taking into account this feature, the

initial positions seem to play a major role with respect to the velocities with the

imposed defined ranges. In fact, one can assume that for the upper boundary of

this analysis
∂t̄f
∂ρ̇0

is 0 and that
∂t̄f
∂ρ0

increases quite linearly, especially for greater

initial distances. This last analysis shows the ability of the algorithm to find

solutions also if the initial conditions vary.

5.3. IMCSS Techniques Demonstration

This Section aims at investigating the effectiveness of some tools introduced

in the proposed algorithm, such as the boundary handling technique and the

chaotic local search.

To demonstrate the boundary handling technique, the YA model is con-

sidered (see Table 2 for the reference orbit parameters). In particular, the

final reference closed trajectory to reach is the same as the one proposed in
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Figure 8: Monte Carlo over 2000 simulations by varying the initial relative state.

the previous Section, whereas the new initial condition is chosen to be the fol-

lowing: x0 = [0.26087 km, 0.11367 km, 0.52075 km, 8.26752 · 10−5 km/s, 2.64718 ·

10−5 km/s,−8.04919 ·10−5 km/s]. The corresponding normalization parameters

are: Kx = 0.593423 km, Kt = 1089.42424 s and Kv = 5.44712 · 10−4 km/s.

In order to test the boundary handling technique, the boundaries of the coef-

ficients for the displacements are shortened with respect to those of Table 1;

thus, let the lower and upper bounds of the coefficients be equal to [-1,1]. If

the boundary handling technique is not employed, the optimization fails to find

an optimal value for the manoeuvre since the constraints are always violated;

in this case, the final value of the cost function is 113.632. On the other hand,

if the boundary handling technique is used, the optimization process can be

successful. Indeed, Table 3 shows the results of the optimization, in which only

the counters for the boundaries of the displacements coefficients that are actu-

ally enlarged (cUB;2,9 and cLB;2,9) are reported, whereas the other boundaries

remain the same as those imposed by the user at the beginning of the procedure

and do not change during the optimization. As can be seen from the results, in

the first external loop the objective function does not satisfy the control con-
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straints, but the maximum counter Cmax is already exceeded by cLB;2. This

causes the corresponding lower boundary to be enlarged. At this point, the

algorithm can continue to improve the objective function, but the control con-

straints are still not fulfilled in the second and third external loops (in fact, the

objective function does not improve significantly). At the same time, there is

the trend of cLB;9 to increase until it exceeds Cmax in the fourth loop and the

corresponding lower bound is enlarged. From this point on, the algorithm is

able to find an optimum value fulfilling the control constraints. The objective

function at the end of the optimization is 3.31247, which corresponds to a ma-

noeuvre time of 3608.69 s. As can be noticed, this tool allows the algorithm

to find an optimum even if the user has badly defined the boundaries. This

technique is particularly useful when the optimization variables do not directly

convey an evident physical meaning, as it is for the present case in which the

coefficients of the B-splines, chosen as the optimization variables, do not allow

the user to have immediately an idea of the physics behind the problem. Thus,

in these cases, it is more likely for the user to badly define the boundaries.

Table 3: Results of the boundary handling technique for the YA model.

GK Gk,f Jg δ Cmax cUB;2,9 cLB;2,9 UB2,9 LB2,9

1 450 116.00166 1.4644E-05 2250 [141,112] [2353,1979] [1,1] [-1,-1]

2 450 111.89505 1.07269E-03 2250 [90,102] [87,1567] [1,1] [-10,-1]

3 450 110.10763 1.34945E-05 2250 [159,130] [162,1907] [1,1] [-10,-1]

4 450 110.08565 1.27783-05 2250 [123,112] [66,2950] [1,1] [-10,-1]

5 450 3.61685 5.89808E-04 2250 [115,123] [143,60] [1,1] [-10,-10]

6 450 3.50710 2.38434E-04 2250 [99,99] [143,80] [1,1] [-10,-10]

7 450 3.46292 5.53854E-04 2250 [91,116] [141,73] [1,1] [-10,-10]

8 2250 3.31247 1.21952E-03 2250 [51,67] [110,38] [1,1] [-10,-10]

A second analysis is carried out to test the effectiveness of the chaotic local

search introduced in the proposed algorithm. In this case, the same ATF-ATF

manoeuvre reported in Section 4.1 (with the same initial and final conditions)

is considered. In particular, two Monte Carlo analysis, based both on 1000

runs, are performed considering first the presence of the CLS and then its ab-

35



sence. The same random numbers are generated so that the tests can actually

be compared. The analysis show that for most of the cases (86.3 % ) the objec-

tive functions obtained with the CLS are better than the corresponding values

obtained without using the CLS. Indeed, this result can easily be noticed in Fig-

ure 9, which illustrates the occurences of the dimensionless objective functions

reached at the end of each optimization. It is clear that the algorithm with CLS

can achieve better performances, since better objective functions are reached

for most of the cases. In particular, the history of the objective functions are

reported for one of the analyzed cases in Figure 10. It can be seen that at the

end of the optimization the algorithm without CLS reaches a value equal to

7.06, whereas the introduction of the CLS leads the algorithm to reach a value

equal to 2.25. Therefore, it can be concluded that the chaotic local search can

actually speed up and improve the convergence of the algorithm.

Figure 9: Performance comparison of IMCSS using or not the CLS.

6. Conclusions

A self-adaptive and improved version of the metaheuristic Magnetic Charged

System Search algorithm (called IMCSS) is proposed in this work. It presents

some advantages with respect to the original algorithm in order to better en-

sure the convergence to the optimum. Indeed, the proposed algorithm is able
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Figure 10: Performance comparison of IMCSS using or not the CLS for a test case.

to automatically (and dynamically) determine its internal parameters and co-

efficients, making it user-friendly. Moreover, the chaotic local search and the

boundary handling technique have been shown to succeed in improving and

speeding up the convergence. IMCSS is applied to optimize two different cases

about formation flying reconfiguration manoeuvres, considering the inverse dy-

namics technique and the B-spline curves, . First, the case of a reference circular

trajectory under the J2 perturbation of the Earth is considered. The computed

optimal manoeuvre times and trajectories show very good results, thanks to

the presence of extremals controls, which are very close to the ideal optimal

manoeuvres (bang-bang) computed analytically. Moreover, a comparison with

the literature is carried out, showing that the manoeuvre time is consistent

with the value obtained in another work. Secondly, the case of an elliptical

reference trajectory is studied with the aim for the deputy to reach a closed

relative orbit around the chief. The parameter related to the formation of the

Proba 3 mission are taken into account as an example. In particular, two Monte

Carlo simulations have been performed to show the reliability of the algorithm,

one with fixed initial condition (to compare the good convergence of IMCSS

with the best optimal solutions) and another one with varying initial conditions

(to test the reliability of IMCSS for general cases). Even for this analysis, the
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optimization procedure provides good results. All the tests performed in this

work show the effectiveness and reliability of the proposed algorithm to solve

space guidance problems with particular regard to formation flying reconfigu-

ration manoeuvres. The adopted optimization strategy also represents a very

good compromise between the computational efforts and the optimality of the

results. In the future, this algorithm will be tested for other space guidance and

control problems, such as for real time trajectory planning and autonomous

landing missions.
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