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Abstract: In the past few years, researchers have detected subtle macular vision abnormalities using
different psychophysical experimental tasks in patients with migraine. Recording of visual evoked
potential (VEP) after photostress (PS) represents an objective way to verify the integrity of the
dynamic properties of macular performance after exposure to intense light. VEPs were recorded
before and after PS in 51 patients with migraine (19 with aura (MA) and 22 without aura (MO)
between attacks, and 10 recorded during an attack (MI)) and 14 healthy volunteers. All study
participants were exposed to 30 s of PS through the use of a 200-watt bulb lamp. The P100 implicit
time and N75-P100 amplitude of the baseline VEP were compared with those collected every 20 s up
to 200 s after PS. VEP parameters recorded at baseline did not differ between groups. In all groups,
the VEP recordings exhibited a significant increase in implicit times and a reduction in amplitude at
20 s after the PS. In migraine, the percentage decrease in amplitudes observed at 20 s after photostress
was significantly lower than in healthy volunteers, in both MO and MA patients, but not in MI
patients. When data for MO and MA patients were combined, the percentage of amplitude change at
20 s was negatively correlated with the number of days that had elapsed since the last migraine attack,
and positive correlated with attack frequency. We showed dynamic changes of recovery of VEP after
PS depending on the migraine cycle. This finding, in conjunction with those previously attained with
other neuromodulatory interventions using VEPs, leads us to argue that migraine-disease-related
dysrhythmic thalamocortical activity precludes amplitude suppression by PS.
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1. Introduction

The visual system is deeply involved in the pathophysiology of migraine. Dysfunc-
tions have been described from the outermost layers of the retina [1] to the visual cortex [2,3]
and its associative areas [4,5], passing through its thalamic station [6,7]. The abnormalities
described are both functional and structural. By applying different technical approaches, a
specific involvement of macula cells and an alteration of color vision in the outer retinal
layers by cone photoreceptors for the blue–yellow axis has been proposed for migraine
patients [8,9]. Other authors have described abnormalities in color perception, such as for
red and blue, in addition to cortical involvement [10–13]. Nevertheless, there is evidence
in favor of an involvement in migraine of a specific macular pathway mediated by a pop-
ulation of photosensitive retinal ganglion cells, which are in direct connection with the
thalamus, the trigeminal system, and several associated brain areas [14,15].

One method of studying macular cone function is to check the period of recovery of
visual acuity after the retina is dazzled with an ophthalmoscope (photostress, PS) [16,17].
PS was also used to test the recovery of excitability of the visual system by recording visual
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evoked potentials (VEPs) in response to pattern-reversal stimuli [18]. In healthy subjects,
PS induces VEP changes consisting of a delayed P100 implicit time and a decrease in
N75-P100 amplitude; a recovery of normal VEP morphology after PS takes approximately
60 s [19]. This method has been used several times to study macular function in patients
with maculopathies [20–22]. Thus, in this study we investigated macular function by
recording serial VEPs after PS (every 20 s) in migraine patients with and without aura
between and during attacks, in correlation with clinical variables.

Considering previous evidence obtained with VEPs [2,23], we hypothesized that
migraine patients between attacks would have a faster recovery of macular function after
macular dazzling compared to healthy volunteers, and that this would be related to the
time at which the patient was recorded during the migraine cycle.

2. Materials and Methods
2.1. Participants

We enrolled a group of 51 consecutive migraine patients attending the headache clinic
of Sapienza University of Rome Polo Pontino, of which 22 without aura (MO Group, ICHD-
III code 1.1, mean age 29.2 ± 8.2 years) and 19 with aura (MA Group, ICHD-III code 1.2.1.1,
typical aura with headache, mean age 30.3 ± 10.2 years) underwent VEP recordings during
the interictal period, i.e., attack-free for at least three days before and after the recording
sessions (checked by collecting headache diaries, and by telephone or e-mail interviews).
Ten patients were accidentally recorded during their typical migraine attack (within the
first 6 h) and thus considered as an ictal group (MI Group, ICHD-III code 1.1, mean age
32.7 ± 11.7 years).

Fourteen age- and gender-matched healthy volunteers (HV Group, mean age
29.7 ± 6.1 years) were recruited from among university students and medical profes-
sionals and randomly recorded between patients. They had to be free of any apparent
medical conditions, as well as personal or family history of migraine or epilepsy, and could
not take drugs on a regular basis. In order to exclude hormone-related effects, recordings
of female participants were performed outside of menses.

After an ophthalmological evaluation, including best-corrected visual acuity, slit-lamp
biomicroscopy, intraocular pressure measurement, and indirect ophthalmoscopy, only
patients or HVs with absence of optical media and retinal or optic nerve diseases, and with
Snellen best-corrected visual acuity of 10/10, were included in the study. There were no
patients with suspected retinal migraine.

For migraine patients, we managed to collect up to two months of headache diaries
on the day of the recording session. Patients had to indicate duration of migraine history
(years), attack frequency (n/month), attack duration (hours), and number of days passed
since the last migraine attack (Table 1).

Table 1. Demographic and clinical features of healthy volunteers (HV), migraine patients without aura (MO), with aura (MA)
between attacks, and in patients with migraine during an attack (MI). Data are expressed as means ± SD or percentages (%).

Characteristics HV
(n = 14)

MO
(n = 22)

MA
(n = 19)

MI
(n = 10)

Women (n) 10 16 12 8
Age (years) 29.7 ± 6.1 29.2 ± 8.2 30.3 ± 10.2 32.7 ± 11.7

Duration of migraine history (years) 17.3 ± 9.7 18.1 ± 11.5 15.6 ± 7.6
Attack frequency/month (n) 2.4 ± 1.6 2.5 ± 1.5 2.1 ± 1.8

Attack duration (hours) 33.2 ± 26.6 24.9 ± 26.5 40.7 ± 27.6
N◦ of days since the last attack 17.4 ± 17.2 14.4 ± 12.5

Scintillating scotoma/Fortification spectra 100%
Sensory symptoms 36.8%

Language/Speech symptoms 15.8%



J. Clin. Med. 2021, 10, 982 3 of 11

We excluded patients taking medications on a regular basis (e.g., antidepressants,
benzodiazepines, prophylactic migraine drugs, corticosteroids, antibiotics), except for
oral contraceptives. We carefully excluded subjects who had sleep deprivation or had
ingested alcoholic beverages on the day preceding the recording sessions. Caffeinated
beverages were not permitted on the day of recordings. All participants received a complete
description of the study and granted their written informed consent. The project was
approved by the ethical review board of the Faculty of Medicine, University of Rome, Italy.

2.2. Visual Evoked Potentials

Recordings were made according to a previously described method [24]. Briefly, we
used a full-field checkerboard visual pattern (contrast 80%, mean luminance 250 cd/m2,
2 reversals per second) generated on a computer monitor, with a viewing distance of 114 cm
(single check edges subtended a 15’ visual angle). We always visually stimulated the right
eye, with the left eye covered by a patch. We positioned the active VEP electrode at Oz
and the reference electrode at Fz (10/20 system), with a ground electrode placed on the
right forearm. We used a DigitimerTM D360 preamplifier, a Cambridge Electronic Design
(CED, Cambridge, UK)TM Power1401 analogue-to-digital converter, and the SignalTM

software package version 4.11 (CED Ltd.) for the signal’s analysis. For each participant,
we collected 40 consecutive sweeps per block trial (4000 Hz sampling rate), each lasting
500 ms. Thereafter, we applied a 100 Hz low-pass digital filter offline, and we accepted no
more than two sweeps discarded per block trial because of artifacts.

The transient VEP components (N75, P100, and N145) were identified according to
the ISCEV standard for clinical VEPs [25]. We measured the peak-to-peak amplitude of
the N75-P100 complex. All VEP recordings were done in the morning (between 09.00
and 11.00 a.m.) by the same investigator (D.D.L.), who was not involved in the patient’s
enrollment phase. All recordings were then anonymized and analyzed offline in a blind
manner by one investigator (V.P.).

2.3. Procedure

The test of recovery of pattern VEPs after macular bleaching was performed according
to a published protocol [21,24]. In brief, the procedure consisted of recording the base-
line VEP, bleaching the central retina, and recording the VEPs at predetermined times
after bleaching.

We performed 30 s of bleaching of the central retina by means of a circular diffusing
surface retroilluminated by a 200 W lamp. The participants fixated the center of the
circular surface, with natural pupils, from 20 cm. At the participants’ viewing distance, the
bleaching field subtended 6◦. Since the retinal luminance during bleaching was 3.58 log
photopic trolands, in this procedure we estimated bleaching of approximately 20% of the
cone photopigments [26]. During the procedure, the pupil diameter, measured by one
investigator using a ruler and a magnifying lens, decreased from the prebleaching value
(mean 3.4 ± 0.6 mm in both HVs and patients) to 2.1 ± 0.5 mm in HVs and 2.1 ± 0.4 mm
in patients. At 20 s after bleaching, the pupil diameter had already recovered to the
prebleaching value in all HVs and patients and did not vary significantly during the time
of recording.

Immediately after the end of bleaching, the participant was instructed to fixate the
center of the visual pattern (marked by a red dot), and VEP recording was started. Al-
though the participants saw a central scotoma, the red target was detected by all. We
acquired 400 VEP sweeps that were offline partitioned in 10 block trials (40 sweeps/block,
with each block 20 s in length). The P100 implicit time and N75-P100 amplitude in the
10 post-bleaching VEP recordings were measured. VEP P100 implicit times and N75-P100
amplitudes after PS (20 s) were also normalized to baseline, and are given as the percentage
change of the basal recording.
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2.4. Statistical Analysis

We used Statistica (StatSoft Inc., Tulsa, OK, USA) for Windows (version 8.0) for
all analyses.

First, we checked VEP data for normal distribution by applying the Kolmogorov–
Smirnov test. A preliminary descriptive analysis showed that some VEP N75-P100 peak-to-
peak amplitudes of the 10 blocks had a non-normal distribution. After log transformation,
all data reached normal distribution (Kolmogorov–Smirnov test, p > 0.21).

We made a repeated measures analysis of variance (ANOVA) taking “time” as the
within-subject factor (baseline up to 200 s) and “groups” (HV, MO, MA, MI) as between-
subject factors. A Tukey test was used for post hoc analysis. A one-way ANOVA was
performed in order to compare the VEP P100 implicit time and the N75-P100 amplitude
percentage changes at 20 s of the baseline recording. A Pearson’s correlation test was
used to search for correlations among the VEP amplitudes and metric clinical variables.
p values ≤ 0.05 were considered to indicate statistical significance.

3. Results

All VEP recordings were found to be analyzable. VEP traces recorded before and after
PS in selected HV, MO, MA, and MI patients are shown in Figure 1. The demographic and
clinical features of recorded participants are shown in Table 1.
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main effect of time (F(10,610) = 11.472, p < 0.001), but not of groups (F(3,61) = 0.39, p = 0.76) 
and of the two-way interaction of group by time (F(30,610) = 0.95, p = 0.54) (Figure 2, right 
panel). The post hoc analysis showed that the 20 s VEP P100 implicit time was significantly 
delayed after PS as compared to baseline in all subject groups (all p < 0.001). The VEP P100 
percentage changes at 20 s post PS of the baseline recording did not differ significantly 
between groups (F(2,54) = 0.42, p = 0.74). 

Figure 1. Representative recordings of visual evoked potentials recorded at baseline and at 20, 60, 100, and 140 s after
photostress in a healthy volunteer (HV), in a migraine patient without aura (MO), with aura (MA) between attacks and in a
patient during a migraine attack (MI).

Before PS, the VEP P100 implicit time and N75-P100 amplitude did not differ signifi-
cantly between groups (F(3,61) = 0.94, p = 0.43; F(3,61) = 0.54, p = 0.65, respectively).

The ANOVA for P100 implicit time in averaged successive VEP blocks disclosed a
main effect of time (F(10,610) = 11.472, p < 0.001), but not of groups (F(3,61) = 0.39, p = 0.76)
and of the two-way interaction of group by time (F(30,610) = 0.95, p = 0.54) (Figure 2, right
panel). The post hoc analysis showed that the 20 s VEP P100 implicit time was significantly
delayed after PS as compared to baseline in all subject groups (all p < 0.001). The VEP P100
percentage changes at 20 s post PS of the baseline recording did not differ significantly
between groups (F(2,54) = 0.42, p = 0.74).
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(Figure 2, left panel). The post hoc analysis showed that, compared to the baseline value, 
the VEP N75-P100 amplitude was significantly reduced immediately after PS in HV (p = 
0.0001) and MI (p = 0.009), whereas it was nonsignificantly reduced both in MO (p = 1.00) 
and in MA (p = 1.00). Immediately after PS, the VEP N75-P100 percentage changes of the 
baseline recording differed significantly between groups (F(3,61) = 4.41, p = 0.007, Figure 
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Figure 2. Graphic representation of mean ± SEM values of the N75-P100 VEP amplitude (left panel) and the P1 implicit time
(right panel) at baseline and every 20 s after photostress up to 200 s in healthy volunteers (HV), in patients with migraine
with aura (MA) and without aura (MO) between attacks, and in patients recorded during an attack (MI).

The ANOVA for the N75-P100 amplitude in averaged successive VEP blocks disclosed
a main effect of time (F(10,610) = 12.31, p < 0.001) and of the two-way interaction of group
by time (F(30,610) = 1.76, p = 0.008), but not of groups (F(3,61) = 0.03, p = 0.992) (Figure 2,
left panel). The post hoc analysis showed that, compared to the baseline value, the VEP
N75-P100 amplitude was significantly reduced immediately after PS in HV (p = 0.0001)
and MI (p = 0.009), whereas it was nonsignificantly reduced both in MO (p = 1.00) and
in MA (p = 1.00). Immediately after PS, the VEP N75-P100 percentage changes of the
baseline recording differed significantly between groups (F(3,61) = 4.41, p = 0.007, Figure 3),
resulting in less suppressed in MO (−3.18%, p = 0.031 vs. HV) and MA (−2.26%, p = 0.026
vs. HV) than in HV (−19.12%) and MI (−18.43%).
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Figure 3. Mean ± SEM percentage changes from the baseline of visual evoked potentials (VEPs)
for the N75-P100 amplitude at 20 s after photostress in healthy volunteers (HV), patients with
migraine with aura (MA) and without aura (MO) between attacks, and in patients recorded during
an attack (MI).

When all patients recorded between attacks (MO, MA) were combined, the VEP 75-
P100 percentage changes immediately after PS of the baseline recording was correlated
negatively with the number of days since the last migraine attack (r = −0.547, p < 0.001,
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Figure 4 left panel), and positively with the attacks frequency (r = 0.402, p = 0.017, Figure 4
right panel).
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attacks (MA + MO) at 20 s after photostress plotted as a function of number of days elapsed from the last migraine attack
(left panel) and attack frequency (right panel). The regression line is fitted to the data points.

No correlations were disclosed between neurophysiological parameters and duration
of the migraine disease or monthly mean duration of migraine attacks.

4. Discussion

The most interesting result of our study was that the level of suppression of VEP
amplitude after photostress was reduced in migraine patients between attacks, regardless
of the presence of aura, but was normal during an attack. The fact that both patients with
MO and MA behaved in the same way during the pain-free phase may indicate that the
results of our study related more to migraine as such than to aura. Moreover, when patients
with MO and MA were combined, VEP suppression was positively related to the days
elapsed since the last attack and negatively related to the frequency of migraine attacks.

Photostress testing, in which the retina is bleached with light and recovery of its
functionality is objectively measured with VEPs, is a well-established way to test the
functional capability of the macula and its projections to the cortex [16]. The main factor
determining the recovery time of normal vision and, therefore, of a normal amplitude
of the evoked potentials, after PS is the resynthesis of visual pigments in the cones and
rods of the retina. In fact, it is known from the animal model that at any level of visual
adaptation, there is a certain balance between the rate of glare and the rate of regeneration of
photopigments [27]. Therefore, while we cannot completely exclude a faster regeneration of
photopigments, the fact that we did not observe delayed—a common finding in disorders
clearly limited to the macular region [28]—but faster recovery of VEP amplitude in our
patients with migraine, we concluded there was a negligible involvement of mechanisms
of photopigment resynthesis in our VEP results. However, the presence of transient or
persistent variations in the thickness of the retinal fiber layer and ganglion layer could be
other causative factors that may have taken part in the process of VEP recovery after PS in
our patients, despite inconclusive data from the literature on this topic [29–31].

It is well known that the effect of light is to dazzle the photopigments into a mixture
of yellow and colorless intermediates [32]. This is remarkably interesting, since the visual
discomfort frequently associated with migraine, often present even in the pain-free period,
seems to be, at least in part, mediated by a specific yellow–blue non-image-forming
pathway that conveys information from the retinal ganglion cells (RGCs) to the posterior
thalamic nuclei and cortex [1,14]. Light discomfort associated with bleaching light could
thus help explain our results of a lack of VEP amplitude suppression after PS, which in
turn may be explained by RGCs less prone to suppress visual input. Whether this lack
of suppression was related to the postretinal amplification of intrinsically photosensitive
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RGCs observed by others in relation to stimulation intensity [15], and whether it was the
cause or the consequence of the lower threshold for light discomfort in migraine patients
between attacks [33], remain to be determined. However, the fact that VEP suppression
after photostress returns to normal during an attack, when photophobia is at its highest,
argues against the involvement of a pathological mechanism located at the level of the
ganglion cell alone, but opens an additional postganglionic involvement.

In fact, VEPs reflect the mass activity of the entire visual pathway. Interestingly, in
patients with a definite diagnosis of multiple sclerosis, only those with a previous optic-
nerve dysfunction showed VEP abnormalities after photostress, not those without this
history [22]. This suggests that VEP recovery after PS depends on the integrity of the entire
visual nerve pathway.

It is of interest that the information on illumination that is too intense and dazzling
is transmitted from the retina ganglion to key thalamic and brainstem nuclei involved in
the trigeminovascular pathway [14,34]. Thalamic nuclei in turn send visual information to
somatosensory, visual, and associated brain areas [35]. Interestingly, a lesion at the thalamic
level can increase dazzle photosensitivity [36].

That the thalamic hub between the retina and cortex may be at the origin of central
dazzle is relevant to our study because an increasing amount of evidence suggests the
presence of an abnormal crosstalk between the thalamus and cortex in migraine, especially
between attacks [37,38]. The multiband rhythmic activity of the visual cortex under the
direct control of the thalamic nuclei [39,40], in conjunction with the activation of peculiar
inhibitory systems at the cortical level [2,41–43], are altered in migraine. This general
thalamo-cortical network dysexcitability disallows the occurrence of physiological synaptic
plasticity induced by the presentation of visual stimuli, which is in line with our present
findings of lack of dazzling light-induced VEP inhibition. That an aberrant synaptic
plasticity is at the base of behavioral VEP responses finds support in previous observations
that neuromodulatory interventions such as experimentally induced visual deprivation [44],
tonic pain [45], and transcranial paired associative stimulation [46] were also unable to
modify VEP amplitudes in migraine, but did so in healthy controls.

All this evidence suggests that migraine is part of the spectrum of thalamocortical dys-
rhythmia syndromes [47], as also indicated by numerous morphofunctional neuroimaging
studies [48–53].

In a further provocative finding, we observed that the lack of inhibition of the visual
response after PS varied over time in a manner dependent on when the patient was
recorded between attacks: the closer the patient was to the previous attack, the lower the
percentage change of VEP amplitude after photostress. That the level of response to sensory
stimulation, including visual stimulation, in migraine depends on the distance from the
last attack has been seen several times before [2,41,54–56]. The same distance-dependent
functional change since the attack has also been observed at the brainstem [57,58] and
thalamic [48] levels, suggesting once more that alteration of synaptic plasticity mechanisms
at multiple levels takes part in the pathophysiology of migraine attack recurrence. The
lack of VEP inhibition reached the maximum just before an attack, when then the response
reverted to normal. Recent neuroimaging findings indicate that a complex interplay
between the hypothalamus and the trigemino-vascular system is engaged with proximity
of the migraine attack, i.e., during the so-called premonitory phase of migraine [59–61].
These systems are designed to preserve brain homeostasis by regulating homeostatic
needs [62]. We argue that the visual cortex’s increased energetic needs, due to its interictal
progressively increased responsivity, can lead to a critical point when a mismatch between
energetic reserve and demands may occur, and then the hypothalamo-trigeminovascular
system ignites with a scope to re-establish a normal homeostatic balance [63]. Back to
our study, this reflects in the re-establishing of a normal VEP amplitude suppression after
PS, probably through both direct or indirect hypothalamic nuclei connectivity with the
occipital cortex [64].
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Nonetheless, we observed that the higher the migraine frequency, the more VEP
amplitude suppression was lacking after PS. This is probably because patients with a high
frequency of the disease have a shorter time from the previous attack. These data support
the strong relationship between the severity of presentation of migraine disease and the
behavior of neurophysiological responses.

That the levels of response to sensory stimulations, including visual stimulation,
in migraine are not stationary, but dynamically change up to the tipping point of the
attack, has been seen several times before [2,41,54–56], mimicking changes at the brainstem
(dorsal pons [58] and trigeminal nuclei [57]) and thalamic [48] levels. This suggests once
more that disease-related dysrhythmic thalamocortical activity disallows the occurrence
of physiological response to photostress and might take part in the pathophysiology of
migraine attack recurrence.

In the end, as a limitation of the study, we must recognize that, despite patients
being recorded during the two typical periods of the migraine cycle, the patients in the
two ictal/interictal groups did not serve as their own controls. This makes immediate
generalization of the results impossible.

Finally, it remains necessary to verify whether these aberrant synaptic plasticity
mechanisms in migraine, by reorganizing neural maps in the thalamocortical network,
might consequently alter the interpretation of the information coming from the peripheral
receptors. If this were the case, this could easily explain the subtle abnormalities in color
perception suggested by numerous studies of migraine [8–13].
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