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Interplay of different environments in open quantum systems:
Breakdown of the additive approximation
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We analyze an open quantum system under the influence of more than one environment: a dephasing bath
and a probability-absorbing bath that represents a decay channel, as encountered in many models of quantum
networks. In our case, dephasing is modeled by random fluctuations of the site energies, while the absorbing bath
is modeled with an external lead attached to the system. We analyze under which conditions the effects of the two
baths can enter additively the quantum master equation. When such additivity is legitimate, the reduced master
equation corresponds to the evolution generated by an effective non-Hermitian Hamiltonian and a Haken-Strobl
dephasing super-operator. We find that the additive decomposition is a good approximation when the strength of
dephasing is small compared to the bandwidth of the probability-absorbing bath.
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I. INTRODUCTION

Open quantum systems are nowadays at the center of many
research fields in physics, ranging from quantum computing to
transport in nano- and meso-scale solid-state systems as well
as biological aggregates. In particular, charge or excitation
transport in the quantum coherent regime can be considered
one of the central subjects in modern solid-state physics
[1–5] and in quantum biology [6,7]. When a quantum system
interacts with other systems, it is often impossible to treat
in detail the full unitary and coherent quantum dynamics
of the cumulative structure. It is then necessary to restrict
attention to a limited portion of it, which is referred to as an
open quantum system, while surrounding systems—typically
much larger—are called external baths. Neglecting the detailed
evolution of the surrounding has two important consequences
on the dynamics of the open quantum system: (1) We can have
a leakage of excitation from the system. (2) The ignorance
of the detailed coherences developed between the system and
the baths makes the effective evolution incoherent. Typically,
these effects are induced by the presence of (1) a decay channel
and (2) a thermal bath.

Open quantum systems in relevant physical situations often
interact with more than one environment. In the literature there
are many examples of systems in which the effects of different
environments are treated separately and added as independent
terms in the master equation [8–12]. Nevertheless, the fact
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that two different baths interact with the very same system
would cause them to interact as well [13]. Consequently,
that they affect the system in an independent way is usually
true only at the lowest perturbative orders. It is then very
important to understand what is the scope of applicability of
the independence hypothesis, which is at the basis of so many
models proposed in the literature.

We identify the independence hypothesis with an additive
approximation in the following sense. We assume that the
isolated action of each bath on the system can be described in
the master equation formalism by a Liouvillian super-operator
which, by construction, does not depend on the parameters
of any other bath. Then we consider the Liouvillian super-
operator describing the combined action of multiple baths on
the system. The various baths can be considered independent
if the collective Liouvillian is well approximated by the
sum of the single-bath Liouvillian super-operators. Our main
objective is to investigate conditions under which such additive
approximations are legitimate.

Tight-binding networks provide paradigmatic models, often
successfully employed to capture essential physical effects.
Their coupling with external environments can be taken into
account in different ways. The action of decay channels (losses
by recombination, trapping of the excitation into draining
structures, etc.) is usually included by adding non-Hermitian
terms to the Hamiltonian [8,14–17]. Other important baths are
those inducing static disorder (space-dependent) or dynamical
disorder (time-dependent). These can be modeled in the
framework of quantum master equations in Lindblad form.
Notably, when both disorder and decay channels affect the
open system, the strength of the coupling to the decay channel
is usually assumed to be unaffected by the presence of disorder.
This is a prominent example of the independence hypothesis
mentioned above, the scope of which we intend to assess in
the present paper.
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FIG. 1. A ringlike network interacts with a dephasing bath (light
red) and a probability-absorbing bath (light blue). The on-site
energies of each of the NR sites of the ring, connected with
nearest-neighbor coupling !R , undergo white-noise fluctuations with
dephasing strength σ 2

R . The probability-absorbing bath is modeled by
a lead of NL sites, connected with nearest-neighbor coupling !L.
The ring sites are equally coupled to the first lead site with tunneling
amplitude !RL (dashed lines). In general, white-noise fluctuations of
intensity σ 2

L could be present also on the lead (see Appendix A), but
only the case σ 2

L = 0 is considered in the main text.

We discuss this issue by analyzing a simple model (Fig. 1)
in which NR two-level systems (sites) are arranged in a
ringlike structure. Such ring structures are relevant in natural
light-harvesting complexes [18] and in engineered devices
for light-harvesting and photon sensing [19]. The ring is in
contact with a dephasing bath that leads to uncorrelated time-
dependent fluctuations of the energy of each site. Assuming a
white-noise structure of the disturbances, such a bath is treated
in the framework of the Haken-Strobl master equation [20].
Furthermore, the ring interacts with a probability-absorbing
bath equally coupled to all of its sites. A common model
for such a decay channel is a one-dimensional lead, that
corresponds to a chain of NL two-level systems in the limit
NL → ∞. Similar structures have been used to describe
exciton transport in natural or engineered systems in which the
single-excitation approximation is legitimate and equivalent
tight-binding models can be introduced [11,18,19,21–24].

Based on the tight-binding model described in the following
section, we analyze the dynamics of the extended system that
includes, together with the ring subject to dephasing noise,
the linear chain representing the lead. We derive under which
conditions the coupling to the lead and the presence of the
dephasing bath can be treated independently in building the
reduced master equation of the sole ring. Both the analytical
derivation presented in Sec. III and the numerical results
of Sec. IV show that the additive approximation (usually
adopted in the literature) is only valid when the strength of
the fluctuations producing dephasing is small compared to the
bandwidth of the probability-absorbing lead. We stress that
the system (the ring) is always kept in a regime such that the
isolated action of each bath is well-represented by Markovian
Liouvillian super-operators. What we analyze is under which

condition the sum of those independent super-operators fails
to describe the combined effect of both baths on the system.

Our analysis also confirms that, for sufficiently weak noise,
the effects of the two baths are independent. In this case, the
master equation is defined by the the sum of the contributions
generated by an effective non-Hermitian Hamiltonian and
by the Haken-Strobl dephasing super-operator. On the other
hand, we show that a sufficiently strong noise leads to a
breakdown of both the additive approximation and the effective
non-Hermitian evolution. These findings complete those of a
companion paper [24], in which the combined effect of static
disorder and a decay channel was studied within the framework
of the effective non-Hermitian Hamiltonian approach.

II. THE MODEL

We first introduce a Hermitian model to describe the decay
of the excitation from the peripheral ring into the chain (Fig. 1).
The chain represents a probability-absorbing channel, to be
considered later in the limit of infinite length. Specifically,
the ring with NR sites and nearest-neighbor coupling !R is
described by the tight-binding Hamiltonian

HR = !R

∑

⟨r,r ′⟩
(|r⟩⟨r ′| + |r ′⟩⟨r|), (1)

where the sum runs over the pairs of neighboring sites. Each
site of the ring is connected, through the tunneling amplitude
!RL, to the first site of a lead, described by a linear chain of
NL resonant sites with nearest-neighbor coupling !L.

The total Hamiltonian of the extended system, written in
the site basis

{|rµ⟩,|ℓν⟩,µ = 1, . . . ,NR,ν = 1, . . . ,NL} (2)

reads

H = HR + HL + HRL = H0 + HRL. (3)

Here the Hamiltonian for the lead is

HL = !L

NL−1∑

ν=1

(|ℓν⟩⟨ℓν+1| + |ℓν+1⟩⟨ℓν |), (4)

and the interaction between the ring and the lead is described
by

HRL = !RL

NR∑

µ=1

(|rµ⟩⟨ℓ1| + |ℓ1⟩⟨rµ|), (5)

where !RL is the coupling between the ring sites and the
first site of the lead. Note that we limit our considerations to
the subspace containing a single excitation in both ring and
lead together, such that not all states will participate in the
dynamics.

One can imagine that, when NL is large enough, the lead
represents a good sink, in that it absorbs most of the excitation
present in the system. In reality, the structure of the coupling
between the ring and the lead is such that the decay of
the excitation is strongly dependent on the initial state. The
symmetry of the extended system leads to the situation that
only one of the NR ring eigenstates is coupled to the lead,
with a coupling enhanced by a factor of

√
NR compared to
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the single-site coupling [24]. The super-transferring state |S⟩
is fully symmetric in the site basis of the ring and given by

|S⟩ = 1√
NR

NR∑

µ=1

|rµ⟩. (6)

This completely symmetric superposition of site states will
decay with an enhanced rate, proportional to NR , giving rise
to the phenomenon of superradiance. In contrast, the presence
of static disorder or noise destroys the symmetry, restoring
a democratic coupling of the ring states with the lead, and
generating an overall decay rate independent of the system
size NR [11,25]. Such superradiant effect is a specific feature
of this model but it is not essential to the results presented
here.

A more important fact, also pointed out in Ref. [24], is
that the lead can be effectively represented as a decay channel
only if the coupling !R between ring sites is small compared
to the lead bandwidth, determined by the coupling !L. We
thus assume !R ≪ !L since it is only in this regime that the
lead can be seen as a probability-absorbing bath for the ring
system. We therefore neglect the ring coupling in the following
analytical treatment. However, we confirm through numerical
simulations that a finite but small value of !R does not affect
our results; see Fig. 3 and the related discussion.

We now introduce a dephasing bath by assuming the
presence of white-noise fluctuations on the excitation energy
of the system sites. This means that the energies εR

µ = h̄qR
µ

of the ring sites undergo independent white-noise fluctuations
with intensity σ 2

R , i.e., formally the frequencies qR
µ satisfy the

relation

〈
qR

µ (t)qR
ν (t ′)

〉
= σ 2

R

h̄
δµνδ(t − t ′). (7)

We thus identify the energy scale σ 2
R as the dephasing strength

on the ring. We could in principle apply our treatment also with
the site energies of the lead that fluctuate with intensity σ 2

L, but
this would lead to a direct coupling between the dephasing and
the dissipative bath (lead), thereby obscuring the main effect
that we want to analyze. We thus set σ 2

L = 0 in what follows.
The quantum master equation that describes the evolution

of the density matrix in the presence of such a dephasing noise
is the Haken-Strobl [20] equation. Here we briefly recall its
form, but in Appendix A we present a simple derivation of
this result (in which also the energies of the lead sites can
fluctuate), obtained by exploiting Itô’s stochastic calculus.

It is now convenient to view our network as a bipartite
system. We thus label the states in the single-excitation
subspace of the total Hilbert space as

|i⟩ |0L⟩ (i = 1, . . . ,NR), (8)

if the single excitation is on the ith ring site, and

|0R⟩ |i⟩ (i > NR), (9)

if the single excitation is on the (i − NR)-th lead site. With
|0R⟩ and |0L⟩ we denote the vacuum state on the ring and on
the lead, respectively.

With this notation, the ring-lead density matrix admits the
following representation:

ρ(t) =
∑

i,k>NR

cic
∗
k |0R⟩ ⟨0R| ⊗ |i⟩ ⟨k|

+
∑

i,k!NR

cic
∗
k |i⟩ ⟨k| ⊗ |0L⟩ ⟨0L|

+
∑

i!NR,k>NR

cic
∗
k |i⟩ ⟨0R| ⊗ |0L⟩ ⟨k|

+
∑

i!NR,k>NR

c∗
i ck |0R⟩ ⟨i| ⊗ |k⟩ ⟨0L| . (10)

The Haken-Strobl equation for the components ρik = cic
∗
k

of the density matrix of the ring-lead system in the single-
excitation subspace reads

ρ̇ik = − i
h̄

([H0 + HRL,ρ])ik − (1 − δik)
σ 2

ik

h̄
ρik, (11)

where no summation on repeated indices is assumed, and

σ 2
ik =

⎧
⎪⎨

⎪⎩

σ 2
R if i,k ! NR,

1
2σ 2

R if i ! NR,k > NR,

0 if i,k > NR.

(12)

We present in Appendix B the corresponding more common
Lindblad form of Eq. (11), which is not restricted to the single-
excitation subspace considered in our analysis.

III. REDUCTION TO THE SOLE RING

In our model, the lead represents a probability-absorbing
bath. Under the assumptions discussed in the previous section,
it is possible to reduce Eq. (11) to a master equation for the
sole ring system, representing the combined effects of the
dephasing and probability-absorbing baths.

A. Super-operator representation

To facilitate calculations, we now introduce some super-
operators, defined by their action on ρ as follows:

H0ρ = i
h̄

[H0,ρ], VRLρ = i
h̄

[HRL,ρ], (13)

[D0ρ]ik =
{

(1 − δik) σ 2
R

h̄
ρik if i, k ! NR,

0 otherwise,
(14)

[DRLρ]ik =
{

σ 2
R

2h̄
ρik if i(k) ! NR, k(i) > NR,

0 otherwise.
(15)

The master equation in super-operator form reads now

ρ̇ = −(H0 + D0)ρ − (VRL + DRL)ρ, (16)

where (H0 + D0) is the noninteracting super-operator. The
interaction super-operators are VRL, proportional to the
coupling !RL, and DRL, due to the noise terms. Whereas
VRL corresponds to a physical interaction, DRL is of rather
informational nature, since it describes the suppression of
coherences between ring and lead sites.

Being interested in studying the decay of the excitation
from the ring into the lead, we assume the lead to be in the
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vacuum state throughout. This, together with the usual Born
approximation, yields the following form for the total density
matrix:

ρ(t) = ρR(t) ⊗ |0L⟩ ⟨0L|

=
∑

i,k!NR

ci(t)c∗
k (t) |i⟩ ⟨k| ⊗ |0L⟩ ⟨0L| . (17)

B. Extended interaction picture

We now move to the interaction picture in the super-
operator representation. We define

ρI (t) = e(H0+D0)tρ(t) (18)

and

VRL(t) + DRL(t) = e(H0+D0)t (VRL + DRL)e−(H0+D0)t (19)

and rewrite Eq. (16) as

ρ̇I = −[VRL(t) + DRL(t)]ρI . (20)

A crucial observation is now that, under the assumption
ρI (t) = ρI

R(t) ⊗ |0L⟩ ⟨0L|, we have DRL(t)ρI (t) = 0. Conse-
quently, Eq. (20) reduces to

ρ̇I = −VRL(t)ρI . (21)

To find the reduced master equation for the ring system,
we formally solve (21) and insert the solution into the r.h.s. of
(21), leading to

ρ̇I
R = −trL{VRL(t)ρI (0)}

+
∫ t

0
trL{VRL(t)VRL(t ′)ρI (t ′)} dt ′. (22)

As usual, the first term on the right-hand side of Eq. (22)
vanishes, since the noninteracting evolution operator e(H0+D0)t

annihilates the vacuum state on the lead, present in the initial
condition ρI (0).

We will now compute an explicit expression for the
foregoing equation in the case !R = 0 (no hopping on the
ring), in which we can diagonalize the noninteracting super-
operator H0 + D0 on the basis

{αik = |αi⟩ ⟨αk| : i,k = 1, . . . ,NR + NL}, (23)

where, denoting by |Ek⟩ the lead eigenstates, |αk⟩ = |k⟩ |0L⟩
for k ! NR and |αk⟩ = |0R⟩ |Ek⟩ for k > NR . We will denote

the eigenvalue of the noninteracting super-operator H0 + D0
associated with αik by αik . Clearly, the populations of the lead
eigenstates are not evolving in time under the noninteracting
super-operator. Consequently, αkk = 0 for k > NR .

The expression of VRL(0) on such basis and in the
continuum limit NL → ∞ is given by

VRL(0)ρ = i√
NR

NR+NL∑

k=NR+1

NR∑

i=1

g∗
Ek

[αik + αki , ρ]

= i
∫

dEf (E)
∑

i

g∗
E√
NR

[|i⟩ |0L⟩ ⟨0R| ⟨E|

+ H.c., ρ], (24)

where the sum over i is on the ring sites, the integral is on the
lead energies with spectral density f (E), and we have

g∗
E√
NR

= !RL

√
2

h̄

√

1 −
(

E

2!L

)2

. (25)

If we denote byVik,rs the components of VRL(0) in the basis
(23), we can write
∫ t

0
VRL(t)VRL(t ′)ρI

R(t ′) ⊗ |0L⟩ ⟨0L| dt ′

=
∫ t

0

∑

ik

αik

[
∑

lm

∑

rs

eαik tVik,lme−αlm(t−t ′)Vlm,rsρrs(t ′) dt ′

]

.

(26)

In the previous expression, the operators αik are the elements
of the basis introduced in Eq. (23), with eigenvalues αik . Due
to our assumption on the density matrix, the sum over rs
comprises only ring components, that is r,s = 1, . . . ,NR . Now,
Vlm,rs vanishes if we have either l ! NR and m ! NR or l >
NR and m > NR .

C. Trace over the lead

By taking the partial trace over the lead bath we want to find
a reduced super-operator that acts only on the reduced density
matrix of the ring. This can be expressed in the basis

{r ik = |i⟩ ⟨k| : i,k = 0,1, . . . ,NR}, (27)

where we have introduced also the ring vacuum population
and the related coherences.

Making the limit NL → ∞ explicit and recalling that
αEE = 0, we obtain

trL

{∫ t

0
VRL(t)VRL(t ′)ρI

R(t ′) ⊗ |0L⟩ ⟨0L| dt ′
}

=
∫ t

0

NR∑

i,k=1

r ik

[∫
dE′ f (E′)

NR∑

m,r,s=1

e(αik−αE′m)tVik,E′mVE′m,rsρrs(t ′)eαE′mt ′

]

dt ′

+
∫ t

0

NR∑

i,k=1

r ik

[∫
dE′ f (E′)

NR∑

l,r,s=1

e(αik−αlE′ )tVik,lE′VlE′,rsρrs(t ′)eαlE′ t ′

]

dt ′
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+
∫ t

0
r00

∫
dE

[∫
dE′ f (E′)

NR∑

m,r,s=1

e−αE′mtVEE,E′mVE′m,rsρrs(t ′)eαE′mt ′

]

dt ′

+
∫ t

0
r00

∫
dE

[∫
dE′ f (E′)

NR∑

l,r,s=1

e−αlE′ tVEE,lE′VlE′,rsρrs(t ′)eαlE′ t ′

]

dt ′. (28)

In the previous expression, the operator terms are given by the elements r ik of the basis defined in Eq. (27).
We now substitute the expressions

αmE = − i
h̄

E = −αEm, αrs = σ 2
R(1 − δrs), (29)

VE′m,rs = ig∗
E′√
NR

δms, VlE′,rs = − ig∗
E′√
NR

δlr , (30)

Vik,E′m = ig∗
E′√
NR

δkm, Vik,lE′ = − ig∗
E′√
NR

δil , (31)

VEE,E′m = − ig∗
E′√
NR

δ(E − E′) = −VEE,mE′ , (32)

and

J (E′) = |g∗
E′ |2f (E′) =

⎧
⎨

⎩
!2

RL

π h̄2!L

√
1 −

(
E′

2!L

)2
for E ∈ [−2!L, 2!L],

0 otherwise.
(33)

Then the partial trace becomes

trL

{∫ t

0
VRL(t)VRL(t ′)ρI

R(t ′) ⊗ |0L⟩ ⟨0L| dt ′
}

= −
∫ t

0
dt ′

NR∑

i,k=1

r ik

∫
dE′ J (E′)eαik t

NR∑

r,s=1

[
e− i

h̄
E′(t−t ′)δksρrs(t ′) + e

i
h̄
E′(t−t ′)δirρrs(t ′)

]

+ 2
∫ t

0
dt ′r00

∫
dE′ J (E′)

NR∑

r,s=1

ρrs(t ′) cos
E′(t − t ′)

h̄
. (34)

Substituting Eq. (34) into Eq. (22) would still entail a term that is nonlocal in time. To reach a local form of the reduced master
equation we need further approximations.

D. Wide-band limit

To understand better what are the crucial approximations, we first simplify the kernel J (E′) by setting J (E′) ≡ J (0) for
E′ ∈ [−2!L,2!L], and zero otherwise. Such an approximation preserves the bandwidth of the decay channel while changing
the profile of the density of states. Since this change is negligible close to the center of the band, it is expected to be a good
approximation when the ring energies lie close to center of the lead energy band. Moreover, it has been noted multiple times
(see, for instance, Refs. [24,26,27]) that the profile of the density of states close to the edges of the band influences the long-time
behavior of the decay, but not its initial features.

Then, we perform the integration over E′ in Eq. (34) to obtain

trL

{∫ t

0
VRL(t)VRL(t ′)ρI

R(t ′) ⊗ |0L⟩ ⟨0L| dt ′
}

= −
∫ t

0

NR∑

i,k=1

dt ′r ik

2π h̄J (0) sin(2!L(t − t ′)/h̄)
π (t − t ′)

NR∑

r,s=1

eαik t (δks + δir )ρrs(t ′)

+
∫ t

0
dt ′r00

4π h̄J (0) sin[2!L(t − t ′)/h̄]
π (t − t ′)

NR∑

r,s=1

ρrs(t ′). (35)

We consider the characteristic time of the ring dynamics
given by h̄/σ 2

R and introduce the characteristic dimensionless
interval τ = σ 2

R(t − t ′)/h̄. Since

lim
ω→∞

sin(ωτ )
πτ

= δ(τ ) (36)

in the sense of distributions, we can obtain a
local-in-time equation by substituting τ in the

previous expression and taking the wide-band limit
!L/σ 2

R → ∞.
We remark that the wide-band limit is not performed with

respect to the energy scale of the ring, which is always assumed
negligible compared to !L in our argument. What we are
comparing here is the bandwidth of the probability-absorbing
bath with the energy scale of the dephasing bath. This operation
is responsible for removing back-action effects between the
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two baths and yields

trL

{∫ t

0
VRL(t)VRL(t ′)ρI

R(t ′) ⊗ |0L⟩ ⟨0L| dt ′
}

= −
NR∑

i,k=1

r ik

{

π h̄J (0)
NR∑

r=1

eαik t [ρir (t) + ρrk(t)]

}

+ r00

[

2π h̄J (0)
NR∑

r,s=1

ρrs(t)

]

. (37)

E. Reduced master equation and effective Hamiltonian

If we now define

γ = 2π h̄2J (0) = 2!2
RL/!L (38)

and the decay operator W with matrix elements

Wik = γ /2 (39)

for i,k = 1, . . . ,NR , we can substitute Eq. (37) into Eq. (22),
transform back to the Schrödinger picture and obtain the
following equations for the elements of the reduced density
matrix:

ρ̇R
00 = γ

h̄

NR∑

r,s=1

ρR
rs, (40)

ρ̇R
ik = − i

h̄
([HR,ρR] − i{W,ρR})ik − (1 − δik)

σ 2
R

h̄
ρR

ik. (41)

Within this approximation, which is good for σ 2
R/!L → 0,

the terms encoding the effect of dephasing (proportional to
σ 2

R) and the decay of the excitation (proportional to γ ) enter
additively in the final master equation (40)–(41). Retaining
higher-order terms in the ratio σ 2

R/!L would necessarily bring
in terms involving products of γ and σ 2

R .
It should be noted that, in the absence of dephasing

(σ 2
R = 0), Eq. (41) corresponds to the coherent evolution on

the ring described by the effective non-Hermitian Hamiltonian
[15,24]

Heff = HR − iW. (42)

Consequently, we can say that, when the bandwidth of the
decay channel is large compared to the intensity of the noise,
the decay effects encoded in the non-Hermitian Hamiltonian
and the dephasing effects described by the Haken-Strobl super-
operator can be independently added to the closed-system
Hamiltonian HR . This is the standard form found in the
literature on excitonic transport [8].

Note that these results have been obtained by setting !R =
0, thus neglecting the effects of the coupling between ring sites.
Nevertheless, on the basis of the analysis presented in Ref. [24],
we expect the present results to remain valid provided
that !R is well within the energy band of the lead. This
expectation is confirmed by the numerical results presented
in Fig. 3.

IV. NUMERICAL RESULTS

From the results of the previous sections, we expect that the
strength of dephasing σ 2

R leading to a breakdown of the additive

0 0.1 0.2 0.3 0.4 0.5
t*

0.01

0.1

1

P(
t*
)

σ2
R = 0

σ2
R = 1

σ2
R = 10

σ2
R = 100

σ2
R = 1000

FIG. 2. The presence of dephasing noise on the ring first destroys
superradiance and then leads to the breakdown of the additive
approximation. By considering the evolution of the ring population
P (t∗), in terms of the rescaled time t∗ = γ t/h̄, we observe that, for
dephasing strengths σ 2

R smaller than the coupling !L, the evolution
of the reduced model (curves) agrees with that of the extended
model (symbols) up to the insurgence of numerical finite-size effects
(vertical dotted line), see also the discussion in Ref. [24]. For
dephasing strengths larger than !L, there is no agreement between
reduced and extended model (the decay of solid lines is markedly
faster than that of symbols). Employed values: !R = 0, NR = 10,
γ = 2!2

RL/!L = 1, !L = 100, NL = 40.

approximation is proportional to the energy bandwidth 4!L

in the lead. To confirm this and to obtain an estimate of the
actual proportionality factor, we performed some numerical
simulations.

We compared the evolution generated by the Haken-Strobl
master equation for the extended system comprising the ring
and the lead sites [see Eq. (11)] with the evolution generated on
the ring [reduced model, see Eqs. (40) and (41)] by the additive
combination of the Haken-Strobl terms and the non-Hermitian
terms describing the lead as a decay channel.

First, we studied the probability P (t) of finding the
excitation in the ring at time t , giving as initial condition a
completely symmetric superposition of ring sites; see Eq. (6)
and Fig. 2. As we already mentioned, in the absence of
disorder and noise, such a superposition is a superradiant state.
Indeed, its decay width for σ 2

R = 0 is NR times larger than
the single-site decay width γ = 2!2

RL/!L. In the absence of
noise, the agreement between the extended model and the
reduced one is excellent, up to a time in which the finite
length of the computational lead produces a spurious revival
in the probability P (t), see vertical dotted line in Fig. 2 and
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ΩL = 104

ΩL = 105

FIG. 3. When the dephasing strength σ 2
R equals the lead cou-

pling !L, the agreement between reduced and extended model is
completely lost. The decay width - of an excitation initialized on
the superradiant state, normalized by the single-site decay width
γ , is plotted as a function of the dephasing rate σ 2

R affecting the
ring for different values of the coupling !L (see legend). Symbols
correspond to the extended model, while solid curves are obtained
by the reduced model. The agreement is lost when σ 2

R ≈ !L (vertical
dashed lines), after which point the decay rates of the extended model
vanish, while those of the reduced model converge to the single-site
decay (horizontal dotted line). Employed values: !R = 0, NR = 10,
γ = 1, NL = 40. In addition, data obtained by setting !R = 0.1!L

(black crosses) show that a coupling among ring sites small compared
to !L has a negligible effect on the behavior of the system.

discussion in Ref. [24]. Note that as the size of the lead
increases to infinity, also the revival time diverges.

The agreement persists up to dephasing strengths of the
order of the inter-site coupling !L within the lead. For larger
dephasing strength, the extended model features a much slower
decay than the reduced model (in which the decay width
converges to the single-site value γ ) and the agreement is
lost since the very early stages of the evolution. Indeed, large
fluctuations of the ring site energies bring the energy of the
ring outside the energy band of the lead. This induces a
strong suppression of the decay not captured by the additive
approximation, which would predict a finite decay rate, equal
to γ , also in the limit of infinite noise strength.

To obtain an estimate of the dephasing strength that destroys
the agreement between reduced and extended model, we
considered the effective decay width - for the superradiant
state (extracted by the curves of P (t)) as a function of the
dephasing strength σ 2

R for different values of the lead coupling
!L (Fig. 3). The decay width - has been obtained by choosing,
for each curve, a suitable time t̂ right before the occurrence of
finite-size effects and computing - = −(h̄/t̂) log P (t̂). From
our numerical results we observe that the agreement between
reduced and extended model is completely lost when the
dephasing strength σ 2

R equals the lead coupling !L (see vertical

dashed lines in Fig. 3). We have also computed - in presence of
a finite (but small compared to !L) coupling between the sites
of the ring. The results, shown as crosses in Fig. 3, confirm that
a presence of a small !R does not change the global picture.

We can then conclude that it is possible to include in an
additive way the effect of dephasing and of the presence
of a probability-absorbing channel if the intensity σ 2

R of
dephasing is smaller than the channel bandwidth. Moreover,
the critical dephasing for which the additive approximation
breaks down is proportional to the intersite coupling !L in the
lead.

V. CONCLUSIONS

Transport in quantum networks is often affected by the
interplay of different environments. Typically, the effect of
probability-absorbing baths is taken into account by adding
non-Hermitian terms to the Hamiltonian of the system,
while other environments are modeled by appropriate super-
operators included in the master equation. The action of both
types of environment usually enters the master equation in an
additive way. The basis of the assumption is that the two baths
affect the system independently and do not interfere with each
other.

The aim of this work was to investigate the limit of validity
of such an assumption by means of both analytical derivations
and numerical simulations. To this end, we analyzed a simple
quantum network (which is a paradigmatic model for transport
phenomena) under the influence of two different baths: a
probability-absorbing environment, represented by a lead, and
a dephasing environment, modeled by white-noise fluctuations
of the site energies.

Our analysis has shown that the additive approximation
is valid when the strength of the time-dependent energy
fluctuations is small compared to the bandwidth of the
probability-absorbing bath. In this case, the master equation
for the open quantum system can be obtained by adding
the contributions generated by a non-Hermitian Hamiltonian,
encoding the loss of probability, and by a Haken-Strobl super-
operator, representing the dephasing bath. In the opposite
regime, the breakdown of the additive assumption leads to
distinctive features such as the counterintuitive suppression
of the decay when the coupling to the dephasing bath is
increased.

To generalize our results, we stress that the large bandwidth
approximation corresponds to the case in which the coupling
with the probability-absorbing bath does not depend on the en-
ergy of the system states. In our case, such energy dependence
is strong only for energies close to the band edge of the lead, so
that if the fluctuations induced by the dephasing environment
bring the system energies close to the lead band-edges, the
additive approximation breaks down. The general principle we
can extract for different physical situations is the following:
when the non-Hermitian description of a probability-absorbing
bath is valid in the absence of other environments, it will
remain valid even in the presence other environments when the
fluctuations induced by the latter are so small that the energy
dependence of the coupling with the probability-absorbing
bath can be neglected. In particular, this will always be the
case if the fluctuations induced by the other environments are
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comparable with the system bandwidth. It could remain valid
in principle for much larger strength of the fluctuations, like in
the case studied in this paper, where we have shown that the
relevant energy scale is the bandwidth of the lead and not the
bandwidth of the ring system.

The main applicative implication of our investigation is
in regard to engineered systems for photon sensing or light
harvesting. In proposals for such devices (see Ref. [19]), the
acceptor system is modeled as a semi-infinite lead as we did
in our paper. Thus, our results have a direct impact on the
modeling and on the design of devices where the couplings
between the different components can be tuned to optimize
the performance of the system.

In excitonic transport in natural light-harvesting complexes,
dephasing is often modeled by independent random fluctua-
tions of site energies as we did here. Moreover, non-Hermitian
terms are used to model excitation loss by trapping or
recombination. Indeed, in natural light-harvesting complexes,
there are two main ways in which the excitation can leave the
system: (1) by recombination and photon emission and (2)
by trapping and charge separation in reaction centers. They
constitute two independent probability-absorbing baths. As
for the electromagnetic environment, its bandwidth is clearly
very large since the photon can have any energy, moreover
thermal fluctuations (≈200 cm−1) are only a tiny fraction
of the excitation energy of the single molecule (≈104 cm−1)
and they are comparable with the system bandwidth. For this
reason, even if a more quantitative analysis should be carried
out, our results support the widespread use of an effective
non-Hermitian Hamiltonian entering additively in the master
equation, following, for example, Ref. [10]. Regarding exciton
loss by trapping in a reaction center, the actual physical
processes involved are more complicated. All we can say is
that care should be taken in modeling the interaction with the
reaction centers and the wide-band condition should always
be discussed on the basis of a more detailed analysis of each
specific natural system.
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APPENDIX A: DERIVATION OF HAKEN-STROBL
EQUATION

Here we will consider the Haken-Strobl master equation
for the average density matrix which describes a system in
the presence of stochastic fluctuations of the site energies (see
Ref. [20]). In this section we introduce a simple way to derive
the Haken-Strobl master equation, by using Itô’s stochastic
calculus [28]. The starting point is a stochastic Schrödinger

equation in the standard form (see Ref. [29]):

dψ(t) =
[

− i
h̄

H (t) − 1
2

∑

j

R∗
j (t)Rj (t)

]
ψ(t) dt

+
∑

j

Rj (t)ψ(t) dWj (t),

ψ(0) = ψ0. (A1)

Alongside the deterministic Hamiltonian term
−(i/h̄)H (t)ψ(t)dt , we have a number of white-noise
potentials Rj (t)dWj (t), and the term 1/2

∑
j R∗

j (t)Rj (t),
necessary to conserve the total probability. Each dWj (t)
denotes the stochastic differential of an independent Wiener
process and is characterized by a variance proportional to
the time increment, namely, ⟨dW 2

j ⟩ ∝ dt . Note that Eq. (A1)
is a linear Itô’s stochastic differential equation of the form
dψ = Fdt + GdW .

To model a system with N sites (in the single-excitation
approximation) with independent fluctuations of the site
energies we assume that the operators Rj (t), j = 1, . . . ,N ,
are constant in time and have the form

Rα
βj = − i√

h̄
σjδ

α
βj , (A2)

where σj > 0 indicates the intensity of the noise on site j , and
δijk is the three-index Kronecker symbol. We have then the
following identifications:

F α =

⎛

⎝− i
h̄

H α
β − 1

2h̄

∑

j

σ 2
j δα

βj

⎞

⎠ψβ,

Gα
j = − i√

h̄
σjδ

α
βjψ

β . (A3)

From now on we assume summation over Greek repeated
indices, while in the case of Latin indices the sum, if present,
will be always explicitly written. In components on the site-
basis Eq. (A1) reads

dψα =

⎛

⎝− i
h̄

H α
β − 1

2h̄

∑

j

σ 2
j δα

βj

⎞

⎠ψβ dt

− i√
h̄

∑

j

σjδ
α
βj dWjψ

β . (A4)

We observe that the white-noise terms

Vj (t)αβ ≡ σjδ
α
βj dWj (t), for j = 1, . . . ,N, (A5)

represent the random fluctuations of the energy of each site (j )
with intensity given by σ 2

j dt .
We recall that Itô’s product formula for the stochastic

differential of two processes X and Y such that

dX = F1 dt + G1 dW, dY = F2 dt + G2 dW (A6)

reads

d(XY ) = Y dX + X dY + G1G2 dt. (A7)

By applying Itô’s rule (A7), we can obtain from Eq. (A1)
the Quantum Stochastic Master Equation (QSME), governing
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the evolution of the random density matrix |ψ⟩ ⟨ψ |. In
components, the QSME reads

d(ψγ ψ∗
λ ) = − i

h̄

(
H

γ
βψβψ∗

λ − ψγ ψ∗
βH

∗β
λ

)
dt

− i√
h̄

∑

j

σj

(
δ

γ
βjψ

βψ∗
λ dWj−ψγ ψ∗

βδ
β
λj dWj

)

− 1
2h̄

∑

j

σ 2
j

(
δ

β
λjψ

γ ψ∗
β + δ

γ
βjψ

βψ∗
λ

)
dt

+ 1
2h̄

∑

j

σ 2
j

(
δ

γ
τjδ

ρ
λjψ

τψ∗
ρ+δ

γ
τjδ

ρ
λjψ

∗τψρ

)
dt.

(A8)

By taking the expected value of the QSME (A8), recalling
that terms proportional to dWj have zero mean, we obtain the
following equation for ρ = ⟨|ψ⟩ ⟨ψ |⟩:

d⟨(ψγ ψ∗
λ )⟩

= − i
h̄

〈
H

γ
βψβψ∗

λ − ψγ ψ∗
βH

∗β
λ

〉
dt

− 1
2h̄

〈
∑

j

σ 2
j

(
δ

β
λjψ

γ ψ∗
β + δ

γ
βjψ

βψ∗
λ

)
〉

dt

+ 1
2h̄

〈
∑

j

σ 2
j

(
δ

γ
τjδ

ρ
λjψ

τψ∗
ρ + δ

γ
τjδ

ρ
λjψ

∗τψρ

)
〉

dt.

(A9)

The foregoing equation corresponds to the Haken-Strobl
equation [20], and can be rearranged in the more familiar
form

dρ
j
k

dt
= − i

h̄
(Hρ − ρH †)jk −

(
1 − δ

j
k

)
(

σ 2
j + σ 2

k

2h̄

)

ρ
j
k.

(A10)

We emphasize that no assumption is necessary on the
Hermitian nature of the Hamiltonian. The foregoing result can
be applied to the modeling of noise in the high-temperature
limit for both the extended and reduced systems considered in
the main text.

APPENDIX B: HAKEN-STROBL IN LINDBLAD FORM

With reference to the notation of Secs. II and III, we can
express the Haken-Strobl master equation in terms of the
projectors on single-excitation states |αi⟩, defined in Eq. (23).

The equation reads

ρ̇(t) = − i
h̄

[HR + HL + HRL,ρ]

+
NR+NL∑

i=1

σ 2
ii

h̄

(
|αi⟩ ⟨αi | ρ |αi⟩ ⟨αi | − 1

2
{|αi⟩ ⟨αi | ,ρ}

)
,

(B1)

where σ 2
ii is the intensity of noise on the i-th state, i.e.,

σii:i!NR
= σR , and σii:i>NR

= σL = 0, compare Eq. (12).
Evaluating matrix elements of this equation recovers the
original dephasing dissipator (11).
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