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Introduction

Random constraint satisfaction problems are a fascinating subject. On the one hand, they are
“realistic” enough to be numerically handled on a computer, thanks to the finite connectivity of
the interaction network. On the other hand, they are truly mean-field in nature, hence something
diametrically opposite to real world situation, but at least analytically solvable from the statistical
physics perspective. A lot of effort has been devoted to the study of the average properties of
typical random instances drawn from a given ensemble. Among the others, the most spectacular
phenomenon affecting the structure of the space of solutions is perhaps the clustering (or dynamic)
transition, happening at a ratio of constraints per variable dubbed ay.

The clustering transition deeply affects the behaviour of local dynamics searching for solutions to
a constraint satisfaction problem. The connection between static properties and dynamics is however
not that simple and still far from being completely understood. Simple local search algorithms are
often smart enough to construct solutions to real instances of the problem in linear or polynomial
time in the system size up to the so called easy-hard transition threshold, which is algorithmic
dependent and usually strictly bigger than ag. Over the years, this intriguing phenomenology has
been traced back to the fact that these procedures are intrinsically out-of-equilibrium, and are hence
attracted towards atypical configurations with respect to the ones dominating the partition function
of the model.

A promising scheme in this field consists in trying to connect non-trivial dynamical behaviour
with the thermodynamic properties as obtained from a suitably tilted statistical measure, in the
attempt to move some probability weight to solutions underrepresented in the original measure.
We will pursue this route with what we believe to be the most simple strategy to count on [18]:
adding a soft bias to the Hamiltonian of the model, in order to directly break uniformity in the
sampling of solutions. To this end, we choose to work with a constraint satisfaction problem, the
continuous coloring, that is defined on continuous variables and is characterized by an excluded
volume interaction analogous to hard-spheres systems.

The thesis is organized as follows. In the first part a brief introductory overview is given on
some topics that are functional to the development of the thesis: the discontinuous glass transition
at the mean-field level, its finite connectivity realization on sparse random geometries and some
of its connections to the more “traditional” physics of real supercooled liquids. The second part is
entirely devoted to the analysis of the clustering phenomenon affecting the continuous coloring. In
Chapter 4 a definition of the model is given along with the relevant belief propagation or cavity
equations describing its phases. The phase diagram is presented and compared to the one of discrete
g-coloring. In Chapter 5 we give the details of the numerical solution of the BP equations and of

the estimation of the dynamic and condensation thresholds, along with the results of direct Monte




Carlo simulations supporting our analytical predictions. Chapter 6 is devoted to the study of the
optimum bias that allows for the postponement of the dynamic transition threshold to the greatest
connectivities. We will discuss of a methodology, which we have found most successful, that consists
in iteratively maximizing the complexity of the typical clusters forming right above the dynamic
threshold. Finally, in Chapter 7 our previous thermodynamic results are applied to the question
of algorithmic behaviour, in order to gain some knowledge on the atypicality of the configurations

visited by simple out-of-equilibrium Monte Carlo based procedures.




Part 1

Theory and phenomenology of glassy

systems




Preamble

Glasses are familiar, reassuring materials. They have accompanied the growth of mankind since the
neolithic age, in the form of natural glasses, such as obsidian, before actual glass manufacturing
was developed (cautious estimates date back to 3500 BC, in the Middle East region) |66]. For some
sort of irony that will become clearer in a moment, even after such a huge amount of time, our
theoretical comprehension of the glass state is far from being settled.

The first surprising fact about real glasses is their microscopic amorphous nature, meaning that
they lack of the structural long-range order typical of solid crystals, despite being mechanically rigid.
The radial distribution function, defined as the probability of finding another particle at a given
distance from a reference one, is practically indistinguishable from the liquid case [50]. Essentially,
glasses are liquids flowing so slowly upon decreasing temperature, that for all the practical purposes
they can be considered as arrested. They are not, however, ever in equilibrium (even metastable)
on experimental timescales.

Amorphism, on a more general ground, is not exclusive to particle glass-former liquids. These
are also commonly referred to as structural glasses, in contrast to another very popular category of
systems known as spin-glasses. Spin-glasses are complex models for magnetic systems that introduce
a component of randomness in the Hamiltonian, also called quenched disorder. As a consequence,
energy minima of the Hamiltonian, and in general the stable states of the system, do not usually
posses any predictable notion of order, as it happens on the contrary for the crystalline (magnetized)
states of matter.

The analogy with the spin-glass situation suggests that also in the case of structural glasses
some sort of effective disorder is silently at work. This usually goes under the name of self-induced
disorder, to underline its nature as a spontaneous emergent phenomenon in the huge space of
configurations, rather than being directly encoded in random parameters entering the Hamiltonian.
This similarity is even more compelling, as soon as one realises that the presence of frustration (which
is the capability of the quenched randomness to destroy the ordered solutions) is not a necessary
condition for a spin system to develop a spin-glass phase [14]. Emblematic in this respect is the case
of the ferromagnetic p-spin on sparse graphs, which shows for low temperatures a ferromagnetic
(crystalline) equilibrium phase along with a metastable glassy phase [40].

The important common denominator between this two types of “glasses”, is the presence of
a highly non-trivial (energy) landscape in a high dimensional space, the number of translational
degrees of freedom being 3NN for a 3-dimensional particle system constituted of N particles. With
highly non-trivial, we expect this landscape to be extremely rugged into a lot of (exponentially in NV)
stationary point, i.e. local minima and saddles. Being so numerous, most of these minima can only

be amorphous, hardly distinguishable and hardly predictable. This situation is completely general,




and can be regarded as a key ingredient underlying a (possible) broader definition of glassiness.
These first introductory chapters will provide the reader with some background about the main
topics that play a central role in the development of this thesis. First of all, some arbitrarily chosen
results concerning the nature of the glass transition in supercooled liquids is briefly reviewed in
Chapter 1. This introduction is utterly non exhaustive and awfully biased, given the vastness of
the subject, and the fact that an unanimous theoretical framework is still lacking. Throughout this
thesis, we will indeed adopt a point of view explicitly aimed to underline the deep analogies between
the world of structural glasses and a certain class of spin-glasses undergoing the so called discontin-
uous glass transition, and which become manifest in the mean-field limit addressed in Chapter 2.
That the mean-field description has actually something to say about real, finite dimensional world
is still a matter of vigorous debate. The converse, however, is not necessarily so a delicate matter:
the reader will take advantage of the beautiful analogy with real glassy systems in order to digest
even the most exotic infinite dimensional models. As an incentive to follow this program, it comes
the realization that the mean-field scenario is not limited to fully connected geometries or infinite
spatial dimensions. Chapter 3 briefly presents the subject of models defined on sparse random ge-
ometries, which are both analytically tractable through belief propagation or cavity formalism and

numerically manageable on a computer through direct simulation.




Chapter 1

(Glass transition in supercooled liquids

When decreasing temperature down to the melting point 7},, a liquid generally undergoes a first-
order phase transition towards a solid crystal state. Nevertheless, it is sometimes possible (but it
is not always easy [23]|) to avoid crystallization, for example by following a “fast enough” cooling
schedule. Having succeeded in this program, one is left with a supercooled liquid®.

Cooling further, at some point quite a striking phenomenon takes place: a dramatic increase
(around 14 ~ 15 orders of magnitude) of the shear viscosity 7 on a relatively small interval of
temperatures. This is also equivalent to consider a huge increase of the relaxation time 7, which is
usually linked through direct proportionality to the viscosity. When 7 is bigger than the available
experimental time t.yp, the system is stuck out of equilibrium (it cannot be described as in a
supercooled liquid metastable phase anymore). This is exactly the empirical glass transition Tj,.
Conventionally, one has n(T,) = 10'2Pa - s = 10"3Poise, which in turn corresponds to a relaxation
time of 7 ~ 102 — 103s.

Below T}, the system has not enough time to ergodically explore the phase space, and it suddenly
looses a relevant portion of its degrees of freedom: a glass is formed. This is signaled by an
abrupt drop of the constant pressure specific heat c,. But what would happen if one was able to
“equilibrate” the supercooled liquid even below T,? This impenitent speculation was firstly proposed
by Kauzmann [53|. Let us imagine for a moment we succeeded in restoring ergodicity. The number
of accessible microscopic configurations is in this case greatly enhanced with respect to the “arrested”
glass phase. The usual way of quantifying this difference is by arguing that the total phase space
of the putative supercooled liquid (SL) below T} is divided into a number N, (where the subscript

stands for configurational) of glassy states of typical internal size Ngjags, so that

N, = Nsv — V9sL—=NSglass (1.1)

Nglass ’

where we have introduced the intensive entropies Ssi, and Sgiass-
A standard working practice is to approximate the Sglags contribution with the vibrational

entropy typical of the solid crystal state, which is experimentally accessible. Calling excess entropy

"Whenever a stable crystal phase is present, the supercooled liquid phase is metastable. This implies that it
can be experimentally defined only on a time scale smaller than the nucleation time, and bigger than the relaxation
time of the liquid, by maintaining an appropriate cooling rate. Such a time scale is not guaranteed to exist for every
temperature. These problems can be disregarded if one studies suitable models where crystallization is suppressed,
such as polydisperse sphere systems or frustrated spin-glass models.




Chapter 1. Glass transition in supercooled liquids

entropy

liquid

supercooled
liquid
S 1~109

>

Iy~ T, T T~T T, temperature'

Figure 1.1: Relevant temperatures and time scales in the though life of supercooled liquids. Below the
liquid-crystal transition point 7;,, a relentless non-trivial cooling schedule should be maintained in order to
keep the system safe from unwanted crystallization. T is the Goldstein’s temperature below which activated
dynamics kicks in. Activated dynamics is believed to prevent finite dimensional systems from experiencing
a purely dynamic transition associated with the actual divergence of relaxation times at T, (we wil call it
T, in the rest of the thesis), as predicted instead from mode coupling theory and other mean-field models.
At the glass transition T, the relaxation time exceeds the experimental convention 7 ~ 102 — 103s. At the
Kauzmann temperature T} the extrapolated excess entropy of the liquid with respect to the crystal appears
to vanish. Finally, Ty is the temperature where the Vogel-Fulcher-Tamman fit predicts a super-Arrhenius
divergence of viscosity and relaxation time. Reprinted from [23].

Sexc the gap between the entropy of the liquid and that of the crystal, one finally obtains
Sc ~ Sexc = SSL - Scrystala (12)

where S, = N~ 'log N, is known as configurational entropy.

This quantity, if extrapolated to low temperature from measurements in the metastable super-
cooled liquid phase, in some cases, as pointed out by Kauzmann, is observed to vanish at a nonzero
temperature Ty. The great popularity of T} is essentially due to two circumstances. On the one
hand, as it will be discussed in the next section, there is an intriguing coincidence: the experimental
viscosity data from several materials seems to diverge at a finite temperature Ty ~ 1. On the
other hand, there is an analogy with the mean-field description, where T}, (i.e. the vanishing of a
rigorously defined configurational entropy) can be proved to represent a true thermodynamic phase
transition. Nevertheless, its occurrence in finite dimensional systems is still a point of debate, as it
will be addressed in the rest of the chapter.

At least another key temperature can be identified in the quite hard life of real supercooled
liquids, fig. 1.1. It corresponds to the Goldstein’s temperature T, > T, that signals the point

where activated dynamics between “metastable states” kicks in, before ergodicity is finally lost at

When talking about metastability in finite dimensions, one should keep in mind Goldstein’s scenario [44], for
which the system is never globally found in a potential energy local minimum. Metastable states can be however
reasonably defined locally both in space and in time, as addressed later on in this chapter.




1.1. A dramatic arrest

T,. Above T, experimental results are found in accordance with mean-field descriptions such as the
mode coupling theory (MCT). These predict a sharp dynamic transition for T; ~ T, with an actual
divergence of shear viscosity and relaxation time, connected to the appearance of an exponential
in N number of metastable states of infinite lifetime. However, in finite dimensional systems, this
sharp transition happens to be avoided, and only a crossover takes place at T, towards Goldstein’s
activated dynamics [44]. The underlying reason is that in real systems free-energy barriers are finite,

and metastable states always posses a finite lifetime.

1.1 A dramatic arrest

A very popular manner to represent the dramatic slowing down of the dynamics of different glass-
forming liquids is by plotting logn (or equivalently log 7) with respect to the inverse of temperature
normalized to the specific value of T,. This is usually called the Angell’s plot [? |, see fig. 1.2.

This choice is particularly convenient, as it directly relates with the general Arrhenius law for
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Figure 1.2: The Angell’s plot is the traditional way to represent the striking increase of shear viscosity
and relaxation time close to Tj;. Glass-formers exhibiting a linear behaviour follow the Arrhenius law and
are called “strong” liquids; “fragile” liquids exhibit instead a super-Arrhenius behaviour, characterized by an
effective activation energy which increases when decreasing temperature. The whole range of intermediate
behaviours between the truly strong and fragile liquids that are shown in the figure can be found in nature
for different materials. Reprinted from [36].

activated events 7 o« exp(A/kpT), where A is a constant (in temperature) activation energy.
Liquids displaying an Arrhenius behaviour align on a straight line on the Angell’s plot. These are
called “strong” glass-formers. Remarkably, the vast majority of liquids does not follow an Arrhenius
behaviour. A liquid is called as the more “fragile” the bigger the discrepancy from the Arrhenius
law.

This classification hints to a very different behaviour of activation energies when lowering tem-




1.2. A precursor: two step relaxation

perature. Close to Ty, fragile glass-formers show a progressively steeper, super-Arrhenius increase
of viscosity, that can be related to the growing of barriers. An empirical fit that reasonably suits
the data is the Vogel-Fulcher-Tamman (VFT) law

7(T) = 10 exp (T ing) . (1.3)

The popularity of VFT is connected to the prediction, for fragile materials, of a finite temper-
ature divergence of relaxation time at 7Tj, compatible to the Kauzmann temperature Ty. In fact,
thermodynamic theories for the glass transition have been proposed, linking the growth of barriers
with the vanishing of S, at T}, and through the introduction of a diverging static correlation length.
In this way, one can build a theoretical framework justifying the use of VFT.

At this point, some words of caution are required. The increase of viscosity is so sharp, and
the range of low temperatures experimentally accessible is so limited, consistently far from the
expected divergences, respectively at T' = 0 or T for strong or fragile glass-formers, that a definite
validation of the different functional laws used to fit the data cannot be assured. In particular,
fragile liquids obeying VFT, are found to be equally well described by fits with the same number
of parameters, and only displaying a divergence for T'= 0 [47|. On the other hand, even Arrhenius
type glass-formers can be adequately fitted by crucially different functional forms, such as the
Biissler law 7 oc exp(A/T?) [7]. In conclusion, these fits are not sufficient to validate, nor to
reject, the existence of a finite temperature divergence Ty > 0, to be associated to a hypothetical

thermodynamic transition T}.

1.2 A precursor: two step relaxation

A clear signature of the glass transition 7j; can be obtained from the equilibrium relaxation in the
supercooled liquid phase. This in turn allows us to put the physical relevance of Ty on a firmer basis,
and underlies the exquisitely dynamical nature of the glass transition 7;. A dynamic correlation

function is a quantity of the form

N
Cl(ty,t2) = Z @i(t1)pi(t2)) (1.4)

1
N
where ¢;(t) is a single particle observable at time ¢, and the average (-) is carried over any stochastic-
ity entering the dynamics, as the choice of the initial condition and the random “noise” component
(e.g. thermal noise in Langevin dynamics, random sequences in Monte Carlo simulations).

At equilibrium time translational invariance (TTI) holds, hence two times quantities depend
only on the time difference and C(t1,t2) = C(to — t1) = C(t), where it was assumed to >
t1. An experimentally accessible dynamic correlation, tracking in Fourier space the evolution of
density fluctuations in supercooled liquids, is the self-intermediate scattering function Fs(q,t) =
% > j (e'ari)e=1ar;(0)) fig 1 3a. The decay of correlations with time noticeably depends on tem-
perature. For high enough temperature, the decay is found to obey a simple exponential relaxation
exp(—t/7). On the other hand, when lowering T, correlations start to exhibit a distinctive two-step
relaxation, with the emergence of a plateau of increasing duration. The long time relaxation after

the plateau is generally well fitted by a stretched exponential of the form exp [—(t /7)P ] , with g < 1.

9
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Figure 1.3: Two step equilibrium relaxation approaching 7, from above, as based on numerical simulations
of Lennard-Jones glass-forming liquids. Left: self-intermediate scattering function, evaluated at the value
of ¢ corresponding to the first peak in the static structure factor. Reprinted from [36]. Right: for low
temperatures, the crossover in the mean square displacement from ballistic to diffusive motion is divided by
a plateau, similar in spirit to what happens with the scattering function and other dynamic correlations.
Reprinted from [3].

A very peculiar property worth to stress, is that the plateau is discontinuous in nature. This means
that for the first temperatures for which the decay is no longer exponential the dynamic correlation
already shows the emergence of a plateau of nonzero height.

The two-step decay of the correlation hints at the presence of (at least) two distinct relaxation
processes, whose timescales are progressively decoupled when lowering temperature. A suggestive
physical interpretation for this decoupling can be found rooted in real space. To this end, one should

consider the behaviour, as depicted in fig. 1.3b, of the mean square displacement (MSD)

N
A = > (Ikilt) = ri(0)) (1:5)

=1

An early regime A ~ t? is associated to the ballistic motion for times shorter than the typical
collisional timescale. It is followed, for very long times, by a diffusive regime A ~ ¢, dominated by
collisions. In between, we assist to the appearance of a plateau, for sufficiently low T, which poses
a stiff bound on the average distance a particle can explore even extending the available timescale
t. The physical intuition behind the plateau in the MSD is that particles are trapped inside cages
formed by the neighbours. The two-step relaxation of correlation functions can thus be interpreted
as first, fast relaxation of each particle inside a cage, then followed by a second slow relaxation (the
proper structural relaxation restoring ergodicity) only on timescales bigger than the confinement or
caging time, i.e. the duration of the plateau.

This simple pictorial representation, albeit very appealing and often useful, has its own limita-
tions. For instance, it does not clearly explain how cages are actually composed, which particle is
the “jailer”, which one is the “prisoner”, or how they can be both at the same time. In fact, we expect
the dramatic growth of the structural relaxation time to be connected to the need of cooperative
rearrangements of an increasing number of particles, a situation very distant from a single particle

caging-decaging description. It is worth to remember, however, that it can be misleading to regard

10



1.3. On the thermodynamic relevance of Ty,

a unique mechanism as responsible for relaxation at every temperature T' > T,. If caging descrip-
tion may reasonably account for the appearance of the plateau at high enough temperatures, below
the Goldstein crossover T, > T, instead, where activated dynamics kicks in, different processes
are expected to be at work, and even coexist in the same temperature range (this is the case of
the so called slow « processes, responsible of the proper structural relaxation below T, and the
Johari-Goldstein S-processes, or secondary relaxation, which occur on a timescale slower than the
rattling-in-a-cage but faster than the a processes, and do not contribute to the structural relaxation
of the liquid [52, 66]).

1.3 On the thermodynamic relevance of Tj

In this section I will elaborate a bit more on the presumed thermodynamic transition T}, in order to
clarify how a vanishing S, should be connected with the divergence of a true static correlation length
&. This perspective, albeit hypothetical, has the merit of having produced the most thriving and
promising schemes that foreshadow a reconciliation between mean-field description (which predicts

an analogous T}, scenario) and finite-dimensional world.

1.3.1 Adam-Gibbs-DiMarzio theory

One of the first organic theories proposing the existence of a true thermodynamic glass transition is
due to Adam, Gibbs and DiMarzio [1, 42, 43|. As already argued when discussing caging at the end
of the previous section, the increasingly slow relaxation close to Ty should be interpreted in terms of
the cooperative rearrangement of a growing number of particles. These rearrangements have to be
localised in space, allowing one to define a Cooperative Rearranging Region (CRR) as the smallest
group of particles that can be rearranged independently from the rest of the system [1]. Let n(T)
be the typical number of particles constituting a CRR at a given temperature, and 2 be the number
of “local states” a CRR can be found in. The definition of such local states (in place of a unique
global metastable state) here essentially follows Goldstein’s idea of activated dynamics, for which,
since activated events only involve a subset of the particles, many independent rearrangements can
simultaneously occur in the global system, that is therefore always in the middle of a transition
between energy landscape minima, rather than in a minimum [44].

We work under the assumption that €2 is independent from temperature and from the size of
the CRR3. Treating different CRRs as uncorrelated, the number A of global states the system as

a whole can visit is simply

N =N, (1.6)
from which the configurational entropy
So(T) = L log V' = ——log 0 (1.7)
o(T) = 5y logN = ) og . .

This implies that the size n(T') of a typical rearranging region diverges at T}, where the configu-

rational entropy S, goes to zero. From n(T") we can extract a correlation length & ~ n1/d and relate

3This hypothesis may appear hard to digest. A more satisfying description is provided in this section in terms of
mosaic theory and point-to-set correlation length.

11



1.3. On the thermodynamic relevance of Ty,

it to the scaling of the barrier A ~ ¢¥ for some 1 > 0. Adam-Gibbs’ choice was simply A ~ n(T),
thus leading to

T o exp <T§j(T)) . (1.8)

Remarkably, this expression reduces to the VFT law close to T}, since

T Ac T-T
Su(T) ~ Sexe(T) = / 2% . Acylog(T/Ty) ~ Ay — 1k (1.9)
., T Ty,
where we have used Sexc(T;) = 0, Acp, = CSL - cf,ryStal ~ const, and expanded the logarithm for

T ~ Ty. The extra T factor multiplying S, in the activation time 7 can be finally treated as constant
Ty, if Ty, is sufficiently far from T' = 0, thus obtaining back eq. (1.3).

1.3.2 Mosaic theory

The mosaic theory shares many of the key ideas of Adam-Gibbs’ scenario. It proposes a nucleation
mechanism between a very large number of metastable states [56], a picture directly borrowed from
mean-field phenomenology. In this framework, contrary to Adam-Gibbs’ formulation, the number
of potentially accessible states to each cooperative unit does scale (exponentially) with its size. A

variation on classic nucleation theory is assumed to be
AF(R) ~Y(T)R’ — TS.(T)R?, (1.10)

where R is the size of a spontaneous nucleus of a given state. Y > 0 is a generalized surface
tension that accounts for phase mismatch at the boundary of the nucleated region (6 < d — 1), and
represents a cost in terms of free-energy balance. The second term (entropic driving force), replaces
the usual bulk free-energy gain, that is here zero since all the states have the same free-energy (they
are truly indistinguishable indeed).

According to the nucleation mechanism, small R fluctuations are then hindered by surface
tension, while become advantageous only beyond a typical scale £ for which the barrier AF(€)

reaches its maximum and starts decreasing?,

§(T) ~ (Téﬂ)) o : (1.11)
AF(&) ~Y(T)e°. (1.12)

This result straightforwardly redirects to a generalized VFT law for the relaxation time (an extra
free parameter is given by the exponent 6).

The suggestive physical picture arising from the nucleation scenario is the one interpreting
the structure of real supercooled liquids as a patchwork (mosaic®) of local cooperative regions of
size £&. The most convincing intuition about the nature of the entropic driving term proceeds as

follows [13, 23|. Regions smaller than £ cannot decorrelate autonomously, due to surface tension

“Here we keep track only of the dependence on temperature, disregarding constant prefactors. Notice that for
R = £ the two contributions to AF' scale with T" in the same manner.

5A very unexciting one, actually, as long as one is concerned about “artistic” merit. All the local metastable
states would indeed appear identically amorphous to our eye.

12



1.3. On the thermodynamic relevance of Ty,

free-energy price that pushes back fluctuations attempting to leave the current state. Above &,
however, fluctuations leaving the state are secured since the group of particles cannot find its
way back to the original state, due to the exponential proliferation of accessible basins with the
cluster size. Because of the local and cooperative nature of rearrangements, these typically occur,
independently throughout the system, only on length scales close to &, being the rate of more

extended rearrangements exponentially suppressed in the size of the region.

1.3.3 Point-to-set correlation length

The above construction, in particular the physical interpretation of the entropic driving term, and
how it affects the instability of a system towards mosaic fragmentation, may appear a bit exotic, if
not delusive. A recent formulation [13] provides a perhaps more convincing argument supporting
the mosaic picture, while highlighting at once the importance of locality, both in space and in time,
in the definition of finite-dimensional metastability.

Consider the following experiment, in which one “freezes” the positions of all the particles outside
a spherical cavity of radius R from a reference equilibrium liquid configuration. Particles inside the
sphere are left free too move, but are subjected to the “pinning” field due to the particular choice of
fixed boundary conditions. One can show that the notion of metastable state is thermodynamically
consistent only on length scales smaller than &, which correspond to the typical size of a patch
in the mosaic state. To this end, suppose the initial configuration was prepared in a true global
state a. Particles inside the spherical cavity, on the other hand, are now free to choose one of
the many possible exp [SC(T)Rd] different states. The thermodynamic partition function of the
particles inside the sphere accounts for two class of contributions, depending of whether state « is

selected (Ziy) or not (Zyyt) in the summation over all the possible states,
Zsphere = Zin + Zow, = exp(—BfR® + BY R?) + exp(—BfR* + S.R%), (1.13)

where f is the internal free energy of every dominating metastable state, and Y is the surface tension
(this term can be viewed as a positive contribution to Zj, coming from the favourable pinning field
at the boundary of the region, or can be equivalently moved inside Z,,, with a change of sign,
representing the surface tension cost payed by all the states but «).

The probabilities of finding (not finding) the spherical region in the original state o are then

. B Z; B exp(BYRG)
Pin(R) = Zin + Zous  exp(BY R?) + exp (S.R%)’ (1.14)
Zou exp (S.R?
Pout(R) b = D (%) (1.15)

- Zin + Zowt  exp(BY R?) + exp (S.R4)’

which exemplify the roles of Y (T') and S.(T') respectively as an obstacle and a driving force to
rearrangements.

In this case, R represents an externally tunable parameter (at least theoretically and in numerical
simulations), that can be used at each temperature to probe different length scales of the system
in a rigorous way. Two regimes are obtained. For R < £(T"), pin dominates (f < d) thanks to the
exponential form of the probability, while for R > £(7T") one has the opposite. The length &, for

which the exponents are balanced, is given exactly by eq. (1.11). We conclude that regions larger
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than £ are eventually able to decorrelate, even in the presence of a “simmetry breaking” pinning
field. The assumption of a “global” metastable state is hence disproved, and metastability can be
defined only up to length scale £. Indeed, for R < £, we can safely affirm that the sphere is stuck
inside state «, as long as the constraint on the boundary conditions is not relaxed.

This rigorous construction, albeit fictitious, provides the most convincing, closest realisation of
mean-field like scenario in finite-dimensional systems. As a byproduct, we are left with an operative
definition of a static point-to-set correlation length &, that can be directly obtained in numerical
simulations [9-11, 21]. This is very convenient, since an experimental validation of any of the

theories exposed in this section can be rather difficult [51], and far from being conclusive®.

SRecall, for instance, that the experimental agreement of shear viscosity and relaxation time with VFT-like fits
cannot be considered as a proof of the theories.
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Chapter 2

(zlass transition in the mean-field limit

So far our attention was mostly focused, for obvious anthropical reasons, on the finite-dimensional
nature of real systems. The quite not insignificant detail that real world physics is generally bounded
to three spatial dimensions, has not prevented anyway physicists from building unrealistic theoret-
ical models which are infinite dimensional by construction. Spheres systems in d — oo spatial
dimensions have been exploited rather recently [68, 90-92]. Another very popular example are
models defined on a fully connected geometry, as the Curie-Weiss (Ising) model or its spin-glass
counterpart, the Sherrington-Kirkpatrick model. In all these cases, each variable interacts with
O(N) other variables, and fluctuation from the average behaviour is not tolerated. The many body
problem of N interacting particles can then be generally reduced to a single particle description in
an “average” external field.

Fully connected models are particularly suitable to analytical treatment, but may appear rather
abstract and unsatisfactory from the physical point of view. In particular, real world degrees of
freedom usually share a finite number of interactions. Furthermore, a major limitation to this
approach is that numerical simulations scale prohibitively with the system size. Another class of
mean-field models trying to answer to these issues are those defined on finite connectivity, locally
tree-like structures, also called sparse graphs. Among them we have diluted spin-glass models,
constraint satisfaction problems from computer science (that will be discussed in the next chapter),
but also particle systems such as lattice glass models on Bethe lattices [12, 27, 62, 94| or the
Mari-Kurchan-Krzkala (MKK) model [70]. To the peculiarity of tree-like geometries is entirely
devoted the next chapter. In a few words, it strongly derives from the absence of short loops in the
network of interactions, this washing out any Euclidean space structure. This is also what happens,
for instance, in another mean-field realization of particle models due to Mari-Kurchan [71], which
although living in finite spatial dimensions, lacks of the triangular property typical of short-range
interacting particles (if particle A is close to particle B, that in turn interacts with particle C, then A
and C must be relatively close together and likely interact) thanks to the introduction of arbitrarily
large random shifts between each pair of particles.

The fundamental characteristic of mean-field systems, which radically distinguishes them from
finite-dimensional ones, is that free energy barriers scale with the system size, and hence are truly
infinite in the thermodynamic limit. This in particular allows for a rigorous definition of global
metastables states, which in this context have infinite lifetime, in turn making it possible to count

them. A suggestive idea according to which mean-field physics could be used to build a glass
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2.1. d1RSB + s1RSB framework

transition theory for real systems was steadily proposed by Kirkpatrick, Thirumalai and Wolynes.
The inspiration, and hope, comes from the field theory for standard second order critical phenomena,
where an expansion out of mean-field allows one to recover three dimensional world (in a very recent
formulation 2], such an expansion is performed starting from a theory defined on a tree-like structure
called Bethe lattice, thus testifying the importance and versatility of the study of such geometries).
In the case of the glass transition, however, the situation is crucially complicated by the presence
of activated events in finite dimensions, which drastically alters the mean-field description.

It is not in the purpose of this thesis to pursue this direction. However, it may be of general
interest to briefly consider some of the key outcomes of this approach. The same authors started from
the realisation [54] that the equations describing the dynamics of a fully connected spin-glass model,
the p-spin for p > 3, are formally equivalent to those predicted by Mode Coupling Theory (MCT),
an approximate scheme for closing the complicated dynamic equations in real liquids [8, 45, 46].
Remarkably, MCT predictions agree fairly well with experimental data in a range of temperatures
bigger than but not too close to T,;. This opens to two important lines of thought. Firstly, it proposes
MCT as a sort of mean-field-like theory for the dynamics of liquids. This has been essentially
confirmed by the study of spheres systems in infinite dimensions [68], meaning that MCT in the
d — oo limit is found to be qualitatively very close to the exact mean-field solution, even though
important quantitative differences are generally to be taken into account [48]. Secondly, it poses a
parallelism between structural glasses and a certain class of spin-glasses undergoing the so called
discontinuous glass transition, thus envisaging a careful study of the latter type of systems as a
relevant tool in order to also gain comprehension on the structural glass transition itself [57, 58].
This whole framework goes under the name of Random First Order Transition theory (RFOT). It
is strongly oriented towards finite dimensional systems, as testified by the very fabric of the mosaic
theory developed by the same authors in this context [56], where the “first order” nature of the
transition is encoded in all those metastability and nucleation arguments that have been briefly
addressed in the previous chapter. Despite this fact, the term RFOT is commonly used also to
refer, in general, to the transition in any kind of glassy models, even spin systems, that undergo the
so called one-step Replica Symmetry Breaking (1RSB) transition at the mean-field level. It is this

second meaning that will be referred to in the rest of the thesis.

2.1 d1RSB + s1RSB framework

The 1RSB transition, or discontinuous glass transition, or RFOT, predicts two important transition

temperatures:

e T,, or dynamic transition temperature, is connected to the appearance of an exponential in [NV
number of metastable states for the system. Despite not being signaled by thermodynamics,
it has strong consequences on the dynamics, with a true divergence of the relaxation time 7
and the development of a persistent plateau in the dynamic correlation functions for T — Tj.
The divergence of 7 is only power-law, rather than showing an exponential behaviour as in real
liquids close to Ty;. The dynamic transition is actually believed to be an avoided transition in
finite dimensions, and it is associated to the crossover between non activated and activated

dynamics Ty ~ T}, > T,.
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2.1. d1RSB + s1RSB framework

e T, or static transition temperature, is the point where the number of dominating metastable
states becomes sub-exponential in the system size. This is equivalent to say that the com-
plexity X, i.e. the logarithm of their number divided by N, vanishes at T;. The definition
of the complexity closely reminds us the concept of configurational entropy in the context
of supercooled liquids. In fact, it can be viewed as its “rigorous” counterpart for mean-field
systems, where global metastability is properly defined. This implies that the Kauzmann
scenario, or ideal glass transition, can be exactly realized within mean-field (Ts = T is a true
thermodynamic transition, since states dominating the partition function have now associated

an individual, non-vanishing statistical weight).

2.1.1 Equilibrium dynamics above T}

The equilibrium behaviour close to T} is conveniently studied from the point of view of dynamics.
For definiteness, let us consider the case of the fully-connected spherical p-spin model, which for
p > 3 is known to undergo a discontinuous glass transition [30, 55|, and that is defined by the

following Hamiltonian
N
H=— Z Ji1...ip Oiy """ Oy, a; ER, ZU? =N Vi, (2.1)
i1 <. <lip i=1

where the J;, . ;,’s are quenched Gaussian variables of zero mean and variance p!/ (2Np_1). The

relaxational dynamics for the o;(t)’s is assumed to be given by the set of N coupled Langevin

equations
10i(1) + n(t)or(1) + T2 = (), 22)
(G()&;(t) = 2T6;56(t — t'), (2.3)

where pu(t) is a Lagrange multiplier enforcing the spherical constraint at each time and to be con-
sistently derived from the equations, and &; is the usual delta correlated noise (white noise) of zero
mean.

The subscript in H ; signals the fact that the problem still depends on the quenched disorder.
Following De Dominicis [35], one can use the dynamic functional integral method of Martin, Siggia
and Rose [73] to average out the quenched disorder without the use of the replica method. This in
turn allows one to rewrite the original set of Langevin equations (heavily coupled through the term

OHM j/0o;) as a single-particle Langevin process with colored noise

o (t) + p(t)o(t) — h(t) — p(p2_1) / dt'R(t,t)CP2(t,t o (') = £(t), (2.4)

(EWEW)) = 2T8(t =) + SO (1. ¢), (2.5)

having introduced the average correlation and response functions

Ctt) = (o)o()), Rty = Lol (2.6)
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2.1. d1RSB + s1RSB framework

where (-) means average over the probability measure of £, and h(t) is an external magnetic field.
From relations (2.4)-(2.5), one can derive self-consistent equations for the correlation and the

response function [29, 55|, which for h = 0 read

OR(t1,t -1 t1
(62’2) = —p(t1)R(t, t2) + p(pQ) / dtR(ty,t)CP~2(t1, ) R(L, ) + 6(ty — t2),  (2.7)
1 t
0C (t1,1 -1 t1
(32’2) = —p(t1)C (1, t2) + p(pz) / dtR(t1,t)CP 2 (11, t)C(t, t2)+ (2.8)
! —0o0
to
+ 2T R(t2,t1) + g / dtOP~1(t,t1)R(ta, t),
p2 t1 o
plt) =T+ | dtR(t, )C7 (b, 1), (2.9)

In the equilibrium regime 1" > Ty, they drastically simplify thanks to TTI and to the fluctuation

dissipation theorem (FDT), which allows us to express the response in terms of the sole correlation
O(t) 0C(t)

R(t)=——F+—= t=11—1 2.10

( ) T ot 1 2 ( )

where ©(t < 0) =0 and ©(¢t > 0) = 1. Moreover, ergodicity in the paramagnetic phase requires the

correlation to satisfy lim;_,o C'(t) = 0. The self-consistency equations then reduce to

0 C(t)=-TC(t) — % /Ot du CP~H(t — u) 0,0 (u). (2.11)

Very interesting physics is encoded in this equation. To elucidate this point, it is convenient to

recast it in the following form

8,0(t) = —TC(t) + %Cp’l(t) 1-C()] - % /0 " du [CP (t —u) — CP ()] DuC(u)

= —TC(t) + %Cl"l(t) [1—C)] + Ac(t) <0, (2.12)

where we have imposed the condition 9;C(t) < 0 since C(t) is a decreasing function of time. From
0 < C(t) <1 it also follows that the first term in the rhs of (2.12) is negative, while the other two

are positive. In particular, Ac(t) > 0, so that we can write
_TC(t) + %cp—l(t) [1-C@)<o. (2.13)

This leads us to define [22]
H 272
9(C) =P -C®)] < — =

The function ¢g(C) is equal to 0 for both C'=1 and C' = 0 and has a maximum in C' = ¢4, where

(2.14)

p—2
=—. 2.1
= (2.15)
Inequality (2.14) can be studied graphically. For high temperatures the inequality is satisfied for
all times from t =0 (C(0) =1, g(C =1) =0) to t = 0o (C(o0) = 0, g(C = 0) = 0). Decreasing

T, the difference between the rhs and g(gq) becomes smaller. From equation (2.12) we recognize
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2.1. d1RSB + s1RSB framework

the difference A(T,t) = 272 /p — g(C(t)) to be “related” to the time derivative of the correlation.
If we neglect for the moment A (t), we obtain a direct proportionality between this difference and
0 C(t)/C(t): for small times, and C close to 1, A(T,t) is maximum as a function of ¢ and the
correlation decays fast; for “intermediate times”, when C' is close to g4, A(T,t) approaches zero and
hence dynamics slows down; once we get past q¢q, A(T,t) starts increasing again and the correlation
can decay down to C(c0) = 0. We put the second time-window name “intermediate times” under
quotes, since we expect that the time to reach ¢; becomes bigger and bigger, and actually diverges,
when decreasing temperature. We can lower T' down to the point for which (2.14) is saturated,

g(qq) = 272 /p. This defines the dynamic transition temperature

T, = (2.16)
as the temperature for which the system finally gets stuck in the long time limit to a plateau
limyo0 C(t) = qq, limy_,o0o O:C(t) = 0. Notice that at this point the ergodicity assumption breaks
down and we should go back to the original equations if we want to study the dynamics for T' < Tj.
A final remark is required in order to convince the reader that the presence of Ac(t) is actually
harmless to our conclusions. The delicate point here is the fact that the quantity C(¢)A(T,t) is not
in general proportional to 0;C(t) for arbitrary shapes of Ax(t). However, the whole picture would
be safe! if Ac(t) resulted to vanish for t — oco. The fact that this is verified can be readily seen
from the definition of A¢(t), equation (2.12), once one realizes that the two terms under integration
alternatively vanish on complementary time windows. To make it more explicit, it is convenient
to divide the range of integration (0,¢) in two intervals (0, X) and (X,t), where X is a diverging
timescale satisfying X < ¢ for t — 0o, e.g. X = t1/2.

Mode coupling theory provides very important relations for the asymptotic behaviour of the
correlation function. In particular, the way it decays at the dynamical transition Ty towards its
long time plateau (also known as critical decay) or how it departs from it close to T, (also known as
the Von Schweidler law), is governed by two power-laws with different exponents that are commonly

called a and b respectively

Ot) ~ qq+ (t/to)) ™+ O [(t/to)‘ﬂ . to<t<ty, T—TF, (2.17)

C(t) =~ (t/7)" + 0 |t/7)”] . ty <t<<T, T—Tf (2.18)

where tg is a characteristic microscopic timescale, t, is a diverging timescale associated with the
approach to the plateau (S-process), while the relaxation time 7 > ¢, is a second diverging timescale
associated with the proper structural relaxation of the liquid (a-process). The previous relations
are to be intended valid up to terms of order € = (T' — T;)/Ty. The timescales are defined in terms
of the same exponents a and b as

to ~ (T —Ty) 2, (2.19)

'Suppose that lim;— o C(t) = ¢’ and lim;—00 8:C(t) = 0 for T = T', with ¢ > qq and T’ > T,. From (2.12) we
have then lim; 00 8:C(t) = —£=¢'A(¢', T") +1limy 00 Ac(t) = 0. In general, if lim; o Ac(t) > 0, then A(¢',T") > 0,
which implies 7" > Ty or T = Ty, ¢ # qa. We may be worried in this case for the emergence of a plateau with
q > qq and/or T’ > T4. But since we show in the text that lims_, oo Ac(t) = 0 for any temperature T’, then it follows
that the only condition for having a long time plateau with vanishing lim;—, . 8:C(t) = 0 is that A(¢’,T") = 0, which
gives us back ¢’ = qq and T = Tj.
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2.1. d1RSB + s1RSB framework

1
2a  2b°

Equation (2.20) highlights an important difference with real liquids, where 7 scales exponentially

T~ (T -Ty)7, y= (2.20)

close to Ty. Finally, another remarkable prediction of MCT is that the exponents a and b are not
independent, but are both determined by the exponent parameter A
I?(1—a) T?%(1+0)

M —2a) T +25) " (221)

with 1/2 < XA < 1, from which 0 < a < 0.395... and 0 < b < 1. The parameter A is model dependent.
For instance, in the case of the fully connected spherical p-spin, one obtains for any value of p that
A=1/2,i.e. a=0.395... and b = 1. Remarkably, besides direct dynamic computation [29], also a

static route is sometimes possible |20, 39].

2.1.2 Thermodynamics of the non-ideal glassy phase 7, < T < Ty

Below Ty, thermodynamics is dominated by an exponential subset of the exponentially many states,
rather than by a simply ergodic paramagnetic (liquid) solution. Each of them possesses an internal
free energy f* bigger than the one obtained by prolonging the liquid solution. Nevertheless, the
total free energy density ®*, which is essentially proportional to the logarithm of the thermodynamic

partition function, takes into account all the dominating states simultaneously, so that
—Be* =B +X(f*,T). (2.22)

From this in particular follows that ®* < f*, since ¥ > 0. Moreover, one can show that ®* is the
analytic continuation of the paramagnetic (liquid) solution down to T, so that no thermodynamic
indication of a transition comes with 7.

To elucidate this point, we recall that the free energy ® can be directly computed via the replica
method [81] in the so called 1RSB scheme, which for RFOT models (as the p-spin p > 3) is found
to be exact. In the case of the p-spin [22], a generalized free energy can be written as a function
of the external parameters (such as the inverse temperature 3, and the external magnetic field h
which we neglect here) and three other parameters, ®1rsp(qo, g1, m; 3). The physical values of these

parameters as a function of temperature are extracted from ®1rgp by finding its stationary points,

0P1rsB
dqo

_ 0®P1rsB
o

_ O0®1rsB
om

=0, (2.23)

q5-97 m*

q5,97 m* q5,97 m*

so that ®* = ®1rsp(q5, qf,m*;5). Of course, these parameters have a very important physical
interpretation. To this end, it is convenient to define the overlap as a measure of the similarity

between two generic configurations {o;} and {7;}, for instance in the case of scalar spin variables

N
Gor = »_0iT;. (2.24)
=1
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2.1. d1RSB + s1RSB framework

One can define also the overlap between two mean-field states o and

N

Gos = Y _(0)alo)p, (2.25)

i=1

where (-), 3 denotes the average over the Boltzmann-Gibbs distributions restricted to state a or
B respectively. The physical intuition underlying the replica formalism and the 1RSB scenario is
the following. Let us consider two independent replicas of the same system. If only one state is
present, as for T' > Ty, both replicas will be in the same state, and we need only one parameter to
describe the equilibrium overlap distribution, the self-overlap gno of that state. If there are many
states, the situation could in principle be very complicated. In the simplest case of 1RSB systems,
the dominant states happen to be all equivalent, and one need only three parameters: the overlap
between two different states, go3 = qo Vo, B # «, the self-overlap of any of the states, gna = ¢1 Vo,
and the probability 1 —m (0 < m < 1) for two independent replicas to be in the same state (this
in turn depends on the statistical weight of each individual state). The distribution of the overlap
between two independent replicas, or, which is the same, of the overlap between states over the

whole pairs of states, is then

P(q) = (1 —=m)d(q — q1) +md(q — qo)- (2.26)

In the high temperature paramagnetic phase, the system is ergodic and there is no need of replica
symmetry breaking: one has simply ¢ = ¢§ and m is left undefined. In particular, all the dependence
from ¢; and m (“in-states” quantities) disappears: P(q) = 0(qo) and ®1rsp(q1 = q0) = Prs(qo; B)-
In the whole range Ty < T' < Ty, on the other hand, m* = 1. This implies, again, both P(q) = d(qo)
and ®1rsp(m = 1) = Prg(qo; 5): thermodynamics is completely blind to the presence of metastable
states. The underlying physical reason is that, being exponentially many, the statistical weight of
each single state is negligible. For T < Ty, finally, a non-trivial solution appears with ¢1 > qo
and m < 1. While the value ¢q; appears discontinuously, since at Ts one has already q1 # qo, the
behaviour of m and hence of P(q) is continuous.

A thermodynamic description of the non-trivial phase for Ty < T < T} is still possible, but one
has to be smarter. Following Monasson [84]|, we imagine a situation in which m real copies of the
same system are coupled by a small attractive term of strength e. By performing the limit ¢ — 0
after N — oo, we can select and study the original metastable states in a very elegant, clever way,
by constraining all the copies to be in the same state, while keeping their mutual independence.

The free energy for the system formed by the m copies then reads

e BN®(m.B) _ S zm =Y e PNmle = / v dfeNEUD=Bm] | N[ T)=pmf] (2.27)

o min

where the index « runs over all the possible states and f = f (m,T) satisfies the saddle point

equation

0X(f,T)

o7 (2.28)

SIE

f(m,T)
The free energy ®(m, () can be computed via the replica method, thus obtaining ®(m,3) =
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2.1. d1RSB + s1RSB framework

m®irse(m, ¢5(m,T), ¢i(m,T); B). The crucial point is that now we can actual recognize the rele-
vant physical content hidden in the m dependence of the replicated free energy ®1rgp. Promoting m
to real values, equation (2.27) implies that —3®(m, §) is the Legendre transform of X(f, T'), which
is concave. One can invert the relation to obtain ¥ as a function of f. In practice, it is convenient
to make an intermediate step, that is to compute 3(m,T") from the sole knowledge of i)(m, B),

; a(-po)

—Bf(m,T) = “om (2.29)

S(m, T) = Bmf(m, T) — fd(m, B) = -m L) g g (2.30)
At this point, a parametric plot of ¥(m,T) versus f (m, T) gives the complexity X(f,T) as a function
of the internal free energy f for each temperature. A positive complexity ¥ > 0 is the thermody-
namic signature of a non-trivial glassy phase, characterized by the emergence of an exponential in
N number of well defined metastable states. States dominating thermodynamics for Ty < T < Ty
satisfy eq. (2.28) with m = 1, and are hence characterized by f* = f(m = 1,T).
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Chapter 3

Finite connectivity mean-field: sparse

graphs

This thesis is devoted to the study of a model defined on random sparse graphs. With the term
sparse, one refers to the fact that the system is diluted, with respect to the fully connected limit,
for what concerns the total number M of interactions in the system. We are interested in the limit
M = aN for N — oo, with a kept constant. In general, interactions can involve an arbitrary
number k of variables (for simplicity, we do not let here k fluctuate in the system). We consider
the case in which the interactions are homogeneously distributed between variables, meaning that
the degree of each variable is taken to follow the same distribution Pegree(d), with average degree
¢ = ka. Notice that in general the local degree can fluctuate. However, as long as « is finite, then
each variable has a finite number of first neighbours. This is a first crucial difference with respect
to the more “naive” fully-connected mean-field.

Given a set V' of N vertices (variable nodes) and a set E of M (hyper)-edges (interactions or
function nodes), a sample is given by the (hyper)-graph! G(V, E) and a particular realisation of
additional quenched disorder, if present. Graphs are extracted according to a specific distribution.
For instance, two popular choices are the Random Regular Graph (RRG) or the Erdés—Rényi
ensemble (ER) [38]. In the first case, one has uniform probability over all the graphs having fixed
degree c on each node, Pjegrec(d) = 6(d — ¢). This has the advantage of being more easily tractable
from the analytical point of view, but forbid one to vary ¢ (or ) continuously. To this end, one can
introduce a family of graphs with heterogeneous local degree, the Erdés—Rényi ensemble, for which

¢, where d is integer

the degree follows a Poisson distribution of average ¢ = ka, Pegree(d) = %C!le_
but ¢ is real. ER random graphs are usually defined by drawing for each interaction a = 1,..., M
a k-uplet of variables with uniform probability among the (],X ) possibilities. Of course, these draws
cannot be completely independent?, if one wishes to avoid “repeated” interactions between the same
k variables (this does not cure the eventuality of isolated variables, especially for low connectivities).

Sparse graphs share the crucial property of being locally tree-like, this meaning that there is

absence of “small” loops in the network of interactions (as opposed to finite dimensional systems).

LA graph structured in this way, separating variable from function nodes, is also called bipartite or factor graph.
The use of factor graphs is very convenient when one wishes to study the situation k > 2. In that case, one usually
speaks about hyper-graphs.

What one has in mind with this definition is actually to extract with uniform probability one of the possible

N
((1@)) graphs obtained from selecting M edges among the (]Z ) possible ones.
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3.1. Belief Propagation

On the other hand, for finite sizes N < 0o, long loops are always present. This can be understood
in the following way [76]. The number of sites at a distance r from a reference variable scales® in
a tree as N(r) ~ [f(c)(k — 1)]", where r is the distance along the tree and f(c) > 0 is a generic
function of the average degree ¢ = ka. This implies that the number of sites grows exponentially
with the distance. At some point, the number of sites on the “boundary” (from site 0 perspective)
becomes comparable with the total number of sites N (of course one has to stop before). If we
imagine to construct a graph by iteratively adding edges at random between nodes, in this situation
the probability that a new edge will involve (at least) two sites on the boundary becomes soon
predominant: a loop is formed. One then argues that the typical size [ of a loop scales with N — oo
as N(r =1) ~ N, so that

[~InN. (3.1)

The almost absence of small loops has very important technical consequences, the effect of
long loops being often negligible since correlation typically decays on long paths. First of all, exact
trees are factorizable, meaning that neighbouring variables become independent once the interaction
between them is removed, the system itself resulting partitioned into independent sub-trees. This
property is at the basis of very powerful, and substantially equivalent, iterative approaches that go
under the names of belief propagation [76] and cavity method |78, 79]. In the next section the belief
propagation formalism will be discussed, being a central tool in the development of this thesis.

The unavoidable presence in real random graphs of loops, even if very large, is however some-
thing we are worried about, since it may in principle spoil the effectiveness of these techniques. In
particular, one has to be careful that correlations decay fast enough. The first obstacle one encoun-
ters is the onset Ty of a diverging point-to-set correlation length, which can be bypassed by solving
the belief propagation or cavity equations at an appropriate replica symmetry breaking level (here
we consider systems where the 1RSB picture is indeed correct). Notice that, however, loops have
also an important physical implication, since they are both essential in order to introduce frustra-
tion into a system with open boundary conditions, and, even when the system is unfrustrated, they
can be nonetheless a fundamental source of self-induced disorder?, independent from the eventual

quenched one.

3.1 Belief Propagation

Belief propagation (BP) provides a smart way of computing (or approximating) marginals of the

probability distribution of a statistical system, which in great generality can be written as

1 N M
P(a) = — [ [ i) [] valzaa). (32)
i=1

a=1

3The reference variable at r = 0 is connected to an average number ¢ = ka of function nodes, each of them being
connected to variable 0 itself and k — 1 other variables at distance r = 1. If the graph is RRG with fixed ¢, then each
of the variables from any generation r > 1 is in turn connected to exactly ¢ — 1 other function nodes, each of them
connecting other k — 1 variable nodes, such that f(c) ~ ¢ — 1. In the case of ER graphs, one has simply f(c) = ¢,
since the number d of “new generation” function nodes seen by any variable node i, which already participate in an
edge, follows the distribution Pe.gge(d) of average equal to c. For a definition of Peqge(d) see eq. (3.16).

“Paradigmatic, in this regard, is the case of the Ising p-spin with ferromagnetic couplings (hence unfrustrated).
Even on a RRG, which may appear not disordered on any non-diverging length scale, this model shows a glassy phase
of the 1RSB kind [40].
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3.1. Belief Propagation

where OJa is the set of nodes ¢ € V which participate in the a-th interaction, ; represents the
on-site coupling with an eventual external field, while 1, represents a k-body interaction term for
the Hamiltonian, such that |da|= k is the function node degree (considered fixed for simplicity).
The most crude approximation one can resort to when dealing with systems with many inter-
acting variables is to consider a factorized form for the probability distribution P(z) ~ Hf\i 1 bi(zi),
where the beliefs b;(z;) are our proxies for the single-variable marginals of the system. Remarkably,
this choice ceases to be an approximation if one considers the fully connected limit of the model,
and for this reason it is often called (naive) mean-field approximation. A slight improvement would
be to account at least for the most obvious correlations, i.e. the ones regarding variables directly

entering some interaction. This is called the Bethe approximation:

N M
P(x) ~ Pgethe() = Hbz(m,) H Hb 8x(?a H ba(Za, Hb (z;) 19 (3.3)
i=1 a=1 +11€0a

where 0i is the set of interactions a € E which include variable node ¢ and |0i| is their number,
i.e. the degree of variable node i. The normalization is chosen in such a way that, if variables are
uncorrelated, one recovers the factorization of the probability. Furthermore, it can be shown that
Pgethe is exact on trees, with b; and b, assuming the meaning of true marginals®. Unfortunately this
property is not verified for arbitrary graphs; however, since the beliefs are intended to approximate

the true marginals, we require them to satisfy normalization and local consistency equations
D bi(zi)=1 VieV, (3.4)

Z ba(zo,) = bi(xi) Y(a,i): a € E, i€ Da, (3.5)

Zoa\i

where we denote with da \ i the set of all the indices j € da but i. These conditions are actually
equivalent to three requirements: normalization of b;’s, local consistency under marginalization over
|0a|—1 variables, and also normalization of b,’s, which descends from the other two. A warning
of caution is at this point required: even if the true marginals of any probability distribution
satisfy these conditions, the converse it is not always verified. In particular, the fact of having
found a set of locally consistence marginals does not imply that Ppgethe given in eq. 3.3 is actually
a distribution possessing the b’s as marginals. This is very different from the simple case of the
factorized probability, for which any normalized belief b; represents also the “correct” marginal for
the approximated distribution, that is always well normalized.

However, we will work with eq. 3.3, assuming the the underlying graph is actually a tree. We

5Tt can be proved by recursion [76]. We start from a leaf of the tree, that is from an interaction a that is connected
to |0a|—1 dangling variables of degree 1 (that we identify with the notation da \ ¢), and only one variable ¢ (since
there are no loops in a tree) with degree strictly bigger than 1. Calling Pr(z) the marginal probability distribution of
all the variables in the tree but the dangling ones we have considered, we can write then P(z) = Pr(z) ba(zg,\;|7:) =
Pr(z) ba(z,,)bi(z;) ", where the first equality is a consequence of the fact that dangling variables interact with the
rest of the tree only through variable 4, while the second equality follows from Bayes’ rule. At this point, we can
adsorb the effect of the dangling ends as an auxiliary external field ;(z;) = Zlaa\i Ya(Zoa) [rcoari Yr(@r) acting

on variable ¢ and repeat the procedure on Pr(z), where the interaction a is removed together with the external fields
(“factor leaves”) oy, (zx) for k € Oa \ i and having redefined v;(x;) as 9;(2;)wi(x:), until the tree is consumed. In the
end, each interaction contributes with a factor b,, while each variable node contributes with a factor b; for every link
it is connected to as long as it is non-dangling, hence the factor b‘a” L
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3.1. Belief Propagation

1
1
1

A I -

Figure 3.1: Left: the lowest vertical arrow, from variable node j to function node a, is associated with the
cavity marginal v;_,,(z;), representing the marginal distribution of variable j in the absence of interaction
a. BP local recursion eq. (3.7) allows one to express v;_q(z;) in terms of the product of the messages
Up—j(2;) incoming in j from all the function nodes b € 95 \ a (upper arrows). Right: the top vertical arrow,
from function node a to variable node j, is associated with the cavity marginal 7,_,;(z;), representing the
marginal distribution of variable j in the absence of all the interactions b € 95\ a. According to BP eq. (3.8),
the messages vy_,q(x) for k € 0a\ j entering function node a (lower arrows) interact via ¢, (x5, ) to produce
Va—;(x;). Reprinted from [76].

introduce the free entropy functional Fpetpe (defined as —f times the free energy, so that for E =0
it gives back the entropy)

Fpetne(b) = —BE(D) ZZI) Zoe) InVa(25,) —i—ZZb () Inv;(x;)+

a Zl'aa
- ZZb o) Inba(z5,) ZZ (1 —|0i]) Inb;(x), (3.6)
a Ty, )
where S(b) = —(In Pgethe) Pg.y.- 11 analogy with naive mean field, one is tempted to associate to

stationary points (in this case maxima, since Fpetpe is proportional to the free energy functional with
the sign changed) of the Bethe free entropy, with some Lagrange multipliers imposing normalization
and local consistency, the physical solutions for the b’s.

A more convenient way to carry out this task is by introducing the BP or cavity marginals
Vji—a(j), Va—j(z;) associated to each directed variable-to-function edge j — a or function-to-
variable edge a — j. These represent the marginal distributions of variable j respectively in the
absence of interaction a (see left of fig. 3.1), or in the absence of all the interactions b € 9j \ a (see
fig. 3.1 on the right). They are also called BP or cavity messages, since represent the “message”
which exits (arrives to) variable node j from an entire branch of the tree. In the absence of loops,
different branches become independent once their connection to variable j is broken. This is used

to build the following recursive scheme, also known as Belief Propagation equations

Visa(zj) = 5— vi(z5) H Up—j(xj), (3.7)
Z_“l bedj\a
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3.1. Belief Propagation

1
ﬁa%j(xj) = 7 Z ﬂ}a(laa) H Vk—a(xy)> (38)

O zha k€da\j

where Z;_,, and Z,_,; ensure the normalization of messages. They can be solved numerically on any
graph by adding time indices and iterating the relations until a fixed point is (eventually) reached.
On a real tree, one can start from the leaves and propagate the messages up to the root, hence
reconstructing all the correct cavity marginals in a time that scales linearly with N. Of course,
a simple relation connecting cavity messages to the true general marginals b;, b, can be obtained

exactly on a tree

bi(w;) = Ziwz(xz) H Va—i (i), (3.9)
! acoi
ba(Zq) = Ziwa(iaa) H Visa(T3). (3.10)
@ i€da

What about if the underlying graph is not exactly a tree? In general, one can show that the
stationary points of the Bethe free entropy (3.6) are in one-to-one correspondence with the fixed
points of the belief propagation equations exactly through egs. (3.9)-(3.10). Solving for a BP fixed
point on an arbitrary graph is then equivalent to search for a complete set of Bethe beliefs. Of
course, this procedure can be at the least rather dangerous, since we are not even assured that such
beliefs correctly identify a proper probability distribution. We will anyway run the machinery, find
a fixed point of BP and cross our fingers. The underlying reasonable idea is that, if correlations
decay “fast enough”, one can hope BP or Bethe beliefs to be close to the correct marginals, when

the underlying graph structure is locally tree-like.

3.1.1 Pairwise models

In the case of pairwise models the notation can be further simplified by noticing that function node
a uniquely identifies a pair (ij) of site nodes. We can rewrite the BP equations in terms of only one

species of outgoing messages v/j_4(z;), which will be called hereafter as vj_;(x;)

Visi(2;) = Zj:%‘(%‘) I1 <Z Vk%j(xk)i/’kj(iﬂka%)) ) (3.11)

' kedj\i \ Tk

having a simple diagrammatic interpretation if one imagines to combine the two subplots of figure 3.1
for |0a|= 2, or equivalently equations (3.7)-(3.8). The Bethe free entropy (3.6), rewritten in terms

of the cavity messages, becomes in this case

Fiemme(v) =Y InZ;— Y InZy, (3.12)

eV (ij)eE
Zi=Y ilw) [T | Do v (s 2y vimi(ay) | (3.13)
Tq JEDL Tj

Zij =Y viesj(@i) i (wi, 35) vji(). (3.14)

Ti,Tj
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3.1. Belief Propagation

In the rest of the thesis we will always work with pairwise notation.

3.1.2 Replica Symmetric Population Dynamics

The equations discussed so far only work for a given instance of the problem. In statistical physics,
one is often interested in averages over the disorder, which in this case also comprehends the ensemble
average over the graph distribution. Both the average on the graph ensemble and on any external
randomness can be dealt with by promoting the BP equations to have a distributional meaning.
This essentially works as follows. In the Replica Symmetric (RS) approximation, one considers
a randomly picked message to be a random quantity subjected to a well defined probability dis-
tribution P(v), which is unique since just one state for the system is contemplated. Interpreting
equation 3.11 as defining an update function @gpdate({uk}d), taking as input d independent random

messages and returning a new message, then P(v) satisfies the self-consistency equation

P(v) =E E, / dekp (k) 0 (v — @ qare ({1 }a) » (3.15)

where E; represents the average over the quenched parameters of the Hamiltonian (possibly entering
the definition of 1; and 1);;, and through them also ®ypdate), While Eq is the average over the edge-
wise degree distribution, i.e. the probability (according to the generative graph ensemble) for a
randomly extracted edge to insist on a site with exactly d other edges.

The probability P(v) can be estimated numerically via the population dynamics algorithm. One
takes a large but finite (say U = 10°) collection of U messages {v}y to approximate P(v). Starting
from an initial condition {r}{7°, one uses eq. (3.15) to obtain {I/}t+ /v by replacing a random
exemplar v from the population {v}!, with (I)update({yk}d)7 where the disorder J and the edge-wise
degree d are extracted according to their independent probability distributions, and the random
messages {Vj}q are chosen with uniform probability from {v}};. The “fixed point” {v*} of this
procedure, in a sense that we now specify, provides a numerical estimate of P(v). The definition
of a fixed point may appear indeed rather tricky. Of course, we are interested in comparing the
evolution of the population between times ¢ and ¢ + 1, i.e. after O(U) elementary steps. At this
point, it is usually sufficient to study the behaviour with ¢ of some physical observable, that is an
average over the whole population {y}@, and understand if it converges. This provides an operative
definition for a fixed point of population dynamics.

It is finally convenient to make a last remark, which will be useful in the rest of the thesis. E4
was defined as the average with respect of what we have called the edge-wise degree distribution,
and that we will name Pegge(d) from now on. The fact that Pegge(d) is generally different from the
degree distribution Pyeg(d) can be immediately recognized. For instance, for random regular graphs,
where the degree is fixed to ¢, one trivially has Pyeg(d) = 6(d — ¢), while Peqge(d) = 6 (d — (¢ — 1)).
A very important exception is the case of Erdés—Rényi graphs, which will be studied throughout

this thesis, for which one has, from the definition of edge-wise degree distribution
(d+ )PER(d +1) cle=¢

deg ER
P d) = = = d), 3.16
edge( ) Zd(d 1)Pd]5élg(d 1) d! deg( ) ( )

where we used the fact that Pilg(d) = Poisson(c). The extra (d+ 1) factor in the definition of Peyge
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3.1. Belief Propagation

(valid for any graph) follows from the fact that, even if a node with degree (d+1) is present only with
probability Pyeg(d+1), then it contributes (d+1)/k times to the total number of interactions, k = 2
for pairwise models (an edge insisting on a high-degree site is in some sense over-represented, when
picking edges at random). An important consequence is that single variable marginal probabilities
b;’s then become, in the population dynamics algorithm on ER graphs, random marginals with the
same distribution of the cavity messages v. This can be understood by noticing that the equations
for the local marginals (3.9) are essentially identical to those for the messages v eq. (3.7), apart
from the fact that in the former equations all the edges insisting on each site are considered; the

distribution of single site marginals is then formally equivalent to the right hand side of eq. (3.15),

where qﬁl{pdate has exactly the same definition in both cases, while the degree d is now extracted
according to the site-perspective Pyeq(d); finally, since P(Eg(d) = Pg&e (d), the distribution of single

site marginals is found actually to satisfy the same equation (3.15). One can then use directly {v*}¢s

to compute averages of single site quantities.

3.1.3 Long range correlations: need for 1RSB

Below T}, the emergence of properly defined global metastable states of infinite lifetime induces
non-trivial correlations among the variables that may spoil the “naive” replica symmetric approach
of equation (3.11). These correlations are of the point-to-set kind and involve a number of variables
that diverges with the system size [88]|. Notice that the physical intuition is in some respect very
close to the one underlying the Gedanken experiment of [13], predicting the divergence of a static
point-to-set correlation length at 7} in real liquids; in both cases, this divergence is associated to
the very formation of global states of infinite lifetime, this happening at T} (presumably) or at Ty,
depending on the finite dimensional or mean-field nature of the model.

The decomposition into many states can be possibly dealt with by resorting to the 1RSB for-
malism [76]. In this approach, one identifies each different state o with a different fixed point v* of
the belief propagation equations. Then, for each directed edge 7 — j, the associated message v;_;
becomes a random variable obeying its own probability distribution @;—;() over the states. Since

we want to weight states according to their internal free entropy, one has essentially that
Qimsi) = Y sl (i~ 2 ) (317)
o
A relation analogous to the BP equations can be derived for the )’s, reading

Qji(v) O</ I dvesiQu(viss) (V - ‘bfﬁate({%ej}keaﬁ-\i)) [Zji({vhsitreopd)] ™ s
keaj\i
(3.18)
where @7 ;Cfate is given by eq. (3.11). Albeit this equations being formally very similar to the RS
population dynamics one eq. (3.15), there are two important differences. The first point is that
the distributions @’s, apart from specific cases such as for random regular graphs (due to their
homogeneity), are in general different for each edge; solving numerically the above equations would

then involve a much bigger effort than the simple RS population dynamics®. Secondly, an explicit

SEquation (3.18) can be still averaged over the ensemble of random graphs and the external disorder. This leads
to the definition of a probability distribution (over the random choice of an edge) of the probability distribution (over
the states) of messages, P[Q(v)]. Breaking one step of replica symmetry has added one distributional level to the
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3.1. Belief Propagation

reweighting term Z7",,

The 1RSB equations can be drastically simplified if one limits him /herself to m = 1, as was firstly

has appeared in the right hand side of the equation.

shown in [75] in the context of the tree reconstruction problem. For this reason, the 1RSB belief
propagation equations at m = 1 that we are going to discuss are also often known as reconstruction

equations. As a first step, let us consider the average messages

v, () = / dv Qiyy(V)v(w;) =Y efPemel™y2  (g;). (3.19)
(0%
A remarkable result is that V;“LZ are then found to satisfy the simple replica symmetric BP equa-

tions (3.11). This is actually not surprising, since the 1RSB formalism is based onto the equivalence
among all the states, so that by averaging over all the solutions to the BP equations (or states) we
still obtain a solution to the same BP equations.

A similar simplification is obtained at the level of the population dynamics equations implement-
ing the average over the structure of the graph and the quenched disorder, if present. In this case,
one introduces the probability distribution P[Q(v)], over the random choice of an edge, of Q(v). It
is also convenient to define the average distribution of messages P(v) = [dQ(v)P[Q(V)]|Q(v). Tt
turns out that, under a “local uniformity condition” (essentially, that the RS solution is paramag-

av
Visj

netic, = 1/q, where ¢ = |X| is the size of the alphabet), the equations really simplify if one

considers a new set of ¢ distributions over the messages
R.(v) = qu(z) P(v), Vo e X. (3.20)

R;(v) can be interpreted as the distribution of the messages v(y) that are “biased” towards y = =.
This choice in the end allows one to eliminate the reweighting term inside the population dynamics

recursion for R, (v) induced by (3.18), obtaining (see Appendix A for details on the derivation)

d
RZE(V) = EJEd/ H |:dl/k Z?T(l‘, Y; ‘])Ry(yk) 5(7/ - q)I{pdate ({Vk}d)) ) (321)
k=1 Y

where

w(z,y; J) = _Yulwy) (3.22)

>y a(z,y)
and v (x,y) is the (pairwise) interaction term between neighbours on the graph. At this point, we
have obtained two remarkable results: the density evolution BP equations do not involve distribu-
tions of distributions, and we have eliminated the reweighting term. A third crucial theorem can
be proved [75], affirming that eq. (3.21) admits a non-trivial solution if and only if it converges to

a non-trivial distribution when initialized according to
REOW) = 80— 2*), P (y) = 6y, (323)

Finally, if translational invariance holds, e.g. if ¢ ;(z,y) = ¥ ;(Jy — x|) and there is no external
field, then R;(v) = Ro(T(—z)v), where T(—x) is the operator that shifts the argument of the

function v(y) by —z, and it is sufficient to study the following recursion in terms of the sole R = Ry

problem.
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3.2. Constraint satisfaction problems

~ B | H[dukz w3 DRI (—g)vi) | 0 = e (da)) . (3:20)

where 7(y; J) = w(0,y; J) x ¥;(Jy — 0]). In the end, for m = 1 we have brought back the technical
complexity of 1RSB equations to the same level of RS ones. The typical internal free entropy of

m = 1 states can be computed from the fixed point of (3.24) as

d
N~ e = E By / 11> 7y 1) R(T(—y)vi) In Z ({vi}as J) + (3.25)
k=1 y
—aEjEq4 / dvdvoR(11) Z w(y; J) R(T(—y)va) In Zo(vy,v0; J), (3.26)

where Z and Z, are essentially given by equations (3.13)-(3.14),

d

Z ({vitas J) Z@ZJJ VT D ¢ally — =) vy, (3.27)
=1y

Zy(vi, v J) = ZVl(ﬂf) Yully — ) va(y), (3.28)

x?y

having defined as 1;(x) the equivalent of the single-site term 1;(x;), in order to differentiate the
notation with respect to vy, which here stands for the pairwise interaction also called v, before.
The reconstruction equations will be used to study the typical states of a system in its liquid and

glassy phase above T}, where the solution m = 1 is thermodynamically consistent.

3.2 Constraint satisfaction problems

Constraint satisfaction problems (CSP) can be defined as collections of M conditions or formulas
(constraints) among N variables. Typical questions one may be interested in are for example:
establishing whether a particular instance has a solution or not (decision problem), counting the
number of its solutions (counting problem), minimizing the number of possibly violated constrains
and eventually finding a configuration of the variables satisfying this condition (optimization).
Computational complexity theory is interested in the worst-case scenario [41]. A problem is called
tractable with respect to one of these questions if it is solvable by a deterministic’ algorithm in a time
scaling polynomially in the system size for all the possible instances. Intractable problems are on
the contrary only solvable in nonpolynomial running time by any known deterministic algorithm, at
least for some choice of particularly “hard” instances (for a physicist’s introduction to computational
complexity theory and some more refined classification see [74]). Worst-case analysis is not the most
generally informative perspective one can adopt. In particular, nonpolynomial behaviour may be
sometimes triggered by some pathological instances only, while a problem still maintains to be
tractable under practical conditions.

For this kind of reasons, besides the worst-case scenario, the attention has recently moved also to

"A standard classical algorithm, as opposed to a nondeterministic algorithm (this is limited to a theoretical
concept in the world of conventional, non-quantum computers), which via the branching of the computational flow
can perform an exponential number of polynomial time computations in parallel.
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the study of typical behaviour, as defined by considering the average properties of random instances
drawn from a given ensemble. One is then interested to understand how the scaling of algorithmic
running time depends on the choice of the parameters of the model, such as the constraints per
variable ratio a = M/N, and how it relates to the location of actual phase transitions in the
standard statistical physics approach to these problems. Among the many CSPs that have been
investigated in this direction, and particularly appreciated also from the physics community, we
have the g-coloring (¢-COL) [89, 99, 101], random k-satisfiability (k-SAT) [83, 85, 86|, and random
E-XORSAT |28, 65, 93|. A great deal of interest in these problems stems from the fact that they
can be viewed as equivalent to the study of the groundstates of sparse glassy Hamiltonians. For
instance, a straightforward mapping is possible between g-coloring and the sparse antiferromagnetic
g-states Potts model, or between random k-XORSAT and the sparse Ising k-spin model. Notice
that most of the CSPs usually studied in the literature deals with discrete variables.

This thesis is devoted to the study of an extension of the ¢g-coloring to continuous variables from
the statistical physics’ typical-case perspective. For this reason, it seems appropriate to spend just
a few words about this CSP, among all the others. The original discrete problem is readily defined:
given a graph with pairwise interactions and a set of ¢ colors, it consists in finding a proper coloring of
the vertices such that no pair of adjacent variables has the same color. Although it may seem rather
an extravagant question to dally with, it turns out that many real-world combinatorial optimization
problems can be easily mapped onto the g-coloring. For instance, a practical application concerns
the optimal scheduling of registers in the central processing unit of computers (see the introduction
of [17] and references therein). The problem in this case can be stated as follows: one wants to
physically assign variables, changing their values in a same time interval during the execution of a
program, to different registers. This can be schematized by assigning each variable to a vertex and
placing edges between variables that are updated during the same interval. Since we do not want
variables connected by an edge to belong to the same register (i.e. to take the same color), we can
recast the problem of scheduling the registers as that of finding a proper g-coloring to the generated

graph, where ¢ corresponds also to the number of employed registers (possibly minimum).

3.2.1 Phase transitions in random CSPs

In this context, physics methods and intuition can be very effective. The current picture emerged
is that the slowing down of searching algorithms in certain regions of the phase diagram is deeply
connected to the presence of actual phase transitions. The typical scenario is given in figure 3.2.
Increasing the average degree ¢ of variable nodes in the graph (or equivalently what we call the
average connectivity « = M /N = ¢/k, where k = 2 for pairwise interactions), the system undergoes
several transitions, that can be usually interpreted through the 1RSB scheme. In the following, we
will make an extensive use of the concept of clusters of solutions. Roughly speaking, clusters are
akin to connected domains in the space of solutions, meaning that any two solutions in a cluster
can be connected by a path of other solutions belonging to the same cluster, and differing only for
a non-extensive number of variables. This provides a useful specialization to zero temperature of
the concept of thermodynamic states.

At «ag, the clustering or dynamic transition, phase space fragments into an exponential in N
number of clusters, each of them having a nonzero internal entropy (d1RSB). At a., the condensation

transition, equivalent to the Kauzmann transition (s1RSB), the number of clusters dominating
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Figure 3.2: Pictorial representation of the space of solutions in random constraint satisfaction problems,
when varying the average vertex degree c. For c¢q4 < ¢ < ¢, solutions are split into an exponential in N
number eV>+ of clusters of typical internal size e/¥*+. Some clusters may appear also before ay, but they
only comprehend an exponentially small fraction of the solutions. For ¢, < ¢ < ¢; the measure condenses
over the few largest clusters, until no solution exists beyond the SAT/UNSAT threshold c,. At the rigidity
point ¢, which might come before or after the condensation threshold c. as well, dominating clusters start
to contain an extensive number of frozen variables, i.e. variables taking the same value in all the solutions
belonging to the given cluster (frozen clusters are colored in black). Another interesting threshold, not
depicted in the figure, is the freezing point ¢y, where all the clusters, not only the dominating ones, become
frozen. Reprinted from [101].

the measure becomes sub-exponential in N (their complexity vanishes). Above the satisfiability
threshold, generally known as SAT/UNSAT transition (also COL/UNCOL in the case of coloring
as in figure 3.2), typical instances cannot be satisfied by any choice of the variables with probability
going to one as N — oo. Finally, another important transition occurs at the rigidity threshold
a,-, where typical clusters (i.e. the ones dominating the measure) develop a finite fraction of frozen
variables. A variable is said to be frozen if it takes the same value on all the configurations belonging
to a given cluster. One can also be interested in the freezing threshold ay > «, for which all the
clusters, even the atypical ones, are frozen (i.e. they contain an extensive number of frozen variables).
If one “flips” a frozen variable, the system is forced to move to another cluster, thus implying that
an extensive number of variables has to rearrange [98]. The presence of frozen variables may play a
major role in determining the behaviour of some classes of local algorithms. Indeed, one expects to
be impossible to construct in a polynomial time a solution belonging to a frozen cluster, for which
an extensive number of highly correlated variables has to be set in a consistent way. For this reason,
ay (which obeys a rather difficult large deviation computation, contrarily to the typical-case a.) is
usually proposed as an upper bound to the algorithmic threshold for finding a solution [15, 59].

The statistical physics approach to random CSPs consists in studying the associated Hamiltonian
model, where the energy is taken to be the number of violated constraints, in the limit 8 — oc.
With this choice of Hamiltonian, solutions to the CSP have zero energy, and are the only relevant
configurations for 8 — oo. Furthermore, all the solutions are weighted uniformly. When the
space of solutions breaks, though, not all the clusters may contribute in the same way to the total
partition function, and, as we said, we can distinguish between typical clusters (which dominate
thermodynamics, since they contain all together a number of solutions that is exponentially in N
bigger than the number of the remaining solutions), and atypical clusters. Since we are at zero
temperature and zero energy, we can work with entropies instead of free energies. This is very
handy: the statistical weight of clusters of solutions is simply given by the balance between their
size (internal entropy) and their number (complexity).

This can be formalised via the entropic zero temperature limit approach [77]. In order to study
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Figure 3.3: Complexity function for the 6-coloring of I-RRGs. Clusters are divided in classes and counted
according to their internal entropy density s; the number of clusters in each class, to the leading exponential
order, is simply given by eV>(). Empty circles indicate typical states (dominating as a whole the partition
function) of entropy s.. For | = 18 they satisfy ¥/(s.) = —m* = —1, while ¥'(s.) = —0.92 and X(s,) =0
for I = 19. The dynamic transition is hence [4(6) = 18, the condensation one is [.(6) = 19 (the degree I
cannot be varied continuously on RRGs). Reprinted from [61].

zero energy configurations, we fix E = 0, so that —3f = s (internal entropy density). By defining
—BP(m; B)|ps00= Ps(m), equations (2.29)-(2.30) become

O, (m) = X(m) + ms, (3.29)
0Ds(m)

=7 3.30
sm) = 22:m), (330)

0%(s)
=— 31
B m, (3.31)

s(m)

where the complexity ¥(s) represents, to the leading exponential order in N, the number eNE(s)

of clusters of internal entropy s. The free entropy ®4(m) can be computed on sparse graphs by
solving the 1RSB belief propagation or cavity equations for generic m. This provides a tool for
studying the presence of both typical and atypical clusters, constrained to their internal size s, by
computing the whole complexity curve 3(s) as the Legendre transform of ®4(m). An example is

given in figure 3.3.
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Part 11

Continuous coloring problem
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Preamble

In this second part we study® in detail a constraint satisfaction problem with continuous variables
defined on a sparse random graph, and that is called continuous coloring. The problem is essentially
the following: given a sparse random graph G = (V, E'), which can be e.g. Erdds—Rényi or random
regular, the aim is to assign a “color” z; € [0,27) to each vertex in V, such that every pairs of
connected vertices (ij) € E are different enough, that is they satisfy cos(z; — ;) < cos6 for some
threshold value 6.

This model can be regarded as a continuous version of the well-known problem of discrete
coloring of random graphs [101]. Moreover, it also corresponds to the 1-dimensional version of the
Mari-Kurchan-Krzakala (MKK) model [70], a mean-field approximation to models of hard spheres
showing jamming. In the MKK model, d-dimensional hard spheres living in a d-dimensional box
with periodic boundary conditions interact with only a finite number of other particles, according
to an underlying sparse graph network. From this point of view, continuous coloring can thus
be interpreted also as an “angle-packing” problem, with the obvious identification of 6 with the
diameter of the particles [59].

The MKK model for d = 2 was numerically studied in |70], exhibiting the presence of a RFOT
when increasing the diameter of the spheres (or equivalently the packing fraction), for sufficiently
high connectivities. A generalized version of the MKK model, accounting also for p-body interac-
tions, was studied in [80] for different values of p and d through the cavity (BP) formalism. The case
d =1 and p = 2, in which we are interested, is shown to undergo a RFOT for large connectivities.
However, the dynamical or clustering threshold was not computed.

Let us start explaining why we looked for this model and why we think it is very useful, worth

studying in detail. The continuous coloring possesses all the following features:
e it is a constraint satisfaction problem (CSP),
e having continuous variables,
e defined on a sparse random graph,
e showing a random first order transition (RFOT).

The most famous and well-studied model showing a RFOT is the spherical p-spin model: in
this case one has N real (unbounded) variables x;, subject only to a global constraint Y, 2? = N.
Unfortunately, this model is well defined only on very dense graphs, because as soon as one makes the
interactions slightly sparser the model ground state condensates on a small subset of the variables,

becoming meaningless from the physical point of view. In order to have a very sparse model,

8] acknowledge the valuable contribution of Thibault Lesieur to some aspects of this research.
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one needs to avoid the above condensation phenomenon, and this can be achieved either adding a
Lagrange multiplier to each real variable, or more simply by using variables defined on a bounded
domain. Among the latter models we have all CSPs with discrete variables (e.g. g-col, k-SAT,
kE-XORSAT). Willing to use continuous variables with bounded domain, the simplest way is to
choose models with vector spins, e.g. XY or Heisenberg spins. The continuous coloring problem we
study can indeed be seen as an XY model where variables are unit norm vectors of 2 components,
§; = (cos(x;),sin(x;)), the constraints that we enforce being written as ;- 55 < cos(#). A recent
work addresses the glass transition of this kind of rotational degrees of freedom, but focusing on
the opposite limit of a large number of vector components [100].

The results of [80] are particularly encouraging, since it is not obvious at all that taking a discrete
CSP, like g-coloring, and transforming it to a version with continuous variables, the physics, in this
case the RFOT, is preserved. The change in the symmetry of variables, from Z, to O(2), is drastic
and may change the nature of the phase transition. In the successful case we do find a model with
all the above features (and this is what we are going to confirm in Chapter 4), we have in our hand

a model which is very useful in many aspects. Let us list those aspects we find more interesting:

e being defined on a locally tree-like graph, the model can be solved analytically via the cavity

method, and the location of phase transitions can be computed with high accuracy;

e having bounded variables interacting in a sparse way, the numerical simulation of the model
can be made very efficiently, and thus a meaningful comparison between numerical results and

analytical solution can be done;

e being a CSP with continuous variables, and where the density of constraints can be varied
continuously, the model would show a jamming transition, for which it can be considered as a
very simple sparse mean-field model for jamming (please notice that dense mean-field models

for jamming, as the perceptron, have problems? when generalized to the sparse case);

e having a RFOT, we expect the model to have a dynamical phase transition and, below the
dynamic transition temperature, the energy relaxation to get stuck at some threshold energy
connected in some way to the topological properties of the energy landscape (e.g. to the
spectrum of the energy Hessian at the stationary points) that can be computed, for sufficiently

smooth interaction potentials, thanks to the continuous nature of the variables;

e being defined on a sparse random graph, one can change the mean degree, thus testing very
different regimes from the dense one to the very sparse one, thus better understanding how
much of the classical (dense) mean-field physical behaviour is preserved in the sparse regime
(this is particularly relevant to understand why it is so difficult to find good glass models in

low dimensions where the number of nearest neighbours becomes small).

To the best of our knowledge, the above aspects have not been investigated in detail in a single

model before.

9The delicate point is once more given by the fact that one generally considers continuous models with unbounded
variables. In the case of the perceptron, if a variable is subjected to K constraints, the probability for all the random
obstacles’ components relative to that variable to have the same sign, e.g. to be all positive, is 27%. In this case
that variable can satisfy all of its constraints by taking arbitrarily large values (irrespective of other variables) and
the model is ill defined. While in the perceptron K = O(N) and this event does never occur, in the diluted case K
is finite and the model is ill defined with a finite probability.
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Chapter 6 will focus on a very interesting aspect, namely the possibility of optimizing the
dynamical threshold by reweighting properly the solutions of the problem. It is well known that in
complex CSP, like the one we are studying, solutions may have very different features. For example,
in discrete random CSP, solutions organize in clusters of very different sizes and of different nature
(e.g. with or without frozen variables) [61, 86, 101]. Solutions that dominate the thermodynamics
may be very different from the ones which are found via the best solving algorithms [59], and this
makes difficult the connection between thermodynamic description and the behaviour of dynamical
processes searching for solutions. Reweighting the solutions, that is giving to solutions a non-uniform
statistical weight, is a simple way to count the atypical solutions that would not weigh enough in
the uniform measure. We will perform an optimization of the reweighting potential, with the aim
of postponing as more as possible the dynamical phase transition. This has been done recently in
Refs. [18, 19| for the discrete CSP of bicoloring random hypergraphs, and was done in Refs. [69, 97]
for models of hard spheres in infinite dimensions. The idea behind this optimization is that, working
with the reweighted potential, the long range correlations leading to the ergodicity breaking at the
dynamical phase transition will appear later, and algorithms should find solutions in an easier way
in these “biased landscapes”. An innovative aspect of the present work is that the optimization of
the potential is performed in a semi-automatic way by modifying the interaction potential which is
a function in [0, 27), so formally with an infinite number of parameters (in practice, we discretize
it with a very large number of points).

Thanks to the sparse nature of the model, we are going to support with extensive numerical
simulations most of the analytical results. In particular, this will allow us to make in Chapter 7 the
following interesting observation: a class of Monte Carlo based local search algorithms converges
to solutions whose features are similar to the ones of typical solutions for the optimized potential.
This observation leads us to conjecture that the ultimate algorithmic threshold for this class should

be represented by the most optimized dynamical threshold.
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Chapter 4

The model

4.1 Definitions

4.1.1 CSP definition

In the continuous coloring, N real angular variables x; € [0,27), i =1,... , N interact via a sparse
graph G = (V| E), composed by a set V of variable nodes (vertices), with size |V |= N, and a set E
of M pairwise interactions between variables, |E|= M. In this work, graphs are random instances
drawn from the Erdos-Renyi ensemble, with average connectivity & = M /N (the average degree of
variable nodes is hence equal to 2«) playing the role of an external tuning parameter. Neighbours
on the graph have to satisfy the excluded-volume constraint cos(z; — ;) < cos#, for some excluded
angle (or “diameter”) 6 € [0, 7).

The statistical physicist’s favorite way of dealing with a constraint satisfaction problem, is
usually by defining a Hamiltonian which exactly counts the number of violated constraints, that in

the case of continuous coloring reads

Haat {2}) = Z I(cos(x; — x; — wsj) > cosb), (4.1)

(i)eE

where I(---) is equal to 1 if the argument is satisfied, and 0 otherwise. The subscript “flat” refers
to the fact that Hgay = 0 on all the solutions to the problem. In the limit § — oo, the asso-
ciated Boltzmann-Gibbs measure Z~le #M8at is hence uniform over the space of solutions, while
configurations not satisfying all the constraints have zero statistical weight.

The parameters w;; € [0,27) are quenched random shifts living on each directed edge i — j,
with wj; = 27 — w;;. The original problem, which is recovered for w;; = 0, is found to undergo a
“crystallization” phenomenon when increasing connectivity (or packing fraction, by increasing 6),
or equivalently when lowering temperature, as already noted in [80]. In the crystal phase, variables
condense around a discrete set of values in the interval [0,27), mimicking a ¢’-coloring packing,
with 27/¢" > 6. On a real tree, with open boundary conditions, the homogeneous w;; = 0 and
non-homogeneous model are equivalent, since the latter can be mapped onto the former by the
following transformation: V(ij) € E, w;; — 0, ; = z; + w;; and xp — x + w;; for all the {z}
belonging to the subtree starting from j (that is excluding the whole branch containing 7). However,
in the case of random graphs, where loops are always present (even if very large), or of a finite tree

with fixed boundary conditions on the leaves, this construction is not guaranteed to hold for every
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4.1. Definitions

Figure 4.1: Discretization of precision d = 3 for the continuous coloring. The excluded angle (on each side
of the particle) is equal to § = 27/¢ in the continuous limit, with ¢ = 8. As a consequence of discretization,
2d — 1 states are forbidden (red points), among the total p = qd = 24 possible ones. Big dots, together
with the dashed lines, are meant only to identify the multiples of # along the circumference. The increase of
precision d with ¢ fixed corresponds to the proliferation of small dots inside each sector.

choice of the w;;’s: loops, together with random shifts, induce frustration of the periodic order.

In order to suppress the crystal phase, [70] adopted a small degree of polydispersity. Here we
will follow two strategies. In the analytical derivation of the 1RSB belief propagation equations
for the homogeneous case w;; = 0, we will impose translational (rotational) invariance: this allows
to simplify the equations when the replica parameter m = 1, obtaining a RS-like scheme at the
price of introducing planted random shifts in the messages (see the next section for a discussion
about planting). Imposing translational invariance, one can disregard the ordered solution while
maintaining the tree-like recursive structure of the BP equations. On the other hand, we will also
support the BP predictions with direct numerical Monte Carlo simulations of the non-homogeneous
model with uniform random shifts.

The parameter 6 € [0, 7) represents half the excluded angle around each “particle”, playing the
same role of the radius in hard sphere systems. In order to make direct contact with the very well

known g¢-coloring, it is useful to consider “discretized” values of 6 defined as 6 = 27“, with ¢ € Ny .

The meaning of this relation is straightforward: in the g-coloring, colors u € {1,...,q} can be
associated to g-states Potts angular variables x = 27”(71 — 1), naturally satisfying cos(z; — x;) <

cos(2m/q) if x; # x;. In the following, we will express the diameter € in terms of integer ¢’s. This
mapping allows for the following observation: given a solution to the discrete coloring with ¢ colors,
it also represents a solution to the continuous coloring with excluded angle 6 = 27” (actually, the
solution is valid for any 0" < %’r) Conversely, the set of solutions to the continuous coloring for
0= %77 contains all the solutions to the ¢’-coloring with ¢’ < q.

Discretization

In order to numerically solve the BP equations, a discretization of the interval [0, 27) is needed. To

this end, we introduce a clock approximation with p states by imposing

2T

LL’Z:?t“ tZE{O, ,p—l},VZGV (42)
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4.1. Definitions

Calling d the number of clock states inside the excluded region 0 < x < 6, i.e the discretization
precision, then it follows p = ¢gd (as we said, we restrict to integer ¢ for convenience). Each variable

precludes 2d — 1 values to its neighbours, as depicted in figure 4.1.

4.1.2 Planted model

In the planting procedure, one first draws a planted configuration {x?} according to some prior
probability distribution, which is assumed to be factorized, Px ({x;}) = [[; Px(x;). Then, a graph
can be constructed in two ways, depending on whether random shifts are explicitly considered or
not. In the first case, one can run through! all the pairs of vertices (ij) and add an edge with
probability 2af(a:?,w?;ﬁ)/(N — 1), where f(x;,2;8) = e PH@) /[ dadyPx (x) Px (y)e @),

This ensures that the average degree ¢ of variable nodes is equal to 2«

2af(x,y)

-1 = 2a. (4.3)

e=(N =) [ dedyPy(a) Py
However, we would also like different nodes to follow the same degree distribution. To this end, one

can derive the average degree c(z) conditional on the knowledge that 29 = z,

(o) = (= 1) [ayps )T =20 [ ayps) ) (4.4

Then, we must also ask for [ dyPx(y)f(z,y) =1, so that ¢(z) = 2« independently from z.

In the presence of random shifts, we can plant the system in a slightly different way: given the
configuration {x?} and a graph realisation extracted from the proper distribution, we associate a
random variable w;; € [0,27) to each directed edge i — j, and wj; = 27 — w;; on j — i, with
probability p;j(w;;) = e PH(zi—zj—wij) / i dwePH@i—z;=w) T the following, we will use this second
method in order to plant the system when running Monte Carlo numerical simulations (we indeed
require random shifts to suppress crystallization). Notice that one can choose, without loss of
generality, {z{} = 0, this being equivalent to a set of local gauge transformations (valid for any ):
Ti — T — x?, Wij — Wij — 1‘? Vj € 0i.

What is the point in this construction? In general, both the planted models are different from
the original ones (with or without the random shifts), since planting a solution changes the graph
ensemble, and, generally, its properties. This is particularly evident in the 8 — oo limit: via
planting, we can always construct for arbitrary «, even beyond the SAT/UNSAT threshold, a
pair graph-configuration of exactly zero energy. However, before the condensation transition c,
the planted models are equivalent? to the original ones: this is known as quiet planting [63]. We
can understand this fact by considering that the superimposition of a single planted cluster in a
region ag < a < «, which is already dominated by exponentially many other clusters, should be
thermodynamically undetectable, see figure 4.2. The crucial point in the quiet planting technique
is that the planted cluster exhibits the properties of typical m = 1 clusters from the random

ensemble. This provides a very powerful tool to study the average properties of the whole clustered

'For f =1, this can be regarded as an alternative definition for the Erdés-Rényi ensemble, meaning that in the
limit N — oo most of the relevant properties do coincide (see [76] for details).

2Provided that the original random model displays a uniform BP fixed point: e.g. v(z) = 1/¢q, x = 1,...,q for
the g-coloring, or v(z) = 1/(27), x € [0,27) for the continuous coloring. We call it the paramagnetic (liquid) fixed
point.

41



4.1. Definitions

0.15

s
planted cluster

s R
nonplanted clusters *«;
.

0.05 - b ; .
equilibrium ; :
0 I ! ‘.\L L ! I
12.6 12.8 13 132 13.4 13.6 13.8 14
o0 :
@0, . © o
oS °
o 0
OOOOO ° o0,
Oo °o Average degroe
cd e o verage degree

Figure 4.2: Phase diagram of the 5-coloring in the planted ensemble. Bottom: clustering phenomena. Red
dots represent the planted configuration. Between the dynamic and condensation transition, the ergodic
phase breaks into an exponential number of clusters which share the same properties of the m = 1 clusters
from the random ensemble. The planted cluster is (just one) among them, hence it does not possess enough
statistical weight to alter the partition function of the model, which is still globally RS or liquid-like. Above
ce, the planted cluster contains the majority of solutions and becomes dominant: the planted and random
model become (in principle) distinguishable. Top: the total entropy of solutions st (red line) is insensitive
to the presence of the additional planted cluster up to ¢.. The equilibrium complexity (blue line) is the same
for the random and the planted ensemble, ¥ = s¢ot — 5*, where s = Spjlanted cluster 1 the internal entropy of
typical m = 1 clusters. Reprinted from [63]

phase ay < a < a, by focusing on a single, easy to build planted cluster.

4.1.3 Community detection definition

In the planting procedure (without random shifts), one adds an edge (ij) to the graph according to
some probability® 2a f (m?, x?; B)/N, which depends on the values taken by i and j in the planted
configuration {x?} This generative model for random graphs is also known as the stochastic block
model [37]. We may interpret the different values each variable can take as signaling the membership
to a specific “community”, and the stochastic block model (planting) as a rule to establish connections
between these communities. A natural question is to understand under what circumstances one is
able to recover some knowledge on {2} (original community structure) from the observation of the
generated graph A. In the simplest (Bayes optimal) case, one also knows the parameters of the
model, namely the prior Px from which {2} was extracted, and the function f(x,y;3).

Following [37|, this problem can be addressed through Bayesian inference. The conditional
probability for the adjacency matrix of the graph (A;; = 1 if an edge is drawn between nodes i and

J, Aij = 0 otherwise), reads

P(AR) = I (2af@d,2%8)/N)™ (1 - 20f (2,20 3) /)5 (4.5)

1<i<j<N

The function 2af(z,y; 8) is usually called the affinity function, and in our case is a symmetric

3In the following, we approximate N — 1 in the denominator with N, which is reasonable as N — oo.
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function. The Bayesian belief for the original group assignment, conditional on the particular

realisation of the graph, is thus
P({zi}|A) o« P(A{z:}) Px ({:}) =
N ) Aij o 1-Aj;
=[P x@) ]I (2O‘f(x]"v’xj’ﬁ)) <1 - 2af($]’v’xﬂ’ﬁ)) . (46)
i=1

1<i<j<N

We can finally define an extensive Hamiltonian by considering
BH({z:}|A) = —ln P({x;}|A) - MIn N =

- 200 f (x4, 253 B)
= —;lnpx(xi) — Z [Aij In 2af(:ni,xj;ﬂ) +(1- Aij)ln (1 _ Nj>] o4

1<i<j<N

We notice, in addition to the expected edge term proportional to A;;, the presence of a weak
1/N interaction between non-edges making the graph fully connected, and an external field given
by the prior Px. However, as was shown in [37], the non-edge interaction can be treated in the large
N limit in a mean-field way, thus recovering the sparsity of the graph. The BP equations associated
to the planted Hamiltonian model (4.7), or community detection inference problem, are discussed
in section 4.2. They are formally very close to the standard BP equations for the random model.
From model (4.7), we can derive phenomenological bounds on inference based on thermodynamics
thresholds, which we expect to be the same for the random and the planted model: for a@ < ay, there
is only one ergodic state which does not carry any information about the original assignment; for
ag < a < ag, the planted cluster is indistinguishable from all the others, and inference is impossible
(i.e. there is equivalence between the planted and the random ensemble, at the leading order in
N); for a > a, inference is in principle possible, since the planted cluster can be identified as the
one with the largest internal entropy. However, as long as the BP equations admit a trivial liquid-
like fixed point, to which a random initialization does converge, one should perform an exhaustive
search of phase space in order to detect the planted cluster. Finally, inference becomes possible and
easy, with BP achieving a non-trivial fixed point with positive overlap with the original assignment
in linear time even when randomly initialized, only above the Kesten-Stigum threshold akg (also
known as the de Almeida-Thouless local instability of the RS solution [34], or robust reconstruction

threshold [49]), where the trivial paramagnetic (liquid) solutions becomes unstable.

4.1.4 Mixed model

Using the community detection formalism, we can recast both the discrete and continuous coloring
as an inference problem, also defining a mixed model that allows us to interpolate between the two.

Discrete and continuous coloring as inference problems

Both the discrete and continuous coloring can be treated in a unified way by defining the following
affinity function
exp (—pI(cos(z — y) > cosh))

UG [ dxdyPx (x)Px (y) exp (—BI(cos(x — y) > cosh))’ (48)
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the only difference being in the prior distributions: Px(x) = % for the continuous coloring and
Px(z) = %ZZ:}) ) (a: - %) for g-coloring, with z; € [0;27). In the limit 8 — oo, this reads

T=0 0, if cos(z —y) > cos(27/q)
fq col( y) - q . (49)
13, otherwise,
and
T=0 0, if cos(z —y) > cos(27/q)
feep(z—y) = (4.10)

T otherwise.

Interpolating (mixed) model

We also consider a mixed model that interpolates between the discrete and the continuous coloring
for each value of 0 = —, q € Ns1. To this end, we modify the prior by introducing a continuous
parameter p € [0, 1], so that for p = 0 one recovers the g-coloring, while for p = 1 one recovers the
continuous version. We will be interested in the 8 — oo limit of the interaction function, which

reads

Py (z) = +1;’)Za< 27”“) pel0,1] (4.11)

0, if cos(z —y) > cos(27/q)

T=0
Ftixed (®,Y) = qqu, ife,y € {2nk/q, k € Z} and x # y (4.12)

qT‘IQ, otherwise.

This peculiar shape for f(x,y) is due to the fact that, in order to ensure the normalization condi-
tion [daPx(z)f(z,y) =1Vy € [0;27), a simpler translationally invariant form is not enough. This
can be understood by considering that variables are effectively divided into two classes, depending
on whether they can or cannot be written as y = 2wk/q, for k € Z. If variable y belongs to the
former class, then it is compatible with (¢ — 1) of the ¢ possible “discrete” values that neighbours
assume with probability (1 — p). Conversely, if variable y belongs to the continuous background,
by geometrical reasons it is then compatible with only (¢ — 2) of the ¢ possible discrete angles. If
the linking probability was a function of only the difference x — y, this would induce a difference in
the average degree of variable nodes depending on the class, and hence the normalization condition
would not hold. One can still work with a uniform average degree by “increasing” the linking prob-
ability of variables belonging to the continuous class with respect to the discrete one. Notice that
when p = 0 or p = 1, there is just one kind of population (the probability for continuous variables
with uniform distribution to take a discrete set of speciﬁc values being negligible), and the linking

probability correctly matches the 8 — oo limits f Col( —y) and fé;op(x — y) given above.

Discretized version of the inference problems

In the case of discretization, variables x’s can take only p values. We will denote the prior Px(x)
as {nq} € RP, with 0 < n, <1 and Zg;é ng = 1. The function f(x,y) becomes now a matrix
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4.2. Belief propagation for CCP

{fab} € RP*P_ with anbfab =1 Vace {0, N 1}.
e Discretized version of the continuous model

Ng —

: (4.13)

_exp (—pBI(cos(2m(a — b) /p) > cos(27/q)))
aCbCP(B) _ @d—De? 1p—(2d—1]/p (4.14)

K=

e Discretized g-coloring

14
ng=—» & (4.15)
q k=0
q—col _ eXp (_BH(COS(27T(Q — b)/p) - 1)) 4.1
= .16
@ )= T (B + (= D) /g (4.16)
e Discretized mixed model (8 — o0)
-1
_p  (1-p)  chd
na="+-——2Y 68 pel0,1] (4.17)
p 7 =
0, if cos(2m(a — b)/p) > cos(27/q)
ixe (1-p)(g—2)+5(q—1) . . .
f% d_{ A= (qq[_l)é]_q2+§)dl_qp+§]), if sin(ma/d) = sin(wb/d) =0 and a # b (4.18)
B =1 otherwise.

q—2+5

In the limit d — oo the continuous formulation is correctly recovered, while for p = 0 and
p =1 we obtain the 5 — oo limit of f% °/(8) and fG°F(8), respectively. Expression (4.18) is

a

obtained in the same way as (4.12) by solving for A, B the system _, nq f3*°4(4, B) = 1 Vb.

4.2 Belief propagation for CCP

In this section, we derive the belief propagation equations for the continuous coloring in the Bayes
optimal inference setting of section 4.1.3, following the discussion of [37]. We denote v*~*/ the mes-
sage sent from ¢ to j and v* the marginal probability of variable i. Both messages and local marginals
are in principle distributions over the continuous interval [0,27), but thanks to discretization we
with a € {0,...,p — 1}. The belief propagation

iy ,
treat them as p-components arrays v, ° and v,

equations (3.11) for *77 associated to the planted Hamiltonian model (4.7) read then

p

Vit = ]| [Z@afab)“ (1= 20 /N)' ufﬁi] , (419)

=3 kg Lb=1

while local marginals are computed in terms of the messages as

N p
=gl [Z@afab)/*k (1= 2 fun/N) = ) ”] | e

Y k=1 Lb=1
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4.2. Belief propagation for CCP

where Z;_,; and Z; ensures that V77 and v are normalized probability distributions. In the
following, we choose to get rid of a term 2a multiplying f,; in the edge-term since it factorizes and
just shifts the free energy by a fixed amount.

Since the factor graph of this system is fully connected, one should in principle have to keep
track of N(IN — 1) messages. However, one can notice that the messages v/ depend weakly on
the indices j as long as A;; =0,
=]

" vi =0O(1/N) V(ij) ¢ E. (4.21)

v

In the end [37], this allows to simplify the cavity equations to only keep track of the messages
between connected nodes, by introducing an average external field h, which accounts for the global

message coming on each site from non-edges,

z/é—m‘(t“): .1 “Ng € e H [Zfa k_”(t] (4.22)

ZZ—U keoi\j Lb=
i(t+1) 1 2 i(t+1)
Vo = mae 1T [Z fa i ] (4.23)
keoi Lb=
20 o & t+1)
=5 SN fa (4.24)
k=1b=1

where we have added time indices in order to define update equations. For future convenience,
we can also introduce an update function @update({yk}lgkgd, f,h) € RP and a normalization factor

Z({vk}i<k<d, f, h) € R, that both take as inputs d generic messages and return

Z({whiska fh) = nae™™ ] [Zfawk,b], (4.25)

a=1 1<k<d Lb=1
—h p
Ng € ¢
(I)}llpdate({yk;}l<k<da f7 ) ({Vk:}](_l<k<d) f ) H [Z fab Vk,b] . (426)
7 1<k<d Lb=1

Once a fixed point to the cavity equations is found, its corresponding Bethe free entropy (3.12)

can be computed as

N
1 i 1 1 -
v FBene ({77}, {v'}) = NZ N , Z log(Zj) - Z log(Zij),
i=1 1<Z<]§N,Aij=l 1§Z<]§N,A¢j20
(4.27)

where,

p
Zi = Znaeiha H [Z fab Vk%l] ) (428)
a=1

keoi Lb=1
Zij =Y vi fa) ", (4.29)
a
Zijzzycil(l_Qafab/N)yb_1_721/ fabl/b- (430)
a,b
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4.2. Belief propagation for CCP

The extra term Z-j comes from the contribution of non-edges, and has the same form of Z;; (messages
are replaced with local marginals thanks to relation (4.21)). The sum Y log(Z;;) can be further
simplified. By expanding the logarithm to order 1/N and extending the summation over all the
j € V, one gets in the limit N — oo

1 ~ 2« 1 » 1 .

¥ Z log(Zij) = = v Z V| fab | Z vl +0(1) = —a+o(1). (4.31)
1<i<j<N,A;;=0 a,b 1<i<N 1<i<N

The last equality comes from the fact that N=1 3", 1% converges to the prior n, (the numerical

solutions to the BP equations from the planted initialization being either v = n, Vi, or a non-

trivial one characterized by a large overlap with the planted configuration, v% ~ 0q 40, Where $? is
extracted according to n,) and from the normalization condition ), ngfa = 1. Mloreover, from
this also follows that the fixed-point auxiliary field h, defined in (4.24) will always be, up to finite
size correction, equal to a constant h, = 2a, Va € {0,--- ,p—1}. The contribution to the Bethe free
entropy from Zl-j and h, (inside Z;) is hence only an additive constant globally amounting to —a,
and we could disregard it, as already done before. We choose, however, to keep it in the definition

of FBethe, therefore having

%FBethe({ij},{yi}):% 3 log(Zi)—% S logZy)—a. (432)

1<i<N 1<i<j<N,A;j=1

The presence of the site-independent field h, can be useful to cure some instability of the BP
equations on a given graph. Since h, becomes equal to a constant in the thermodynamic limit, we

will in the following just remove it from every equation and assume h, = 0 everywhere.

4.2.1 RS population dynamics

In order to analyze the properties of a system in the thermodynamic limit, one is usually interested
in computing the quenched average over an ensemble of random graphs. In the Replica Symmetric
cavity equations (see also section 3.1.2) one assumes that messages incoming to a variable node
are independent, and one can therefore describe the properties of a typical fixed point in the large
N limit using a unique distribution of messages P(r). The update equation (4.22) can then be

generalized to

d
PO (0) = 3 Prage(d) [ TLan®O0a)5 [y = (). ). (4:33)
d k=1

where ®UPdat ig given by eq. (4.26), and for Erdés-Rényi random graphs one has

(20)7
Pode(d) = exp(~20) = (4.34)
PEdge(d) = (d ha 1)PN0de(d * 1) = PNode(d)- (435)

2T FPoae (k)

From the equivalence of Pnode(d) and Pggge(d), it also follows that for Erdds-Rényi random graphs

messages '/ and variable marginals v/* are subjected to the same statistics P(v) given by eq. (4.33).
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4.2. Belief propagation for CCP

In the following we will thus neglect the superscripts and work with a unique family {v} of messages.

The Bethe free energy (4.32) can be rewritten as
1 d
P (®) = P [ [[ ) tog 20} )

—« / dvidvs P(v1)P(12) log [Z U1,afab 1/2’;,] -, (4.36)
ab

where Z is given by (4.25).

In practice, one represents P(v) by a finite population of U messages, with U large enough
(typically, U = O(10°) messages), and estimates (4.33) by sampling messages from this set. The
following algorithm (Algorithm 1) updates the starting population P = {v}}1<x<p according to
equation (4.33).

Algorithm 1: Replica symmetric population dynamics

PPt — {1} e

Poutput <~ {}7

fori=1---U do

sample d according to Prgge(d);

S <={h

for j=1---ddo
sample v; uniformly from pinput.
S < Su{yl;

end

= (I)update(57 f) :

[poutput . poutput {V};

end

return Poutput;

4.2.2 Reconstruction equations for m =1

The assumption that neighbouring variables on a cavity graph (when the corresponding function
node is pruned) become independent can end up being false if the density of constraints « is too
large. In a factor graph with locally tree-like structure, this is usually due to the fact that variables
start to develop correlations on large distances, togheter with the presence of long loops. When
this is the case, one has to resort to the 1RSB cavity equations in order to study the system (see
also section 3.1.3). The 1RSB population dynamics equations generally describe the distribution of
distributions of messages, and are therefore computationally much heavier to implement. Luckily,
in the case of m = 1 (the m parameter is a Lagrange multiplier with which one can select fixed
points of different free energy), and when the BP equations exhibit a para-magnetic (liquid) fixed
point, one can perform a simplification of the 1RSB equations that gives them a RS structure (see
also appendix A). Since the 1RSB computation at m = 1 is correct up to ., this allows us to derive
the dynamical and Kauzmann transitions.

As the result of this simplification, rather than having only one P(v) distribution of messages,
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4.2. Belief propagation for CCP

one keeps track of p distributions P,(v), a € {0,...,p — 1}, where p is the size of the (discrete)

alphabet that variables can assume. The update equation (4.33) takes the following form

vy fa Pé“(uw] 6 (v =@t ({u)e, f) . (437)
b

d
PED (1) = 3 Prageld) / 11
d k=1

The Bethe free entropy becomes now

log [Z({vk}a, )]

d
N Free((22)) =3 Proaeld) [ ] [duk S o fuo Pol)
d k=1 b

-« (4.38)

- aznanbfab/dyldVQ ]P)a(yl)Pb(V2) IOg [Z Vl,rfrs V2.5
a,b 7,8

To iteratively find a non-trivial fixed point to (4.37), one starts with p populations Pt = {1} }1 <4</

initialized in the planted solution
Vo = 0ap YR €PM a € {0,...,p—1} (4.39)

The algorithm implementing eq. (4.37) is given in Algorithm 2.

Algorithm 2: General reconstruction equation population dynamics
Py = {yphi<k<r VYa € {0,...,p— 1}
PPt {} Vae{0,...,p—1}
fora=0---(p—1) do
fori=1---U do
sample d according to Prgge(d);
S <=1}k
for j=1---ddo
sample b € {0,...,p — 1} with probability f.,np;

sample v; uniformly from P})npm;
S <= Su{y;};
end
V<= q)update(S’ f),
POUPUE . poutPUt | £,
end
end
return P§"P
As long as one works with a flat prior, as Px(x) = i or ng = % =n Va € {0,...,p—1}, and the

matrix fu; depends only from the modulus of the distance between variables fup = fo,(b—a+p)mod ps
the system has a global rotational symmetry and one can avoid keeping track of p populations P,,
while can just focus on messages centered around zero and then shift them. The presence of a

rotational symmetry implies

Py(v) = Po(T(a — b)v), (4.40)
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4.2. Belief propagation for CCP

where T'(Az) is the linear transformation that shifts a message v(x) by an amount Az. This allows
us to simplify the equations, by keeping track of one distribution of messages P only, as in the RS
case. For convenience, we fix the index a in equation (4.37) to a = 0, corresponding to messages
centered around z = 0. We also name f, = fo, and fy_o = fo,(b—a+p)modp (the matrix fq being a
single-variable function f, for a € {0,...p — 1}, with parity f, = f,—s). The update equation for

the distribution of messages P, along with the planted initial condition, then becomes
P (y ZPEdge /H [dl/k > nfy PO (T (=b)y )] 6 (1/ — O ({1 g, f)) , (441)

vep =00y  Vp € P (4.42)

The implementation of the precedent equation is displayed in Algorithm 3. The procedure
formally consists in a RS population dynamics, where a planting is enforced through the introduction
of random shifts for the messages extracted according to the interaction probability nf,. Finally,
the 1RSB m = 1 Bethe free entropy takes the form

. ~ FRectt(P ZPNode /H [dykznfbpt) —b)vk)

— / dv1dusy IP’(t)(Vl) Z nfp P (T'(—b)rr) log [Z Uiy fs—r V278] — a. (4.43)

b r,s

log [Z({vi}, f)]

Algorithm 3: Simplified reconstruction equation population dynamics (IT)

PPt = {uh<k<u;

poutput o (1

fori=1---U do

sample d according to Pgqge(d);

S« {}h

for j=1---ddo
sample b € {0,...,(p — 1)} with probability n fy;
sample v; uniformly from pinput.
S <= SU{T(-b)v;};

end

= (I)update(S, f)7

poutput « poutput | £/}

end

return Poutput.

4.2.3 Stability analysis

The stability of the BP fixed points can be analyzed by using the population dynamics equations.
One way to do this is by creating two copies of the same population and then by slightly perturbing
one of the two, i.e. Pi = {v}}1<k<v and Py = {vp+€x}1<k<v, where the €;’s are small perturbations
to the fixed point messages. One then keep updating in parallel both of them, using the same
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4.2. Belief propagation for CCP

choice of messages, and tracks whether and how the difference between the two populations grows
or decreases. A cleaner way to perform this task is by only keeping track of the difference between
the original and perturbed messages to first order. This leads to some modified version of the
reconstruction equation, where one simultaneously evolve both the messages v, and their linear

perturbations ey,

Pt (4, €) ZPEdge /H [dukdeanbeP —b)vg, T(—b)e)

update v
6 (v =@ (i}, )6 [ e~ Z or aS e f) (4.44)

=1

In the argument of the second § function we have used a shorthand notation for the following matrix

product

00N () )\ |y 02 (). f)
( )73

, , jb =
ov; omp

B n A X (I)update {I/ } f A )
- Z({wh ) I e )&= Z({vi}, f) Z” I ke ée (4.45)

1<k<d,k#j 1<k<d,k#j

where we have introduced for convenience the auxiliary (unnormalized) messages

Ug,a Vi, f Zl/k: bSo—as (4.46)
€alen, f) = Z €k,bfo—a- (4.47)
b

Algorithm 4: Simplified reconstruction equation with tracking of first order difference
PPt = { (v, k) b1<k<u;
Poutput “~— {}
fori=1---U do
sample d according to Prgge(d);
S<={}h
for j=1---ddo
sample b € {0,...,p — 1} with probability n fy;

sample (v, €;) uniformly from PnPut;
S <= SU{T(=b)v;, T(—be;};
end
= q)update(sr’ f),
d 8<I>update 57 .
€<= Zk:l 8yk( f) €k;
Poutput P Poutput U {U 6}'
end

return Poutput.
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4.3. Continuous vs g-coloring

4.3 Continuous vs ¢-coloring

In this section we discuss the phase diagram of the continuous coloring, as obtained by numerically
solving the m = 1 BP equations up to .. This means that we will focus on the detection of
the dynamic and condensation thresholds ag = a4(T" = 0) and a. = a.(T" = 0), by studying
the formation of typical clusters. The same analysis is performed in temperature, allowing the
calculation of the transition lines aq(T") and a(T'), or equivalently Ty(«), Te(cr). All the transition
lines for the continuous coloring here presented are computed using a discretization d = 10; we refer
the reader to section 5.3.1 for an analysis on the corrections to the continuous limit, that are shown
to scale as 1/d.

We also perform an analytical computation of the Kesten-Stigum transition line akg(7"), which
signals the point where the BP para-magnetic fixed point becomes unstable (it is equivalent to de
Almeida-Thouless local stability condition in the context of spin glasses [34]). Above akg inference
is easy, because BP equations converge towards the planted fixed point even if initialized with a
random condition. Following [37], we can relate the stability of the trivial solution with the top

eigenvalue A of the “transfer” matrix

Tap = na(far — 1), (4.48)

which satisfies the stability criterion
20KsA? = 1. (4.49)

For 2aA > 1 a local perturbation to the fixed point is exponentially amplified along the graph. For
p = 0 (g-coloring) and p = 1 (continuous coloring) the top eigenvalue A can be derived explicitly,
thus yielding (at T'= 0)

af s = (¢ - 1)%/2, (4.50)
sin (7 (1—2 ’
oRs” = % 75(1(1 ) ) = 0(/8). (4.51)

In the case of the continuous coloring, it is also interesting to consider the effects of discretization

with precision d (recall that p = ¢d is the number of clock states)

. T _2
qi-oce _ 1 - (((q —2)d+1) ‘Tq) , (4.52)

i 2 sin (%) (g - 2d+1)

By taking d = 1 or d — o0 one recovers a‘f{_SCOl or alSY respectively. It is worth noticing the

presence of a factor 1/4 between the Kesten-Stigum bounds for the continuous and the discrete
coloring, a$SF ~ %af{sc‘ﬂ for ¢ > 1.

The three T" = 0 transition lines a4, a. and aks are shown in figure 4.3 as a function of ¢ for
both the g-coloring on the left and the discretized version of the continuous coloring (d = 10) on
the right. Looking at the values of « in the figure, it is evident how all the transitions appear in
the continuous coloring before (i.e. at lower «) than in the discrete one. This is interesting and

somehow surprising, as it results that despite enlarging the set of solutions for each value of « (all
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(c) Comparison of the previous plots

Figure 4.3: T = 0 phase diagram in the (g, @) plane for both the discrete (a) and continuous coloring (b)
on Erdgs—Reényi random graphs. Third figure (c) serves as a direct comparison between the two models. In
the discrete coloring, ¢ can only take integer values, the dotted transition lines in the figure being meant to
guide the eye. The discrete model exhibits for ¢ > 4 a random first order transition (the three transition
lines merge at « = 2 only for ¢ = 3). In the continuous case, a random first order transition is found for
q > 14. This is however just an upper bound to the actual point where the three transition lines are expected
to merge. This point is likely to be located at a value of ¢ that is not an integer. We notice that, for a
given ¢, all the transitions in the continuous model exhibit a lower value of o than in the g-coloring, see also
fig. 4.4a and the discussion in the text.

the solutions to the g-coloring also satisfy the continuous problem with 8 = 27” by definition), the
clustering point is anticipated. As a practical consequence, since the ergodicity breaking point ay
is generally connected (even if it does not rigorously coincide) with the onset of hardness in the
constraint satisfaction optimization problem, this would imply for ¢ > 14 the existence of a whole «
region where local algorithms searching for solutions to the continuous coloring get stuck and fail,
while solutions to the discrete model are less and yet still easy to find.

We interpret this fact by arguing that in the g-coloring the discrete prior forces the solutions
to satisfy all the constraints in a more tight, i.e. efficient, way. In this case, variables can only
take ¢ values, and the angular distance between two neighbours is either 0 (violated constraint)
or a multiple of 27/g. The minimum allowed distance between variables is hence 27/q, which
corresponds to a contact in the particle-system jargon. The fraction of contacts is in this case very
relevant: the equilibrium distribution of (discrete) angular differences in the para-magnetic phase

a < a. is by definition proportional to f,;, which is 0 for @ = b and uniform otherwise, so that the
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(a) Mixed model, ¢ = 20 and d = 10 (b) Continuous coloring (p = 1), ¢ =20 and d = 10

Figure 4.4: Left: T = 0 thresholds in the mixed model as a function of p, interpolating between the
g-coloring (p = 0) and the continuous coloring (p = 1) with § = 27/g. All the transitions appear earlier
in the continuous model. Right: Phase diagram in the (o, T) plane for the continuous coloring with fixed
q = 20. The dynamic and condensation thresholds are obtained by numerically solving the BP equations for
different values of T' (points).

probability of having a contact is simply equal to 2/(q — 1), where the factor 2 comes from taking
into account both the possibilities to form a contact in one dimension, x 427 /q. This same analysis
can be repeated in the case of continuous coloring. For clarity, let us consider the discretized version
with p = ¢d possible states. The fraction of exact contacts now becomes 2/(p—2d+1) ~ 2/[d(¢—2)],
which is heavily suppressed for d — oo. This is totally expected, since in this limit f,; is promoted
to a probability distribution on real values. In this situation, one should rather ask for an angular
interval A = n%’r with associated probability 1/(¢ — 1) on each side of the “particle” by integrating
the previous probability. In our discretized notation we can write ﬁ L

1~ g1

follows A =~ 27”3:—? R~ 277’. In the continuous coloring, typical solutions satisfy the constraints in a

very loose way: exact contacts are “smeared” over an interval comparable to the diameter of the

from which it

particles. Finally, notice that reversing this perspective the discrete model can be considered, for
some qualitative aspect, akin to a continuous sphere system where particles are encouraged to stick
together. It is indeed very well known in the literature that, by adding a short range attraction to
a hard core repulsion, one can greatly extend the liquid phase of the system [95]. This phenomenon
is at the heart of the biased thermodynamics approach discussed in chapter 6.

From figure 4.3 it is also evident that the region where the transition is continuous (small
g region) results much more extended in the continuous coloring than in the discrete problem:
the discrete g-coloring on Erd@s-Rényi random graphs is known to display a random first order
transition already for ¢ > 3 [101], while in the continuous coloring the continuous transition ranges
up to ¢ &~ 14. The actual point where the transition changes its nature is in this case likely located
at a value of ¢ which is not an integer, close to but smaller than ¢ = 14 (we only have points for
integer ¢’s). Below this point the three transition lines do coincide. In particular, since ag = ag,
the phase dominated by an exponential number of clusters is missing.

In figure 4.4 we fix ¢ = 20, for which the transition is appreciably first order, and study how
the thresholds vary with p at T' = 0 according to our mixed model (see section 4.1.4), or with

temperature at fixed p = 1 (continuous coloring). In particular, figure 4.4a highlights the fact that
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the continuous model has a much lower aks thresholds, making the associated inference problem
hence easier. It is also interesting to observe that the variation of axg with p is much larger than
for the other thresholds.
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Chapter 5

Simulations

5.1 Numerical determination of oy

In this section, the question of how to obtain the most accurate numerical estimation of ay is
addressed. The typical way of detecting oy is by verifying the existence of a non-trivial solution to
the planted population dynamics BP equations: usually, one starts from a > ay and decreases «
until the non-trivial solution is lost. This method, however, is prone to inaccuracies. On the one
hand, because of the finite number of BP iterations one can perform, one may simply not give the
algorithm enough time to forget the planted solution and conclude that the non-trivial fixed point
survives for values of « slightly smaller than a4, thus leading to an underestimation of ag. On the
other hand, fluctuations due to the finite size of the population may become relevant close to ayg,
where the non-trivial fixed point looses its stability, this leading to an early loss of the fixed point
and to a consequent overestimation of ay.

For these reasons, a more robust approach taking into account how things scale around oy is
very desirable. Following [18|, we give independent, compatible estimations of g coming from both
below and above the dynamic threshold, by studying respectively the (power-law) divergence of BP
relaxation time and the birth of instability in the non-trivial fixed point.

The situation is more complicated when one considers real instances of the problem, where the
finite size of the system determines the presence of loops in the graph and in general smooths the
transitions, which are sharp only in the thermodynamic limit. For large enough sizes, however, we
certainly expect the population dynamics BP predictions to be of some use. This can be directly
tested through Monte Carlo simulations, where we observe a MCT-like behaviour of the dynamic
correlation (the overlap) compatible to ag = afF = 34.63(2), at least up to timescales where finite
size effects are negligible. In this section we present the results of a detailed analysis at T" = 0, the

same procedure being straightforwardly applicable to any temperature.

5.1.1 Population dynamics

In figure 5.1 we show the data from the numerical solution of population dynamics equations for
the Erdés-Rényi ensemble. The size of the population here considered is U = 10°, each message
being a probability array of p = 200 values (¢ = 20, d = 10). We chose the value ¢ = 20 because,
from figure 4.3, the transition is appreciably first order. On the left panel the overlap decay ¢(t) is
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Figure 5.1: Left: overlap as a function of the number ¢ of BP iterations. As long as a < ag, the overlap
decays to zero, thus implying that any memory of the planted initialization is lost and one recovers the
paramagnetic solution with uniform messages. Right: ratio A(t) between the magnitude of perturbations
to the non-trivial solution at times ¢ + 1 and ¢ for a > 4. After a transient, stationarity is reached, thus
identifying the stability parameter \(«) < 1.

displayed for different values of o < arg. Given a set of U marginals {v;}*, the overlap is defined as
1 U
Z / dzy1dxo vi(z1)vi(x2) cos(x; — x2)
1:1
U

Z cos(z))? + (sin(x))?] (5.1)

Q \

where (-); represents the average over the marginal distribution v;. We considered 10 different
inizializations of the random generator, which we refer to as samples. Each sample has a very
smooth behaviour, almost identical to the others except for a slightly difference in the time it leaves
the forming plateau. For this reason, the most natural way to present the data is by averaging over
t at fixed ¢, once a spline interpolation of the single sample is performed.

On the right panel, we consider the case o > ag4, where the BP equations admit a non-trivial
solution with lim;_,~ ¢(t) # 0. Once convergence in the overlap is reached, we compute the ratio of
the magnitude between two subsequent perturbations around the fixed point (by using the linearized

version of the BP equations derived in section 4.2.3), as a function of time

lle + DI
el

where we adopted the Lo norm of the perturbation parameters averaged over the population, ||¢|| =
pU ZZ D Le2 . After a sufficient but finite number of steps, A(t) is actually selecting the

At) = (5.2)

aOza

contribution from the biggest in modulus eigenvalue of the linearized matrix which enforces the BP
iterative procedure (see [18| for a detailed discussion), being the slowest mode to decay. We define
the stability parameter \(«) as essentially the modulus of this eigenvalue, with A\(a) < 1 for the
solution to be stable. In practice, we average over ¢ the A(¢) data of figure 5.1b once the plateau is

reached. In this case we consider just one sample for each value of a > ay.
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Figure 5.2: Colors: divergence of the overlap relaxation time 7,-(c), defined as the time needed for ¢(t)
to decrease down to ¢*. Figures (a), (b) and (c) show the data rescaled according to functions (5.3), (5.4)
and (5.5), respectively. Black: behaviour of (1 — A(a))?, where A(«) is the stability parameter of the non-
trivial solution for az > a4. The correct scale for A is given in the first figure (in both figures (b) and (c),
black points follow a different y-scale than colored ones and are just meant to guide the eye towards the
transition point). The dynamical transition «y is located at the intersection of the color and black lines with
the x-axis.

Let us first consider the region o < «g4. From figure 5.1a, it is clear that approaching ay
the overlap relaxation becomes increasingly slower. Following [18], this behaviour can be directly
connected to the discontinuous bifurcation occurring to the fixed-point solution of the BP equation,
which is of the form P = F(P,«). To fix the ideas, it is convenient to consider an analogous
relation in the scalar case, ¢ = f(q, ), where ¢ is real (the similarity with the overlap, which is
indeed our scalar representative for P, will be readily evident). Assuming that ¢ > 0 and that
g = 0 is always a solution, the dynamic threshold ay is defined as the subitaneous birth of a second
solution ¢4 = f(qq,q), with g4 > 0. Our problem reduces to the study of the dynamic process
¢ = f(¢W, a), with initial condition ¢*=%) > ¢4 (in analogy with the planted initialization).
In this context, it can be proved that the number of steps ¢ around the plateau gy diverges as
T~ K(ag — a)_% to leading order for a — a, where K is fixed by some derivative of f(q, ) at
the special point (qq, ag)-

In order to test this prediction on our real data, we operatively define a family of relaxation

times 74+ (o) representing, for any given threshold ¢* < gg = 0.838(3) (obtained in section 5.1.2), the
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5.1. Numerical determination of oy

time needed for the overlap ¢(t) to decrease down to ¢*. By looking at the data in figure 5.1a, one
notices that different sets of 74+ (c) for different ¢* should essentially differ by only a finite amount
of steps, which is reasonably constant in « for any given ¢* since the curves have approximately the
same behaviour (same slope) on a linear x-scale. However, if we also consider the relatively small
values of ¢ needed to complete the decay and hence of 74+ (), it follows that relevant subleading
corrections to the asymptotic scaling may be due just to the choice of ¢*. This is evidenced by the
behaviour of the first function that we use to fit the data, neglecting any scaling correction,

(5.3)

T(l)(a) =

A

(g — )1/t

This function depends on three free parameters: «g, b and A. Even though at first glance it
may appear to reasonably fit the data, see figure 5.2a (colors), all the values of the parameters,
presented in table 5.1 (left), exhibit some dependence on ¢*, which is very noticeable in the case
of the exponent b (that was argued to be b = 2). To account for subleading corrections, we also

consider the two following power laws, still depending on three parameters,

B
P (a) = - +C, (5.4)
Dy — P F (5.5)

(@ — )7 " (ag— )/

The rescaled data is presented in figures 5.2b and 5.2c. For what concerns the results of fit 7(2)
we obtain good x? and a much less ¢*-dependent slope (i.e. B) especially for intermediate values

of 0.2 < ¢* < 0.5. We conclude that in this range the scalar bifurcation scaling form with exponent

’ q* ‘ oy ‘ b ‘ A ‘ x2/dof H g ‘ B ‘ C ‘ x2/dof ‘
0.8 | 34.639(2) | 1.384(5) | 12.94(2) | 4.39 34.592(1) | 17.4(1) | -4.77(5) | 22.81
0.7 | 34.672(2) | 1.280(4) | 19.57(4) | 10.83 || 34.604(1) | 27.3(1) | -8.58(6) | 30.19
0.6 | 34.680(2) | 1.345(4) | 23.31(4) | 21.21 || 34.615(1) | 31.1(1) | -8.76(7) | 6.62
0.5 | 34.677(2) | 1.427(4) | 25.65(4) | 23.81 | 34.621(1) | 32.8(1) | -7.99(7) | 1.46
0.4 | 34.671(2) | 1.507(4) | 27.43(4) | 23.41 || 34.624(1) | 33.7(1) | -7.05(7) | 0.42
0.3 | 34.664(2) | 1.588(5) | 28.99(4) | 20.64 || 34.627(1) | 34.4(1) | -6.01(7) 0.80
0.2 | 34.657(2) | 1.679(5) | 30.63(4) | 17.18 || 34.629(1) | 35.0(1) | -4.75(7) 1.68
0.1 | 34.647(2) | 1.807(5) | 32.85(3) | 12.21 || 34.632(1) | 35.6(1) | -2.94(8) 3.42
0.01 | 34.627(1) | 2.164(5) | 39.48(3) | 3.83 34.638(1) | 37.2(1) | 2.51(8) 9.80

Lo | ae [ D | E [x%/dof]
0.8 | 34.607(1) | 27.9(2) | -15.2(2) 2.89
0.7 | 34.623(1) | 46.6(2) | -27.7(2) 3.20
0.6 | 34.636(1) | 51.3(3) | -28.6(2) 1.69
0.5 | 34.641(1) | 51.4(3) | -26.3(3) | 4.37
0.4 | 34.643(1) | 50.3(3) | -23.3(3) 6.64
0.3 | 34.643(1) | 48.6(3) | -19.9(3) 7.79
0.2 | 34.642(1) | 46.2(3) | -15.8(3) | 8.26
0.1 | 34.639(1) | 42.4(3) | -9.7(3) 7.99
0.01 | 34.631(1) | 31.0(3) | 8.5(3) 5.34

Table 5.1: Results from fit (5.3) (on the left), (5.4) (on the right) and (5.5) (bottom) for the divergence of
the overlap relaxation time 74+ (o) as obtained from population dynamics.
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5.1. Numerical determination of oy

’ Qg \ X2 /dof ‘
| 34.645(2) | 1.39 |

Table 5.2: Results from the fit on the stability parameter A(«).

b = 2 adequately describes our 7,+(a) data. On the other hand, the function 7 is shown to fail
for values of ¢* close to the plateau, ¢* = 0.8,0.7 (compare the values of x? in table 5.1, right). In
this case fit 7(3) does a better job, thus suggesting that the scaling b = 2 is just apparently altered
by some non-trivial subleading corrections. In general, we observe that function 7, even though
outperformed by 7(2) when ¢* takes the central values, always performs better than fit 7(1), apart
for the case ¢* = 0.01 for which already (1) produces a value of b close to b = 2. This corroborates
the argument supporting b = 2; a cautious estimate for oy from our data would be at this point
ag = 34.625(19).

A second independent estimation of agy can be obtained by studying the loss of stability for
the non-trivial solution when approaching «y4 from above. A quantitative prediction from scalar
bifurcation theory [18] states that (1 — A(a))? ~ Y (a — ) vanishes linearly for o — of. This is
shown in figure 5.2a in black points (beware that points reproduced in figures 5.2b and 5.2¢ are out
of scale), while the estimated « from the fit is given in table 5.2. Comparing it with the result from
the analysis of the overlap decay for a < ay, we conclude ag = 34.63(2). The quoted uncertainty

takes into account the systematic errors affecting the two independent estimations.

5.1.2 Zero Energy Monte Carlo

Monte Carlo (MC) simulations have the advantage of being much less eager of computer memory
as compared to solving the BP equations, where one needs to work with entire distributions (as
each of the messages) even in our RS-like case. On the other hand, relaxation times can be very
long (we are approaching a MCT-like glass transition, indeed). This can be noticed by looking at
figure 5.3a, where we plot the overlap decay for several orders of magnitude in the number of MC
sweeps. Before analyzing the results, we give a precise definition of the overlap and discuss the
details of the MC simulations at zero temperature.

The overlap between two configurations of angles x, and x; needs to be maximized over rota-
tions (see also section 5.3.2) due to the global rotational symmetry of the model, which becomes

continuous in the limit d — oo of infinite discretization precision,

q(t) = Ag{l&;{ﬁ)((:os(xa —xp — A)) = /(cos(zq — 2))2 + (sin(z, — 23))2, (5.6)
where () = Zf\i | stands for the average over the system. We consider both the overlap gq(t)
between two independent replicas of the same system, in which case z, = xl(a) (t) and zp = :cz(b) (1),
and the overlap ¢(t) of each replica with the starting configuration, in which case z, = z;(t) and
xp = z;(t = 0). The latter situation can be further simplified by initially planting the system
in a configuration with all the variables identically equal to zero, which is possible thanks to the
introduction of random shifts associated to each edge of the graph (that are required in the first
place in order to suppress crystallization). Of course, we expect the equilibrium long time limit of

both the overlaps ¢(t) and gq(t) to be identical. However, it is also clear that g (t) will in general
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Figure 5.3: Left: overlap as a function of time between two independently evolving replicas starting from
the same equilibrated (planted) initial condition. Different curves correspond to different values of . Dashed
lines for a = 34.5 and o = 35 indicate the region where the overlap supposedly starts to develop a plateau
with ¢ = ¢q4. Right: long time value of the overlap for a > ay from MC and BP simulations. The birth
of the non-trivial solution follows a square root singularity, allowing us to extrapolate from the BP data
ga = 0.838(3). The data is scaled according to g = 34.63 from BP population dynamics. Inset: the trivial
bending of data points for high o can be straightened by plotting tanh ™! (q(a)).

decorrelate faster.

For what concerns the algorithm, we adopt in this case a simple zero temperature heat bath rule:
at each step, a randomly selected spin is updated with uniform probability among the Potts states
which satisfy all the constraints with the neighbours. Since we start from a planted configurations
of exactly zero energy, at least one such a state is guaranteed to exist for every spin, and the
procedure is well posed. The advantage with respect to standard Metropolis is that moves are
always accepted, this coming at the price of computing the local energy for each of the p states a
variable can assume. Notice, however, that this can be performed in a smart way by running just
one time over the neighbours of the variable to update and increasing by 1 the energy of the 2d — 1
states inside the excluded region.

Obtaining a precise estimate of oy from MC data is more difficult than from population dynam-
ics. Figure 5.3a shows as a function of time (MC sweeps) the average of the overlap over 10 different
systems of size N = 10*. We checked finite size corrections to be smaller than the statistical errors
by simulating a few samples of size N = 10°. For o > oy, planting allows us to initialize the
system inside the planted cluster, which is by all means indistinguishable from a typical cluster
for the random model, up to a.. Unfortunately, the o > a4 data is of little use in the estimation
of ay, since we do not have in this case an analogous of the BP stability parameter. A possible
way round would be to consider the long time limit g(a) of the overlap at the plateau, which is
expected [18] to approach a non zero value g > 0 with a square root singularity at «g, as shown
in figure 5.3b. Obtaining ay from the g(«) data, on the other hand, would imply a fit where also
the parameter g4 is unknown. For this reason we prefer first to estimate ay from the overlap decay
for @ < ayg, and then use it to verify the square root singularity and eventually obtain g;. Notice

that the behaviour (g(a) — qq) ~ (o — arg)/?

can be valid only in the vicinity of ag4, since we know
by definition that ¢(«) < 1. The strong deviation from a straight line behaviour in figure 5.3b is in

this sense totally expected. What is inconvenient, though, is the fact that MC points are located
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Figure 5.4: Left: power-law divergence of 7,«(), for ¢* = 0.8. Both the overlap with the initial con-
figuration and the one between two independent replicas are considered (the correlation times are named
respectively 7, and 74). In this case we obtain b &~ 0.26, corresponding to a MCT-like exponent o ~ 3.85.
Notice however that the value of b strongly depends on ¢*, see table 5.3. Right: the value of ay resulting
from the fit depends both on ¢* and on ., corresponding to the biggest value of « included in the fit.
The red line indicates in both figures the estimate of oy as obtained from BP in the previous section.

in the region where these corrections are already relevant. This is due to the fact that obtaining a
reliable, size independent estimation of g(a) by MC simulations becomes very difficult close to ag,
where one has to increase both the time of the simulation and N. For this reason, we can only rely
on the BP data, which fit reasonably well the square root singularity, to obtain g4 = 0.838(3).

The last approach we can resort to is the study of the overlap correlation time for a < ay4. To this
end, we once again define 7+ () as the time needed for ¢(t) and gq(t) to decrease down to ¢*, with
q* < qq ~ 0.83. The T' = 0 approach to ay is essentially governed by MCT-like laws [87], predicting
a power-law divergence 7(a) ~ (ag — )7 for @ — aj, where 7 is a specific ' = 0 exponent.
Here we prefer to use instead the parameter b = 1/, and fit the data according to eq. (5.3). The
outcome is given in figure 5.4. In the left panel we show the rescaled data for ¢* = 0.8, showing a
value of ay compatible with the BP prediction. On the other hand, from figure 5.3a it is already
evident that in order to decrease ¢* one may be forced to exclude some of the biggest values of

«. For this reason, in 5.4b we study how the choice of the apax included in the fit affects the

0.8 | 34 |0.260(2) | 0.263(2
33 | 0.262(3) | 0.266(3
32 ] 0.266(4) | 0.274(5

4 )
(2) )
(3) (3)
(4) (5)
0.7 33 |0.223(2) | 0.225(3)
32 | 0.221(3) | 0.226(4)

0.6 | 33 |0.206(2) | 0.204(2)
32 | 0.205(2) | 0.200(3)

(2) (2)

(2) (2)

) (2)

05| 33 |0.197(2) | 0.197(2
32 1 0.197(2) | 0.194(2

04 ] 32 0.188(2

Table 5.3: Value of the MCT-like exponent b = 1/7y from Monte Carlo simulations.
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5.1. Numerical determination of oy

estimation of ay, for different values of ¢*. From the picture, one can conclude that estimates on
oy are the lesser precise the lower apmay; in particular, the points dispersion over ¢* at fixed aupax
and the size of error bars visibly decrease from amax = 32 t0 amax = 33 (for amax = 34 we have
only one point, so we cannot make any strong assertion). It is interesting, by the way, to highlight
how the high dependence of g from ¢*, for amax fixed, is accompanied by a relevant variation of
also the exponent b with ¢*, see table 5.3, similarly to what happened when analyzing BP data in
the previous section. In this case, however, we lack at the present moment an analytical prediction
for b, and an accurate treatment of subleading corrections to the simple power-law behaviour is
beyond our reach. For this reason, we can only conclude from figure 5.4b that the behaviour of real
MC data is reasonably well described by the BP prediction, considering the level of the systematic

biases affecting our determination of ay from MC simulations.
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Figure 5.5: Top: overlap decay from population dynamics BP equations for a@ < ag4, using the same data
of figure 5.1a. The log-scale on the y-axis highlights a purely exponential tail for the decay at small overlap.
Bottom left: overlap decay from MC data. Black lines represent fits according to a stretched exponential of
the form Ae~(t/?”. The values of B vary between 0.48 and 0.53. Bottom right: the same data is plotted
against t/79.5(a). Black dashed line is a stretched exponential of exponent 8 = 0.48.

Finally, it is interesting to consider in figure 5.5 the long time tail of the overlap decay. In the
top panel, the BP data is shown to possess a simple exponential behaviour. The MC dynamics

of real systems, on the contrary, exhibits a stretched exponential form Ae~(/ ﬂﬂ, typical of MCT
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5.2. Numerical determination of .

systems close to the MCT transition. The value of the exponent 3 from the different fits is reasonably
constant on the whole considered a-interval, varying between 0.48 and 0.53 without any recognizable
trend. The parameter 7(a) from the fit is in principle proportional to the structural relaxation time
of the system 7(a). However, we believe the definition of 7(«) in terms of 74+ () to be somewhat
more reliable, since it does not depend on the quality of a phenomenological fit and on the considered
fitting interval. In the right panel we show the correlation for different values of o as a function
of the rescaled time t/795(c), resulting in a decent collapse of all the curves. The collapse is not

perfect as the tail becomes slightly more pronounced when increasing «.

5.2 Numerical determination of «,

The condensation transition line a.(7) is defined by the condition ¥(«,T) = 0, where ¥ is the
complexity of the states dominating the partition function at temperature 7. Using eq. (2.22), X

can be written as the difference of Bethe free entropies

1
Y= N [FReCH(para) — FRec H(planted)] s (57)

where FRrec1r is obtained for any BP fixed point from eq. (4.43), the temperature dependence being
encoded into the affinity function f,. In particular, Frec11(para) = —a. A number of curves X(a, T')

for different values of T are plotted in figure 5.6. The T' = 0 limit is under control thanks to the
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Figure 5.6: Complexity curves X(«,T). Dashed lines are a second order polynomial fit. The intersection
of each curve with the x-axis returns the value of the condensation transition a.(T).

fact that the curves for the two lowest values of T' are practically indistinguishable. Notice that
the step Aa = 0.2 in the data is quite large, and the first point in each curve does not exactly
correspond to ag(7T). The estimation of ¥ is on the contrary much more precise and allows for a
reliable determination of (7). We also observe that the maximum of the complexity appears to
decrease when increasing temperature. We cannot exclude the possibility that it goes to zero for

some finite temperature, i.e. that the transition becomes continuous for high enough a.
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5.3 Further details

5.3.1 Extrapolation of the continuous limit

The most prominent novelty of the coloring problem discussed in this thesis is, beyond any doubt,
the continuous nature of its variables. Yet, as the reader may have already noticed, all the analysis
performed so far was only limited to a discretized version of the model, with precision d = 10 to
be more exact. This coincides, having chosen for definiteness to focus on the fixed ¢ = 20 case, for
which the transition is appreciably first order, with approximating the continuous interval [0, 27)
with p = ¢d = 200 discrete clock-states. It is thus essential to assess how much of the quantitative
predictions given so far, in particular for what concerns the computation of the transition lines,

is still valid in the limit p — oo. The answer is provided in figure 5.7, where we plot the T' = 0
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Figure 5.7: Corrections to the 7' = 0 transition thresholds scale as 1/p.

thresholds ag(p) and a.(p) for p = 200, 240, 280, 320, as obtained from the BP numerical procedure
discussed in this chapter. The corrections, for the values of p considered, appear to be very relevant.
Even worse, they show a very slow 1/p scaling. For these reasons, we believe a precise extrapolation
of the continuous limit of the thresholds, starting only from the solution of the discretized BP
equations, to be rather delicate. In this spirit we report the results from the fits of figure 5.7, to be
taken with caution: of® ~ 32.37 and ag° ~ 33.86. On a more bright side, however, some way to
better control the extrapolation error could be hopefully provided by the study of the p dependence
of akg, which is known analytically (4.52), and that also shows an approximate 1/p behaviour.

The 1/p scaling of discretization corrections for the model at hand was already reported in [80].
Unfortunately, the situation is very different from other planar spin-models on random graphs,
exhibiting a very fast exponential convergence [67]|. This is presumably due to the peculiarity of the
excluded volume interaction, that sharply depends on the particle diameter 8. Among the effects of
discretization, we have indeed that the forbidden states are contained by all means into an effective
diameter which is smaller than 6 by a quantity of order 1/p (see for example the red points in
figure 4.1). When we increase discretization, we are hence actually increasing also the effective
diameter (i.e. decreasing the effective ¢), which may play a direct role in the 1/p decrease of the
transition thresholds, since the system is more constrained for bigger diameters, see for instance
figure 4.3.
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5.3.2 Global rotational symmetry

The most naive definition of the overlap for spin systems is given by the dot product between
different configurations, which for XY models reads 3 >, cos(z;(t) — z;(0)). A clear insight on the
reasons why this is not a good observable to describe the state of our system can be obtained by
a direct inspection of the configurations visited during the MC evolution. To this end, we plot in
figure 5.8 the behaviour of the naive overlap for a single sample along with some “screenshots” of
the system at different marked times. The adopted convention is the following. Each pixel in the
square boxes has two coordinates, the y-one corresponding to a label for each variable (in this case
N = 10?), while the z-axis represents the possible values that each variable can take (as usual, we
considered in practice a discretization in p = 200 clock states). Due to the rescaling of the axes,
in order to have a square ratio for the figures, pixels are actually horizontally stretched. The color
legend associates a white pixel to the value taken by each variable at a given time. Then for each
row (i.e. for each variable) we mark in black the z-values that are compatible with the constraints
exerted by its neighbours, considered as frozen in the current configuration, and in grey the values
that are not allowed.

Initially, the system is planted in the all zeros configuration. Our graphical expedient allows us
to recognize at glance if and how the system looses memory of the initial condition. In particular,
for the value of o = 36 here considered, that is way beyond o4, we observe how the system keeps
an internal coherence reminiscent of the planted initialization, which is only apparently spoiled at
large times when the zero mode associated to a global rotation kicks in. This explains why the top
panel of figure 5.8 is so much different from the behaviour of the proper overlap we have already
studied in this chapter, and fails at large times to follow the BP prediction (black dashed line).

The decorrelation contribution due to global rotations can be dismissed by working in the “center
of mass” of the system. By placing variables on the unit circle, the center of mass is identified by
the vector ({cos(z(t)), (sin(z(t))), where (-) is the average over the system. The modulus of this
vector measures the remaining degree of polarization (it is equal to 1 when all the variables take the
same value, as in the planted configuration where all x = 0, and to 0 when variables are uniformly
spread over the circle) and coincides exactly with our rotationally invariant overlap definition (5.6).
Equivalently, we can interpret the angle A* maximizing the second term in (5.6) as the one identified
by the vector of the center of mass. Notice that formula (5.6) is completely general, since it accounts
for any initial condition z;(t = 0) and also for the overlap g, between different replicas (in that
case, the underlying idea is again to globally shift back replicas on top of each other at every time

in order to correctly evaluate the internal correlation of the state).
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Figure 5.8: Top: a > aq4 decay of the “naive” overlap, defined as the plain dot product between different
configurations, not accounting for the global rotational symmetry of the model. Bottom: a direct inspection
on the state at time t of the system, initially planted in the configuration with all the variables equal to
x = 0. (white: current configuration; black: values allowed by the neighbours; grey: non-allowed region)
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Chapter 6

Postponing the dynamical transition

6.1 Biased potential

So far we have investigated our random CSP from the point of view of a purely hard-sphere interac-
tion (in the limit 8 — 00): SHgar — oo if some constraint is unsatisfied, SHgat = 0 otherwise. The
associated Boltzmann-Gibbs distribution is hence uniform over the space of solutions to the CSP,
and as a consequence the statistical weight associated to each cluster is simply proportional to their
size. This situation can be generalized by introducing some bias in the probability measure over
the solutions, namely by favouring some of them and disfavouring others, while leaving untouched
the constraint definition. This can be viewed as a way to move some statistical weight to solutions
belonging to clusters which are atypical, 7.e. subdominant in the limit N — oo, with respect to the
uniform measure. The characterization of the large deviation properties of the highly non-trivial
phase space of random CSPs is indeed quite a fundamental question, since it is still not entirely
clear to what extent equilibrium thresholds can be useful in order to understand and predict the
behaviour of general algorithms looking for solutions, or even which are the correct threshold(s) to
look at (to this subject is devoted the last part of this thesis).

This biased thermodynamics approach has been at the center of very recent investigations in the
context of discrete random CSPs [6, 15, 18, 19]. Here we will follow the most simple strategy [18],
which is to introduce a bias directly in the “soft part”, i.e. the one pertaining to satisfied constraints
only, of the Hamiltonian Hg,t. The new equilibrium Boltzmann-Gibbs distribution can be written

as

L B[Hau({z:}) -8 H1 ({2:))]

P({xi}) = Z(B) )

(6.1)
where the scaling 37! on the soft part H; > 0, H; = O(1) is introduced in order to have a finite
limit for 8 — oo. Despite not being the most general definition, we will consider H; as independent
of B: this is sufficient as long as one is mainly interested in the zero temperature limit.

The location of the SAT /UNSAT transition is by definition left untouched. However, the other
transition thresholds are sensitive to the bias. This is well known in the case of hard sphere particle
systems, where the hard core potential can be perturbed by adding short-range finite arbitrary
potentials, such as square shoulders [32]| or wells [33, 95], giving rise to very rich and unexpected

phase diagrams. This is very relevant for soft matter colloidal systems, where such interaction
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6.1. Biased potential
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Figure 6.1: Dynamical transition line for a mean-field (infinite spatial dimensions) hard-sphere system
with an additional square well short-range attraction of depth Uy. On the x axis, ¢ is a rescaled packing
fraction (playing a role similar to a in our CSP), while 7' = 1/Uy. Notice that in this case the hard-core
potential is chosen to be infinite even for finite temperatures, and the temperature can be adsorbed in the
definition of the energy scale Uy. The dotted vertical line represents the dynamical threshold in the absence
of attraction. Reprinted from [69].

potentials can be experimentally engineered. We are particularly interested, for reasons that will
be clarified in the following, to the case of a short-range attraction next to the hard core repulsion,
which is known to usually determine a reentrancy phenomenon in the phase diagram, with a liquid
cusp stretching into the glass phase as in figure 6.1.

The reentrancy of the liquid region can be further extended by considering more complicated
biasing potentials. This was done in ref. [69] for infinite dimensional hard-spheres, where a generic

function of the interparticle distance was approximated with n square wells (and shoulders) of vary-
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Figure 6.2: Optimized potentials, as a function of a rescaled interparticle gap h, maximising the dynamical
packing fraction threshold ¢, for each value of the number of steps n = 1,...,6 in the potential. This
generalizes the single well bias of fig. 6.1. Reprinted from [69].

69



6.1. Biased potential

ing width and depth (height). By optimizing the dynamical transition (which is known analytically)
via a gradient descent on the finite set of parameters, the generic potential of figure 6.2 was ob-
tained, the main feature being a very close-range sharp attraction followed by a longer-ranged weak

repulsion.

6.1.1 Optimized interaction for the Continuous Coloring

We perform a computation analogous in spirit to the one of ref. [69] in order to maximize the
dynamical transition «y. Unfortunately, we lack an analytical expression for ay. A possible way
round is to consider the gradient descent with respect to an observable which is hopefully related
with the location of ay: we consider the maximization of the complexity ¥, as explained in the next
section. We will call the resulting optimized threshold oz(c)lpt, and the optimized interaction fOP!.

We stress, however, that agpt should be more safely interpreted as a lower bound to the actual
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ke | |
~ | |
| 1.01 | 0.001 °
= | i N
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i 0.05 0 %’/T pa
0.0 :L
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Figure 6.3: Soft part of the optimized interaction at 7' = 0 for the continuous coloring (0 = 27/q, with
q = 20) as a function of the interparticle angular distance. The function is symmetric for x — 27 — z. The
difference foP* — ff1at does not go precisely to zero at large angles because we subtracted two normalized
probabilities, both satisfying > fo = p in the discretized case. Inset: detail of the interaction.

optimal threshold, since there is still no rigorous proof linking the maximization of the dynamical
transition with the one of 3. On the other hand, the gradient of the complexity will be shown to be
relatively simple to compute, and also accessible through Monte Carlo sampling. If the complexity-
maximization approach actually proved to be exact, then we would have in our hands a very powerful
and versatile tool to compute the optimized interaction also in more computer-memory consuming
settings, such as in higher spatial dimensions, where BP really struggle. We leave a more detailed
discussion on the conceptual and technical aspects of this procedure to section 6.2.

The optimized interaction f°P! is given in figure 6.3 for the usual choice of ¢ = 20 and a
discretization of precision d = 10 (p = 200 clock-states). The interaction f is in our setting
proportional to the Boltzmann-Gibbs weight, rather than to an energy, for this reason a peak
in the probability for x = 6 is interpreted as a very short range attraction favouring contacts

between angles /particles. With this choice for the potential, the zero temperature dynamic threshold
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Figure 6.4: Transition lines in the continuous coloring with ¢ = 20 and discretization d = 10, for both
the choices of the interaction f%2* (solid) and f°P* (dashed). The dynamical transition is moved from
aflat = 34.63(2) to oS = 37.71(1).

estimated from BP is moved from ofl*t = 34.63(2) to a3 = 37.71(1).

The numerical optimization has been performed for T' = 0, when the hard part of the interaction
f (for |x|< 0) is exactly zero. By taking the logarithm of the soft part of f (for § < x < 27w —0), we
can obtain the pairwise contribution to the biasing Hamiltonian H; up to an additive constant, due
to the arbitrariness in the normalization. When switching on temperature, the hard core excluded
volume interaction is softened, the cost for violating a constraint being now proportional to exp(—_3).
The soft part of the interaction should instead be independent from S in our approach, apart for a
global §-dependent normalization. In the following, we will always adopt implicitly the definition
fgpt(a;) ox Ae Pl[jz|< 0] + f22 1[0 < = < 21 — 0]. We fix the relative amplitude A of the hard part
with respect to the soft part of the interaction f by requiring

San fat Tien i (2d—1)e P

opt — at : (6.2)
2[6’;271'79] far Z[e;zn—e] flat p—(2d—-1)

With this choice, the annealed energy eann (), counting the number of violated constraints per spin

as a function of temperature in the paramagnetic phase, is equal both for fiat and foPt to
M X, falleos(%52) > 0] a(2d — 1)e=?

e TR De P 1p- A1) (63)

The phase diagram in the (o, T) plane is shown in figure 6.4, solid lines corresponding to ffat,
while dashed ones referring to f°P'. We can notice it is quite different from the one in figure 6.1.
This is expected: in our model, temperature has a completely different meaning, since it tunes the
strength of the constraints (we recover the infinite hard sphere potential only in the limit 5 — 00).

If we were to interpret the diagram of 6.1 in our setting, we would recognize that the entire (¢, T)

plane corresponds in fact to 7" = 0 (the hard constraint is never released), while the role of T is
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6.1. Biased potential

simply to parameterize different potentials (in the case of a single well of fixed width, we need
only one parameter Uy, which can adsorb also the physical temperature). In conclusion, we do not
seek nor expect the complex reentrancy phenomenon typical of hard sphere like physical systems
as in figure 6.1, but we rather place ourselves on the tip of the reentrancy and we explore another
dimension, namely the one in which unsatisfied constraints are accepted with some small probability.

Finally, it is interesting to notice that also the Kesten-Stigum bound akg is sensitive to the
modification of the interaction, and it actually increases the most with respect to the other thresh-
olds, going from the T = 0 value axg = 46.743 to axs = 77.972, with an increase of more than
60%. The location of akg is particularly relevant when considering the associated Bayes optimal
inference problem, since it signals the a-point below which inference is practically unfeasible. We
conclude that, in order to improve the performance of optimization on the one hand or inference

protocols on the other hand, one should optimize the interaction in opposite directions.

6.1.2 Discussion: the role of competing interactions

The two main features of the optimized potentials in figure 6.2 are, as we said, an extremely short-
range and strong attraction followed by a much weaker, longer-ranged repulsion. How to disentangle
the two contributions is not in general completely clear. The physical understanding is that the
attraction is the key ingredient, while the repulsion, by effectively deepening the well, can contribute
to further increase the liquid reentrance (the improvement over a purely short-range attraction for

hard spheres in the limit d — oo is about 3%). Very recently, the authors of [26] wondered to
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Figure 6.5: Left: complexity curves as a function of « for different interactions (depicted on the right panel)
along the optimization procedure. Dotted lines are meant only to guide the eye. Curve number one (orange)
is obtained after the very first step in the gradient descent starting from f#2* (blue). Curves in between are
obtained by using a family of functions f’ interpolating between fq.; and fi, i.e. f oc fiat ya(fy — 124, for
five values of 0 < a < 1. Curves 2 and 3 refer respectively to an intermediate function along the procedure
and to the result of our optimization foPt.

what extent this result is still valid in finite dimensions. They directly verified that in a 3-d system
the location of the (avoided) mode coupling transition can be moved by tuning the attraction, but
it cannot be further improved by adding a suitable repulsion (at most, they identify a branch of
parameters over which the optimum extends). A legitimate question would be to understand our

model at hand which situation belongs or is closer to, hoping that this could also provide some more
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Figure 6.6: Estimation of oy from BP population dynamics simulations using interactions 2 (left) and
3 (right) of figure 6.5, the latter corresponding to f°Pt. Bottom figures (colors): divergence of the overlap
relaxation time 74+ (@), defined as the time needed for ¢(t) to decrease down to ¢*. The data is fitted according
to eq. (5.4). (Black): behavior of (1 — A())?, where A(«) is the stability parameter of the non-trivial BP
solution for a@ > 4. The dynamical transition ay is located at the intersection of the color and black lines
with the x-axis.

general intuition about the role of competing interactions. Unfortunately, it would appear to be
rather difficult to extract a definitive answer from our data, as we are going to discuss here below.

Coming back to the model at hand, by looking at figure 6.3, the short-range attraction can
be immediately recognized in the peak of f, and yet also a hint of a very weak repulsion can
be discriminated. The identification is somehow complicated not only from the weakness of the
contribution, but also from its not so extended range (one should keep in mind, however, that the
domain is in this case compact). In our numerical strategy, we pursued a discretization of the
continuous, bounded domain into p = 200 states. As figure 6.3 makes pretty clear, though, the
most relevant part of interaction, comprising both the attraction and the repulsion, is confined to a
limited region of extension approximately 7/5 = 26 around 6 = 27 /20, i.e. containing about twice
the number of discrete states in the excluded region = < 6, which is anyway a small number (~ 20)
compared to p. Most of the peak is even contained in the very first bin of extension 27 /p, suggesting
the possibility of a delta interaction in the continuous limit. This makes the determination of the

details of the interaction around the peak a very delicate matter.
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6.2. Complexity maximization

’ q* \ ayq \ B \ C \ x2/dof H Qg \ B \ C \ x2/dof ‘
0.7 | 37.676(1) | 26.9(1) | -6.85(7) | 3.66 || 37.712(1) | 27.3(1) | -7.06(3) | 1.76
0.6 | 37.677(1) | 27.3(1) | -5.90(7) | 2.83 | 37.713(1) | 27.7(1) | -6.11(9) | 1.21
0.5 | 37.677(1) | 27.5(1) | -5.00(7) | 2.76 || 37.714(1) | 27.9(1) | -5.32(9) | 1.68
0.4 | 37.677(1) | 27.6(1) | -4.36(7) | 3.00 | 37.714(1) | 28.1(1) | -4.65(9) | 2.46
0.3 | 37.677(1) | 27.7(1) | -3.67(7) | 2.84 || 37.715(1) | 28.2(1) | -3.96(9) | 2.47
0.2 | 37.678(1) | 27.7(1) | -2.88(7) | 298 | 37.715(1) | 28.2(1) | -3.13(9) | 2.79
0.1 | 37.678(1) | 27.8(1) | -1.79(7) | 2.34 | 37.715(1) | 28.4(1) | -2.07(9) | 2.80
0.01 | 37.678(1) | 28.1(1) | 1.11(7) 4.44 37.716(1) | 28.7(1) | 0.82(8) 3.10

Table 6.1: Results from fit (5.4) for the divergence of the overlap relaxation time (color points in the
bottom parts of fig. 6.6).

| ag [ XP/dof | ag | x?/dof |
| 37.669(1) | 15.52 [ 37.705(1) | 2.60 |

Table 6.2: Results from the fit on the stability parameter .

However, a curious phenomenon takes place during our optimization, see figure 6.5b, namely
the fact that at intermediate steps in the procedure (green line in the figure) the interaction shows
a repulsion term being more pronounced than in the final function which we call f°P* (red line).
Notice that for the former (green) function the limits of the discretization precision are evident in
the repulsive part of the interaction. As displayed in the left panel, an approximate computation of
the complexity is not enough to distinguish the performance of the two interactions. For this reason,
we repeat the same analysis of chapter 5 in order to obtain an accurate estimate of oy for the two
potentials, see figure 6.6 and the results in tables 6.1-6.2. From this we conclude that differences
are present, although very little compared to the effects due to the leading attractive peak. As a
result, any strong claim about the role of competing interactions in the present setting would risk
to be utterly unsupported, since as we said a) the repulsive term of f°P* in figure 6.3 is very weak,
b) the dynamic threshold oy seems as well to weakly depend on the details of the repulsive part of
the interaction and c) the very determination of these fine details is on the other hand limited by

effect of discretization.

6.2 Complexity maximization

The “typical” complexity 3 (i.e. the one associated to dominant states) is an observable that can
be estimated via BP as a difference of free entropies, see eq. (5.7). The behaviour of ¥ as a function
of a, as shown in figure 5.6, is the following: ¥ = 0 below «g, then ¥ has a jump at ag4 to a finite
(maximum) value, then it is a monotonically decreasing function of « up to ae, where ¥ = 0. One
may then wonder if there is a way to postpone the dynamical threshold a4 by directly acting on
the shape of the complexity. A strategy that we found to be successful' is to maximize the value
of the complexity close to its maximum at «g: the idea is that by shifting the complexity curve to
higher values of «, also the value of 3 at fixed @ > ag4 will increase, see figure 6.5a. However,
since the maximum value of the complexity can take any strictly positive value, there is no reason
to exclude the existence of particular functions f for which the complexity curve is still postponed,

but it is also lowered. In this sense, we lack a physical intuition (not to mention a rigorous proof)

!Based on a joint work with Thibault Lesieur.
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6.2. Complexity maximization

supporting the fact that the interaction f (not to be confused with a free energy) for which ay(f)
has its maximum should coincide with the function f for which also 3 (ag(f); f) has its maximum.

Having said that, this method is the best chance to our knowledge to automatically optimize
the potential, and it yields promising results. We compared it with other strategies, such as the
maximization of the stability parameter A of the BP non-trivial solution, which is A = 1 at the
dynamical transition and then decreases for o > oy (the solution being more stable). Since it takes
a fixed value at oy for any f, then the maximization procedure is in this case justified. Another
strategy is the minimization of the so called Kullack-Leibler divergence, measuring the distance of
the non-trivial distribution of messages P°4(v) from the paramagnetic one, which in the continuous

notation reads

Epeay) [Dxr, (WP [[1)] = Epea(y) {—21% /0 e log ( (2”753”}1)] . (6.4)

ara it takes a non-trivial

For @ < a4 this quantity is zero, since the only solution is P°4 = PP
value at a4 and then increases for a > 4. Following the same line of thought as in the case
of the complexity, one should minimize it. Furthermore, the minimization of this quantity has a
nice physical implication: since (6.4) increases the more the fixed point messages depart from the
uniform solution, this implies that solutions containing frozen fields (which are highly irregular
distributions) are penalized by the procedure. However, the numerical estimation of the gradient
of A and of the Kullback-Leibler divergence is much more involving than computing 9%/ f, which
reduces to computing the derivative of a free energy. In particular, the A estimator becomes very
noisy as the optimization proceeds, while the Kullback-Leibler divergence appears to decrease the
condensation threshold a., making convergence difficult near the tri-critical point. We did not
further investigate this phenomenon.

In the end, the best result is obtained through the complexity maximization. Even if its inter-
pretation is still not completely clear to our eyes, it has some practical advantages. In particular,
this method does not rely exclusively on BP. Being a derivative of a difference of free energies, the
gradient 0¥ /0f can be computed also as some two-point correlation function, e.g via Monte Carlo
sampling, as outlined at the end of the next section. Moreover, the method is completely general,
and it can in principle be applied also to the mean-field hard-spheres system studied in [69], where
an exact method can be independently developed, hopefully contributing to shed some light on the
physics behind the complexity maximization.

The maximization is implemented through a gradient descent: we move in the space of f (sub-
jected to the normalization constraint ), f, = p) along the gradient 0¥ /0f at fixed a = aq + da,
compute the new ay and repeat the procedure until stationarity is reached. Thanks to discretiza-
tion, the gradient descent in the space of functions f can be numerically treated as an optimization

in the finite set of parameters {f,}. The procedure is the following

(t+1) — ¢ |, (82 (aa(fD) + ba; fO)

o + A) I(cos(2ma/p) < cos(2m/q)), (6.5)

where A = —[p— (2d—1)] ! Zi;gd_l) X" /9 f, is a Lagrange multiplier that ensures that {fétﬂ)}

is still normalized, and g is the speed rate of the gradient descent. We found empirically that
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Figure 6.7: Gradient of the complexity for different steps along the optimization process, computed through
BP simulations for the model with ¢ = 20 and discretization d = 10.

computing the gradient close to the dynamical transition results in less noise. In all the computations
we have used da = 0.5. As the optimization runs (see fig. 6.7), the support of the gradient will
concentrate on the forbidden values that encode the constraints of the problem, until the point, at
the end of the optimization procedure, for which the only way to further increase the complexity
will be to relax the constraints, that we forbid thanks to the factor I (cos(2m(a — 1)/p) < cos(27/q))
in (6.5).

Finally, as also akg is postponed when «g is maximized, one may wonder if by maximizing the
stability of the paramagnetic solution at a given a one could end up also pushing oy to the right.
We cannot rule out this possibility, even though it does not appear to be a general strategy in our
opinion. In particular, there are systems for which the paramagnetic solution is always stable (aks
is virtually infinite), and as a consequence this method is ill defined. On a more general ground, it
is true that the point-to-set correlations emerging at oy can be realized in an exponential number of
ways (states), and thus they can also be destroyed in many nonequivalent directions. It is essentially
this freedom that one exploits in order to avoid “early” clusters and postpone as much as possible
ag. In correspondence of akg, on the contrary, symmetry is broken towards a finite number of
states. If it is reasonable to expect that destroying any correlations close to ag may as well result
in a weakening of fluctuations out of the paramagnetic state at akg, it is not at all obvious to us
how stabilizing the system towards these fluctuations could in general select the exact direction that

destroys early clusters among the others, up to the point of really mazimizing ag.

6.2.1 Computation of the gradient of the complexity

The complexity we want to maximize is defined as

Y= % [Frectt (P, f) — Freen(P°%, f)] (6.6)

where PPa2(y) = T[P_, §(vg —n), n= %, is the paramagnetic fixed point and P°? is the non-trivial

one arising for & > ag4(f). In our discretized setting, f = {f,} is a symmetric function under
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a — p— a and periodic of period p. The population dynamics definition of the free entropy is given

by eq. (4.43), which we recall here for convenience as
1 . d '
7 Flecnt (P, [, f10) = Zdj PNode(d) / k]_]1 [duk ; ften p <T<—b>uk>] log | Z({vi}a, /75|

— a/duldug ]P’(I/l)ZbetatenIF’( b)vs) log [Zl/ 1.r leed 2.5 ] .

b
(6.7)

fState fFixed

The distinction between and is here only introduced in order to discuss separately the

different terms coming from the derivation with respect to f,. Of course in the end one has to
evaluate every derivative at fState = fFixed —

that

fowith Y nf, =1, n= ]%. Finally, we also recall

Z({vkta, f) Z H z_: Jo—a Vib- (6.8)
1

The derivative 0X/0f, contains terms coming from the explicit dependence of ¥ from both
fState and fFixed byt also from the change in the non-trivial fixed point distribution P4, The
paramagnetic fixed point distribution, on the contrary, is given by P2 = T] 2 0(va — n) for any
choice of f satisfying >, fon = 1, as can be immediately noticed by a direct inspection of the BP

fixed point equation (4.41). We can thus write

NOY B aFRec 1 (IP;Para’ fFixed’ fState) aFRec I (Peq, fFixed’ fState)

fa O fFixed B 0 fFixed
OFRecrr(PPare, flixed | pStatey gy q(Poa, flixed | pState)
J fState B g fState
_ OFRecn oPed  pPped

(]P;eq fFixed fState)

(6.9)

oP 0 fgixed + o fgtate

Most of the terms either simplify or are equal to zero. The first two terms cancel, as we are
going to comment in a moment. The third term is trivially equal to zero, since both the logarithms
in eq. (6.7) vanish when one considers v, = n and the fact that nff*¢d is correctly normalized. The
fifth term is zero since the distribution P°? extremizes the Bethe free entropy. In the end, the only

remaining term is

on B 8N71FRecII(Peqa fFixed’ fState)
6fa - 6f§tate

(6.10)

fState:fFixed =f

Before proceeding with the computation, let us show that the first two terms indeed cancel. The

derivative ON ~! FRec11/0fF ¢, for generic P, can be written after some manipulations? as

ON ' FRectn
o f(f‘ixed

=a [ dndnP(v State, p(T(—b)y) 2o s Vairta_ 6.11
f [ e () X A B (6a1)

2One can use the decomposition (6.13) in order to recast the derivative of the first term in the rhs of (6.7) in the
form reported in the text (the derivative of the second term is trivially proportional and they can be added).
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If we multiply and divide by the same amount f,, we can make a term vy, f, V2,4, appear, which
is proportional by the definition of messages (see also eq. (3.10)) to the marginal probability p(x; =
r,xe = r + a), as a function of r, of two neighbouring variables at a fixed distance a. The whole
integral thus represents the total equilibrium probability for two neighbours to be at distance a,
which is essentially the pair correlation function of the system. In the entire range o < ., though,
the pair correlation function of the paramagnetic and of the planted fixed point is the same and is
simply equal (whenever short loops are absent, as in the related MK model [25]) to the normalized
interaction nf, o e #vm/P) where v(z) is the pairwise interaction potential. Simplifying the
extra 1/f, factor, we obtain that the first two terms in eq. (6.9) cancel as they are both equal to
a constant a/p. As a final remark, this derivation is clearly valid for any T' # 0, when also f, # 0
Va. The case f, = 0 can nevertheless be recovered from the previous one by taking the limit 7" — 0.

Coming back to our computation, plugging into eq. (6.10) the definition of FRrec1r given by
eq. (6.7), we obtain

[9)
dfa

- QCWZ Prode(d) /dyd+1 PYT (—a)vgs1) H [dyk Z fon PeUT(=b)vy)
d k=1 b

= an/duldyg Py )P*YT (—a)v2) log [Z Uiy fs—rVos

7,8

log [Z({vk}a Uvat, )]

(6.12)

where we have used the fact that d- Pnode(d) = 2aPNode(d— 1) and replaced a dummy index d in the
second term with d + 1. The quantity log(Z) appearing in the previous equation can be iteratively

expressed in terms of the update function ®"P48t¢ given by eq. (4.26) as

log [Z({vk}aUvasr, 1)l =log | > n ] (Z fo—a Vk,b) =
b

| o 1<k<d+l

= log Z@gpdate({l/k}d, Z({vk}a, f Zfb aVd+1 b] =

= log [Z({vk}d, f)] + log

D@ (kg £) foa Vd+1,b] . (6.13)

ab

Plugging (6.13) into (6.12), one recognizes® that ®'P4a% can be interpreted as a random message v
distributed according to P°4(v). The second term in (6.13) has then the same form of the first term
in (6.12) and they can be directly added. Therefore one obtains

)
Ofa

=—an / dvydvy P9 vy )PPYT (—a)vs) log [Z Vi fs—rV2s

d
— 2am Z PNodo(d) / H
d k=1

We notice that the second term does not depend on the index a. This term is trivially constant

log [Z({vk}a, )] - (6.14)

dve Y fnPYT(—b)vy)
b

#Formally, one can multiply (6.12) by a factor 1 = [ dv§(v — ®4P%**({vx}a, f)) in order to make appear the BP
expression (4.41) for P*4(v).
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and can hence be disregarded, since at each step we already enforce the normalization condition

Yo fan = 1. Finally one gets

gfa =— (;/dl/ldllg Py )P*YT (—a)r2) log [g 1/17,,fs_,,1/27s] (6.15)

Remarkably, this formula can also be estimated using Monte Carlo sampling. This is very
convenient, since it might be the only numerically feasible approach in the case of higher spatial
dimensions and/or high discretization. To this purpose, one needs to generate a planted graph A
along with a planted configuration, noted as {5’3?}195 ~, and then run a Monte Carlo algorithm
initialized in the planted configuration to create samples. Let us assume we have generated T
samples {zt}1<i<n 1<t<1 € {0,...,p — 1}V*T of the system. The two cavity messages v; and o
in eq. (6.15) are random variables drawn independently from P°4(r). We can use at this point the
fact that the distribution of cavity messages conincides, for the Erdds-Rényi ensemble, also with
the distribution of single-variable local marginal probabilities for the complete graph. This allows
one to recast an average over v; of the kind of ) v 4 g(a) inside the integral in eq. (6.15), where g
is a generic function, as the time average over the generated samples {z!}1<;<7p, for each fixed site
i (eventually averaging over the choice of site i): 7 S g(ah).

Finally, notice that the presence of the shift P*4(7T(—a)ry) translates into considering for vy a
new set of generated samples given by {z! +a}1<i<n 1<t<7. The gradient of the complexity is then

estimated using the following formula

0% al 1
oL~y 28| 2 e i | (6.16)

(4,5) 1<t1,t2<T

where U is the number of pairs (¢, 7) in the sum. One can take U = N, by running one time over
the index ¢ = 1,..., N, and considering j = i to belong to a second different system (since we
want 11 and v to be extracted independently). Since the MC simulations are subject to coherent
rotations of the spin variables due to the global rotational symmetry of the model, which becomes
continuous in the p — oo limit, one should also maximize at each step the overlap with the planted

configuration over a global rotation of the system.
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Chapter 7

Algorithmic behaviour

7.1 Smart algorithms beating the threshold

The phase diagram of random constraint satisfaction problems, as already briefly discussed in
section 3.2.1 (see in particular fig. 3.2), is animated by the presence of multiple thresholds preceding
the SAT /UNSAT transition: these are the clustering or dynamical threshold «g, the condensation or
Kauzmann threshold o, the rigity threshold o, and the freezing threshold ay. Apart from particular
cases in which some of them may coincide, as it happens when the transition is continuous and
ag = a. (for instance, in the 3-coloring of Erdés—Rényi random graphs [101], one has ag = o = 2),
or when . = gyt as in the XORSAT [93] (this comes from the fact that all the clusters of solutions
have the same internal entropy due to the linear structure of the problem, so that they disappear
altogether at a.), these thresholds are generally distinct. Anyhow, the following relations hold by
definition: ag < a¢ < agap and ag < o < ap < agar. The ordering of «; and ap with respect of a.
is on the other hand a priori undefined, depending on the specific parameters of the model (such as
the number of colors ¢ or the function node degree k in k-SAT).

Despite such a variety of well characterized thermodynamic thresholds, the comprehension of
their consequences on the performance of algorithms searching for satisfied configurations is still
poorly understood. A theoretical lower bound to the onset of computational hardness is given by
the dynamic transition threshold ay. Above ay4, simple local Monte Carlo (MC) procedures, such
as simulated annealing (SA), are expected to get trapped at a threshold energy level ey, > 0, due
to the proliferation of metastable states. One can alternatively devise annealing strategies working
exactly at zero energy, as for instance using the MC update proposed in section 5.1.2, and where
the external tuning parameter is the number of constraints « instead of temperature. Also in this
case, the procedure is expected to fail approaching gy due to the divergence of MC equilibration
time, which prevents the system to actually find its way inside a cluster!.

Why then is a4 considered only as a lower bound to the onset of hardness? The answer to
this question lies in the following “experimental” observation: the dynamical threshold a4 appears

to be irrelevant to the behaviour of most local algorithms, that are typically capable of finding

!Generally, with the locution “equilibration time” one refers to the time needed to restore ergodicity, i.e. the
time needed to jump from cluster to cluster in a uniform manner. However, it is also true that, if the time to find
a way out from a cluster diverges, the same should happen to the time for entering a cluster from the outside. For
this reason, the “planting trick” was needed in order to “equilibrate” (here in an ergodicity broken sense) the system
inside a typical (but fictitious) cluster.
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Figure 7.1: Uncontrollably smart: even naive Monte Carlo based algorithms can find solutions beyond ay.
We plot the number of MC sweeps ta,, that is necessary in order to increase the number of links in the graph
by AM = AaN without spoiling a solution, with Aa = 0.2 a fixed smoothing parameter. See section 7.2.1
for a precise definition of the algorithm.

solutions with easiness even beyond ay [4, 59, 96]. This circumstance is not surprising by itself,
since many different algorithms and heuristic solvers do exist not satisfying detailed balance, and
for which the location of «g4 assumes in principle no special meaning. To this class belong the
best-performing algorithms, such as survey propagation (SP) guided decimation [16, 17, 82|, which
is based on a message passing strategy. However, even in the case of simple MC procedures, where
the algorithmic threshold is naively expected to coincide with a4, this thermodynamic prediction
is actually overridden, see figure 7.1. We refer to such simple algorithms succeeding beyond ay,
despite the energy landscape becoming very complex and rich of fatal traps due to the mean-field
nature of the problems, as being smart.

A lot of work has been devoted to the characterization of this smartness in terms of the under-
lying visited energy landscape and of the structure of the space of solutions. The current under-
standing is that, even though the properties of typical solutions are correctly described by standard
thermodynamics, the fact that arbitrary out-of-equilibrium procedures should always end up finding
typical solutions is not guaranteed at all: this encourages the study of large deviation properties of
the landscape as a tool to interpret algorithmic behaviour [15, 31, 102]. A prominent role in this
program has been played by the notion of frozen variables [98, 101]. It has indeed been observed
that all efficient algorithms return unfrozen solutions, i.e. solutions which do not contain an exten-
sive number of frozen variables [59, 72|, thus supporting the conjecture that only unfrozen solutions
can be found in linear time [101, 103, 104]. The interpretation of this fact is straightforward: frozen
clusters induce very strong correlations among the variables, an extensive number of which has to
be set in a very coherent, precise way in order to avoid inconsistencies, and as a consequence local
search algorithms “attacking” them would undergo an exponential slowing down due to the need for
global rearrangements whenever an error in the search process is made.

The resulting picture would then be the following: efficient algorithms are capable of finding

solutions in atypical, unfrozen clusters, which are guaranteed to exist up to the freezing threshold
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7.2. A novel insight into a CSP phase diagram

ay (the rigidity one «;, on the contrary, accounts for the appearance of frozen variables in typical
clusters only). The freezing transition ay > «, is hence proposed as the ultimate algorithmic
threshold [15]. This perspective is in agreement with numerical results from the literature, see for
instance [31]|, where a message passing strategy dubbed belief propagation reinforcement was able
to find solutions to the bicoloring problem for connectivities greater than ..

One may be worried, however, for the fact that the concept of “atypicality” as discussed so
far would be still rather vague and of unspecified utility for what concerns the understanding of
individual algorithmic behaviour: exponentially many atypical regions are indeed expected to exist
in the space of solutions, each with its own features (such as a specific rigidity point '), but we are
generally unable to predict to which class of them a certain algorithm will be attracted, and hence
to compute the relevant a;. Despite this limitations, the perspective here depicted induces us to
hope that some algorithm actually saturating the bound «a; does indeed exist. It also suggests a
natural ally in the design of new efficient algorithms: by appropriately biasing the measure over the
set of solutions, one could hope to transform the longest lasting unfrozen atypical configurations
into typical ones, and employ the resulting gain of knowledge in order to build the ultimate solver.

Along this line of work can be found the results of [5], observing that solutions obtained by
efficient algorithms belong to regions of configuration space characterized by a density of solutions
higher than in the typical case. This can be formalized by introducing the notion of a local entropy
measuring the logarithm of the number of solutions as a function of distance in configuration space
(e.g. the Hamming distance counting the number of different bits for models with binary variables)
from a certain reference configuration. The reference configuration does not need actually to be
a solution: the local entropy information at small distances was used in [6] to build the so called
Entropy-driven Monte Carlo (EAMC) procedure, which starting from a random configuration is able
to find the regions of the highest density. Remarkably, configurations maximizing the local entropy
are likely found to actually be solutions.

In this last chapter, we will focus on the behaviour of MC based annealing procedures. Even
though, as we said, this is not the most general class of algorithms, nor the best performing one,
we believe understanding the very reasons underlying its smartness to be desirable and possibly
useful. A fundamental tool to our program will be the notion of optimized interaction f°P', defining
a probability measure for which a4 is maximum. As figure 7.1 clearly shows, there is an evident
similarity in the behaviour of our T' = 0 algorithm when running with f%2* or f°P*. This and other
similarities, such as the one regarding the observed pair correlation function (gap distribution) of
the system along the procedure, point in the direction of attributing the observed smartness of ffat
to the fact that the algorithm is in this case attracted towards atypical regions of phase space which
are “close” (in the sense that they share similar properties) to equilibrium configurations for foPt

which have not yet clustered.

7.2 A novel insight into a CSP phase diagram

What is the origin and the meaning of the observed postponement of the dynamical transition
when switching to f°P*? In the most studied case of a uniform measure, it is generally accepted
that clusters have an intrinsically geometric nature: they are, roughly speaking, “islands” of solu-

tions separated in configuration space by extensive lengths (according to some proper definition of
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7.2. A novel insight into a CSP phase diagram

Figure 7.2: Cartoon of the landscape of solutions around oy, as seen from the uniform measure ffat,
Color legend: red regions represent solutions belonging to typical clusters, grey areas are atypical solutions
instead. Clusters may be connected to the rest of solutions by atypical (entropically suppressed) paths.
These paths can merge into an atypical connected component that traps the dynamics of local algorithms
moving from solution to solution. Standard MC cannot equlibrate in this region. However, basing the
acceptance probability over f°P' enables the algorithm to equilibrate and decorrelate up to the optimized
clustering point azpt, which is supposed to be the point where also this connected component finally breaks
down.

distance) of “unsatisfied sea”. Let us suppose, in first approximation, that clusters are such purely
geometric entities and that their definition as a consequence does not depend from the form of the
soft potential. By changing the potential, then we should be able to focus our attention on atypical
regions of the original landscape: the simplest, quite naive explanation for the increase of oy is that
these regions are clustering later, i.e. at bigger a.

This assumption results to be a too drastic simplification. In particular, a system that appears
to be trapped inside the planted cluster according to fi2t, for @ > ay, is actually able to escape
the cluster if we promote the dynamical MC rule to be based on the optimized interaction (this,
and the other numerical results here discussed, are presented in detail in subsection 7.2.2). The
reason is that, considering the very high dimensionality of phase space, clusters may as well be
connected by some rare paths which are entropically suppressed, according to the uniform measure.
The effect of the biased potential is to “widen” (give probability to) these channels. A pictorial
real space representation can be given for our model in terms of caging: the switch-on of a short
range attraction between particles effectively opens void channels that may favour the escaping of
particles from an apparently locked situation. In this sense, a direct comparison or identification of
clusters between the models obeying f12* or foPt is at the very least risky.

A possibly useful insight can come by interpreting clustering as the progressive, inhomogeneous
rarefaction of the high dimensional space of solutions, which hence should appear as a sort of infinite
dimensional porous material, or “sponge”. Forming clusters are connected to the rest of the solutions
by increasingly rare paths, which nonetheless may still survive even beyond the clustering point ay.
Moreover, this picture also closely reminds us of the local entropy approach of [5], proposing exactly
an inhomogeneous density profile in the space of solutions. In the present scenario, it is reasonable
to expect local algorithms to be attracted towards atypical, highly connected (say denser) regions
of solutions when approaching and crossing the dynamic transition threshold ag. This means
that different regions may become disconnected at different o’s and that, in general, a connected
component may still survive beyond «g. The naive intuition behind azpt is hence that it coincides

with the point where even this atypical, connected component finally breaks down.
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7.2. A novel insight into a CSP phase diagram

The nature of this connected component can be related once again to the real space interpre-
tation of the optimized measure. It is indeed reasonable to assume that, starting from a “locked”
configuration belonging to any cluster (as seen from the original problem), we can open void chan-
nels by switching on the optimized interaction, that allows particles to move freely and thermalize
according to the biased measure. We should then be able to get arbitrarily close in the space of
solutions to any other cluster, which is likely connected to the same component by analogous chan-
nels. Of course, we cannot use this “trick” to recover ergodicity in the original clustered measure by
switching back to the ff12% interaction, since the way inside a cluster should coincide with its way
out, which as we said is entropically suppressed. These ideas are pictorially sketched in figure 7.2.

The proposed picture is supported by the following numerical results concerning the out of
equilibrium behaviour of a MC local search algorithm working at fixed zero energy (see section 7.2.1),
that will be addressed in detail in the rest of this chapter. Its performance was already shown in
figure 7.1: even working with the flat potential the algorithm is able to go beyond ay4. A closer look
at the configurations found by the algorithm in this case allows to give a quantitative description
of their atypicality: the pair correlation function between neighbours on the graph, which we call
gap distribution, deviates from its equilibrium value?, that is from proportionality to f32*. When
initialized in one of these solutions, the BP iterative procedure converges to the trivial fixed point.
This was linked, see e.g. [102], to the fact that replica symmetry breaking at the one-step level is
not sufficient to describe the totality of clusters. Likewise, if we perform a zero energy MC starting
from these solutions, the behaviour is very different from that of a simple cluster: dynamics is able
to find a “way out” allowing the overlap to decorrelate (this is why we prefer to speak of a connected
component, rather than a cluster), but also dynamics slows down if we increase the waiting time.
This behaviour resembles, at least at the qualitative level, the one of aging: the solution space
visited by f12* should be rather intricate and dominated by a decreasing number (with time) of
rare directions or channels allowing the system to decorrelate.

Instead of addressing directly this complicated structure from the point of view of f2t we obtain
some insight by studying a dynamics starting from these configurations but evolved according to
fOPt. In this case the system is able to explore much more freely the space of solutions. We observe
that after a transient the system reaches what appear to be typical solutions for f°P*. This has two
important lines of interpretation. On the one hand, we observe that solutions found by the algorithm
working with 2% are “close” to typical solutions for fPt, where by close we refer to two aspects:
the fact that the non-trivial observed gap distribution shares some similarity with f°P', and that the
system can apparently still equilibrate using f°P'. The smartness of the searching algorithm, even
when working with f%2*, hence corresponds to the fact that it is able to spontaneously optimize
distances between variables, to some extent, in order to favour the dynamics of the system. The
second point we would like to stress is that, conversely, typical configurations from the point of
view of foP* appear to be related to the anomalous connected component in the landscape of ffat,
We are thus led to hypothesize that agpt is closely related to the maximum value of « for which
such a connected component, i.e. with zero internal overlap, survives in the landscape of the
unbiased potential (since otherwise a better potential could possibly be found further increasing

aq). The behaviour of the search algorithm when running according to f°P!, showing no anomaly

ZWhenever the effect of short loops is negligible, the pair correlation functions obeys g(r) o« e (™ where v(r)
is the pair potential.
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uncol

Figure 7.3: Constructing a pseudoenergy landscape from a constraint satisfaction problem. With this
orientation of the y-axis, the pseudoenergy is defined as the smallest value of «, according to the ordered
list of edges that was initially drawn, for which a given configuration (on the horizontal plane) ceases to be
a solution. Reprinted from [59].

and exhibiting a power-law divergence of the timescale to increase o exactly in correspondence of

¢ . L. .
o, can be read in this direction.

7.2.1 T =0 Monte Carlo algorithm

The algorithm, looking for satisfied configurations at increasing values of «, proceeds as follows. At
first, an ordering of the possible N(N —1)/2 edges (ij) is drawn in a list identifying an instance of
the problem, and variables are initialised in a random configuration. Edges are iteratively proposed
one at a time, starting from the situation M = 0. If variables (ij) associated to the (M + 1)-th
edge satisfy the constraint, that edge is added to the graph. Otherwise, a T' = 0 heat bath Monte
Carlo sweep as described® in section 5.1.2 (an update of N variables among the solutions to the
problem with only M interactions) is performed until the (M + 1)-th edge is satisfied. Notice that
since we add a link only when the relative clause is satisfied, and since 7= 0 MC moves cannot
increase the energy, during all the procedure the system only visits proper solutions of the CSP.
This same procedure can be applied to different interactions by changing the heat bath weights. We
do not worry about acceptance rates when comparing 2t and foP*, since heat bath comes with no
rejections: the time here simply corresponds to the number of accepted moves (we allow though for
the possibility that a variable chooses to “flip” to its current position).

A pictorial interpretation of this kind of algorithms can be obtained by following the ideas of [59].
First one introduces a pseudoenergy landscape as represented in figure 7.3. It can be defined as
following: if we imagine to cut the pseudoenergy horizontally (at fixed «), each slice would then
correspond to one of the bidimensional snapshots of figure 3.2, with solutions in this case living
in the interior of the pseudoenergy surface. In a more precise way, we associate for each point in
configuration space (the plane) a value of the pseudoenergy corresponding to the smallest value of
«, according to the list we have fixed, for which that configuration ceases to be a solution. Our

algorithm performs a stochastic descent in such a complex, glassy landscape. Notice, however,

3We use once again the clock version of the continuous coloring, since we want to compare the numerical data
from optimization algorithms with the most accurate determination of the thermodynamic thresholds ay and Oézpt.

85



7.2. A novel insight into a CSP phase diagram

that the reason for algorithmic failure should not be attributed to the fact that the system gets
trapped into a local minumum of the pseudoenergy lying above agyt, since we believe the system
never to enter a proper cluster. In analogy with the topological interpretation of standard glassy
dynamics [64], the slowing down of the search procedure should be connected to the approaching to
the (pseudo)energy value (that is the value of «) defining the dynamic transition, where many local
minima form in first place and there is abundance of flat directions. This appears to be in agreement
with the behaviour of the algorithm when running according to the optimized interaction f°P!, since
in this case we observe a smooth power-law slowing down approaching agpt. One may be tempted
to associate agpt with the location of the relevant topological saddles-to-minima transition in the
portion of the pseudoenergy landscape actually visited by the algorithm (according to our definition,
the pseudoenergy surface is independent from the choice of ¢ or foPt the only difference being
encoded in the statistical weight we attribute to stationary points to determine what we call the
typical properties of the landscape). We should warn the reader, however, that these ideas are at
the moment just a qualitative suggestion. In particular, no rigorous analysis of the kind of [24] has
been proposed in the literature for the topology of the pseudoenergy landscape here described, nor
it is obvious whether the above construction for the pseudoenergy would result in a continuous,
differentiable surface (consider for instance that « is truly continuous only in the thermodynamic
limit).

7.2.2 Numerical results
The following points will be addressed in detail in this section:

1. Comparison of the algorithmic performance using fi2* or f°P*, pointing agpt as the correct
algorithmic threshold for f°P', and as an upper bound to the algorithmic threshold for any

other generic interaction.

2. Gap distributions along the search procedure. When running according to f°P', the gap
distribution stays close to its equilibrium expectation foP*. Conversely, when running f12t the
gap distribution becomes noticeably out-of-equilibrium even before ay. The gap distribution
develops in this case some qualitative feature similar to f°P'. This may be connected to the
similarity in the performance between the two algorithms, and gives a practical explanation

to the observed algorithmic smartness.

3. Further exploration around the solutions found by the algorithms. These solutions do not
appear to belong to what we would properly define as a “cluster”. We study the behaviour of
the overlap, which always decays independently from the interaction used even above ag, and

of the gap distribution as a function of time.

4. Finally, we show the evolution from the cluster planted according to ffiat. A zero energy
MC dynamics exploiting f°P' is able to escape the cluster and to apparently converge to

equilibrium in the biased measure (which has not yet clustered).

Comparison of algorithmic performance

We will refer to the data already presented in figure 7.1. We call ta, the number of MC sweeps
that are needed in order to increase the number of edges in the graph from M to M + AaN. The
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Figure 7.4: Algorithmic performance: the time needed to increase the connectivity a by Aa = 0.2 diverges
as a power law approaching azpt > g when fOP!is used. The extrapolated algorithmic threshold corresponds

to o = 36.72, to be compared to a?ipt = 37.71(1) obtained from BP in section 6.1.2. Inset: detailed view of
the long time region. Color dashed lines are meant to guide the eye.

time for a single link addition is indeed a very irregular quantity, discontinuously jumping from 0 to
very large values (up to order 10% ~ 107). The purpose of ta, is to quantify the amplitude of these
fluctuations, which increases with oe. We choose Aa = 0.2 so that in each interval we likely find a
“hard link”, requiring a time much greater than the average for that level of connectivity: with this
choice, ta, is thus comparable to the time needed for adding such hard links. For smaller Aq, on
the contrary, one is still left with a consistent amount of noise due to the presence of many intervals
without any relevant hard link inside; this situation can of course be dealt with by averaging over
some samples, but at the price of defining a time scale ta, that is smaller than the actual difficulty
of the problem the smaller is Aa. Notice that we stop when the time to add an edge exceeds a
threshold equal to 10 MC sweeps.

We averaged the logarithm of ta, over 55 (respectively 30) instances of the problem for N = 10*
(2-10%). In order to avoid trivial biases, we only considered data up to the smallest value of a that
was reached by all the samples in each case. For the f°P! interaction and size N = 10%, this bound
is equivalent to o ~ 36.4, while solutions are found for some sample even up to o =~ 36.8. The
average over the samples of ta, at fixed «, however, is particularly sensitive to the presence of rare
samples diverging earlier. A safer quantity to consider then would be the average of a at ta, fixed.
We followed of course also this route, obtaining compatible results. This second approach, on the
other hand, is subjected to a cutoff on ta, given by the smallest value of ta, that was reached.
We observe that for our data this further limits the explored range of «, so we decided to present
the data in the first way. Notice, however, that the very last points for N = 10* are presumably
dominated by such a few most diverging samples (see figure 7.4, inset).

The graph instances used are of course the same for the two potentials. The foP* data is found
to be compatible with a power law diverging very close to agpt, as shown in figure 7.4. The ffat

interaction seems to asymptotically perform worse. Nevertheless, the behaviour at high « is very
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similar and there appears to be no sharp advantage in using f°P' at the time scale we are able to
investigate. This is a first hint that the origin of the algorithmic smartness of f12* should be due to
some self-generated similarity with the foP! case: as we are going to discuss in the next paragraphs,
from our analysis it emerges that the algorithmic strategy based on ff2* explores more frequently
than expected regions that would have been favored by f°P', giving effectively higher “weight” to
them. These findings support the idea that the very existence of azpt could affect and possibly

explain also the behaviour of a simple algorithm based on ffiat,

Gap distributions along the search procedure

A precise characterization of the atypicality, with respect to the uniform measure, of the solutions
found above oy can be given in terms of the distribution of angular distances between neighbouring
variables. We plot in figure 7.5 the histogram of these distances as extracted from the configurations
(one from each sample) obtained for N = 10* at different values of a along the procedure. The
histogram is normalized to the value of p = 200, in order to follow the definition of f. A first
comparison between the behaviour of the observed gap distribution for the two different potentials
fA2¢ (on the left) and fP* (on the right), shows that the former strongly depends on « even close
but before o, while the latter remains stationary in «. This observation matches the fact that the
behaviour for f°P! in figure 7.4 was extraordinarily consistent with the thermodynamic prediction
agpt: we are possibly exploring a quasi-equilibrium regime.

From the point of view of the algorithm running f%2t, figure 7.5 shows that the system ends up
in configurations characterized by an excess of contacts between neighbouring particles. We already

know that such a shape for the interaction is responsible for an increase of oy at the thermodynamic
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Figure 7.5: Left: atypical configurations found by the algorithm running with £t are characterized by
a peculiar gap distribution displaying a peak at small gaps, already forming before oy = 34.63(2). The
equilibrium distribution in this case would have coincided with plain ff2t instead. Right: if we run the
same algorithm but using f°P!, the gap distribution always stays close to its equilibrium shape. Since
ozzpt = 37.71(1), we are still well before the clustering transition for the biased measure.
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level. A suggestive interpretation of this result is that our search algorithm is, to some extent,
capable of self-optimizing distances between variables in order to surpass ag. However, the MC rule
is still built over f12¢ at any moment: this suggests that the good performance of the algorithm
should be strictly and mostly linked to the properties of the visited configurations. Finally, the non-
trivial gap distribution observed in the left panel of figure 7.5, even if smarter than f1%* (meaning
that can be associated to a measure reasonably clustering later than «y), is still less optimized than
fOPt. This hints oagpt as a theoretical (upper) bound to the asymptotic performance of our MC
algorithm, irrespective of the interaction potential used. Remarkably, however, there appears to be
no practical advantage in preferring foP* over ffat at the timescales that have been numerically

accessed in our simulations, see figure 7.4.

Further exploration around the found solutions

The atypicality of the solutions found by our algorithm can also be assessed by directly investigating
the surroundings space of solutions. To this end, we perform a zero energy MC dynamics starting
from the obtained solutions. We consider a = 35.5, that is reasonably bigger than ay = 34.63(2),
and for which the MC evolution starting from the state planted according to 2 is stuck inside the
planted cluster, see figure 7.6. In all the cases we consider N = 10* and average over 10 samples.
We consider in different colors the four possible combinations between the interaction used in
the search algorithm and the one used in the subsequent MC evolution. The first observation we

can draw from figure 7.6 is that the f2* 4 ffat data (in purple) is able to escape the plateau, even
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Figure 7.6: Zero energy MC evolution starting from solutions found by our search algorithm at a given
value of @ = 35.5 > ag, for N = 10*. Different colors are named “x+y”, where “x” is the interaction used in
the search procedure, while “y” is the one used in the subsequent MC evolution starting from those solutions.
For each type of curve, seven waiting times are displayed, t,, = 0,10,10%,10%,10* (full square),10° (empty
circle),108 (full circle). Black: equilibrium behaviour of the overlap. For a = 35.5, ffat is stuck into the
planted cluster, while the improved interaction f°P! is still able to decorrelate.
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7.2. A novel insight into a CSP phase diagram

though typical configurations for f2t are not. The overlap decay suggests us that the system is in
an aging-like regime, with an effective age of order 10 MC sweeps. For smaller waiting times, we
observe a practically stationary behaviour, as it is also confirmed by the gap distributions in the
first plot of figure 7.7. Interestingly, it looks like the system has a hard time trying to get back to
a gap distribution more similar to f12t.

The behaviour of the foPt+ f°Pt data (in yellow) is diametrically different. In this case, solutions
found by the search algorithm at the value of @ = 35.5 under consideration (which is by the way
rather smaller than the improved clustering threshold aJ?* = 37.71(1)), are found to behave very
closely to the expected equilibrium configurations. Once again, we can identify a time of order 108
MC sweeps, after which the overlap data seem, this time, to collapse onto the reference planted
curve.

The two remaining combinations display specular behaviours. The idea, also supported by
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Figure 7.7: Gap distributions at different t,,’s during the experiments of figure 7.6. Upper left corner:
flat o fllat Upper right: foPt + Pt Bottom left: foPt + ffat  (In dashed black, the gap distribution from
the search procedure using f%2t). Bottom right: f%at 4 fopt,
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7.3. Quench and simulated annealing

the behaviour of the gap distribution (bottom line of figure 7.7) is that solutions found by the
ffat search algorithm can evolve into equilibrium configurations for foP*, and viceversa equilibrium
configurations for f°P' (or solutions found by the f°P* search algorithm, which is almost equivalent)
can evolve into solutions very similar to the ones found by the f2* search procedure. This supports
our proposal of a connected component, disjoint from proper clusters (apart for rare channels

essentially invisible to fﬁat), that is accessed by local search procedures.

Evolution from the original clusters

We conclude this discussion by showing that clusters are an interaction dependent (i.e. not purely
geometric) concept, and that well formed clusters for 2 may be felt not the same way by foPt,
since the entropic barriers underlying the very physical definition of clusters as responsible for
dynamical confinement are different for the two interactions. To this end, and similarly in spirit to
an analogous experiment carried out in [60], we plant the system according to f12* at o = 35.5 > ay,
and evolve it through the usual zero energy MC following f°P'. As shown in figure 7.8, the system
is able to escape from the planted cluster and moves towards configurations similar to those that

are typical according to fOP!.
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Figure 7.8: Right (color lines): basing the dynamical rule over f°Pt the system is not trapped inside a
cluster, even though it was initialized by planting according to fi2t at a = 35.5 > a4. For sufficiently large
waiting times, the overlap curve gets close to the equilibrium behaviour for f°P' (black solid line) at the
same value of a. Black dashed line represents the reference planted cluster according to f12*. Left: also the
gap distribution tends to the equilibrium behaviour according to foP°.

7.3 Quench and simulated annealing

The phase diagram for the improved interaction shown in figure 6.4 takes also into account temper-
ature, as the external parameter relaxing the hardness of the excluded volume constraint. A natural
question is whether azpt could be interpreted, in analogy with the previous E=0 situation, as the
easy-hard transition for optimization procedures based on f°P* MC dynamics in temperature, and

as an upper bound for those based on ff2t. Our data, unfortunately, point in a different direction.
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Figure 7.9: Optimization by decreasing temperature is easier using the interaction ff2*. Data is displayed
for N = 10* and averaged over 10 samples (the same for both f#2* and f°P* and for the two procedures).
The energy e counts the number of violated constraints divided by N, as a function of time after the quench
or of temperature during the SA. Left: for each value of o, the 12t procedure is able to reach lower energies
in any given time window, where ¢ is defined as the number of accepted attempts to update the variables,
divided by N. Asymptotically, f12* appears to succed for values of « at leas as big as o = 36 > ag (5th blue
curve from the bottom), while the determination of the behaviour of f°P* becomes more uncertain already
for o = 35.5 (4th orange curve from the bottom). Right: we show the behaviour of SA for a fixed value of
the cooling rate, in order to display different values of . The asymptotic limit AT — 0 will be studied in
the following; however, fi2t always appears to perform better. Black dashed line represents the equilibrium
annealed (paramagnetic) energy (6.3) for v = 35.

The first intriguing observation is that, for both a quench to T" = 0 and simulated annealing
(SA), fAat performs better than fOP, see figure 7.9. Both procedures are initialized from random
configurations. In the case of a quench to T' = 0 we adopt a rejection free version of the Metropolis
algorithm: first we compute the local energy contribution (number of violated edges) for each of
the p = 200 states of variable ¢ coming from the interaction with the neighbours (this can be done
by cycling one time over the neighbours and increasing the local energy by 1 to all the states of
variable i that are inside an interval of +6, random shifts included); then we propose a new state
for variable ¢ uniformly among those having a local energy equal or smaller than the current one.

In the f%2 case the proposal is automatically accepted, and one is left with exactly a rejection
free version of the usual Metropolis algorithm at zero temperature. In the f°P case, on the contrary,
if the proposed local energy is equal to the current one, the move is accepted with the Metropolis
rule applied to the soft part of the interaction, i.e. with probability min(1, w(Znew)/w(xo1q)), where
w(z) = []; fgg;j_wij and the product is carried over the neighbours j for which the constraint is
satisfied. It is evident that the f°P' procedure is identical to the previous one, with the exception
that some of the moves that leave the energy constant are in this case rejected. Even accounting
for this difference in the acceptance rates of the two procedures, by defining in the second case a
MC sweep as the successful update of N variables, the energy decreases faster when using ffat,

In the simulated annealing we decrease temperature from T, = 1.5 to T = 0 with steps of
AT = Tyax /7 for 7 = 10%,10%,105, (107) and N = (5-10%),10*. A single MC sweep is performed at
each temperature according to the heat bath rule (for the last step at T" = 0, we force variables to
select one of the states minimizing the local energy contribution, even if nonzero). The amplitude
of the hard-core term proportional to e=# of fP! is fixed by equation (6.2); the equilibrium annealed

energy (6.3) for & = 35 is shown in figure 7.9 as a black dashed line.
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Figure 7.10: Behaviour of the gap distribution during a quench to T" = 0 using the flat potential. Left:
gap distribution for a fixed value of a = 35.5. Between ¢ = 10% and ¢+ = 107 all the samples have reached
zero energy. The optimization process can be schematized in two regimes: in the initial time sector, when
the number of violated constraint to be minimized is still consistent, the system favours exactly closed gaps
in order to efficiently decrease the energy. This corresponds to an initial increase of the peak at x = 6 with
time. At longer times, when the energy is zero or it is close to be zero, the system is able to relax some of
the closely satisfied constraints, and the peak decreases. Right: evolution of the peak with time for all the
values of a. Curves for o < 35.5 display a clear decrease in the peak for long times; for all of them the system
has reached zero energy before ¢ = 107. The curve o = 36 is reasonably about to start decreasing. The
corresponding energy, see figure 7.9, starts bending towards zero with a faster than a power law behaviour.
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Figure 7.11: Same as figure 7.10, but using the potential f°P'. In this case the energy optimization
performs worse, and we are not able to reach zero energy for a = 35.5 in ¢t = 10”. The red curve on the
right panel, corresponding to o = 35.5, has not yet started decreasing. In the left panel, the gap distribution
shows marked non-equilibrium features: the x = # peak consistently exceeds f°Pt, while, and above all, the
distribution of violated gaps (inset) has a non constant shape.

An inspection of the gap distributions at different times along the quenching procedure is pro-
posed in figures 7.10 and 7.11. In this case, a non-trivial distribution may arise in both the soft
region |x|> 6 and in the hard one |z|< 6. For what concerns the soft region, we observe once more
the spontaneous formation of a peak at = 6, also when running f2*. Interestingly, the height of
this peak seems to posses a dynamics on its own: it is increasing with time as long as the energy is
consistently different from zero, then it starts decreasing once the energy has reached some threshold

of order 1073 and steadily approaches zero energy. A similar phenomenology is observed in the case
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Figure 7.12: Energy reached at the end of simulated annealing, averaged over 10 different samples for each
size. The SA cooling rate 7 is defined by the relation AT = T,ax/7, where Tiax = 1.5. The behaviour is
qualitative similar for the two interactions, but the energy scale is bigger in the f°P' case. However, in both
the cases, we are able to reach zero energy in all 10 samples up to a = 36 for N = 10 and 7 = 10%, and up
to a = 36.5 for N =5-10% and 7 = 107.
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Figure 7.13: Energy reached at the end of simulated annealing. Figure 7.12 data is presented as a function
of the cooling rate 7. For o < 36.5 all the samples reach zero energy using a finite cooling rate (points are
not displayed). For a = 36.5 (blue curve), zero energy is reached with both f%2* and f°P* for N = 5. 103
and 7 = 107 (we plotted it as a very low value outside the frame due to the log scale on uy).

of the improved interaction fOP'. This pronounced out-of-equilibrium character is testified also by
the non-triviality of the hard part for |x|< @ (inset on the left panel). In particular, comparing the
observed distributions of negative gaps for f2* and foPt (which we recall to have been optimized
only for positive gaps), we notice a different slope close to x = 6. We believe that the shape of the
distribution of negative gaps may play a decisive role in understanding and predicting optimization
performance.

The endpoint energy ug from simulated annealing is shown in figure 7.12 as a function of « for
different sizes and cooling rates. A first remark is that the energy scale for f°P! is greater than that
for f12¢ for all the cooling rates we considered. The asymptotic behaviour for an infinitely slow
cooling rate is however hard to extrapolate. Figure 7.13 somewhat suggests that ug should go to
zero faster than a power law at least up to o = 37.5, for both the interactions. The behaviour for

bigger s is unfortunately less predictable, given the available points.
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Figure 7.14: Comparison of the gap distributions at the end of the run after a quench to T' = 0 (top)
or simulated annealing (bottom). Even using the improved interaction f°P', we observe the emergence of a
non-trivial gap distribution in the range |z|< € (inset), characterized by an abundance of slightly unsatisfied
constraints = ~ @ with respect to the ffat case.

The gap distribution at the end of simulated annealing for the slowest cooling rate available for
N = 10% is shown in figure 7.14 (bottom line), and compared to the case of a quench to T' = 0 (top
line). As expected, the soft part of the distribution appears to be more “equilibrated” after SA than
after the quench, meaning that is more similar to f°P* when using the improved interaction and
displays lower peaks when using fi2. However, the hard part for |z|< @ shows a similar non-trivial,
uncontrolled behaviour as in the quench. A qualitative difference between the results for 8t and
fOPt is that in the former violated gaps appear to vanish approaching x = @ with a higher power.
This suggests that a higher concentration of particles at small positive gaps, as induced by f°P', may
also lead to an excess of small negative gaps, possibly disadvantaging optimization. The conclusion
we can draw at the present stage is that, as we have already stressed, the lack of control on this
part of the distribution, which is the most relevant to optimization, might be at the origin of the
difference in the performance between the two interactions. In this perspective, it would be very
interesting to perform again the optimization of the potential for T' > 0, i.e. considering this time
also the negative gaps region.

In figure 7.15 we adopt a different SA schedule, that is to fix a grid of temperatures (AT = 10~2)
and to perform n MC sweeps at each temperature. The overlap between the first and last configu-
rations at each temperature is plotted against the average energy (left panel). We observe that at

any given energy level the improved interaction fOP! is able to decorrelate better. It however gets
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Figure 7.15: Simulated annealing running f%2* is able to reach zero energy without moving much in
configuration space. On the contrary, using f°P', the system can decorrelate more, but gets stuck at some

threshold energy bigger than zero. In both panels we consider SA performed on a N = 10* system at
aq < a =36 < a®. The SA procedure is modified as follows: we set AT = 10~ and perform n MC sweeps

for each temperature, where here n = 3.2-103. The energy is averaged over the last n/2 sweeps in each step.
Left: overlap g between the first and last configurations in each SA step. Running f°P!, the system always
decorrelate faster, before eventually getting stuck. Right: we compute g, as the overlap with a reference
configuration chosen as the first one after that e < e,y = 3 - 1072, From that point on, the flat potential
dives almost “vertically” in the energy landscape.

stuck at some local minimum of the energy which is different from zero. In the right panel we plot
the overlap ¢.of between the final configuration at each temperature and a reference configuration
chosen as the first one after that e < ey = 3 - 1072, We observe that the algorithm running f92¢
is able to reach very low energy configurations without moving much in configuration space. These
results are consistent with the canyons versus valleys picture proposed in [102|, connecting the
efficiency of SA to the fact that equilibrium configurations around 7 may belong to the basin of
attraction of energy minima going down to zero energy (canyons). Our data suggests on one hand
that it should be possible to tune the bias in the interaction in order to explore different canyons
or valleys dominated scenarios, even though it is not obvious at all to us for the moment how to
control this strategy. On the other hand, it also raises some questions about the true nature of
the phase (in temperature) for a < ozzpt(T) as seen by the optimized interaction f°P*, which still

possesses glassy features as soon as the equilibrium setting is abandoned.

7.3.1 Increasingly slow annealing

In order to better understand this point, we build a variant of simulated annealing in which the
number of MC sweeps at each temperature is not a constant. Instead, we measure after each MC
sweep the overlap with the last configuration at the previous temperature, calling ¢ the number of
sweeps needed in order for such an overlap to decrease below a very low threshold ¢max = 1072. The
system is then further evolved for a time t at the same temperature, computing the gap distribution
and the average energy, before decreasing temperature following the same schedule as in the previous
experiment of figure 7.15, AT = 10~2. This adaptive procedure allows us to maintain the system
closer to equilibrium. This is testified from the observed gap distributions, which reproduce the

interaction f2t or foPt used in the MC update in both the soft and hard region, and from the average
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Figure 7.17: Increasingly slow annealing. We plot the number ¢ of MC sweeps necessary at each tempera-
ture in order to decorrelate to an overlap smaller than gma, = 1072 with respect to the last configuration at
the previous temperature. Both the gap distribution and the energy follow at each step the equilibrium pre-
diction, see e.g. figure 7.18. Vertical lines, whenever present, represent the thermodynamic estimate of the
dynamic transition temperature Ty(a) for 12 (above g = 34.63) and T3> (a) for foP* (above a " = 37.71).

energy, which exactly follows the equilibrium paramagnetic prediction (6.3) for each temperature
that was reached. In particular, since the temperature dependence (6.3) is the same for the two
interactions foP* and ff2t we can use interchangeably temperature or energy in order to compare
the final points of the two algorithms, see figure 7.18.

This situation is summarized in figure 7.17 (extending on two pages). We have considered just
two samples, one for each different size N = 5-10% and N = 10%. For all the values of «, the SA
running f°P! is able to get to consistently lower temperatures, and hence lower energies, with respect
to ffat before the time needed to switch to a lower temperature becomes numerically unfeasible.
The first two panels show respectively @ = 34 and o = 34.5, thus both below the clustering point
ag for f12¢. The ff2¢ algorithm is however unable in these cases to reach zero energy, and rather
shows a divergence of times with an asymptotic energy /temperature likely to be strictly bigger than
zero. Comparing with the f°P' data at the same connectivities, though, we observe a bending of
the curve at low temperatures which is hardly predictable by the first part of the curve only. Some
signs of a similar bending can be hinted by looking at the f°P' data for o = 35,35.5. However,
the bending happens at bigger times ¢ when approaching the relevant clustering threshold, so that
at the timescales numerically achievable, and especially in the vicinity of ag (for f12%) and of agpt
(for foPY), we are restricted to data in the first, non-predictive part of the curve, and hence we
cannot distinguish any qualitative or quantitative change of behaviour when crossing the dynamical
threshold. What we can say, though, is that above their clustering thresholds both algorithms
behave in reasonable agreement with the thermodynamic expectation.

In conclusion, our data suggest that the region o < azpt

should not be considered too “sim-
ple”, when temperature is introduced, even if working with the optimized f°P'. While reasonably
reversible procedures, such as the one discussed in this last subsection, are still at least consistent
with the thermodynamic expectations, more markedly out-of-equilibrium algorithms such as stan-
dard SA show a behaviour less easy to understand. In particular, even if the ff8t interaction leaves
the reference equilibrium paramagnetic energy curve earlier in temperature, as also testified by the
results in this last subsection, when implementing standard SA the flat potential appears to be able

to outperform f°P' in the long run, see e.g. figure 7.9b. From our point of view, the fact that
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Figure 7.18: Endpoint energies for the SA experiments of figure 7.17 and system size N = 10*. Black
dashed lines are the paramagnetic energy (6.3) for « = 34 (lower curve) and « = 38.5 (upper one).

standard SA using f°P* gets stuck in high-lying local energy minima where instead f12* succeeds
to reach zero energy came rather unexpected. All things considered, if on the one hand the present
scheme is not sufficient in order to better control the behaviour of out-of-equilibrium procedures in
the whole energy landscape when temperature is concerned, on the other hand we now realize there
is no reason at all it should have to, the crucial point possibly being our lack of command onto the
very distribution of violated gaps (the optimization of f°P' was indeed carried out only for 7' = 0).
Understanding the peculiar atypical properties of glassy energy landscapes and the way they affect

out-of-equilibrium behaviour still remains an intriguing, compelling open question.
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Conclusions and Perspectives

In this thesis a relatively recent model [70, 80| has been explored from the perspective of random
constraint satisfaction problems. Its connection with the well known g-coloring problem of random
graphs has been at the center of our whole setting; in particular, we effectively showed that this
model can be considered as a continuous variables extension of the former discrete random CSP.
Similarly to the g-coloring, the continuous problem belongs to the RFOT class (random first order or
discontinuous mean-field glass transition) for appropriate value of the parameters of the model. The
relevant parameter is in this case the excluded angle (or particle diameter) 6, which is proportional
to the inverse of the number of colors g. This implies that for small 8 the transition becomes random
first order. Transition lines can be precisely located through belief propagation numerical method,
but are strongly dependent on the discretization precision d adopted. For d = 10 the model is
shown to be RFO at least for values of 6 smaller than 6 = %r.

What is the point in sponsoring a model as continuous, if one allows discretization to sneak
in through the back door, the scrupulous reader might wonder. First, notice that discretization is
only needed in order to numerically solve the BP equations and extract precise estimates of the
thermodynamic quantities of interest. Even though the corrections decay fairly slowly, as 1/d, it is
reasonable to hope that some less precise but reliable extrapolation could still be obtained. However,
the focus of this thesis is mostly about the physics around the dynamic or clustering transition. In
this setting, there is no reason to believe that the effects induced by (a high) discretization should
extend from the mere quantitative to also the qualitative level. For this reason, we preferred to
support our numerical-analytical predictions from BP with direct numerical simulations of the dis-
cretized version of the continuous model. In doing so, we constantly kept as a privileged perspective
the traditional field of discrete random CSPs, that is far from being settled. In particular, the aim
to understand and possibly control the algorithmic easy-hard transition for optimization procedures
cannot prescind from an accurate determination of the various thermodynamic thresholds, which
may then prove to be relevant or not in order to explain algorithmic performance.

Our results allow to interpret and characterize the atypicality of solutions found by a simple zero
energy MC procedure in terms of the observed distribution of angular distances between neighbours
on the graph. This is particularly convenient, since the model is also equivalent to a 1-dimensional
realization of hard-spheres, and the angular distance between variables directly enters the definition
of the Hamiltonian. At any rate, the same biased thermodynamics approach followed in this thesis
can be applied also to more traditional discrete random CSPs such as k-uniform hypergraph bicol-
oring [18|. In this case, the relevant quantity playing the role of the angular distance in our model,
is the number of variables in each clause taking the same reference value, e.g. —1. The common

point between the two models, is that in both cases it is possible to quantify how much a given
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set of variables participating in a same interaction is far from satisfying the constraint in a tight
way, being this quantity a physical distance or not. We believe that where this is possible, then
the following result from this thesis should apply: out-of-equilibrium MC procedures moving from
solution to solution while increasing the variable node connectivity are naturally attracted towards
configurations that satisfy the constraints in a tighter way, and for this reason they can succeed
even beyond ay.

This opens up to at least two complementary lines of development. On the one hand, there is
the question of how our results compare with other, usually more efficient, optimization strategies,
such as message passing (e.g. SP guided decimation [16]) or Entropy-driven MC [6]. Is the gap
distribution still relevant in order to describe the solutions found by these algorithms? How does
their performance relate with what we have called the optimized or optimum dynamic threshold
of 2 This kind of questions should apply to both the continuous coloring and the hypergraph
bicoloring. As a first step in this direction, it would be essential to compute the SAT/UNSAT
threshold for the continuous coloring and compare it to agpt. On the other hand, an important
role in the comprehension of usual random CSPs is played by the notions of rigidity and freezing
transitions. We somewhat avoided to analyze this aspect, that would require a non-immediate
generalization of the concept of frozen variables to the continuous case. A perhaps better candidate
to investigate the relation between rigidity, biased measure (according to the definition we have
adopted) and algorithmic performance would be for a start a discrete model such as hypergraph
bicoloring [15, 18|.

Another interesting perspective regards the exploration of the energy landscape by the use of
procedures that admit some fraction of violated constraints. In this respect, unfortunately, our f°P*
interaction, that was optimized only at T = 0, proved not to be a resolutive choice. However, we
can still learn something important from our analysis: out-of-equilibrium procedures, such as a MC
quench to zero temperature or simulated annealing, appear to visit configurations whose atypicality
we are able to qualify and quantify through the distribution of both positive and negative gaps
between nearest neighbours on the graph. This suggests that by appropriately biasing the measure
we might be able to study the (topological) properties of the landscape actually relevant to out-
of-equilibrium behaviours, e.g. to mean-field aging. An interesting strategy in this respect would
be to try to optimize the interaction during the simulation itself by measuring the gap distribution
along the run. More generally, our analysis highlights the need of combining a soft bias, as the one
adopted throughout this thesis, with also a modification of the hard-core energy term, which could
in turn be optimized in a similar way to the one discussed in this thesis for the soft bias. Studying
the typical properties in this modified setting might cast some light on the atypical properties of
the original landscape, possibly improving algorithmic performance.

In Chapter 6 the maximization of the complexity has been proposed as a handy powerful method
to automatize the optimization of the bias in order to postpone as much as possible the dynamic
transition cy. We have managed to approximate the soft bias with order 10? independent parameters
by discretizing the interval [0,27). Despite the very promising results, we lack a rigorous proof
connecting the complexity maximization with that of ay. Ideally, the infinite dimensional hard-
spheres model, where an analytic expression for oy is known and can be used to build a rigorous
optimization procedure [69], could contribute to shed some light on the validity or the limitations

of the proposed approach.
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In sections 4.1.3 and 4.1.4 we have given the definition of a simple Bayes optimal inference
problem derived from the continuous coloring Hamiltonian. This model could be very profitably
studied from the point of view of inference. In particular, our analysis showed that the continuous
coloring, having a smaller akg threshold with respect to its discrete counterpart, should represent
an easier inference problem. On the other hand, our improved f°P', which was obtained in order
to postpone ag4 and favour the optimization problem, is disadvantageous to inference, as it also
increases aks. It would be hence interesting in this perspective to repeat the optimization of the
interaction in the opposite direction with the aim of minimizing aks.

Finally, the continuous coloring, analyzed in this thesis around the dynamic or clustering point
ayg, should as well present a jamming transition in correspondence of its zero temperature SAT /UN-
SAT treshold. The MKK model in d = 2 was precisely introduced in [70] as a sparse model for
jamming. This led the authors of [80] to address this point in a similar model (they show results
for the continuous coloring at connectivities where the transition is continuous, or still for the d = 1
case but with multi-body interactions) by the use of the BP methodology: on the one hand, they
introduced a couple of approximate schemes in order to solve analytically the equations, but needing
numerical support; on the other hand, a numerical solution of the BP equations suffered from the
necessary presence of discretization, spoiling the continuous nature of the model. A progress in this
direction could be likely made by a direct numerical simulation with continuous variables, which is

particularly feasible in low dimensions thanks to the sparsity of the interactions.
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Appendix A

1RSB equations for m =1

In this appendix we show how to obtain equation (3.21) when the replica parameter m = 1 for a
general model with pairwise interactions, and under the additional assumption that its RS solution
is paramagnetic, i.e. the RS fixed point messages are uniform over the alphabet. Firstly, let us
recall some useful definitions. The BP iteration on a given graph eq. (3.11) can be framed into an

update function

DQupdate(T; {Vk}d) = {Vk}d HZ@/J x, ) Vg (k) (A1)

k=1 xg
which takes as input d arbitrary messages and returns a new message (it is hence a function of
z, x € X with ¢ = |X| the size of the alphabet). The single-site term j(x;) in (3.11) has been
disregarded since we do not want to break the symmetry of the paramagnetic state. Furthermore,
in order to lighten the notation, we omit in the following the explicit dependence from the disorder

(possibly entering through the pairwise term ;;, see for instance eq. (3.15)). The normalization
Zo({vg }a) reads then

d
Zo{veta) = YT D v, r)vi(ar). (A.2)

r k=1 g

Analogously, the 1RSB BP iteration eq. (3.18) defines a second update function for the @’s

Fo(vi{Qr}a) = ({Qk}d) / H dvQr 6 (v — Pupdate({vr }a)) Zo({ve}a), (A.3)

which takes as input d arbitrary probability distributions {Qg(vx)}q and returns a new one. The
normalization constant Z;({Qr}4) can be computed as the integral over dv of the numerator of

expression (A.3) and simply reads

d
(@) = [ T]dn@utn) Zul (o). (A4)
k=1

Equation (3.18) can still be averaged over the ensemble of random graphs (and the external
disorder which we here omit). This leads to the definition of a probability distribution (over the
random choice of an edge) of the probability distribution (over the states) of messages, P[Q(v)],
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satisfying
d
D) =Es [ TLdQu0nPl@um)] 5(Q0) - Falvi {@i)) (A.5)
k=1

where [E; stands for the average over Pegqq(d) defined in (3.16).

It is useful at this point to define, similarly to eq. (3.19), the average message v = [ dv Q(v)v
which itself is a random (scalar) variable since Q(v) is random. One can show that 7 is a solution
of the simple RS population dynamics equation (3.15). To this end, let us compute the induced
probability distribution P(7) for 7,

P(v) /dQ <I/—/dVQ )
:/ /Hko Vi) PlQi ()] 6 (Q(v) — Fa(v; {Qr}a)) 5(5— /du Q(y)y) =

:Ed/Hko Vi) PlQr(vk)] 0 < /dVB(V; {Qk}d)V>~ (A.6)

The integral inside the last delta function reads

d
/ dv Fo(v; {Qu}a)v = M / gdukc;m) Bupante((v}a) Zo({vc}a) =

= Zl({égk}d) (I)update({ﬂk}d) ZO({Pk}d) = (bupdate({pk}d)a (A.?)

having used in the last equality the fact that

Zo({Tk}ya) = H > b(w, an /deQk(Vk)Vk(xk) =

r k=1 zg

d
= / [T d@ i) Zo({ve}a) = Z1({Qx}a). (A.8)
k=1
One should also keep in mind that at this point ‘bupdate({ﬂk}d) = (I)update({ﬁk(Qk)}d), with

vk(Qr) = [ dviQr(vk)vg. By substituting (A.7) into (A.6) and inserting a factor 1 = [ ], dug (5(Dk—
i deQk(uk)yk) inside the integral, we finally obtain

d
P(v) = Ed/ H [ko(Vk)P[Qk(Vk)] duy, 5<Vk - /deQk(Vk)Vk)] §(7 — Pupdate ({7k(Qr) }a)) =
k=1
d
= Ed/ 11 [de dQr(vi)P[Qr(vi)] 5<Vk - /deQk(Vk)Vk>] §(7 — Pupdate({Zr}a)) =
k;l
— 54 [ T]dnBn) 6(7 — Bupael ()a). (A.9)
f—1
1

Since the RS solution is paramagnetic by hypothesis, one has simply P(7) = 5(D — 5), and

hence (7;Q) = v(x) = ¢~' Vz independently on Q. This allows one to simply in this case the
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expression (A.4) for Z1({Qx}4), that ceases to depend on the d distributions {Qg}q4

Z({Qi}a) = Zo({mw}a) =) H > vl w)-

r k=1 g

d
=q¢ D D v, xr) = 21 (A.10)

T k=1 xg

We are now ready to define the averaged probability distribution P(v) as the average of Q(v)
over P[Q(v)]. Using expressions (A.5) and (A.3) one obtains

d
P = [ awPlawiew) = [ 1] daunPRuml70: @uha =
= Ed/Hko Vi) PlQk (V)] /HdeQk i) 6 (v — Pupdate({vi }a)) Zo({vk }a) =

_ Edf / H dl/kP l/k (I/ — update({Vk}d))ZO({Vk}d) (All)
In order to get rid of the term Zjy in (A.11), it is convenient to introduce ¢ distribution functions
R, (v) = qu(z)P(v), reX. (A.12)

Notice that they are correctly normalized since [ dvR,(v) = [ dvdQ(v)P[Q(v)]qr(z)Q(v) = qi(x) =
1. Substituting eq. (A.11) it follows

R, (v) = Ed/HdeP Vi) 8 (v — Pupdate ({Vk }a)) Zo({vk }a) Pupdate (5 {vi }a) =

— Ed — / H deP I/k - (I)update({yk}d)) H Zl/}(gj,xk)yk(q;k) =

k=1 xp

- Edi / H dyk2¢ z xk Tk Vk)] 6( - (I)update({yk}d))- (A.l?))

By inspecting (A.10), one realizes that 3, (2, 2x) should not depend on z in order to preserve
the symmetry of the paramagnetic state. We can thus rewrite (A.10) as Z; = ql—d(zm U(x, xk))d
for any arbitrary z. This allows to simplify eq. (A.13) into

~E, / H dykzz ) Ry )]0~ Pupae (). (A9

which is the formula we wanted to prove.
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