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DISCRETE-TO-CONTINUUM LIMITS OF MULTIBODY SYSTEMS
WITH BULK AND SURFACE LONG-RANGE INTERACTIONS*
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Abstract. We study the atomistic-to-continuum limit of a class of energy functionals for crys-
talline materials via Gamma-convergence. We consider energy densities that may depend on interac-
tions between all points of the lattice, and we give conditions that ensure compactness and integral
representation of the continuum limit on the space of special functions of bounded variation. This
abstract result is complemented by a homogenization theorem, where we provide sufficient conditions
on the energy densities under which bulk and surface contributions decouple in the limit. The results
are applied to long-range and multibody interactions in the setting of weak-membrane energies.
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1. Introduction. The passage from atomistic to continuum models is of major
interest in the description and understanding of many physical phenomena and in
models in applied sciences. Even for those atomistic systems which are driven by
simple lattice energies, the choice of the method to analyze their asymptotic behavior
as the interatomic distance tends to zero is nontrivial. Compare, for instance, the
results obtained by taking pointwise limits [8, 9, 35] to those obtained by variational
methods (see [22, 15] for an overview). There, the choice of the limit process underlines
some assumptions on the model, which are translated in the definition of convergence
of discrete-to-continuum functions, and may lead to different results.

In this paper we work within the variational framework, which amounts to allow-
ing for a very general definition of convergence of discrete functions and is translated
into analyzing the asymptotic behavior of discrete systems in terms of I'-convergence.
This has proven to be a powerful tool in materials science to predict or better un-
derstand the macroscopic response of a material to microscopic deformations, but it
has also been used in other applied fields such as computer vision, to provide discrete
approximations of given continuum energies that might be used, e.g., for numerical
simulations, or data science, to provide continuum minimal-cut approximations to
problems in machine learning. We will use the terminology of “atoms” and keep in
mind the application to physical problems, even though in the frameworks just men-
tioned discrete domains can be thought of as composed of pixels or labels of data.
We restrict our description to the case when the reference configuration of a material
at the atomistic scale can be assumed to be a (Bravais) lattice (crystallization); this
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assumption could be relaxed to considering non-Bravais or disordered lattices at the
expense of a more complex notation. In our case it is not restrictive to assume that the
reference configuration is (a portion of) the cubic lattice Z™ in R™, scaled by a small
parameter. More precisely, fixing € > 0 one describes the atomistic deformation of a
material occupying an open bounded domain € C R™ through a map v : Z.(Q) — R¢,
where Z.(Q) := QNeZ™ denotes the set of e-spaced material points (or simply atoms)
of the system. In the most general case, one can assume that such a system is driven
by an energy of the form

(1.1) F(u)= Y "of({u} ez @ i)-

1€Z:(Q)

Here, for fixed i the function ¢f : (R?)Z=(?=%) — [0, +-00) should be thought of as the
potential energy at scale € describing the interaction between the atom at position ¢
and the whole configuration {u/} ;¢ z.()- As a consequence, energies as in (1.1) can
model systems which are (at the same time) nonhomogeneous, multibody, nonlocal,
and multiscale.

1.1. Aim of the paper. In this paper we are interested in the variational de-
scription (via T'-convergence) of the limit of the F. above as the lattice spacing e
vanishes while the density of the atoms is kept constant thanks to the scaling factor
e™. We refer to such a coarse-graining procedure as discrete-to-continuum limit. As a
matter of fact, finding a fine description of the discrete-to-continuum limit of physical
systems driven by energies such as those in (1.1) turns out to be a very challenging
task unless the potentials are explicitly known and take some very special form. Until
now, the most general result in this direction has been obtained in [23], where the
authors establish a set of assumptions on the potential energies ¢$ which ensure that
up to subsequences the I'-limit of energies as in (1.1) is an integral functional defined
on a Sobolev space. The aim of the present paper is the extension of such a general
result to the setting of special functions of bounded variations, that is, to find suffi-
cient conditions on ¢$ under which the variational limit energy of the sequence (F;)
is of the form

(1.2) F(u) :/Qf(x,Vu)dx +/S gz, ut —u=,v,) dH" !

u

defined on those u (here we use the same notation u for both microscopic and macro-
scopic fields) belonging to SBV (£; R?). Energies of this type are usually referred to
as free-discontinuity functionals and are widely used to model a number of phenomena
in fracture mechanics, image reconstruction, or the theory of liquid crystals, to name
only a few examples [7, 12, 11, 38]. The discrete-to-continuum analysis performed in
the present paper thus provides a very general framework, on the one hand, for atom-
istic systems whose macroscopic behavior can be studied in the context of fracture
mechanics and, on the other hand, for possible discrete approximations of energies
used in image reconstruction, such as, for instance, the approximations studied in
[28, 29, 21, 39]. We point out that our analysis is also connected to some recent
results in data science [37, 27, 41].

The assumptions on the potentials ¢; that are needed to restrict the class of pos-
sible discrete-to-continuum limits to functionals of the form (1.2) are carefully listed
in section 2. Here we limit ourselves to highlighting the main ideas behind them in
the case when u represents the elastic deformation field of a physical system to be
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studied within the theory of fracture mechanics. In this case the two energy terms
in (1.2) can be interpreted as follows. The bulk integral represents the (hyper)elastic
energy stored in the system due to the contribution of bounded microscopic defor-
mation gradients, that is, of deformations with |u? — u/|/e of order one. The surface
term represents the energy that the system needs to produce the fracture S, in €2 with
opening u™ —u~. Such an energy is instead due to microscopic deformation gradients
of order 1/e. In the simplest possible case where f(x, M) = |M|P and g = const, the
bulk and surface energies are proportional to the pth power of the LP? norm of the
macroscopic deformation gradient Vu and to the length of the fracture, respectively.
Within this framework the assumptions on the potentials ¢$ read as follows:

(H1) (invariance under translations in u): This ensures that the integrand f in
(1.2) does not depend explicitly on u, and g depends on u™ and u~ only
through their difference;

(H2) (monotonicity in the strain): The potential energy is assumed to be non-
decreasing in the finite differences |u? — u’/|—in the simple case of pairwise
interactions this translates into the fact that the elastic energy increases as
the modulus of the deformation gradient increases;

(H3) (weak Cauchy-Born type upper bound): We only require that the potential
energy of any microscopic affine deformation is bounded from above by the
pth power (p > 1) of the norm of its gradient;

(H4) (lower bound) This allows us to deduce that the limit is defined on SBV(2)).
Keeping in mind the interpretation above, of finite differences as deformation
gradients, ¢ ({u'T7}) is assumed to be bounded from below by |(u’ —u’)/e|P
whenever this quantity is of order 1, and otherwise by 1/e;

(H5) (mild nonlocality): The potential energies ¢ of different deformations that
agree in a cube of side length « centered at a point 7 are comparable up to
an error that vanishes for large o as ¢ — 0 uniformly in ¢. This ensures that
the I'-limit is a local integral functional;

(H6) (controlled nonconvexity): The energy stored by a convex combination of
two deformations is asymptotically controlled by the sum of the energies
corresponding to each single deformation. This technical assumption allows
us to use the abstract methods of I'-convergence (see below) and is needed here
to tame the effect of the possibly diverging number of multibody interactions.

We take the discrete-to-continuum limit of the energies in (1.1) under this set of
assumptions. To this end, we regard a discrete field u as belonging to L'(;R)
by identifying it with its piecewise constant interpolation on the cells of the e lattice.
Outside this set of functions we extend F. to L'(2;R¢) by setting it equal to +oco. We
then define the discrete-to-continuum limit of F. as its I'-limit as € — 0 with respect
to the strong L!-convergence. We remark that hypothesis (H2) is quite restrictive in
the framework of mechanics as it is not feasible for the modeling of materials with re-
sistance to compression. The variational analysis of such models in dimensions higher
than one remains a major open problem, which has defied integral-representation tech-
niques so far, and we do not address it in the present paper. Some interesting results
in that context can be found, for instance, in [24, 40] for the case of Lennard—Jones
type potentials. Although (H2) rules out the above-mentioned models in the general
setting, it is not a restrictive assumption in the case of traction problems. Moreover,
it is compatible with the assumptions on interaction potentials used in the context of
image reconstruction and in recent applications to data science. Eventually, in section
5.1 we provide a relaxed version of (H2) in the case where the system is driven by a
two-body interaction by essentially requiring the interaction potentials to be “almost”
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monotone only in those difference quotients |u’ — u’|/e that are of order 1/e.

1.2. Main results, methods of proof, and comparison with existing re-
sults. In this paper we prove compactness, integral-representation, and homogeniza-
tion results for energies of the form (1.1). More precisely, in Theorem 3.1 we show
that, up to subsequences, the discrete energies F. I'-converge to a free-discontinuity
functional of the type (1.2). Using this integral representation, we then prove the
homogenization theorem, Theorem 4.3. There we show that under additional assump-
tions on ¢3, which will be discussed at the end of this section, the whole sequence
(F:) I-converges to

(1.3) Fhom(u) :/fhom(Vu) d:}:—f—/ Ghom (U™ —u”, v, dH L,
Q Su

where fhom and gnom are some homogenized bulk- and surface-energy densities, re-
spectively.

The proof of Theorem 3.1 relies on the so-called localization method of
I-convergence (see [33, Chapters 14-20] and also [14, Chapter 16]). Following this
method we consider energies F; as functions defined on both u and the open subsets
of Q by defining for every pair (u, A) with u : Z.(Q) — R? and A C Q open the
localized energy E.(u, A) according to (1.1), where now the sum is taken only over
i € Z.(A). We then prove a general compactness result (Theorem 3.14) which ensures
that for every sequence of positive numbers converging to zero, there exist a subse-
quence (g;) and a functional F' such that for every A C Q open and with Lipschitz
boundary, the localized energies F¢, (-, A) I'-converge to F'(-, A). Subsequently, thanks
to assumptions (H1)—(H6) we recover enough information on F' as both a function in
u and a set function to write it as a free-discontinuity functional of the form (1.2)
by using the general integral-representation result in [10]. Before we comment on the
homogenization result below, we give a short overview on the use of the localization
method in the context of discrete systems.

The method was originally proposed by De Giorgi and has been successfully used
in the context of homogenization of multiple integrals in the continuum setting (see
[19] and references therein). It was first adapted to study discrete-to-continuum limits
in [2] in the context of pairwise-interacting discrete systems modeling nonlinear hyper-
elastic materials and giving rise to continuum functionals finite on Sobolev spaces
of the form fQ f(z,Vu)dz. After that, the application of the localization method
to discrete systems at a bulk scaling was extended in several directions, including
stochastic lattices [3, 30] and more general interaction potentials [25, 18, 23], and
has also been combined with dimension-reduction techniques [1]. Currently, the most
general result for discrete systems on deterministic lattices with limit energies on
Sobolev spaces can be found in [23].

At the surface scaling, the analysis of discrete systems has required the use of the
abstract method for the first time in [4]. That paper derives the continuum domain-
wall theory in ferromagnetism from pairwise interacting Ising-type spin systems on
(possibly stochastic) lattices (see also [17] for thin films). The extension of this result
to more general magnetic interactions was considered in [5]. There, the authors give
examples of systems not satisfying (the analogue of) assumption (H5) whose discrete-
to-continuum limit is a nonlocal functional (see also [13]). A first general result for
discrete systems with multibody and long-range interactions at this scaling has been
obtained in [16] in the context of spin-like systems with spatially modulated phases.

We point out that in the above-mentioned papers, the discrete energies under
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consideration involve either a pure bulk or a pure surface scaling. In order to obtain
a [-limit of the type (1.2), one needs to consider discrete energies where both scalings
are present at the same time. In this case, however, it becomes more difficult to find
the correct set of assumptions which makes the localization method applicable. A
first result in this direction has been obtained in [39], where the author considers
energies of the form (1.1) on a possibly stochastic lattice. The interaction potentials

5, however, are independent of ¢ and €, have finite range, and depend on finitely many
particles uniformly in . Moreover, they depend on the configuration {u’ }; through
the set of discrete differences {|u’ — u7|}; ;. This type of dependence is essential to
decouple the contribution of bulk and surface scalings in the continuum limit, which
finally allows one to prove the full I-limit result (without extraction of a subsequence)
in the case of a stationary stochastic lattice. This is done by exploiting for the first
time in the discrete setting the theory of maximal functions introduced in [36] and
used in [20] in the context of homogenization. This technique turns out to be useful
also in the proof of the present homogenization result, Theorem 4.3, which we finally
describe below.

Theorem 4.3 falls within the framework of periodic homogenization and thus re-
quires the restriction to a special class of periodic interaction-energy densities. As
our interaction-energy densities at a point ¢ may depend on the whole configuration
{utti} jez.(Q—i), the meaning of periodicity needs to be clarified. A proper definition
of periodicity (at least in the interior of §2) is possible when restricting to finite-range
interactions. This modeling assumption also helps to decouple the bulk and surface
scalings in the I'-limit, which is central to characterizing the homogenized integrands
fhom and gnom in (1.3). We highlight that even under the finite-range assumption this
task still requires a major effort due to the lack of a gradient structure in the interac-
tion potentials. In fact, a crucial step in proving the homogenization result consists
of establishing sufficient conditions on the potential ¢ (without enforcing an explicit
gradient structure) which make it possible to distinguish between discretizations of
a macroscopic affine deformation of the form wuy/ () = Mz with M € R¥"™ and of
a macroscopic jump, that is, a mapping of the form u¢(x1,...,2n) = (X{z,>0} With
¢ € R?. More precisely, to derive formulas for the homogenized integrands fyom and
ghom in (1.3) it is essential that the potentials ¢S reflect the different scaling prop-
erties of ups and ue when passing from the scaled lattice eZ™ to the integer lattice
Z"™. Indeed, the affine function uy; satisfies ups(j) = eupr(j/e) for every j € eZ™,
while for the jump function u, there holds uc(j) = uc(j/¢) for every j € €Z™. It thus
seems natural to require that for a given discrete function u : Z" — R? and i € Z"
asymptotically there hold

oL ({ew}) ~ i ({u)), s ({u!/o)) ~ e e ({u'))

for some discrete bulk and surface potentials wéﬂ 7. This heuristic argument is
made rigorous in section 4.1, where we carefully state the correct hypotheses on the
interaction potentials; we refer the reader to that section for more details.

1.3. Plan of the paper. The paper is organized as follows. In section 2 we
recall some basic notation and introduce the discrete functionals under consideration,
together with the precise assumptions on the potential ¢5. Section 3 is devoted to the
proof of the integral-representation theorem, Theorem 3.1, and to the treatment of
Dirichlet boundary problems. The latter allows us to obtain asymptotic minimization
formulas for the integrands f and g in (1.2) (see Remark 3.16), which are key ingre-
dients in proving the homogenization result, Theorem 4.3. This is done in section
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4, where we also state precisely the periodicity and separation-of-scales assumptions.
We conclude the paper in section 5 by giving some examples that fall within the
framework of our discrete energies.

2. Setting of the problem. Notation. Let n > 1 be a fixed integer, and let
) C R™ be an open, bounded set with Lipschitz boundary. We denote by A(2) the
family of all open subsets of Q and by A"9(Q2) the family of all open subsets of Q
with Lipschitz boundary.

Let {e1,...,e,} denote the standard orthonormal basis in R™. If v, € R", we
use the notation (v, £) for the scalar product between v and &, and by |v| := /(v, V)
and |V|eo 1= SUpP; <<y, [{V, €x)| we denote the Euclidian norm and the supremum norm
of v, respectively. Moreover, we set S"~! := {v € R": |v| = 1}, for every v € S"~!
we denote by I, := {x € R™: (z,v) = 0} the hyperplane orthogonal to v and passing
through the origin, and p, : R® — II,, is the orthogonal projection onto II,. Further,
Q" denotes a unit cube centered at the origin and with one face orthogonal to v,
and for every zp € R™ and p > 0 we set Q} (o) = zo + pQ”. If v = e, for some
ke {1,...,n}, we simply write Q and Q,(zo) in place of Q°* and Q" (zo).

For every A C R™, we write |A| for the n-dimensional Lebesgue measure of A,
while H"~1 denotes the (n — 1)-dimensional Hausdorff measure in R". If p € [1, +00]
and d > 1 is a fixed integer, we use standard notation for Lebesgue spaces LP(£2;R?)
and Sobolev spaces W1P(Q; R?). Moreover, SBV (2;R?) denotes the space of R?-
valued special functions of bounded variation in Q (see, e.g., [6] for the general
theory). If u € SBV(;RY), we write Vu for the approximate gradient of u, S,
for the approximate discontinuity set of u, and v, for the generalized outer normal
to S,. Moreover, v and u~ are the traces of u on both sides of S,, and we set
[u] ;= uT —u~. We also consider the larger space GSBV (€2;R?) defined as the space
of all functions u : Q — R? such that ¢ ou € SBV,.(Q2; R?) for every ¢ € C1(R?; R?)
with supp(Vy) cC R%. For p € (1,+00) it is also convenient to consider the spaces

SBVP(;RY) := {u € SBV(Q;RY): Vu € LP(;RY™), H"1(S,) < +oo}
and
GSBVP(;RY) := {u € GSBV(Q;RY): Vu € LP(;R™), H"1(S,) < +oo}.
Note that GSBVP(Q;R?) is a vector space, and for every u € GSBVP(Q;R?) and
¢ € CY(R?%;R?) with supp(Vy) CC R? there holds pou € SBVP(Q;RY) N L2 (Q; RY)
(see, e.g., [34, section 2]).
For g € R, v € S" 1, ¢ € RY, and M € R¥*" we will frequently consider the

jump function uf , : R" — R? and the affine function uy,, : R® — R? defined by
setting

¢ if (x —xzo,v) >0

d = = M(x —
0 if (x —xo,v) <0 an UM o () (z = 0)

(2.1) “Z,wo (x) := {

for every z € R™.

Setting. In all that follows, ¢ > 0 denotes a parameter varying in a strictly
decreasing sequence of positive real numbers converging to zero. For any € > 0,
u:R" - R ¢ € Z™\ {0}, and x € R™ we denote by

u(z + &€) — u(z)

Déu(z) == =€l
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the difference quotient of u at x in direction £. If £ = e for some k € {1,...,n}, we
write D¥u(z) in place of D¢ u(z).

We now introduce the discrete functionals considered in this paper. To this end,
for every A C R™ let Z.(A) := ANeZ", and set A (4 R?) = {u: Z.(Q) — R4} Tt
is then convenient to identify discrete functions u € A.(Q;R?) with their piecewise-
constant counterparts belonging to L(£2;R?) defined by setting

(2.2) u(z) == u(i) =:u' for every x € i+ [0,e)", i € Z.(%).

If (u.) is a sequence in A, (€2; R?), we say that (u.) converges in L (£; R?) to a function
u € LY(Q;RY) if the sequence of the piecewise-constant interpolations of u. defined
as in (2.2) does so.

Finally, for every i € Z.(f2) it is convenient to consider the translated set §2; :=
Q —i. We then consider functions ¢5 : (R%)Z=(%) — [0,400), and we define the
discrete functionals F. : L}(Q;R?) x A(2) — [0, +00] as

> i ({u MY jezay) ifu€ A(%RY,
(2.3) Fe(u,A) := {iez.(4)
+00 otherwise in L'(Q;R?).

In the case A = Q we omit the dependence on the set and simply write F¢(u) in place
of F.(u,Q). With the identification as in (2.2) and the corresponding L!(Q;R%)-
convergence, we aim to describe the I-limit of the functionals F. in the strong L!(Q)-
topology under suitable conditions on the energy densities ¢;. Namely, we assume
that the functions ¢ : (R4)Z=(2) — [0, +00) satisfy the following hypotheses for every
e>0andie€ Z.(Q).

(H1) (translational invariance): For all w € R? and z : Z.(Q;) — R,

05 ({27 +whiez. ) = 9§ ({#' }iez.n)-
(H2) (monotonicity): For all z,w : Z.(Q;) — R? with |27 — 2!| < |w’ —w!| for every
j,l € Z.(€;), we have
¢ ({#'}jezo00) < 05 ({w'}jez.00)-

(H3) (upper bound for linear functions): There exist ¢; > 0 and p € (1, +00) such
that for every M € R¥"™ we have

o ({(M2)'}jez. () < ar(IMIP +1),

where by (Mx) we denote the linear function defined by (Mz)’ := Mj.
(H4) (lower bound): There exists ¢z > 0 such that

¢;({#’}jez.(0:)) = c2min {Z |DE=(0)7, i}
k=1
for all i € Z.(Q) with i 4+ cey, € Z.(Q) for every k € {1,...,n} and every
zZ ZE(Q’L) — Rd.
Moreover, we require that the following is satisfied.
(H5) (mild nonlocality): For every ¢ > 0, a € N, j € Z.(R"), and £ € Z" there
exists ¢/§, > 0 such that for every i € Z.(Q) and for all z,w : Z.(€;) — R

£,x

with 27 = w’ for all j € Z.(caQ) there holds
¢ ({#'}jez.00) < 01 ({w'}jez.(an)
D S D e i T

y €
JEZ(Q;) E€L™
j+e€eQ;
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and the sequence (c£%,) satisfies the following:

(2.4) hmsupz Z Z 035 < 00,

70 GeNjez.(Rh) cezn

and for every 1 > 0 there exists a sequence (M;) with eM; =+ 0ase —0
such that

o5 Y i<y
=0 max{a,2|5],1] }> Mg

(H6) (controlled nonconvexity): There exists ¢ > 0, and for every e > 0, j €
Z.(R™), and & € Z" there exists ¢/'¢ > 0 with

(2.6) lim sup Z Z % < +oo

=0 ez (R) fcin

such that for all i € Z.(Q), every z,w : Z.(€;) — R%, and every cut-off
¢ : R™ — [0,1] we have

o ({@’2 + (1 — o )w'} ez o) < e3 (85({27 }jez () + ¢ ({w' ez 1))
+ R; (z,w, ),

where

Ri(zw, @)= ) ) cﬂf< s )|D§ P(D)[P|2(j+e€) —w(j+e€)| )
. ) n €Z.(Q
jGZE(Qz)jf;ZeQi Ke{l,n}

YD cg£<mm{|D§z(J) €|1£|}+mm{“:’5 \él )

JE€EZ:(Q) €L
JHefeq);

Remark 2.1. Hypotheses (H1) and (H3) imply that for every € > 0, i € Z.(Q0)
and for any constant function z : Z.(€;) — R?, 29 = w for all j € Z.(€2;), we have

(2.7) ({27} jez.0n) = 65 ({05 + w}jez. () = 5 ({05} jez.(0n) < e + 1.

Note that the condition on the decaying tail of the sequence (¢Z%) in (H5) is slightly
more general than the corresponding conditions in [2, 23]. In fact, therein the authors
choose for every n > 0 a constant M,, > 0 uniformly in € such that the analogue of
(2.5) is satisfied. Here we show that this assumption can be weakened by allowing
M, to depend on ¢ as long as eM; — 0. This weaker condition makes it possible to
rephrase an example considered in [13] within our framework (see section 5.3).

Remark 2.2 (comments on hypothesis (H2) and its relaxation). Hypothesis (H2)
is a technical requirement. It guarantees the possibility of passing from GSBVP(£; R9)
to SBVP(Q;R?) N L>(; R?) using a suitable truncation procedure (see Remark 2.3
below). This is essential in many proofs in sections 3 and 4. It can, however, be
avoided if the space of admissible functions is restricted to u € A.(£; R?) satisfying
a uniform L*®-bound ||ul|p~ < ¢o for some fixed ¢o, > 0. In this case the domain of
the I-limit in Theorem 3.1 would directly reduce to SBVP(Q;R%) N L>°(Q; RY).
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We also observe that instead of requiring (H2), one could require that the ener-
gies F; decrease along the truncation operators considered in [26], i.e., Fr(¢x(u), A) <
F.(u, A), where the functions ¢, € C°(R%;RY) are as in Remark 2.3 below. Never-
theless, we prefer to state (H2) as above, since it allows us to express the required
properties of F, on the level of the potentials ¢5.

Eventually, we notice that in the case of pairwise interactions the presence of
a gradient structure allows us to replace (H2) by a weaker “almost monotonicity”
assumption, which only has to be satisfied for “large gradients.” This is discussed in
more detail in section 5.1.

Remark 2.3 (smooth truncation). As mentioned above, we will apply (H2) to
suitably truncated R%valued functions. To this end, following the approach in [26]
we consider ¢ € C°(R) with ¢(t) =t for all t € R with [¢| <1, p(t) =0 for allt >3
and [|¢'||o < 1, and we define ¢ € C°(R% R?) by setting

_Jelehg if¢#o,
#(¢) = {o if ¢ =0.

The function ¢ is 1-Lipschitz [26, section 4] and for every k > 0 the function ¢y
defined as ¢ (¢) := kgf)(%) is also 1-Lipschitz. In particular, since ¢ (0) = 0, we have

(2.8) k(O < [¢] - for every ¢ € R

For every u : R" — R? we now define the truncation Tyu := ¢ (u), and we observe
that thanks to the 1-Lipschitzianity of ¢y, (H2) yields

(2.9) F.(Tyu, A) < F-(u, A)

for every k > 0, ¢ > 0, A € AQ), and u € A.(Q;R?). Moreover, for every
u € GSBVP(Q;RY) and every k > 0 the truncation Tju belongs to SBV?(;RY) N
L>(Q;R?). Finally, if u € GSBVP(;RY) N L1(Q;RY), there holds (see [39, Lemma
2.1]):

(i) Tyu — v a.e. and in L}(Q;R?) as k — +o0;

(il) VTyu(z) = Vi (u(z))Vu(z) and, in particular, |VTiu(z)| < |Vu(z)| for
a.e. x € 1 and every k > 0;

(iii) St C Sy and ([u],vn) = ([Thu],vrw) H* t-ae. on S, N {|ut| < k} up
to a simultaneous change of sign of [Tyu] and vr,,, and by Lipschitzianity
|(Tu) T —(Tku) ™| <|ut—u] for every k>0. Moreover, limy_ y oo H"~(S10) =
H(SL).

Remark 2.4 (T-liminf and I'-limsup). In all that follows we use standard notation
for the I'-liminf and the I'-limsup; i.e., for every pair (u, A) € L*(Q;R?) x A(Q) we
set

F'(u, A) := I-liminf F,(u, A) := inf{liminf F.(u., A): u. — w in L*(Q;RY)},
e—0 e—0
F"(u, A) := T-limsup Fy(u, A) := inf{limsup F. (uc, A): ue — u in L'(Q;R9)}.

e—0 e—0
If A=Q, we write F’(u) and F"”(u) in place of F'(u,2) and F"(u, Q).
The functional F’ is superadditive as a set function [33, Proposition 16.12], and
both functionals F’ and F” are increasing as set functions [33, Proposition 6.7] and
LY (©; RY)-lower semicontinuous in u [33, Proposition 6.8]. Moreover, from (2.9) we
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deduce that F'(Tyu,A) < F'(u,A) and F"(Tpu, A) < F"(u,A) for every (u,A) €
LY RY) x A(Q) and k > 0. Hence, the L'(Q;R?)-lower semicontinuity, together
with (i) in Remark 2.3, ensures that
lim F'(Tyu, A) = F'(u, A),
k—+o00
(2.10) lim F"(Tyu,A) = F"(u, A).

k—4o00

Finally, we also consider the inner-regular envelopes of I’ and F” defined as

F’ (u, A) :=sup{F'(u,A"): A" € A(Q), A" cC A},
(2.11) F"(u, A) :=sup{F"(u, A"): A" € A(Q), A" cC A},

respectively. Then F’ and F” are inner regular by definition, increasing, and L!(£2; R%)-
lower semicontinuous [33, Remark 15.10].

3. Compactness and integral representation. In this section we state and
prove the first main result of the paper, which is the following integral-representation
result for the I'-limit of the functionals F;.

THEOREM 3.1 (integral representation). Let F. be as in (2.3), and suppose that
¢5 : (R)Z(%) 5 [0, +00) satisfy (H1)~(H6). For every sequence of positive num-
bers converging to 0, there exists a subsequence (g;) such that (F;) T'-converges to a
functional F : L*(Q;RY) — [0, +00] of the form
(3.1)

/ f(z, Vu) dz + / gz, [u], vy) dH™™ ' if u € GSBVP(Q;RY) N LY (Q;RY),
Flu) = { /e Su
+00 otherwise in L*(Q; R?).

Here, for every xo € R™, v € 8", ¢ € R%, and M € R¥™ the integrands are given
by the formulas

(3.2)
. 1 v . 1 v v
f($07M) = hmsup Tm(uM,monp(xO))v g(anCay) = hmsup nflm(uc,wme(xO))a
p—0 P p—0 P

where Ungwy, uf , are given by (2.1), and for every u € SBVP(Q:;RY) and every
A e A™9(Q2) we have set

(3.3) m(a,A) := inf{F(u, A): u € SBVP(A;RY), u =1 in a neighborhood of DA}.

In particular, g(x,t,v) = g(x, —t, —v) for every (z,t,v) € Q x R? x S"~1. Moreover,
for every A € A™9(Q) and every u € GSBVP(Q;RY) N L' (Q;R?), there holds

(3.4) - lim ng(u,A):/Af(x,Vu)dx—F/S mAg(a:, [u], v) dH™ L.

Jj—+oo

Remark 3.2 (choice of convergence). The convergence in measure would be a more
general choice with respect to the L'-convergence chosen in Theorem 3.1. In this case
one could follow the arguments in [26] to prove an integral representation as above.
Here we prefer to work with the latter convergence, as we are interested in Dirichlet
boundary value problems (cf. Lemma 3.15), in which case the L!-convergence becomes
the natural choice thanks to the lower bound (H4) together with the monotonicity
assumption (H2) and Remark 2.3.
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3.1. Proof of the integral-representation result. We will prove Theorem
3.1, gathering Propositions 3.3, 3.4, 3.6, 3.10, and 3.12, which, together with the
general compactness result Theorem 3.14, ensure that the I'-limit F' exists up to
subsequences and that a suitable perturbation of F' satisfies all hypotheses of [10,
Theorem 1]. As a first step we show that F” (-, A) is local for every A € A™9(0).

PROPOSITION 3.3 (locality). Let ¢ : (R4)Z(%) — [0, +00) satisfy hypotheses
(H1)~(H6). Then for any A € A™9(Q) and u,v € GSBVP(Q;R?) N LY (Q; RY) with
u=uv a.e. in A, we have

F"(u, A) = F" (v, A).

Proof. Let A,u,v be as in the statement. Thanks to (2.10) it suffices to consider
the case u,v € SBVP(;RY) N L>°(Q;R?). We first show that F(u, A) < F" (v, A).
To this end, choose u.,v. € A.(Q;R?) converging in L' (£;R?) to u,v, respectively,
and satisfying

(3.5) lim F_(ue, A) = F"(u, A), HH(I) F.(ve, A) = F"(v, A).
E—r

e—0
Up to considering the truncated functions T, c te, 1o Ve, We can assume that
l[uellzoe < BllullLee, [[vellLoe < 3flullLoe.
For fixed n > 0 and every ¢ > 0, let M; > 0 be given by (2.5), and define
we € A (;R?) by setting

ll oo

ool if disteo (4, A) < eMg,
B otherwise in Z.(2).

Since the sequences (u.), (v.) are bounded in L>(€;R?) uniformly in ¢ and v = v

a.e. in A, we have

Jwe = wll g < e — ol (ay+ e — ullzs o a) e 40 € Z4(9): dist(i, 9A) <M ).

Moreover, since JA is Lipschitz, it admits an upper Minkowsky content, and hence
(eM)" ' 44{i € Z=(Q): dist(i,04) < M3} < cH" " (DA) + 0 (1).

Thus, the assumption on My ensures that we — u in LY (% Rd), which implies that

(3.6) F"(u, A) <limsup F.(we, A).

e—0

We now come to estimating F.(w., A). For every i € Z.(A), we set
ac(i) == sup{a € N: w! = vJ for every j € Z.(i +eaQ)},

so that condition (H5) yields
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Fe(wevA) < Z 5n¢§({vé+j}jeza(9i))
1€Z.(A)

(3.7)
j : o L Jwiti e — gitite|
I S S
i€Z:(A)  jEZ () gezm

J+egefd;

We observe that by construction, a.(i) > My for every i € Z.(A). Estimating the
minimum in (3.7) with (1 + |witi+¢ — vi+9+¢]) /e and using the uniform bound on
[|ve||Lee and ||we||pe thus gives

Fo(we, A) < Fo(ve, A) + (14 3lull L + 3||v]| L)
x Y Y > dhe i € Zo(A): ac(i) = a).

a>Mg jeZ. (Rm) EEZn
Moreover, the Lipschitz regularity of A yields

"Ml € Z.(A): a.(i) = a} < cH"H(DA) + o.(1),
which in view of the choice of M, and (2.5) gives

lim sup F; (we, A) < limsup Fe(ve, A) + en.

e—0 e—+4o00

Gathering (3.5) and (3.6) we thus obtain
F"(u, A) < F"(v, A) + cn,

and the desired inequality follows by the arbitrariness of n > 0. ]

As a next step towards the proof of Theorem 3.1, the following two propositions
show that F’ and F" satisfy suitable growth conditions.

PROPOSITION 3.4 (compactness and lower bound). Let F, be given by (2.3), and
suppose that the functions ¢5 = (R4)Z=(%) — [0, 400) satisfy (H4). Let A € A™9(Q),
and suppose that u. € A (;RY) are such that sup, F.(u., A) < +oo. If, in addition,
the sequence (ug) is equi-integrable on A, then u. converge up to subsequences to a
function u € GSBVP(A;R?) N LY (A;R?). Moreover, there holds

(3.9) Fllu, A) > ¢ (/A IVl de + 1 (S, mA))

for some ¢ > 0 independent of u and A.
Proof. Let u. € A-(€;R?) be as in the statement. In view of (H4) we have

N 1
(3.9) F.(uc, A) > ¢ | Z " min {Z \Dfug(zﬂp, 5} =: Ge(ue, A),
i€ 2. (A) k=1

and hence [39, Lemma 3.3] applied to £ = Z™ and f(p) = min{||p||1, 1}, together
with the equi-integrability assumption and the uniform bound on F(u., A), provides
us with a subsequence (not relabeled) and a function v € GSBVP(A;RY) N LY (A;R?)
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such that u. — u in L'(A4;RY). Moreover, from [39, Lemma 3.3] and (3.9) we also
deduce

F'(u,A) > oG (u, A) > ¢ </ |VulP de +H" (S, N A))
A

for some ¢ > 0 independent of u and A. 0

In order to prove an upper bound for F"’(u) we need to restrict to a suitable dense
class of functions. To this end, it is convenient to introduce the following definition
of a regular triangulation.

DEFINITION 3.5. Let A C R™ be open, bounded, and with Lipschitz boundary.
We say that a family (Up)i=1,.. N of pairwise disjoint open n-simplices Uy, ..., Un is
a reqular triangulation of A if A C Ul]il U, and if for any (I,I') € {1,...,N}? the
intersection Sy = U,NUy is either the empty set or an (n — k)-dimensional simplex
for some k € {1,...,n}. The (n — 1)-dimensional simplices S; ;- are called the faces
of the triangulation, and by 6 € (0, ) we denote the minimal angle between two faces
of such a triangulation.

PROPOSITION 3.6 (upper bound). Let A € A™9(Q) and u € GSBVP(A;RY) N
LY (;RY) and suppose that the functions ¢S satisfy (H1)-(H6). Then

(3.10) F"(u,A) <c (/A (|VulP +1) dz +/

SuNA

1+ Jut ) — u= () cm"-l(y))

for some ¢ > 0 independent of u and A.

Proof. Let Q C R be any open bounded set with Lipschitz boundary such that
QccQ.

Step 1. As a preliminary step we prove the existence of some constant ¢ > 0 such
that for any u € SBVP(Q;R%) N L>°(Q; R?) and any A € A9(1) there holds

(3.11) F'"(u,A) <c (/A (IVulP + 1) dx +/S 1+ |u™(y) —u (y)|) d?—t"l(y)> .

We first prove (3.11) for an A polyhedral set.

Thanks to [32, Theorem 3.1] (see also [31, Theorem 3.9]), employing a standard
density argument it suffices to prove (3.11) for u € SBV?(Q; R?%) N L>°(Q; R?) such
that S, is essentially closed (i.e., H"~1(S, \ S.) = 0), S, is the intersection of Q with
a finite union of (n — 1)-dimensional simplices, and u € W (Q\ S,; R%). Moreover,
since u € WHe(Q \ Sy;R?), arguing again by density we may assume that u is
piecewise affine on Q \ S.. More precisely, we may assume that there exist a regular
triangulation (U;);=1,. n of Qand My,...,My € R¥" b, ... by € R such that u
satisfies the following: 3

(i) u(z) = S0 Xpyna (@) (Miz + by) for any « € QN UL, Uy

(i) S, = Qn Uszl Sty » where (Slk,l;.)k:17~»-,K is a collection of faces of the

triangulation;

(iii) for any face S; i with (1,1") # (Ig,1},) for every k € {1,..., K}, we have

WNA

u(r) = Mz + b = Mpx + by for every & € Sy .

Since A is a polyhedral set, up to refining the triangulation and renumbering the
simplices we may also assume that

L
a-Ju
=1
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for some L < N. Finally, we can assume that Ul,l’ Sir NeZ™ = (), since otherwise
we may consider the shifted lattice eZ™ + & for a suitable sequence { — 0. We then
define a sequence (u.) C A-(€;R?) by setting

ul :=wu(i) for every i € Z.(Q),

g
and we note that u. — u € L'(£;R?). Moreover, we write

L
(3.12) F(ue, A) =Y F.(uc,Uy),

I=1
and we estimate Fg(u.,U;) for every I € {1,...,L}. To this end, for [ € {1,...,L}
fixed and for i € Z.(U;) set
aé(i) = sup{a € N: ul = M;j + b for every j € i +caQ}.

Thanks to (H1) and (H5) we deduce

Fs(usaUl) S Z EnQSf({(MILE)(’L+])}jezs(91))
i€Z:(Ui)

(3.13) + Z e" Z Z Ciflg(i)

1€Z:(Ur) j€Z-(Q) §EL”
J+egefd;

" min{|D5u(i+j)|P 1+ Ju(i+j +€f) — (Mlx+bl)(i+j+££)}
€ ? c

=1L, + 1L,
Moreover, (H3) gives
(314  Li<e Y e(MP41) = 01/ (IVul? +1) dz + o(1),
i€Z.(Uy) Ui

so that it remains to estimate Ié’Q. To do so, we need to introduce some notation. In
what follows, for € > 0, i € Z.(U;), j € Z:(9;), and £ € Z™ we use the abbreviation

1+|u(z‘+j+s§)(Mla:+bl)(z‘+j+s§)|}
13

m’fu(i) == min{Dgu(i + )P,
Further, by
N(@):={l'e{1,...,N}: Sy is an (n — 1)-dimensional simplex}

we denote the set of all indices which label the “neighboring” simplices of U;. More-
over, for n > 0 fixed and every € > 0, we choose M,, > 0 such that

lim sup Z g <,
e—0 i ’
max{a,1|j],1¢|} > M

4 M, cos 6
sin 6

and we find m, € N such that em. — 0 and m, > , where 6 € (0,7) is as in

Definition 3.5. Finally, for any I’ € A (1), set

1V = {i € Z.(U)): distoo(i,Up) < em.}
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and

T = Z.(U)\ T

Setting Uf := {x € U;: distoo(z, R" \ U;) > &} we get

ﬂ jal/ = ZE(UlE)'

UeN(l)

For I’ € N(I) we also set

l/ o l//
[’a T ﬂ \ja
I"eN(l)
l//7£ll

and we rewrite [, é’g as

Ié 2 = Z Z Z e, al ) msgu(z)

1€Z:(UF) JEZ () E€Z™
JjHefef;

+ Yoo Y Y Hal(m,u()

UV ENQ) ieTt NI, JEZ.(Q:) Ee€r”
l;ﬁl” ]-‘rEEGQ‘

(3.15) D DD DI DR Wt O]

VEN()ieT!nLcl  j€Z:(Qs) €L
J+egefd;

In order to estimate the first term in (3.15) we note that
5"_1#{2' € Z.(Uy): ozé(i) = a} < c?—["_l(aUl) + 0:(1)

for every a € N. Moreover, for every i € Z.(Uf) we have al(i) > 2m.. Thus, the
estimate mi Su(i) < (2|jul| e 4+ 1)e™! yields

Z Z Z Ea,(lm7u(i)

1€Z-(UF)  jEZ() E€L™
JH+e&ed;

< (14 2||luflpee) Z Z chg nalie Zo( Ul):aé(i):a}

a>2m jeZ. (R™) (€L

(3.16) < c(u) > oLt

max{a,L]j],1¢]}>M,

To bound the second term in (3.15), we observe that for every ', 1" € N (I) with I’ # 1"
and every a € N, we have

e lie IV NI al(i) = o} < emee (HPH(Sup) + HH(Sim) + 0o(1)) -

g

Hence, as in (3.16) we obtain
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Z Z Z Z sal() elu()

U eN() iezt mI;’_’m JE€EZ:(Qi) E€L”
VAL ' Jtegefd;

<@+2ul=) D> > S dient#lier!, nIl, al(i) = a}

U1"eN(l) «eNjeZ. (R™) £€Zr
llil”

n)smz Z ch’iﬁo as e — 0.

aeN jeZ. (Rn) €T

(3.17)

Finally, the last term in (3.15) can be estimated as follows. If j € eZ™ and £ € Z™ are

such that max{2|j|, |} > 2588 then the choice of m. allows us to deduce that

n J:€ 36, (s
E E € E Clat (Z.)malu(z)
VENW ETINC maxt Hil i) > 5

<@+2ule) Y > oo dben i {ier! nelal(i) =a}

U1 eN () a€Nmax{L]j],|¢[}>M¢
l;ﬁl”

(3.18)
Scwm) Y d,

max{a,%\jl,\ﬁ\bM%
where in the last step we have used that
el e IV N Ll ol (i) = a} < HH(Si) + oo (1).

Otherwise, for every I’ € N'(1),i € Z'NLY and j € Z.(Q;), £ € Z" with max{L|j], |¢[} <
%isneo we have [i + j,i + j + €& C U UUpy. We now distinguish between the case
where S;;» does not belong to S, (i.e., (I,I') # (I, ;) for every k € {1,...,K}) and
the case where (1,1) = (Ix,},) for some k € {1,..., K}.

In the first case, we have u € W1 (U, U Up; R?); hence, the inclusion [i + j,7 +
j+e€&] C U, UUy, together with Jensen’s inequality, yields

p

m?$u(i) < |Déu(i + j)|P =

e / Vu(i+ j + eté)Edt

< i || uti+ s+ ct0PIep b < 19l m

so that

Z Z Z Ci’,ils(i)gnmg’fu(i)

i€TVNLY  JE€Ze() §EZ™
.| _Emgesinf me sin @
lil< 4 cos 6 l€l< 4 cos @

< Z Z Z HVU”LW(UZUUZ/;]Rd)CJE e"#{i e Il ﬂﬁl al(i) = a}

a€EN jeZ, (Rn) E€Zn

(319)  <ec(w)d . Y. Y % =0 ase—0.

€N jeZ, (Rn) E€Zn

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 07/09/21 to 151.100.50.232. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

3616 ANNIKA BACH, ANDREA BRAIDES, AND MARCO CICALESE

Finally, suppose that S; ;v = Sy, 1, for some k € {1,...,K}. Then we may estimate
enmifu(z) as follows:
e"m? u(i) <"1+ [(Mya + by ) (i + j + &) — (My, @+ by, ) (i + 5 + £€)|)
< 6n_l(l + ‘(Ml;x + blg)(pl/k (Z) + diSt(ivnd) +7+ E§)
- (Mlkx + blk)(pl’k (Z) + diSt(iv HVk) +J+ 5£)|)

_ . ) sin 0
< (L My i (3) + by = (M (6) + b)) |+ 1My, = My | (Vi + T ) em )

<c/ (14 10y (1) + by, = (Vs (1) + )
Py, (1) +[0,e) 1
+eme My, — My, |) dH" " (y)
<cf (14 1My + by, — (Miyy + b))
Py, () +[0,6)" 1
+e(me + 1)\ My, — M) dH™ (y).

Note that My y + by, = ut(y), My, y+ by, =u=(y) for H" l-ae. y € Sie.1r. - Hence,

we obtain
B3 no 3,6, (;
Z Z Z Ci,aé(i)g ms,lu(z)
L/ l/ . Z Q ZTL
Tk b J€Ze(Q4) e
€L NLe eme. sin O me sin 6

lil< 4 cos 6 l€l< 4 cos b

(3200  <ecd. Yo > Y

a€N jez. (Rn) E€Zn

ut —-u clu)em n—1
- Z /Puk (i)+[0,e)™—1 (1 + | (y> (y)l + ( ) 5) dH (y)

1 5
€T NLE

algk (1)=«

<(ef ) ) W) + e )

’
Uil

DD Dk

a€N jez, (Rn) E€Zn

Eventually, summing up over ! and gathering (3.12)—(3.20), thanks to the choice of
M, and me we deduce that

limsup F (ue, A) <c ( /A (IVulP+1) det / <1+|u+<y>—u-<y>>dH"-1<y>)+c<u>n,

e—0 S.NA

and hence (3.11) follows by the arbitrariness of n > 0. ~
In the general case A € A™9(Q), we choose A’ polyhedral with A cC A’ CcC Q.
Since F” is increasing in A, we then obtain

P <) ze ([ (g [ ae ) - o @b ).

WNA”

and (3.11) follows by letting A’ \, A.
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Step 2. We now prove (3.10) for A € A™9(Q2) and u € SBVP(A; RY)NL>®(A4;RY).
Thanks to the Lipschitz-regularity of A, using a local reflection argument we can
extend u to a function @ € SBVP(Q)NL>(Q) in such a way that H"(Sz NIA) = 0.
Thus Step 1, together with Proposition 3.3, gives

F"(u, A) = F" (4, A)
<e ( Jawr e aos [ @) - e @) cm"-l(w)

([ [ st o @b ).

u

Step 3. Finally, we remove the assumption u € SBVP(A;R%) N L>=(A;R?) by
considering the truncated functions introduced in Remark 2.3. More precisely, for
any u € GSBVP(A;R?) N LY(Q;RY) and any k > 0, consider the truncation Tju €
SBVP(A;RY) N L>*(Q;RY). Combining Step 2 with (2.10), we then obtain

F'(u,A) = lim F"(ug,A)
k—4o00

k—+o00

< climsup (/ (IVTiul|P + 1) dzx
A

+/ _ A+ (Tew) ™ (y) — (Tew) ™ (y)]) dH"‘l(y)>,
Sty uNA

and hence (3.10) follows by properties (ii) and (iii) in Remark 2.3. ad

As a next step we establish an almost subadditivity of the functional F" as a
set function. As a preliminary step we prove a version of [2, Lemma 3.6] and of a
fundamental estimate (see Lemma 3.8) adapted to our setting.

LEMMA 3.7. Let Bg C R™ be an open ball with Q@ CC Br and u : Z.(Br) — R<.
There exists ¢ > 0 depending only on n such that for any £ € Z™ we have

1 - 1
E min{|D§u(i)p,} <c g min{ E D?“(i)|p7}~
i€Z.(Q) el¢l i€Z-(Br) k=1 €
i+e€EQ

Proof. Following the same procedure as in [2, Lemma 3.6], for £ € Z" and i €
Z(R™) we set

TE(0) = {j € Z(R"): ( + [-e,e]") N [iri + €] # 0},
and for i € Z.(Q) with ¢ + £ € Q we choose a sequence (ih)‘h&‘:lo C Z&(i) satisfying
io =1, ¢, =i+, ip=1in_1+eeyp) forsomei(h)e€{l,...,n},

so that
[€]1

. 1 i .
Dtu(i) = Al Z DX u(ip ).
h=1

As in [2, Lemma 3.6], applying Jensen’s inequality we obtain

p €l
. n?2 i .
IDSu(i)P < = > DM iy )P,
1€l =

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 07/09/21 to 151.100.50.232. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

3618 ANNIKA BACH, ANDREA BRAIDES, AND MARCO CICALESE

and hence the fact that min is nondecreasing yields
2 €

. . 1 . nz ; . 1
min {|D§u(z)|‘”7 E|§} < min e Z | DX (i _1)|P, =
h=1

ng ‘5\1 () |§|1
= — min DM u(ip_1)|P,
Gh Z' i) e

p
nz . €)1
< — min Dk )P,
3 Z Z'

ot elgln®
n% €l
. . 1
(3.21) < > mln{ZIDé“U(J)Ip, }
1 ezo () b1 ef¢In®

where in the last step we have used the subadditivity of min. Note that for £ € Z",
i € Z-(Q) with i +¢¢ € Q, and ¢ sufficiently small, there holds Z¢ (i) C Z.(Bg). Thus,
from (3.21), together with the fact that L&h <1, we deduce

n

1 3 . 1
(322) ) {lDﬁu(z‘)’% } <o > #IHG)min {Z [DZu(5)I", } ,
ic7) elel) = Ik 2, = :
i+eEQ
where for any j € Z.(Bg) we have set
TEG) ={i € Z(Q): i+ e €Q, jeT(i)}

In [2, Lemma 3.6] it has been proved that #J5(j) < c¢(n)|¢| for some c(n) >
independent of €, j, £, and hence the result follows from (3.22) by taking ¢ = ¢(n)n
upon noticing that |¢] < |€];.

LEMMA 3.8 (fundamental estimate). Let u € GSBVP(Q;R?) N LY RY) and
A,B € A(Q), and suppose that ¢ satisfy (H1)—(H6). Moreover, let (ue),(ve) C
A (Q;RY) be two sequences that both converge to u in L'(S;R?). For every n > 0
and for every A', B" € A™9(Q) with A’ CC A and B’ CC B, there exists a sequence
(w?) C A (S RY) converging to u in L'(Q;R?) such that w! = u. on A, and w? = v,
on B'\ A for every e > 0, and satisfying

0
g
a

(3.23)
lim sup F.(w?, A’'UB’) < (1+n)(limsup F: (u., A) +limsup F.(ve, B)) +c(u, A', B')n
e—0 e—0 e—0

for some constant c(u, A’, B") > 0 independent of n.

Remark 3.9. We will use Lemma 3.8 to both prove an almost subadditivity of the
functional F” and modify boundary conditions of a recovery sequence in the proof of
Lemma 3.15. For the latter purpose it is helpful to notice that if the sequence (ve) in
Lemma 3.8 satisfies

3.24 su €™ min DFu ()P, = p < +o0,
21 op ¥ w3t
i€Z.(BRr)

where Br C R" is an open ball with 2 CC Bpg, then the function w? can be chosen
in such a way that w? = v, on Q\ A.
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Proof of Lemma 3.8. Tt suffices to prove the result for u€ SBV?(; RY)NL>®(Q; R?);
then the general case follows by arguing as in Step 3 of the proof of Proposition 3.6.
Moreover, we can assume that the sequences (u.), (v.) C A-(Q;R?) satisfy

(3.25) lim sup F (ue, A) < +o0,
e—=0

(3.26) lim sup F; (ve, B) < +00.
e—0

Thanks to (H2), upon considering the truncated sequences (Tasue), (Tasve) with M =
llull Loe (ray We can always assume that [Juc||pee(orae), Ve || Lo (ray < 3wl Lo (iray
for every e > 0, which implies that u. — u, v. — wu also in LP(€;RY). Moreover, in
view of (H4) we get

1
(3.27) sup Z 5 mln{Z|D§u€( )|P ,} < 00,
s>OZ€Z (ar) ot €
3.28 su " min Dkvg Pl— b <+o00
am o 3 cwn{Siohor )
i€Z.(B")

for every A” CC A and every B” cC B.

Step 1. We first replace (u.) and (v:) by sequences (. ), () satisfying (3.27) and
(3.28) with Bpg in place A” (respectively, B"), where Bg C R™ is an open ball with
Q) CC Bg. To do so, we use a local reflection argument as in Proposition 3.6, Step 2 to
extend u € SBVP(Q; RY)NL>®(Q;R?) to a function @ € SBVP(Bgr;RY)NL>(Bg; R?)
with
(3.29)

F(i0.9) < o ( Lvup+ e+ [ 0+ ute) - w)) d%“(.y)) < too.

In view of (3.29) there exists a sequence (w.) C A.(€;R?) converging in L'(Q;R?)
to g = u with
limsup F(we, Q) = F"(in, Q) < +o0.

e—0
Arguing again by truncation we can assume that |[we o (ora) < 3l|ull o (ore) for
every ¢ > 0, and thus w. — u in LP(£;R%). Moreover, appealing once more to (H4),
upon extending w, by 0 outside of Q we get

(3.30) sup Z € mm{Z|DkwE , }<+oo

€20z (Br)

We now choose A" A" B" B" € A™9(Q) with A’ cc A” cc A" cC A and
B’ cc B” cc B"” cC B and cut-off functions ¢4 between A” and A" and g
between B” and B"’. Set

Ue = QAU + (1 - QOA)U)E,

Ve = QBV: + (1 - @B)wsa
so that @. = u. on A” and 9. = v. on B”. We still have 4., 7. — u in LP(;R?), and

hence

(3.31) lim > e — el = 0.

0
i€Z.(Q)
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Further, for every i € Z.(Bg) and every k € {1,...,n} there holds
D (i) = pali + eey) DEuc (i) + (1 — pa(i + eex)) DEwe (i) + DEpa(i) (vl — wl).

Thus, (3.28) and (3.30), together with the equiboundedness of ||v.|| L» (;ra), [ We | Lo (;r4)
and the fact that {p4 > 0} CC A, yield

n
n 3 -~ - 1
(3.32) sup E €" min {,;1 |DEa (i) P, E} < +00.

€20 ez (Br)

Analogously we also obtain
I R |
(3.33) sup Z €" min {Z |D¥o. (i), g} < +o00.

Step 2. For fixed > 0 we now construct the required sequence (w?) C A (€; RY)
converging to u in L'(£;R?) and satisfying (3.23). To this end, for every & > 0 let
Mg > 0 be as in (2.5) in (H5) with

lim sup Z s <.
e—0 ’
max{a,%|j|,|£\}>M;

Moreover, set d4 := dist(A’,R™ \ A”), choose L € N, and for every [ € {1,..., L} set

A= {a: e A”: dist(z, 4") < k%},

and let Ay := A’. Note that up to choosing A” such that d4 is small enough, the
sets A; have Lipschitz-boundary for every [ € {1,...,L} and satisfy H""1(9A4;) <
HPLOA") + 1.

For every I € {1,...,L — 1} let ¢; be a cut-off function between A; and A;41, so
that Y= 1 on Al, Y= 0 on \ Al+17 and ||vg01||Loo(Q7Rn) < %.

We also set dp := dist(B’,R™ \ B”), and we choose g9 > 0 such that ey/nM; <
min{dp, 44} for every ¢ € (0,&¢). For every l € {1,...,L—3} and € € (0,20) we then
define a function w.; € A.(Q;R?) by setting

wiy = (i)l + (1= @)L,

and we remark that w.; — u in L'(;R?) as e — 0, we; = @ = ue on A’, and
We | = 0. = v, on B’ \ A. Moreover,
(3.34)

Fs(ws,la AU B,) = Fs(ws,la Al—l) + Fs(ws,h (Al+2 \ Al—l) N B/) + Fs(ws,la B’ \ Al+2)'

We estimate the three terms on the right-hand side of (3.34) separately. We start
with the estimate for F.(we, A;—1). To this end, for every i € Z.(A;_1) we set

al(i) :=sup{a € N:i+eaQ C Aj}.
Since e/nM; < 94, we have ak(i) > M, for every i € Z.(A;—1). Further,

wz_ﬁj =4t = for every j € Z.(eal(i)Q),
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and for every a € N we have
" i € Zo(A11): k(i) = a} < H"THOA) + 0-(1) < c(H"H(OA)) +1).

Hence, (H3) yields

Fe (ws,la Al—l) < Z 5n¢1€({u;+j }jEZE(Q'i))

1€Z(A1-1)

2> D du

i1€Z:(A1-1) jEZ ()  E€EL™
Jj+efe;

Xmln{|D5wEl( + )P, 1—|—|wez(i+j+8§)—ug(i—i—j+5§)|}

< Felue, A)+ (L 6llullz=) Y- > D b #{i € Zo(Ai): k(i) = o}

a>M; jeZ.(Rn) E€Ln

(3.35)
< Flue, A) + e(1+ 6flul )K" @A) +1) S Y 3 &

a>M¢ jeZ. (Rn) E€L™
Analogously, for every ¢ € Z.(B' \ Aj42) we set

BL(i) :==sup{B € N: i +e6Q C B"\ Ar41},

and we observe that 8L(i) > My for every i € Z.(B'\ Aiy2) and

wt = = i for every j € Z.(eBL(1)Q).

e,l

Thus, a computation analogous to (3.35) leads to

F. <ws 1B\ Avya)
Feve, B)+(146ljullz>) D D Y clhe" " #{i€ Zo(B\ Aiy2): BL() =P}

B>Mg jeZ.(R™) EEL™

(3.36)
< Fo(ve, B) + c(1+ 6l|ul| ) (H" 1 @A) + HHOB) +1) > >0 >

s

B>M: jeZ. (Rn) €L
Finally, in view of (H6) we have

Fs(ws,la (Al+2 \ Al—l) N B/)

SC3< . o {a Y em@) + D 5n¢f({f’éﬂ}jezg(ﬂi))>

1€Z:(S1) 1€Z:(S1)

(3.37) + Y R (i, B, 1),
1€Z-(Sy)

where S := (A;42 \ A1) N B’ and
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L 2L\" ifi~ . L
R?(ue,ve,wz)(dfx> YooY A+ et) — (G + )P
i€Z.(Q) tez”
Jezl )j+s£€Q

+ 3 Y e <m1n{|D5us( N2 |§|}+mm{ngs( NG E|1€}>

J€Z:(Q) EeZ™
JHe€e

Note that the same computations as in (3.35) and (3.36) lead to

(338) > "¢i({alM} ez o) < Felus, S) +e(w, A) Y > Y,

1€Z:(S1) a>My jeZ.(R™) EEL™
and
(3.39)
Yo ({0l jer o) S Felve, S) +e(w, AL B) D7 Y0 Y s,
1€Z(S1) a>My jeZ.(R™) EEL™

respectively. Moreover, Lemma 3.7, together with (3.32) and (3.33), gives
(3.40)

supsup 30 & (min{wﬁas(ﬁp,;ﬂ} +min{|D§6€(j>|p,;5|}> <M
J

for some M > 0. For every I, we have #{lI' # 1: S;N Sy # 0} < 5. Thus, gathering
(3.34)—(3.40), summing up over ! and averaging we find I(¢) € {1,...,L — 3} such
that

L-3
Fo(weye), A'UB) < 57— 3 Fe(we AU B
l 1

5e |
<1+L 34)(Fs(ust)+Fe(057B))+CUA/ DD I
()/>JME JEZ(R™) E€Z™
() e

i€Z.(A'NB") j€Z-(Q) E€Z™
j+egen

EE TR OIS d’f(mm{'Dw )

ieZE(A”ﬂB') JEZ(Q) tezm

J+e€e
+ min e ()P })
e g

< ( 5054) (F(ue, A) + Fo(ve, B)) + c(u, A, B) >~ Y Y b

L
04>ME JEZ(R™) €™
<2
+ -

J+e§) —v(j+ef)P

L P
) SO Y bel) - et
£el™ zeZ. (R™) JEZ-(Q)
Jj+ege

5 1
— E § >t E g” (min{Dﬁﬂg(j)P,}
A T en ) ez el¢]

jeteq
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+ min {Dﬁm@)%%})

§<1+ 503><F5<ue,A>+Fe(vs,B>>+cuA’ DDA

L—4
a>Mz jeZ. (Rm) E€Ln

Y (T oy e S w2y
L—4 dA (S &€
EEL™ z€

€T z€Z. (R™) 1€2Z:(2)

Ze(R™)

and hence (3.25), (3.26), and (3.31), together with the choice of M, yield

e—0 - e—0 e—0

)
limsup F (w, y), A’ UB') < (1 + T 634> <1imsup F.(ue, A) + lim sup Fg(uE,B)>

+C(U,A/, )77+ ﬁ O

and

then wf := w, () is the required sequence satisfying (3. 23)
As a direct consequence of Lemma 3.8 we obtain the almost subadditivity of F”.

PROPOSITION 3.10 (almost subadditivity). Let u € GSBVP(Q;RY) N L1 (Q;R?)
and A, B € A(Q) and suppose that ¢5 satisfy (H1)—(H6). For every A', B’ € A™9(Q)
with A CC A and B’ CC B we have

(3.41) F"(u, A'UB') < F"(u, A) + F"(u, B).

Proof. Let u € GSBVP(Q;RY) N LY(Q;R?) and A, B € A(f), and suppose that
(ue), (ve) C A(Q;R?) are two sequences that both converge to u in L!'(Q;R?) and
satisfy

limsup F.(ue, A) = F”(u, A) and limsup F.(v., B) = F"(u, B).

e—0 e—0

Let n > 0 be arbitrary; then Lemma 3.8 provides us with a sequence (w]) converging
to u in L'(£; R?) and satisfying (3.33). Thus, by the choice of (u.) and (v.) we obtain

F"(u, A"UB’) < limsup F.(w!, AUB") < (1+n)(F"(u, A)+F" (u, B))+c(u, A’, B")n,

e—0

from which we deduce (3.41) thanks to the arbitrariness of > 0. a

Remark 3.11 (extension). As a last step we establish the inner regularity of
F"(u,-) on Lipschitz sets. To this end, it is convenient to extend the functionals
F.(-,-) to Ac (€ RY) x A(Q) — [0, +00) for @ € R” open bounded and with Lipschitz-
boundary such that Q cc Q slmllarly to [23, Proposition 3.6]. More precisely, for
every e > 0 and i € Z.(€2), set Q; := Q — i and define ¢f : (]Rd)zf(Q i) by setting

G, o) = of({(210)’ }jez. ) if i € Z.(Q),
i JEZ(S2)/ min{22:1 ‘D?Z(OHP,%} ifie ZE(Q\Q)

Then, for every (u, A) € A.(Q;R%) x A(Q) we set

(3.42) Fo(u,A) = > e"i({u"™}ep @)

i€Z:(Q)
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Note that the functions ¢¢ still satisfy (H1)-(H6) with Q in place of Q and ¢, ¢z, ¢3
replaced by max{c;,/n}, min{cs, 1}, and max{cs,3?=1}. In particular, Propositions
3.6 and 3.10 hold true also with Q and F in place of Q and F. Moreover, for every
u e A(%GRY), @ € A (Q;RY) with @' = u for every i € Z.(Q) and A € A(f), the

definition of ¢§ implies that
F.(a, A) = F.(u, A).
Thus, for every u € GSBV?(Q; RY)NLY(Q; RY), every & € GSBVP(Q; RY)NL (Q; RY)
with & = v a.e. in Q, and every A € A(f2) we obtain
(3.43) F" (i1, A) = F" (u, A).
The extension described above allows us to prove the following result.

PROPOSITION 3.12 (inner regularity). Suppose that ¢ : (R?)Z=(%) — [0, +00)
satisfy (H1)—(H6). Then for every (u, A) € GSBVP(;RY) N LY(Q;RY) x A™9(Q),
there holds

F"(u, A) = F"(u, A),
where F”' (u, A) is as in (2.11).

Proof. Let (u, A) € GSBVP(Q; RY)NLY(Q;RY) x A™9(Q). Since F” is increasing
as a set function, it suffices to prove F"(u, A) < sup{F"(u,A’): A’ cC A}. A
standard way to prove this inequality consists of using the subadditivity, together
with the upper bound. In order to apply the same reasoning in our case, we need to
consider an open bounded set @ ¢ R™ with Lipschitz-boundary such that Q CC Q
and extend F. to a functional F. : A.(Q;R?) x A(Q) — [0,400) as described in
Remark 3.11. Then we apply Propositions 3.6 and 3.10 to F.

Let © be as above; arguing as in Steps 2 and 3 in the proof of Proposition
3.6, we can assume that u € SBVP(A;R?) N L>(A;R?) and extend u to a function
@ e SBVP(Q; RY) N L (€; RY) satisfying H"1(Sz NJA) = 0.

Let 1 > 0 be fixed; since A has Lipschitz boundary and H"~1(S; N 9A) = 0, we
can find open bounded Lipschitz sets

U'ccU’' ccV' ccV'ccAcc AcQ
such that A\ T” € A™9(Q), A\ U € A™9(Q) and

/~ (IVafP + 1)de + / (4 lat) - a ) dH ) <.
A San(A\T)

Note that A\ U” cC A\ U’. Thus, appealing to Propositions 3.6 and 3.10 with F'
and € in place of F' and 2, we obtain

F"(a, A) < F"(a, (A\T")UV') < F"(a, A\T") + F(a,V")
<</ (Vi + 1ydo+ [ ~<1+|ﬂ+<y>—a-<y>)cm"-l(y))
A\U’ San(A\U")
+ F(a, V")
<sup{F"(a,A"): A" cC A} + en.
Thanks to (3.43) we deduce that
F"(u, A) < sup{F"(u,A"): A" cC A} + en,

and we conclude by the arbitrariness of n > 0. O
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Remark 3.13. Note that Proposition 3.12 holds true also when F”(u, A) is re-

placed by
sup{F"(u, A"): A" € A™9(Q), A’ cC A}.

On account of Propositions 3.3, 3.4, 3.6, 3.10, and 3.12 we can now prove the
following compactness result.

THEOREM 3.14 (compactness by T'-convergence). Let F. be as in (2.3), and
suppose that ¢ : (R?)Z=(%) — [0,400) satisfy (H1)~(H6). For every sequence of
positive numbers converging to 0, there exist a subsequence (¢;) and a functional F :

LY RY) x A(Q) — [0, +00) with
(3.44) F(,A)=F'(,A) = F"(-,A) on GSBV?(Q;R%) N L' (Q;RY).

Moreover, F satisfies the following properties:
(i) For every A € A(Q), the functional F(-, A) is lower semicontinuous in the
strong L' (2;R?)-topology and local;
(ii) there exists ¢ > 0 such that for every (u, A) € GSBVP(Q;RY) N L}(Q;RY) x
A(Q), we have
X (/ Vul? dz + H (S, N A)) < F(u, A)
A

<c (/Aqu +1)de + [sm(l 1)) d?—l”_l) :

(iii) for every u € GSBVP(Q;RY) N LY (Q;RY) the set function F(u,-) is the re-
striction to A(Q) of a Radon measure;
(iv) for every A € A™9(Q) there holds

F(-,A)=F'(-,A) = F"(-,A) on GSBVP?(Q;R?) N L'(Q;RY);

(v) F is invariant under translations in u.

Proof. Thanks to the general compactness theorem [33, Theorem 16.9], we ob-
tain a subsequence (¢;) and a functional F' satisfying (3.44). Moreover, Remark 2.4
yields the (L!(Q;R%)-lower semicontinuity, while Proposition 3.3 combined with Re-
mark 3.13 ensures that F(-, A) is local for every A € A(). Further, for every u €
GSBVP(Q;RHNL(Q; RY) the estimates in (ii) are a consequence of the corresponding
estimates for regular sets in Propositions 3.4 and 3.6 together with the inner regularity
of the set functions Fi (u, -), F2(u, -) defined as Fy(u, A) := [, [VulP de+H""1(S,NA)
and Fy(u, A) := [,([VulP +1)dz + [y (1 +|[u]]) dH .

Since the set function F'(u,-) is inner regular by construction, increasing, and
superadditive (Remark 2.4), in order to obtain (iii) it suffices to prove that F(u,-)
is also subadditive; then the claim follows thanks to the De Giorgi-Letta measure
criterion and the upper bound in (ii). Let u € GSBVP(Q;RH)NLY(Q;R?) and A, B €
A(Q) and U € A(Q) with U cC AU B. We now show that F"'(u,U) < F(u,A) +
F(u, B); then the subadditivity follows by passing to the supremum over U. To this
end we remark that we can find A", A”, B’, B” € A™®9(Q)) with A’ cC A” CC A and
B’ cc B” cC B such that U cc A’ U B’. Thus, since F” is increasing as a set
function from Proposition 3.10, we deduce that

F"(u,U) < F"(u,A"UB") < F"'(u,A") + F"(u, B") < F(u, A) + F(u, B).
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Finally, in view of Proposition 3.12 we have F”(u, A) = F(u, A) for every (u, A) €
GSBVP(;RY) N LYQ; RY) x A™9(Q), and hence (iv) follows by (3.44) together with
the trivial inequality F’ (u, A) < F'(u, A) < F”(u,A). It remains to remark that
(v) is a direct consequence of the fact that thanks to (H2), the functionals F. are
invariant under translation in w. |

We are now in a position to prove Theorem 3.1.

Proof of Theorem 3.1. Let (¢;) and F' be as in Theorem 3.14. Then Propo-
sitions 3.4 and 3.6 ensure that the domain of F coincides with GSBVP(Q;R?) x
LY ($;RY). Moreover, in view of Theorem 3.14 the restriction of the functional F to
SBVP(Q;RY) x A(Q) satisfies all hypotheses of [10, Theorem 1] except for the lower
bound. In order to recover the lower bound, we use a standard perturbation argu-
ment; that is, for every o > 0, we consider the functional F, : SBVP({;RY) x A(Q) —
[0, +00) defined as

Fy(u,A) := F(u, A) + O'/S o [u]| dH"™ .

We observe that for every o > 0, F, satisfies all hypotheses of [10, Theorem 1]
which thus provides us with two functions f& : Q x R? x R¥*" — [0, 4+0c0) and
g5 : @ x R? x RY x §7~1 — [0, +00) such that

Fg(u,A):/ 1§ (z,u, Vu) dx—i—/ g5 (x,ut u™, vy) dH™ !
A S

wNA

for every u € SBVP(2;R?) and every A € A(£2). Moreover, since I and then also F,
are invariant under translation in u, formulas (2) and (3) in [10, Theorem 1] imply that
1§ does not depend on u, and g§ depends on the values u™ and v~ only through their
difference [u], i.e., f§(z,u, &) = f7(x,€) and g§(z,a,b,v) = g°(z,a — b,v) for some
functions f7 : Q x R¥*" — [0, +00), g7 : 2 x R% x §"~1 — [0, +00). Finally, formulas
(2) and (3) in [10, Theorem 1] also imply that f7 and g decrease as o decreases.
Hence, setting f(z,€) := lim,_,o+ f7(x,&), g(x,t,v) := lim,_,q+ ¢° (2, ¢, ), from the
pointwise convergence of F,, to F' and the monotone convergence theorem, we deduce

F(uaA) :Af(xavu)dx+/g g(xﬂ [u}vlju)d%nil

wNA

for every u € SBVP(Q;RY) and A € A(Q). In particular, thanks to Theorem 3.14(iv),
we deduce that (3.4) holds for every u € SBVP(;RY) and A € A™9(Q), and by
choosing A = Q in the formula above, we obtain the desired integral representation
on SBVP(Q;R?). Finally, we observe that formulas (2) and (3) in [10, Theorem 1]
imply that the integrands f and g are given by (3.2).

Eventually, we show that the integral representation also extends to
GSBVP(Q;RY)NL(Q; RY). To this end, for every u € GSBVP(Q; RY)NLY(Q; RY) and
every k > 0, we consider again the truncation Tju as in Remark 2.3. Using (ii) and
(iii) in Remark 2.3 together with (2.10) and appealing to the monotone convergence
theorem, we get
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- lim F. (u) = lim F(Typu)

j—+oo k—+o00

kgrfoo (/Q f(z, VIyu) dx + /STk
— [ faVwde s [ gl lul ) ann . 0
Q S.

u

g(x, [Trul, vru) d?-["_l)

3.2. Treatment of Dirichlet problems. For further use in section 4, we study
here the asymptotic behavior of minimum problems for F. when suitable Dirichlet
boundary conditions are taken into account. More precisely, for every § > 0, every
A € A™9(Q), and every pointwise well-defined function @ € L'(€2;R?), we consider
the minimization problem

m’ (@, A) == inf{F.(u, A): u € A(u, A)},

€

where
Al(a, A) := {u € Ac(GRY): (i) = a(i) if dist(s, R™\ A) < 6},

and we study the asymptotic behavior of m? (@, A) when first £ — 0 and then § — 0.
For our purposes, it is sufficient to consider boundary data @ € SBVP(£;R%) N
L>=(Q;RY) satisfying 7—["’1(5 N 0A) = 0 and such that the function @. € A.(Q;R?)
defined by setting @’ := @(4) satisfies condition (3.24) in Remark 3.9 and
(3.45)
i, —u in LY(Q;RY), limsup F.(i., B) <c (/ \Va|P dz + H" (S, ﬂB)) )
B

e—0

where B € A™9(Q)). For 4 as above we can prove the following convergence result.

LEMMA 3.15. Let ¢5 : (R4)Z(%) — [0, 4-00) satisfy hypotheses (H1)—~(H6), and
let I, be the subsequence provided by Theorem 3.1. Moreover, let A € A"*9(Q) with
A CC Q. For every pointwise well-defined function u € SBVP(Q;R?) N L>(Q;RY)
with H"~1(Sz NAA) = 0 and satisfying (3.24) and (3.45), we have

lim lim inf m$ ,(@,A) = lim lim supm? (@, A) = m(u, 4),

6—0 j—+oo 020 j 5400

where m(a, A) is as in (3.3).

Remark 3.16. Lemma 3.15, together with (3.2), provides us with asymptotic for-
mulas for the integrands f and g given by Theorem 3.1. Indeed, for g € Q, v € S~ 1,
and p > 0 sufficiently small we have @ (z¢) CC 2. Moreover, for every ¢ € R? and
M € R¥™" the functions UM ,zg, U¢ 4y B8 1D (2.1) satisfy the hypotheses of Lemma
3.15. Thus, passing to the upper limit as p — 0, we obtain the following formulas for
fand g:

1 1
xg, M) = limsup — lim lim inf m U = limsup — lim lim su m‘s U ,
f(xo )= pﬁOp P 30 j—-+ 00 ( Mﬂco) p*)Op P 50 J—>+0<P ( Mﬂco)

g(x0,¢,v) = limsup lim lim inf m? (g ) = limsup 7 lim lim sup m’ (U 20)-

00 PP 60 jo+oo p—0 PP =0 Lo
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Proof of Lemma 3.15. Let A,u be as in the statement. Observe that due to
monotonicity, the limit as 6 — 0 exists. We show that m(a, A) is both an asymptotic
lower and an asymptotic upper bound for mgj (a, A).

Step 1. We first establish the inequality

(3.46) m(a, A) < lim liminf m® (a, A).

T 50 j—+4o0 J

To this end, let § > 0 be fixed, and let u; € A, (2;R?) be admissible for mgj (u, A)
with
Fe, (u;, A) = mgj (a, A).

Thanks to Remark 2.3 we can assume that ||uj||z~ < 3| @||ze. In particular, the
sequence (u;) is equi-integrable, and hence (H3), together with Proposition 3.4, yields
the existence of a subsequence (not relabeled) converging in L'(£2;R?) to some u €
GSBVP(A;RY) N L' (A;R?). Since uj = 1., on dA+ Bs(0), (3.45) ensures that u = u
on 0A + Bs(0), and hence w is admissible for m(a, A). Thus, Theorem 3.1 yields

m(a, A) < F(u, A) < 13@ inf 77, (uj, A) = 1}31 inf m? (a, A),
and hence (3.46) follows by letting § — 0.
Step 2. We now prove that

lim limsupm? (@, A) < m(a, A).
620 j 5400 7

To this end, for fixed n > 0 we choose u € SBVP(A;R?) with v = @ in a neighborhood
of 0A and F(u, A) < m(u, A)+n. Thanks to Proposition 3.3 we can extend u to Q\ A
by @ without changing F'(u, A). Moreover, Theorem 3.1 provides us with a sequence
of functions u; € A., (Q;R?) converging to u in L'(£; R?) and satisfying

J

(3.47) limsup F;, (uj, A) = F(u, A).

Jj—4o0

We now modify u; to fulfill the required discrete boundary condition. Since u = @ in
a neighborhood of A, we can find A’ € A™9(Q2), A’ CC A such that u =1 on A\ A’
(and by extension, u = @ on 2\ A’). Moreover, since H"~(S; N dA) = 0, we can
choose further sets A”, A" | A € A™9(Q) with A’ cC A” cCc A” cCc Acc A and

/ |Va|P de +H 1Sz nA\ A7) <.
A\A/

We are thus in a position to apply Lemma 3.8 to the sequence (u;) and the sequence
(vj) defined by setting v} := v} if i € Z. (A"), v} == u(i) if i € Z.,(Q\ A7), and the
sets A” cC A” and A\ A7 cc A\ A’. In fact, Lemma 3.8, together with Remark
3.9, provides us with a sequence (w}), with w] = u; on A”, wj = v; = on Q\ A",

and

limsup F. (w], A) = limsup F, (w}, A” UA\ A7)

Jj—+oo Jj—+oo

(3.48) <(1+mn) (lim sup Fi; (uj, A) + limsup F¢, (vy, A\ A’)) + en.

j—+oo Jj—4o00
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In view of (3.45) and the choice of A’, A, we have

lim sup F, (vy, A\A) <c¢ / \ValP de+HH(SanA\A) | <en.
j—+oo A\A!

Moreover, for ¢ sufficiently small, w? is admissible for m‘gj (a,A). Thus, gathering
(3.47)—(3.48), thanks to the choice of u we deduce that

lim lim sup m‘; (u, A) < limsup F;, (w;, A) < (14 n)m(a, A) + cn,

020 j 5400 j—+o0

and we conclude by the arbitrariness of n > 0. ]

4. Homogenization. In this section we consider a special class of periodic
interaction-energy densities ¢ for which we can show that the I'-limit provided by
Theorem 3.1 does not depend on the I'-converging subsequence, which in turn implies
that the whole sequence (F;) I'-converges. We first need to specify what periodicity
means in the case of interaction-energy densities ¢5 : (R%)%=(%%) — [0, +00) that may
depend on the whole state {27} ;¢ (q,). This difficulty is also present in [23, section
5]. To avoid the dependence of ¢$ on ; in [23] the authors use a sequence of periodic
finite-range interactions ¢ defined on the entire lattice (Rd)Zn whose range increases
as k increases and which converge for every i € Z™ to a long-range interaction-energy
density ¢; : (R))%" — [0,400) as k — +oo. For i € Z.() the functions ¢$ are then
obtained by a rescaling of a suitably chosen qblz(e), where ek(¢) is proportional to the

distance of i to the boundary of €. Since the eriergy densities ¢ that we consider here
contain both bulk and surfaces scalings, the approach in [23] cannot be adapted to our
setting. Instead, here we consider functions 15 : (R%)%(R") — [0, +00) defined on the
entire scaled lattice €¢Z™ which have only finite range. This finite-range assumption
will be crucial to decoupling the bulk and surface scalings in the I'-limit.

We now state our precise hypotheses. Let K € N and L € N, and consider
functions 1¢ : (R?)Z=(®") — [0, +00) which are ¢ K-periodic in i and satisfy hypotheses
(H1)-(H6) with Z.(€2;) replaced by Z.(R™), where, in addition, the sequences (cI4,)
and (cl') provided by (H5) and (H6), respectively, satisfy

if max{c,2[L]w, 2|00, 2|2 + &l } > L,

(4.1) ; »
if max{2|Z|u,2|¢loc, 2|2 4 &|oo} > L.

In particular, whenever z,w : Z.(R") — R are such that 2/ = w7 for all j € Z.(cLQ),
we have

(4.2) ¢f({2j}jezs(sLQ)) = wf({wj}jeZs(sLQ))'

We also set
QF := {2 € Q: distoo (v, 00) > Le},

and we define ¢5 : (R%)%<(%%) — [0, 4-00) by setting
¢f({ZinLQ}jeZE(R”)) if i € Z.(QF),

(4.3) o5 ({7 }jez. ) = 1

min{ ; |D§z(0)|P,E} if i € Z.(Q\ QL),
sek_eQi
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which is well-defined thanks to (4.2). By construction, ¢ : (R%)Z=(%) — [0, +00)
satisfy hypotheses (H1)-(H6). We now aim to prove that for ¢ : (R?)% (%) —
[0,4+00) defined as in (4.3), the integrands f and g provided by Theorem 3.1 are
independent of the position x.

PROPOSITION 4.1. Let F. be as in (2.3) with ¢5 : (RY)%(%) — [0, +00) given by
(4.3), where ¢S = (RY)Z=(R") [0, 400) are eK -periodic in i, satisfy (H1)-(H6) with
Z.(S;) replaced by Z.(R™), and satisfy (4.1). Let (¢;) and F' be the subsequence and
the functional provided by Theorem 3.1. Then F is of the form

(4.4) F(u):/Qf(Vu)dx—I—/S Gl v) dH™Y, we GSBVP(Q:RY),

u

for some functions f : R¥*" — [0,400) and g : R? x St — [0, +00) possibly
depending on the I'-converging subsequence. Moreover, for every A € A™9(Q) and
u € GSBVP(Q;R?), there holds

r- hm F.. (u,A):/Af(Vu)d:rJr/S mAg([u],Vu)d”H"*I.

j—+

We prove Proposition 4.1 by adapting a well-known argument (see, e.g., [20,
Lemma 3.7]) to our setting, showing that the minimization problem m(a, A) defined
in (3.3) is invariant under translation for a suitable class of functions . We start by
introducing some notation. For every A € A() and y € R™ we set 7,4 := A+ y.
Moreover, for every u : Q@ — R? and every A € A(Q) with 7,A C Q we define
Tyu : A — R by settlng Tyu(x) := u(x —y) for every x € 7,A. For our purposes,
it is sufficient to consider pointwise well-defined functions @ € SBV (R";R¢) which
satisfy

(4.5) Tyt — ,u in LY (Q;R?)  for every y € R™,

where for every y € R” the function 7. € A.(Q;R?) is defined by setting 7,ut =
Tyu(i) for every ¢ € Z.(R™). We now prove the following lemma.

LEMMA 4.2. Suppose that ¢ : (R)Z<(%) — [0, +00) are given by (4.3), where
s (RYZ®RY) [0, +00) are eK-periodic in i, satisfy (H1)-(H6) with Z.(Q;)
replaced by Z.(R™), and satisfy (4.1). Let A € A™9(Q) with A CC Q, and let
u € SBVE (R™;R?) be a pointwise well-defined function satisfying (4.5). For any

loc

y € R™ with 7yA CC Q, there holds
m(a, A) = m(1,a, 1,A4),

where m(@, A), m(r,u,7,A) are defined according to (3.3).
Proof. Let A, 4, and y be as in the statement, and let us prove that

(4.6) m(7,d, 7,A) < m(a, A).

To this end, let u € SBVP?(A;RY) be admissible for m(u, A) and A’ CC A with u = 4
in A\ A’. In view of Proposition 3.3 we can extend u to Q\ A by @ without changing
F(u, A). In order to simplify notation we still denote the subsequence provided by
Theorem 3.1 by &, and we choose a sequence (u.) C A.(£;R?) converging to u in
LY (;RY) and satisfying

gi_r% F.(ue, A) = F(u, A).
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We now construct a suitable sequence (v.) converging to 7,u in L*(Q;R?). We choose
A" A" e ATe9(Q) with A cC A” cC A" CC A and ¢q sufficiently small such that
for all € € (0,¢q) the following conditions are satisfied:

(i) Aur,Ac ol

(ii) 7y A" c 7, A" and 7, A" C 1, A, where y. := eK| X |;

(ifi) eL < distoo (A", 0A).
For ¢ € (0,2¢) we then define v. € A.(Q;R?) by setting
i Jultve ifie Zo(m, A",

C\mal) ifie Z.(Q\ T, A",

which is well-defined thanks to the second inclusion in (ii).

Since u = u in Q\ A/, thanks to (4.5) we have that v. — myu in L'(Q;R?).
Moreover, for all ¢ € Z.(1,A") and j € Z.(¢LQ), assumption (iii) yields i+ j € 7, A",

and hence
it _ o i—Yet+i
vl =y YT,

Thanks to the locality property (4.2) and the periodicity assumption we thus obtain

Fe(ve, 7y A”) = Z Enwf({ui_y5+ngLQ}j€Zs(]R")) < Z End}f({u?rjngQ}jGZs(R"))
i€ Z: (Ty A') i€Z.(A)

< X (T hen) = Felue, A),
i€Z:(A)

where in the second inequality we have used the first inclusion in (ii). Together with
the facts that F(-,7,A"”) = I'-lim, F.(-,7,A"”) and v. — 7yu in L*(Q;R?), the above
inequality allows us to deduce that

F(ryu, 7, A") < lim iglf F.(ve,7yA") <lim F.(u., A) = F(u, A).
E— €

In view of Proposition 3.12, Remark 3.13, and the arbitrariness of A” CC A we finally
get

(4.7) F(ryu,yA) < F(u, A).

Hence, since 7,u is admissible for m(r,a, A) and u was arbitrarily chosen, we obtain
(4.6) by passing to the infimum on both sides of (4.7). To deduce the result it then
suffices to remark that the opposite inequality follows by applying (4.6) with 7_,. O

Based on Lemma 4.2 we now prove Proposition 4.1.

Proof of Proposition 4.1. Let F be as in Theorem 3.1. We claim that the inte-
grands f and g as in (3.2) are independent of the position xg; then F' can be written in
the form (4.4). To prove the claim we fix 2o, yo € © and choose p > 0 sufficiently small
such that Q} (7o) UQ}(yo) CC 2. For every M € R¥*™ and every ((,v) € RY x §7~1
the functions uas 2, and ug , defined as in (2.1) satisfy the hypotheses of Lemma 4.2.
Thus, we obtain

m(uZ,yO,QZ(yo)) - m(Tyo—rouZ,zov Tyo—roQZ(xO)) - m(uz,zov QZ(:CO))
and
m(uM7907 QZ(yO)) = m(Tyo—fouMwo’ Tyo—onZ('rO)) = m(ulvﬂmov Q;($0))

We conclude by letting p — 0. O
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4.1. Separation of bulk and surface effects. In this subsection we give suffi-
cient conditions on the functions v¢){ under which a separation of energy contributions
takes place in the limit. We state the precise hypotheses after introducing some
notation. For every € > 0, every u : Z.(R") — R? and every i € Z.(R") set

n
Veuli) = Y2 (1Du)] + D)), [Verul@) = Y

k=1 £€Z,(LQ)

ut — uites

e

We then assume that for every i € Z" there exist ¥, 17 : (RH)Z" — [0, 400) such
that the following properties hold (see the introduction for an explanation of their
meanings):
(Hy1) For every nn > 0 and every A > 0 there exists & = &(n, A) > 0 such that for
every € € (0,8), every i € Z", and every z : Z" — R? with |V 12|(0) < A we
have

I )
lei({eze }jez.rm)) — o ({z }iezn)
(Hy2) For every n > 0 there exist A(n) > 0 and & = £(n) > 0 such that for every

e € (0,8), every i € Z", and every z : Z" — R? with sliTp|V17Lz|(O) > A(n)
or |V1,12|(0) = 0 we have

<.

i srr 4
levsi({ze bjez.@n) — i ({2 Yiezn )l <n-
Moreover, we assume that the functions 1 satisfy the following continuity hypothesis.
(Hy3) There exists a constant ¢, > 0 such that for every z,w : Z" — R¢ with
|V1,2](0) > 0, |[V1,,w|(0) > 0 and for every ¢ € Z" there holds

08 ({="}jezn) — Vi ({w'jemn) < e Y > Wt
J€21(QL (%)) £§€21(QL (7))
JHEEQL(3)
(Hy4) For every i € Z™
¥;7(0) = 0.
The main result of this subsection is the following theorem which states that under the
additional assumptions (Hy1)—-(Hy3) the bulk and surface interactions decouple in the
I-limit. As a consequence we obtain asymptotic minimization formulas for the bulk
and surface-energy densities that are independent of the I'-converging subsequence.
THEOREM 4.3 (homogenization). Assume that ¢5 : (R?)Z=(%) — [0, +00) are
given by (4.3), where ¥ : (RY)Z=(®") — [0, +00) are e K -periodic in i, satisfy (H1)-
(H6) with Z.(S;) replaced by Z.(R™), and satisfy (4.1), and suppose that, in ad-
dition, (Hy1)—(Hy4) are satisfied. Then the functionals F. : L*(Q;RY) — [0, +o0]
defined as in (2.3) T'-converge in the strong L'(Q;R?)-topology to the functional
Fhom : L*(Q;RY) — [0, +00] given by
/fhom(Vu) dx—l—/ Ghom ([u], ) dH" ™ if u € GSBVP(;R?),
Fhom(u) = Q Su

+o0 otherwise in L*(£;RY),

where fuom : RX™ — [0, +00) and gnom : R? x S"~1 — [0, +00) are given by

(4.8)  faom(M) = lim %inf { > w?({u"“}jezn):ueAﬁL<uM7TQ>}

T—~+oco
1€Z1(TQ)
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and
(4.9)
: 1 : s i+ n v
ghom(C» V) = T1—1>I-f-10<> Tn_l inf { Z wz ({u + }jGZ"): u € A{L(U‘C,IM TQ )}
1€Z1(TQV)

The proof of Theorem 4.3 will be established in subsections 4.1.1 and 4.1.2 below
in which we treat separately the bulk and surface-energy densities. As a preliminary
step it is useful to compare the two operators |V, 1| and |V,|.

LEMMA 4.4. There exist constants ¢1,¢2 > 0 depending only on n,p, and L such
that for every u : Z.(R") — R? and every i € Z.(R™) there holds

(4.10) VerulP(i) <ér Y [Veul (),
J€2.(Qer ()

and for every A C R™ we have

1 1
(4.11) 5" min {|v5,Lu|p(i), f} <é& Y min {\V€u|p(i), f}.
i€Z.(A) c i€Z.(A4eL[—1,1]7) <

Proof. Let u : Zo(R") — R% and i € Z.(R™). By Jensen’s inequality we have

1 ut — qyitee |P
(4.12) Verul () < @#HLQP™ Y |—(——
€€Z1(LQ)
Moreover, for any £ € Z;(LQ) there exists a sequence of lattice points i, ..., i, €

Z-(Qcr (7)) with the following properties: ig = i, i|¢|, = &, and for every h € {1,...,n}
there exists i(h) € {1,...,n} such that i, € {in—1 + €imn),in—1 — €i(n)}. Thus, using
again Jensen’s inequality we obtain

p [€]1

7 i+e
S L
h=1
€l
<IEEN D P u(i )P < EE ST [VeulP (),
h=1 J€Z:(Qe1(4))

Summing the above estimate over £ € Z1(LQ) from (4.12) we deduce
Verul(i) < #Z0(LQ)P™ Y leh D [VeuP ()
£€21(LQ) jEZ:(QeL (1))

#HZ1(LQ))P > IVeul(j),
J€Z(Qer (1))

<

nPLP
2P

which gives (4.10) with & := ”pr (#Z1(LQ))P.
Now (4.11) is a direct consequence of (4.10). In fact, using (4.10), together with

the subadditivity of the min, for any A C R™ we obtain
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. L1 (. .
| Z mln{|VE7Lu|p(z),g} < | m1n{c_1 Z .\Vau|p(,7),g}
1€Z:(A) 1€Z(A) J€Z(Q:=1 (7))

. N
< Z Z mm{cl|Vsu\p(]),g}
'LEZE(A)]EZE(QEL(Z))

. . . 1

< max{é, 1} | Z | Z mm{|VEu|p(z+sj),g}
JEZ1(LQ) i€ Z:(A)

Smax{e, D#2(0Q) Y mn{var). 1},

i€Z.(A+eL[-1,1]")

and hence (4.11) follows by setting é; := max{é;, 1}# 71 (LQ). 0

4.1.1. The bulk-energy density. In this subsection we show that the bulk-
energy density f in (4.4) coincides with fhom as in (4.8). This will be done by com-
paring our functionals with a class of functionals that fall within the framework of [23].

More precisely, we introduce rescaled interaction-energy densities wf’b : (Rd)ZE(Qi) —
[0,4+00) given by

w%({gzwx;ﬂé}jezn) if i € Z.(QL),
e,b j R n
Vi ({# Yezon) = S k(o) if i € Z.(Q\ QF),
Eek;czebi

and we consider the functionals G, : L' (€;RY) x A(Q) — [0, +-0c] defined by setting

(4.13) Go(u, A) = Y e ({u '} ez ;) for ue A(4RY)
i€Z.(A)

and extended to +o0o on L'(Q;R?)\ A.(Q;R?).

We show that the functions ? have the same properties as the functions ¢ :
(RHZ" — [0, 400) defined in [23, section 5] for k = L fixed. In addition, they satisfy
a suitable upper bound (see (Hy,7) below).

LEMMA 4.5 (properties of 9?). Suppose that 5 : (R?)%®") — [0, 4-00) are eK -
periodic in i, satisfy (H1)—(H6) with Z.($2;) replaced by Z.(R™), and suppose that, in
addition, (4.1) is satisfied. Assume, moreover, that there exists 1 : (R%)%" — [0, 4+00)
such that (Hyl) holds true. Then the functions wg’ are K -periodic in i and satisfy
conditions (H1)—(H3) with Z.(§2;) replaced by Z™. Moreover, the following hold true
for every i € Z™:

(Hp4) (lower bound): For every z : Z" — R% there holds

DP{#Yjezn) = e2 Yy IDT(0)"

k=1

(Hp5) (locality): For all z,w : Z" — RY with 27 = w’ for all j € Z1(LQ) we have

vl ({# }iezn) = v ({w'}jezn).
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(H,6) (controlled nonconvexity): There exists ¢4 > 0 such that for all z,w : Z"™ —
R? and every cut-off ¢ : R® — [0,1] we have

P ({2 + (1 - @'} jezn) < c3 (wf({zj}jezn) + w?({wj}jezn))

LCED DD ( sup [DY(D)[P|2(j +€) — w(j+ &)
et schta \IEH)

JHEELQ
+[D5z()P + wa(j)lp)

(H,7) (upper bound): There exists cs = cs(n, L,p) > 0 such that for all z : Z" — R?
there holds

V({2 }jezn) < es([Va,L2[P(0) + 1)

Proof. We first show that ¢ is K-periodic in i. Fix 7 > 0, and let z : Z" — R¢
be arbitrary. We find &€ = &(z,7n) > 0 corresponding to (Hy1) with A, = |V 12](0) <
+oo such that for all € € (0,£) and for all ¢ € Z™ we have
(4.14) Sz Yezo@n) — 1 < W({# enn) < U5 ({e2% Yezo@m) + -

Thus, for all k& € {1,...,n}, the K-periodicity of ¢;, together with the fact that
(4.14) holds uniformly in i, ensures that
1/)?+1<ek ({Zj}jezn) < wz(wKek,)({Ez%}jGZg ®)) +1
= ¥5({e2* ez@n) +n < VP({# }yen) + 20.

Using the first inequality in (4.14), the same argument as above then leads to

Wi ({# Y jezn) — 20 < W7o, ({27} jezn) <7 ({#"}jezn) + 20,

and we conclude by the arbitrariness of n > 0.

An analogous argument shows that (H1)-(H3) transfer from v, to 1? and that
(Hp5) follows from (4.2). Moreover, for every > 0 and z : Z" — RY there exists
€ = &(z,m) > 0 such that for all £ € (0,) and every i € Z"™ we have

¢?({Zj}jezn) > wgi({fzi}jezg(eLQ)) -n
R 1 -
Z Co ININ { ; ‘DfZ(O)V), 5} —nN=cCc k; ‘sz(oﬂp -,

and hence (Hp4) follows again by the arbitrariness of 1 > 0.
We continue proving (Hy,6). Let (c2¢) be the sequence provided by (H6). In view
of (2.6) there exists €9 > 0 such that

C4 := Sup Z Z Cg,é < oo
€€(0:0) ez (cLQ) €71 (LQ)
Jj+egeelQ

Fix 7 > 0; for any z,w : Z" — R% and ¢ : Z" — [0, 1] we find & = &(z,w, ¢,7n) € (0,0)
such that for all € € (0,&) and for all ¢ € Z" there holds

V{2 + (1= N jezn) < Y5 {pfez® + (1 — 9% )ew ez @n)) + 1,
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Si({fzg}jezs(w)) + 7/’;({51”%}]‘625(]1{")) < ¢f({2j}jezn) + lb?({wj}jezﬂ) +n.

Then (H6), together with (4.1), yields

V{7 + (L - ")’ }jezn)
<cs (1/1?({Zj}jezn) + 1/’?({wj}jezn) + 77) + Ra(zv w, 90) +1,

where

Feog- Y % cff( p ID’fw(l)IPIZ(i+€)—w(§+£)|”>
JEZ-(cLQ) £€Z:1(LQ) 1€2:(LQ)
eI ke{l,...,n}

+ S (IDF (D)) + |Dfw(L)P).

Since & € (0,g0), we have c¢l* < ¢4 for all € € (0,£), j € Z.(cLQ), and & € Z1(LQ).
Hence

R(z,w,0) <cq ) > < l ZSU(IEQ)ID’f@(l)V’IZ(j +&) —w(j+&)P
. €z
JGZl(LQ)fJi_Zgle(ig) ke{l,..,n}

+D52(7) + Iwa(j)|p>

and (Hyp6) follows by the arbitrariness of n > 0.

Using a similar argument we eventually verify (Hy,7). We consider the sequence
(cZ€,) provided by (H5), and we remark that thanks to (2.4), there exists g9 > 0 such
that

(4.15) Cs := Sup Z 0251 < +o00.
€(0:20) je7.(cLQ) €€21(LQ)
jteteeLQ

For any z : Z" — R? we choose ¢ = &(z) € (0,g0) such that wf({zj}jezn) <

& ({e2/ Y jez.@ny) + 1 for every e € (0,&). Moreover, we define a constant function
2. Z"™ — R? by setting 27 := 2¥ for every j € Z". Since & < g¢, (H5) and (2.7) in
Remark 2.1 yield, for any e € (0, &), the estimate

W Yer) S +24 Y 3 4
jEZs(ELQ) EEZl(LQ)
j+eéeelQ

<at2+a Yy Y DG
J€Z1(LQ) £€€Z:1(LQ)
J+EELQ

Di=(d)p

Finally, the last term in the estimate above can be bounded via

> > DSz(G)P < 277N (1 + #21(LQ)) V1,217 (0),
JE€Z1(LQ) £€2:1(LQ)
J+EELQ

and hence we obtain (Hy,7) by setting c5 := max{c; +2,c52°P (1 + #Z:(LQ))}. O
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Remark 4.6. The arguments used to verify (Hy,7) also show that for all € € (0, &)
with gg as in (4.15), for all i € Z.(R™), and for all 2z : Z.(R™) — R< there holds

Ui ({#' ez @) < e5(|Ve,2P(0) + 1).
Thanks to Lemma 4.5 the following is a consequence of [23, Theorem 5.1].
THEOREM 4.7. Let G. : L' (Q;R?) x A(Q) — [0,+00] be given by (4.13), and
suppose that the functions 1 : (RY)Z<®") — [0, +00) are eK -periodic in i, satisfy
(H1)—-(H6) with Z.(S;) replaced by Z.(R™), and satisfy the locality condition (4.1).
Assume that, in addition, hypothesis (Hy1) holds true. Then G. I'-converges in the
strong LP(Q;R?)-topology to the functional G : LP(Q;R?) — [0, +o0] given by

Gu) = | from(Vu)dz,  ueW"P(Q;RY)
Q

and extended by +oo in LP(S;RY) \ WEP(Q;RY), where the integrand fuom is given
by (4.8). In particular, the limit defining fuom exists and is independent of the T'-
converging subsequence.

Remark 4.8. Note that Theorem 4.7 holds also locally; i.e., for every A € A(Q)
and every u € W1P(Q; R?) we have

I lim G (u, A) = / From (V) dz.
e—0 A

Moreover, thanks to the finite-range assumption (4.1) the width of the boundary layer
in the definition of fhom can be chosen as y/nL (instead of VT as in [23, Theorem
5.1]).

Thanks to (Hy1) we can compare the two discrete energies F. and G, following
a strategy similar to that in [39]. To this end, it is convenient to recall the notion of
discrete maximal function and some of its properties that have been proved in [39]
(see also [36]).

Given € > 0, v : Z;(R™) — R and r > 0 we define the maximal function MZv :
Z.(R™) — [0, +00) by setting

) 1 .
MZv(i) == sup [ E [v’],
€ON #2:(Bs" ) jez. 1 0y

where EL‘] (7) is the closed ball of radius s around ¢ with respect to the | - |;-norm.
The following lemma is a consequence of [39, Lemma 5.16 and Remark 5.17].

LEMMA 4.9. There exists a constant ¢ > 0 such that for all € > 0 and for every
u: Z.(R") — R? there holds

lu' —u’| < éli — j|y (MS“*“I |Voul(i) + Mgli*jl1|vgu|(j)) for every i, j € Z.(R™).

Moreover, the following result has been established in [39, Lemma 5.18].
LEMMA 4.10. Let zo € R™, A > 0, and suppose that u. : Z.(R") — R? satisfy

sup 3 Vel (3) < +o0,
e>0 iEZE(B(3+GEﬁ))($O))
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where € is as in Lemma 4.9. Then there exist a subsequence () and functions
wp, : Ze, (R™) — R such that | V., wy|P is equi-integrable on Bay(zo) and

(4.16) i 4 {i € Zo, (Boa(@0)): e, #wn on By =o.

Remark 4.11. Let the sequences (uc), (¢p), and (wp,) be as in Lemma 4.10. Then
we also have

(4.17) Jim e € Ze, (Ba(w0)): ey, % wn on Z, Qe (1)} = 0.

To verify (4.17) we denote by U, the set in (4.16) and by U the set in (4.17), and
we remark that for every i € U} there exists j; € Q., (i) such that ugh # wy’. Since
1 € By(x0), we have j; € Box(xg) for h sufficiently large, so that j; € Uy. Hence for
h sufficiently large we get

ENHUL < €7 Z #licUl:jeQ., (i)} <cL"e#U, —0 ash — +oo.
JEUR

We are now in a position to prove the following result.

PROPOSITION 4.12. Let the sequence (Fy) be defined according to (2.3) with ¢5 :
(RH)Ze(2) 5 [0,400) as in (4.3), and assume the functions 7 : (R?)ZE®")
[0,4+00) are eK -periodic in i, and satisfy (H1)—-(H6) with Z.(§;) replaced by Z.(R™),
the locality condition (4.1), and (Hy1). Then f(M) = fuom(M) for every M € R¥*™,
where f is as in (4.4).

Proof. The strategy used to derive the formula for f follows closely that used in
[39, Proposition 5.19]. A main difference with respect to the situation in [39] is the
fact that the interaction-energy densities 17 are bounded from below only in terms
of |V.u|, while they can be bounded from above in terms of the finite-range gradient
|V ru|. To circumvent this additional difficulty we will frequently use Lemma 4.4.

The proof is divided into two major steps establishing separately a lower and an
upper bound of f in terms of fuom.

Step 1. f > foom- Fix M € R¥" and let 2o € Q and p > 0 with B,(z0) CC Q.
Then

By F(M) = pianM,mep(xo)).

We now estimate F(unr z,, B,(20)) from below. Without loss of generality, we assume
zo = 0, and for fixed py > 0 with B,, CC Q we choose functions u. € A.(£;R?)
converging in L'(€2;R?) to uys and satisfying

gig(l)FE(ug,Bpo) = F(unr, Bp,)-

Then (u.) is a recovery sequence for ups on B, for every p € (0, po), since

F(uMﬂBP) = F(quBPo) - F(UM7BP0 \Fp)
> lin(l)FE(uE,BpO) - 1imi£1fFE(uE,Bp0 \ B,) > limsup F.(u., B,),
E—r E—r

e—0

where in the first step we used that F'(uns, B,) does not concentrate on the boundary
of B,. In particular, we have

= 1
(4.18) |B1|f(M) > o lim S(l)lp F.(u.,B,) for every p e (0,po).
e—
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We now introduce a constant k > 0 satisfying
k> 3+ 6ev/n+ | M|,

where € is as in Lemma 4.9. Since |uy/| < |[M|p < kp on B, the truncated functions
T} ue converge to ups in LY(B,,R%). In particular, in view of Remark 2.3 they still
provide a recovery sequence for uys on B,.

Fix 7 > 0 and for every p € (0,(3k?)"1po) let &, = &(n, @%Ap#Zl(LQ)) be
given by (Hy1), with A, to be chosen later. We choose

L dist oo (B, , 02
ey < min {2,071 5, %}
nondecreasing in p and satisfying

(4.19) Fe, (Tg ue,, Bagz,) < c(|M[P +1)p",
1
F [ Tige, =il < .

(4.20)

Here, the first estimate can be realized thanks to (4.18) and the fact that f(M) <
¢(]M|P +1). Observe that since p < (3k*)~'pg, our choice of €, implies that Bz, C
B,, C Qgp, and hence

(4.21) ., (Typue,, Bsiz,) = Y epdy” ({ultx! 1obiez., @n)
ieZEp(BISEQp)

B . "
= > e (et Yiez., @),
i€Z1(Bg,;2€L)

P

where v, : Z" — R? is defined by setting

4 1 o
vy, = gT,;puiilX;”l for every i € Z".

Substep la. Construction of Lipschitz-competitors. We now aim to replace v, by
a Lipschitz function v, with Lipschitz constant at most kA,. To this end we introduce
the sets of regular and singular points defined as

=2 p

k= . n .
R,:={ie Zl(B,—c%): My 7| Viv,| <AL} S, ={i€Z": |Viv,|(i) > A,/2},

respectively. Note that for every 7,j € R, thanks to Lemma 4.9 we have the Lipschitz
estimate

; ; . KL ) kL ) T
o — w3l < evli = il (My 7 [910,]() + My Vi, |()) < RAli - jl.
Using Kirszbraun’s extension theorem we thus find a function @, : Z" — R? coinciding

with v, on R, and satisfying |0}, — 04| < kA,li — j| for every i,j € Z". In particular,
we have

I
(4.22) |V1,00,|(2) < f%kAp#Zl(LQ) for every i € Z".
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In addition, by truncation with the operator T; o we can assume that ||7,[/c < 912:%.

In the remaining part of this substep we bound the number of points in which v,
and v, do not coincide, that is, the cardinality of Z;(Bj. )\ R,. We first observe
€p

that for every i € Z1(Bgo ) \ R, there exists s; € (0,k?£) such that
Ep P

—|1,. )
MEZBI ) < S V).
g€z (BL] (i)
Applying Vitali’s covering lemma we find Z, C Z1(Bj ) \ R, (finite) such that the

family (ELll (4))icz, is disjoint and

Z1(Bre) \ R, |J BL! a);
i€Z,

hence

(4.23) #21(Bi2) \ Ry < #Zl( U Bhl ) < 5”#21( U P'S'Jl(i)).

i€, i€Z,
To estimate the cardinality of Z; (|, E‘S'ill (i)) we distinguish between the lattice points

in {J; EL'JI (i) belonging to S, and those that belong to its complement. In fact, since
the balls EL;II (¢) are disjoint, the definition of S, implies that

ML (U BID) < Y IVinlo)

iEIp j€Z1(Uv§H1(’Z))
< Y W)+ 2en (U B o)
seU B s, =2
hence
\I 2 .
(4.24) #2:(|J B )<A— S IViulG).
ZGI JEU B‘ ‘1(1)03

We aim to bound the term on the right-hand side of (4.24) via F. (T, ue,, Bsg2,)-
To this end, we introduce the set of jump points

T, = {z € Z": |Vyuv,P(i) > 1/5p}

and use Holder’s inequality to obtain the estimate
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(4.25)

p—1

> Wi <(HUBL0ns )T (X Wwl)’

jeU, BLI"(ns,\7, €1, ieU, B ()ns,\7,

Then by definition for every j € |, B| ‘1( )NS, \ J, we have
. . A 1
V10, ) = min { [0, ). - |
P

< (2n)P~ <mm{zn:1|DW }+m1n{Z|D Joex|p ,,})

where in the second step we used the subadditivity of min. Moreover, for every
jel; B| Il( ) there holds

(4.26) Jj—exr€ U Blsliap ) C Bgje £ for every k € {1,...,n}.
€L,

Thus, from (H4), together with the energy bound (4.19), we infer

(4.27)

. _ . p"
Z |V10,|P(5) < 2(2n)P~* Z min { Z |D¥v,(5)I7, p} < Co

jeU; BLIM ()ns,\7, J€21(Bagz2 2

where the additional factor 2 comes from the fact that each term is counted at most
twice. Finally, since |V, >4 on S, (4.27) gives

(1.29) (%)”#UFL‘Jl<i>msp\Jps Y uwl) <l

i€, jeU, BL )ns,\7, :
Gathering (4.25), (4.27), and (4.28) we eventually deduce that

2 . . p"
(4.29) X Y. Vinl) <ed
jeU, Bl s\, 8

To estimate the remaining contributions in (4.24) we observe that for every j € J,

there exists k(j) € {1,...,n} such that either [Dfvl|P > 1/e,(2n)P or |[Dyvi—es|P >
1/e,(2n)P. Using the inclusion in (4.26) once more we then obtain

el

ﬁ#(uBlll()ﬂjp)— Z mln{Z|D1up P }<c§n7
P i€z, €p

JEZ1(Bsp2 p)
E

where the additional factor 2 results again from a possible double counting of interac-
tions. Moreover, the uniform bound on v, implies |Dfv,(j)| < ck£ for every j € Z",
P

so that the above estimate yields

@30) Y Wl < LU B0 ,) <o 2

P =11, P ; p
JjeU; Bls,ill(l)mjp €L,
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Combining (4.23), (4.24), (4.29), and (4.30) and choosing A, = pﬁ we finally deduce
that

_ _ pn _r_ ,On
(431) #Zl(BI;ﬁ) \Rp) < c(pAp 1 + App)g = cpr—1 €—n
2 2
Substep 1b.  From Lipschitz continuity to equi-integrable gradients. In this substep
we show that the rescaled functions ¥, obtained by setting

m

. 2

U, 1= ;pﬁpepl for every i € Z%p (R™)
satisfy the hypotheses of Lemma 4.10 with A = 1 and 2y = 0 along the vanishing
sequence 0, := %”. We start by observing that v, satisfy the following conditions:

(1) [[Pplloc < 9E,

(i) |17; — ﬁf,| < kA,li —j| for all i, j € Zs,(R™),

(iii) v, = JTg,ul’ if Li€R,.
Note that (ii) implies that [V, ,[P(7) < cAb for every i € Z,,(R™). We thus obtain
the estimate

(432) > opIVa, P00
i€Z,,(Bg)
en n . en
< Z p% Z |D§pT1}pu;p|P + CA/}jp%#(Zl(Bffﬁ) \R,)-
i€Z.,(Bx,) k=1
éeRp ;-ﬁ-ekERp

Thanks to (4.31) we can bound the second term on the right-hand side of (4.32) by a
constant. Moreover, the definition of the maximal function, together with the choice
of the set R, implies that for all i € Z. (By,) with i/e, € R, we have

n

k i . _p_ 1
Z |D5pT1}pu’ép|p S ‘VEpTEpUEpV)(z) = |V1Up|p S Ag = pl_p < ;7
k=1 P

where in the last step we have used that ¢, < p#. Hence we can bound the first
term on the right-hand side of (4.32) by the energy and use (4.19) to deduce that

~ . C
> oIV, 5P () < 0 F.,(Tyue,, Bg,) +c < c.
i€Z5,(Bg)

Thanks to our choice of k Lemma 4.10 then provides us with a subsequence (py,) and
functions wy, : Z,, (R™) — R? such that |V,, wp|P is equi-integrable on By and

(4.33) lim o} #{i € Z,,(Ba): 6, % wy on By (i)} =0,

h—+oco
where we have set o5 := 0,,. Moreover, upon truncation we can assume that
lwp]loo < 27k.
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Substep 1c.  Conclusion of the lower-bound inequality. We continue by proving

that the sequence (wy) obtained in Substep 1b converges to uys in LP(By;R?). To
simplify notation we set €, :=€,,. We start by estimating

[[wn — um||LP(B1;Rd)

1 1
< Nlwp = =Ty, e, (Pn )l Le(By Ry + 1| =—Thp, Uer, (Pn7) — unrl| Lo (B, R4
Ph Ph
By a change of variables and (4.20) we obtain

1
I Trontien (n) = a5,

<1/
_,DZJFPB

Moreover, we denote by U, the set in (4.33) and remark that for all i € Z,, (Bz2) \ Un
with i/oy, € R, we have wj, = 1/ppTj,, uf?*. Thus, the uniform bound on |[[wp||se,
together with (4.31) and (4.33), yields

Thpp Uy, — un | dr < pp, — 0 as h — +oo.

Ph

1
0= T, 1 (01 ), e

< | MPof, (#Un+#(Z1(Byn) \ Rp,)) < el M (oh#ls+p] ).

where the second inequality follows from (4.31). Thanks to (4.33) we conclude that
wWp, — Uy In Lp(Bl;Rd).

Finally, we show that up to a small error 1/p}'F;, (uc,,B,,) is asymptotically
bounded from below by |Bi|fhom- Then the required inequality follows from (4.18)
by letting h — 4+o00. We start by introducing the sets

ui% = {Z € foh (Bl): f}ph % wp, ON th,L(i)}a
Vi ={ie Zl(B%): Z1(Qr(i) C R,y oni € Zg, (By) \ Ui}

and observing that Remark 4.11 and (4.31) yield

(4.34)
JZ#(Zl(B%) \ W) < o (#UL + cL”#(Zl(B,;%) \R,,)) — 0ash— +oo.

Moreover, thanks to the locality property (4.2) we have

1 1 it
TFE}L (U’Eh’ Bph) > ?FE;L (TIEph,UE;L’BPh) > Z UZ¢§:i({5hU0h " }jEZah(R"))
Ph Ph 1€V

by it
> opt i iezn) =,

i€V

Y

where the last inequality follows from (4.22), (Hy1), and the fact that €5, < &,,. By
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construction o517 = 1/ath"“+j) for every i € Vy, and every j € Z1(LQ); hence we
obtain

(4.35)

1 1 ;
n Fe, (U’Eh ) Bph) > E Uﬁwl ({ w;z+0h] } )
Ph Oh jezn

. oh
i€Z4, (B1)

1 L
b on (i+7)
- Z opb; <{0hwhh }jezn) —-n

1€Z1(Bpp )\Vh
€h

> G, (wh, Br) =5 Y 0p (Vo LwnlP(oni) +1) =1
i€Z1(Bpp )\Vn
€h

> Gy, (wn, B1) —¢5s Y o <é1 > IVo,wnl?(G) + 1) — 1,

i€Z1(Bpp )\Vh \ j€Zs, (0nQL (7))
<h

where ¢ is given by (4.10). In order to further estimate the second term in (4.35) we
consider the set

Wh :={j € Z5,(Bs/2): Ji € Zl(B%) \ Vi s.t. j € onLQ4)},
and for every j € W, we define
m(4) = #{i € Zy(Bew) \ Vi j € onLQ(0)}-
Then for h sufficiently large we have

(436) Z O.;LL Z ‘VU}L wh‘p(])

1€Z1(Bpp )\Vn §€Zs), (0nQL (%))

€h

< > oh @) Vo,wnlP(G) < e(n, L) Y 0| Vo,wilP (),
JEW JEW

where in the second step we used that v,(j) < #Z,, (Qo,(4)) < cL™ for every

Jj € Wy. We eventually observe that #W), < cL"#(Z1(Ben) \ Vi) — 0 as h — +o0.
€h

Hence the equi-integrability of |V,, w,|P on Bs yields the existence of some hy >0
such that

csére(n, L) Z oy Vo, wr|P(§) <n for every h > h,,.
JEWh

As a consequence, we combine (4.35) and (4.36) to obtain

1
(4'37) p?FE;L (uE;nB/m) 2 GU;L (wha Bl) - 6502#(Z1(B’5’—”1) \Vh) - 277
h 3

for all h > h,. Thus, since wy, — up in LP(By,RY), from (4.18), (4.34), and (4.37),
together with Theorem 4.7 and Remark 4.8, we deduce that

|B1|f(M) > Eglingah(wh,Bl) —2n > G(upr, Br) — 20 = [Bi| fnom (M) — 21
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and conclude by letting n — 0.
Step 2. f < fhom. In order to prove this inequality, we choose a sequence (u.)
converging to uys in LP(Q; R?) and satisfying

lim G (uc, By,) = Gluar, Bpy).

Fix p € (0,(3k%)"!pg); then the truncated functions Tk, ue still provide a recovery
sequence for up; on B,. In particular, we obtain

(4.38) | B1] fhom (M) = inG’(uM,Bp) > in lim sup G (T ,ue, By).

14 14 e—0
In order to use (Hy1) to pass from G. to F. we need to replace Ty, by a sequence of
functions with equi-integrable discrete gradients. This can be done by using Lemma
4.10 along the vanishing sequence ¢ with A = p. We start by observing that thanks
to (Hp4) the functions T ,u. satisfy the assumptions of Lemma 4.10. In fact,

C2

(2n)P

Z 5n|v6TEp“6|p(i) < e Z " Z \DET,;pugp < Ge(ue, Byy) < cp”
i€Z.(By,) i€Z.(Byy,) k=1

for some ¢ > 0 uniformly with respect to e. Thus, Lemma 4.10 ensures the existence
of a subsequence ¢, and functions wy, : Z., (R") — R? (possibly depending on p) such
that |V, wx|? is equi-integrable on By, and such that

(4.39) i ei#{i € 2, (Byy): True, # wn on B, (i)} = 0.

€h

Moreover, upon truncation we can assume that ||wp, |« < 9k. Denoting by U, the set
in (4.39), the uniform bound on || T ue, [|oc and ||wp ||, together with (4.39), gives
[|wp, — UMHLP(B,,;]Rd) < Jwn — TEpUeh ||Lp(B,,;1Rd) + HTEpUah - UMHLP(B,,;]Rd)
1
< C|M|(52#Ush)P + ||TEpu511 - uM”LP(Bp;Rd) — 0 as h — +o0.
Hence, Theorem 3.1 implies that

. 1 1
(4.40) |By|f(M) = p—nF(uM,Bp) < —liminf F., (wp, B,),

p" h——+o00
and it remains to compare Fy, (wp, B,) and G, (T, ue,, By). We start by comparing
Ge, (Tptte,, By) and G, (wp, B,). To this end, we introduce the sets
uaLh ={i € Z,(By): Tyyue, #wn on Qe, (i)},
VeLh = {.7 € ZEh(BSp/Q): Jie uz-:Lh s.t. .7 € QEhL(i)}7

and we remark that as in Substep 1c one can show that

. n L _ . n L _
hgrfoo ep#Us, =0, hgrfoo en#tVe, =0.
Thus, arguing as in (4.36) and using the equi-integrability of |V, wp[? on Bs, we
deduce that there exists hy = hi(n, p) > 0 such that for all h > h; we have

c . Cs , n .
2N (| Ve pwnlP () + 1) < p—icw(mm 7 ep(IVe,wilP () +1) <.

Y23
ieut, ievh
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As a consequence, thanks to the upper bound (H},7) we obtain

1 1 1 e i
—Ge, (chpusme) 2 pTLGeh (wn, By) = ey Z EZ¢%({$wz+ah]}j€Z"')
ieuk, )

1
—Ge, (wp,B,) —n for all h > hy.

o

(4.41)

IV

Finally, we estimate from below G, (wp, B,) in terms of F, (ws, B,). For every A > 0
we set

Sen(A) = {i € Zc, (Bap): |V, Lwn|"(i) = A}.

For every i € S, (A), Lemma 4.4 gives

A< Vopmli) <t Y Vawl()
jezeh(thL(i))

< &#7Z,(L max Ve wrlP(4).

SORZLQ) max Vo)

In particular, for every ¢ € S, (A)NB, there exists j; € Z., (Ba,) with |V, ws|P(j;) >
AN/ (e1#71(LQ)). Setting ¢ := é1#71(LQ), this gives

S I VerwlP(i) < D Ve, wn|P()#{i € S, (A): j € Qe,n(0)}
i€Se, (M)NB, JESe, (A/C)

SHZLQ) D Ve, wnlP ().

JES:), (A/8)

Thus, for fixed n > 0 the equi-integrability of |V, ws|P on By, ensures the existence
of A=A(n,p) >0 and hy = ha(n, p) > 0 such that for every h > ho we have

(4.42)

C . C .
=N (Ve LwnPG) +1) < —HZ1(LQ) Y. ep(IVe,walP () + 1) <.
P i€S., (MNB, P JES:, (A/8)

In addition, since |V., rwy|(i) < A% for all i € Z.,(B,) \ S, (A), in view of (Hy1)
there exists hg = hs(n, p) > 0 such that for all h > hg and for all ¢ € Z,, (B,) \ Se, (A)
there holds

e i+j i j n
(4~43) |wih({wh+J }jeZEh (R")) - 1/’%({5%1”;5}1] }jezn)‘ < @

Combining (4.42) and (4.43), in view of Remark 4.6 we deduce that for all h >
max{hsg, h3} we have

1 1 . "
pTLGsh, (wn, Bp) = E Yo e {wy ez, @m) =)
1€ Ze;, (Bp)\Se), (An,p)
1 c n .
> TFEh (whaBp) —n- O(Eh) - % Z EH(|th,Lwh|p(l) + 1)

P i€S., (AM)NB,

1
(4.44) > pTFE’L (wh, Bp) — 21 — o(en).
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Eventually, gathering (4.40), (4.38), (4.41), and (4.44) we obtain
1., . 7
| Bl from (M) = 5 Hm inf Fe,, (wn, By) = 3n 2 | Ba| f(M) = 3n,

and hence we may conclude letting n — 0. ]

4.1.2. The surface-energy density. In this subsection we finally characterize
the surface-energy density of the I'-limit. We start by proving some properties of the
unscaled interaction-energy densities 7. Since these properties can be obtained in a
way similar to the corresponding properties of ¢§’ in Lemma 4.5 we only sketch the
proof.

LEMMA 4.13. Suppose that ¢ : (RY)Z=®") — [0, +00) are eK -periodic in i, sat-
isfy (H1)—(H6) with Z.(€;) replaced by Z.(R™), and suppose that, in addition, (4.1)
is satisfied. Assume, moreover, that there exists 17 : (RO)Z" — [0, 400) such that
(Hy2) holds true. Then the functions 1] are K-periodic in i and satisfy hypotheses
(H1)—(H2) with Z.(£2;) replaced by Z™. Moreover, the following hold for every i € Z™:

(Hs3) (upper bound for constant functions): For all z : Z" — R% with z = w for
some w € R? we have 1 ({#'}jezn) = 0.

(Hg4) (upper bound): There exists cg = cg(n, L) > 0 such that for all z : Z" — R4
there holds

Ui ({#"}jezn) < eollz]l e (rg) + 1)-
(Hs5) (locality): For all z,w : Z" — RY with 279 = w? for all j € Z1(LQ) we have
Ui ({# }jezn) = ¥ ({w’ }jezn).
In particular, 13 ({27} jezn) = 0 for all z : Z" — R with z = w on Z1(LQ)

for some w € R?,

Proof. The periodicity of ¢7, (H1)—-(H2), and (Hg5) follow from the corresponding
properties of ¥$ as in the case of 1?. Thus, we only prove (Hg3) and (Hg4) here. To
this end, fix > 0 and suppose that z : Z" — R? is such that z = w for some
w € RL Then |Vy 2((0) = 0, and according to (Hy2) we find & = &(n) > 0 such that
Pi({27}jern) < awgi({z%}jezg(w)) + n for every € € (0,é) and every ¢ € Z™. Thus,
(2.7) gives

Ui ({27} jezn) < eler +1) +,
and we obtain (Hg3) by letting first € — 0 and then n — 0.
We continue proving (Hg4). Let g9 and ¢5 be as in (4.15), and let z : Z" — R

Note that either |V1,12|(0) = 0 or we can find £(z) € (0, o) such that 6%|V17Lz|(0) >
A(1) for any € € (0,e(z)). Thanks to (Hy2) there exists ¢ € (0,£(z)) such that

({27} jenn) < 51?;({2]5};'625(11%")) +1 for every ¢ € (0,€) and every i € Z". Arguing
as in the proof of Lemma 4.5, to obtain (H,7) we deduce

o _ 14 [z27E — 20|
Vil hen) <cler+D+ldees 33— ——
J€Z1(LQ) £€Z1(LQ)
JHEELQ

<e(er + 1) + 1481+ 2]zl 1 1qirn) (#A(LQ))
hence (Hg4) follows by setting c := 2 max{cs(#21(LQ))?, 1} and letting e — 0. O
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Remark 4.14. Thanks to (Hg3) and (Hs5) the continuity assumption (H3) reads
as follows. For every z,w : Z"™ — R with |V z|(0) > 0 there holds

V5 ({27 Yjezn) > v ({w'}jezn)—cs Z Z |28 —wI e for every i € Z™.
J€Z1(QL(4)) §€Z1(QL (1))
JHEEQL ()

Based on Lemma 4.13 we now prove the following proposition.

PROPOSITION 4.15. Let F. be given by (2.3) with ¢5 : (R?)Z=(2) — [0, 4+00) as in
(4.3), and assume that the functions 5 : (R4)%<(®") [0, +00) are e K -periodic in i,
satisfy (H1)—(H6) with Z.(€;) replaced by Z.(R™), and satisfy the locality condition
(4.1). Suppose, in addition, that there exist ¢ : (R4)Z" — [0, +00) such that (Hy2)-
(Hy4) are satisfied. Then for each pair ((,v) € R% x S~ there exists the limit
defining gnom i (4.9) and gnom(¢,v) = g(¢,v), where g is as in (4.4).

Proof. Having Lemma 4.13 at hand, the existence of the limit in (4.9) can be
proved as in [16, Proposition 4.5], and we thus omit its proof here.

Let (¢,v) € R% x S~ be fixed, and let us show that §(¢,v) = gnom(¢,v). To
reduce notation for every 7' > 0 we set

9r(C.v) = inf{ S (U jem)u e Mﬂug,y,m”)},

1€21(TQY)

s0 that gnom (¢, v) = limp 1/T" Lgr(¢,v).

Step 1. g(¢,v) > gnom(C,v). Let g be as in (4.4); thanks to formula (3.2) in
Theorem 3.1, together with Remark 3.16 and Proposition 4.1, there exists xg € €2
such that

g(¢,v) = limsup lim lim sup inf{F:(u, @, (70)): u € Ag(uZ’IO,QZ(J;O))}.

p0 020 oo pnt

Note that to simplify notation we do not relabel the I'-converging subsequence. More-
over, from now on we assume g = 0. We fix a number « € (0, (p—1)/p) whose mean-
ing will become clear later, and for every p > 0 we denote by N, := [p~“| the integer
part of p~. We further write ¢ = (¢,...,¢%) and choose p € (0,1) with Q2, CC Q
such that 2/N, < |¢™| for every m € {1,...,d} with ("™ # 0. Let 6 € (0,p/2), and
for every e > 0 with e\/nL < § let u. € A? (u¢,Qp) be such that

(4.45) Fo(ue, Q) < Fo(uf,QY) < cp" .

Since ey/nL < § < p/2 and Q2, CC Q, we can extend u. by 0 outside Q without
modifying the energy or changing the boundary conditions. Moreover, by truncation
we can assume that ||u.||z= < 3|(].

Let us fix n > 0; in the remaining part of this step we construct functions w; :
7" — R? which are admissible for the minimum problem defining g7 (¢,v) with
T. = p/e and satistying for e sufficiently small (depending on 7) the estimate

1 v 1 s i+7
(4.46) — Fe(ue, Q) > o1 > i ({wiYjezn) — R(ep) — en,
P S ieZi(T.Qv)

where the remainder R(e,p) is such that lim,lim, R(e,p) = 0 and the constant ¢
depends only on n, L, and {. Passing to the limit first in £, then in §, and finally in
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p, thanks to the arbitrariness of u. € A‘g(uz , Q) we may then deduce that

1
——191.(C, V) — N = ghom (¢, V) — cn,

' _ i
(4.47) 9(¢;v) = lim inf TE

which will eventually give the desired inequality by letting n — 0.

To obtain the required sequence (w.) we carefully combine the arguments used in
[39, Proposition 5.21] in the discrete setting with those used in [20, Proposition 6.2]
and [26, Theorem 5.2(d)] in the continuum setting. We start by introducing some
notation. For every m € {1,...,d} we denote by (u’)™ the mth component of u.,
and for every ¢ € R we consider the superlevel set

St):={ie ZE(QZ): (ul)™ > t}.
Further, we introduce the set
RI(t):={i € Z(Qp): 3§ € Z1(LQ)
s.t.i+e€ € Z.(R")\ S (t), ¢ € S*(t) or vice versa}.

Finally, let N € N with 3|¢| + 1/N, < N; note that for any ¢t € [N, N] and any
m e {1,...,d} apoint i € Z.(Q%) belongs to RZ'(t) if and only if ¢ € [(ul)™, (ult<t)™)
or t € ((uite&)™ (ul)™] for some & € Z;(LQ). Thus, for any i € Z:(Q}) we have

N
(4.48) | xmzaidt < =lVe sl )
N

We choose A(n) according to (Hy2) and denote by

Je = {2 € Z.(QY): Vo pucl?(i) > A(n)”}

g

the set of jump points. Without restriction we assume that A(n) > 1. Summing up
(4.48) over all i € Z.(Q}) \ Je, from Holder’s inequality we deduce that

N
gnfl/fN#(R?(t)\Jg)dtg >, EIVerul()

1€Ze (QY)\Te

gg“‘;”(#(zaczz)\fe))%( 2 5"'“*“*“”)

i€2:(QU\ -

3 =

1 P
Z Enmin{|v€,Lu€|p(i)7€}> .

(4.49) < cA()p™ T (
i€2.(QY)

Moreover, thanks to estimate (4.11) in Lemma 4.4 and (H4) we have

1 - 1
Z a"min{VE,Lu€|p(i),E} < 269 Z E"min{Z|Dfu(i)|p,s}

1€Z:(QY) 1€2:(QY+eL[-1,1]") k=1

(4.50) < 2@( 1 Fo(us, Qb)) + Z e” min{ Z |D§u2(i)|p7 i})»

c2 i€2(Qy+eL[-1,1M\Qy k=1
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where in the second step we used the boundary conditions satisfied by u.. Note that
the last term on the right-hand side of (4.50) can be bounded by

eI #{i € Z(Q) + eL[-1,1])\ Q4: dist(i, I1,) < e} < ¢(L)e.

Inserting the above estimate and the energy bound (4.45) into (4.50), the estimate in
(4.49) can be continued as

n(p—1) np—1 n(p—1) 1)

N 1
ot [ HRIO\ Tt < )™ T (0 o) <o) (7 + ),

Hence for every integer | with —NN, <1 < NN, there exists t;* € [I/N,, (l+1)/N,)
such that

NN,-1

N
@sh et Y RREE\T) <N, [ HRZO\ ) di

I=—NN,

<A (p™T T erp T ).
Note that o was chosen such that (np —1)/p — a > n — 1. Moreover, since ||uc||p~ <
N —1/N,, the sets S™(t7) \ 8™ (£ ), m € {1,...,d}, | = =NN,,, ..., NN, — 1 form
a partition of Z.(Q}). Thus, we can define a discrete function v. componentwise by
its restriction to S (¢") \ SI" (), setting
| 0 e <0<tn,
WS nsmi, 7= 4 ¢ L <O <y,
" otherwise.

Note that v, is well-defined since 2/N,, < [(™] if (" # 0, so that in this case (" and
0 cannot belong to the same interval [t;", ]} ;). ‘ ‘

We claim that the required sequence (w,) is obtained by setting w! := v<* for every
i € Z™. First, note that by construction the functions v, satisfy the required boundary
conditions, i.e., v. € Ag(uZ,QZ). Thus, since eL < 4§, the rescaled functions w. are
admissible for the minimum problem defining g7 ({,v). Finally, we show that there
exists € = £(n) > 0 such that for all € € (0,£) the functions w, satisfy (4.46). To this
end, we show that ¢ ({wit7} jezn) essentially only gives a contribution to the energy
when i € J., in which case it will turn out to be comparable to ey ({ust+ Yiez.®ny)
thanks to (Hy2) and (Hy3). We start by introducing the rescaled functions . defined
by setting ! = ug for every i € Z", and we observe that for i € Z;(T.Q") with
€i € J. we have

(4.52) e 7 |VaLiie| (i) = e7 Ve pue| (i) > Aln).

Hence, from (Hy2) we deduce the existence of é = &(n) > 0 such that for every
e € (0,€) and every i € Z™ with ei € J. there holds

(4.53) e ({ue"™ Y jez. ) = Vs ({ue ™ Y ez mm) = ¥ (@l }jezn) — .

We now compare ¥ ({a7}jezn) and ¥F ({wit7}ezn). By construction we have

N 2v/d o
(4.54) e — ez = [loe = uell e < = < 4V,
P
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For every ¢ € Z™ with |V1 pu|(i) > 0, (4.54), together with (H,3) and Remark 4.14,
gives
(4.55) Ui ({alt 7} jezn) 2 97 ({wit}jezn)

—e )y D T =l > g ({wl Yyezn) — ep®,

JE€Z1(Qr(4)) £€Z1(QL ()
J+HEEQL (1)

where ¢ > 0 depends only on n, d, and L. In particular, (4.55) holds for every i € Z"
with e € J. thanks to (4.52). Gathering (4.55) and (4.53) we thus obtain

1 y En—l i
nlea(uaan)Z 1 Z g(bf({ua—‘rj}jezs(ﬂi))
p 1€Z:(Q4)NT:
1 s i+j (e} €n71 v
(4.56) ST > e ({wiYezn) — (p +?7)pn_1#(Zs(Qp)ﬂJs)-
i€ Z1(TeQY)
' ei€Je

Moreover, since 1/e < |V, puc|P(i) for every i € J., we can argue as in (4.50) to
bound the cardinality of the set Z.(Q}) N J. via

g1 1 . 1
(45T) S RZQ)NT) < —— Y e mln{Ve,Lua”(l), }
p P ez (@)na.

ce
(Fs(uerZ) +€) S c+ Fa

- pn—l

where the last inequality follows from (4.45). It then remains to show that the con-
tributions of ¢ ({wit/};ezn) for ei € J. are negligible. First, note that for every
i € Z1(T.Q") with w. = w! on Z1(Q (7)) hypothesis (Hs5) gives ¢5 ({witi}jezn) = 0.
On the other hand, if i € Z;(T.Q") is such that w, # w’ on Z1(QL(4)), then i belongs
to RI*(t*) for some m € {1,...,d} and l € {—NN,,..., NN, — 1}. Thus, we have

(4.58)
1 NN,—1
1 Z YE({witiYjezn) < T" I Z Z Z b8 ({w 7} egm).
T A m=11=—NN, sieR (t{')\J.

ei¢Je

Finally, observe that (4.54) and our choice of p imply that ||we|L~ < 4[], so that
we can use the upper bound in (Hg4), together with (4.51), to bound the sum on the
right-hand side of (4.58). In fact, we have

NN,—1

(4.59) Tn LYY vt e

m=11=—NN, eicR™ (t]*)\J=

NN,—1
< es(4l¢] + 1) = 12 > H#HRIE\T)
m=1l=—NN,

p=l_, 1 p=m_,
<cA()(p' 7~ +erp T ).
Gathering (4.56)—(4.59) we deduce that the sequence (w.) satisfies (4.46) with

R(e, p)=cA(n) (pa+€p17”+p%l_a+€%p%_a) — 0 as first € — 0 and then p — 0,
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where the convergence of R(e,p) is guaranteed by the choice of a € (0,(p — 1)/p).
Thus the argument in (4.47) concludes this step, providing us with the inequality
g > Ghom -

Step 2. §(¢,v) < ghom (¢, V). In order to prove the inequality we construct a recov-
ery sequence for uf , -on @ (o), where zy € Q and p > 0 are such that @} (zo) CC Q.
To simplify the exposition we only consider the case v = e,, here, and we assume that
x9 =0 and p =1. We fix n > 0 and set

n—1
QM) :=(-1/2,1/2)" " x (—n/2,1/2).
Moreover, we choose T = T(n) € N as a multiple of K with 1/T < 7 and ur €
.Ai/ﬁL(uZ", TQ) satisfying

(4.60) o Y V) ie) < oG en) 41

1€Z1(TQ)

Starting from ur we now construct a sequence (u.) converging in L'(Q;R?) to ug
and satisfying

(4.61) lim sup F; (ue, Q(1)) < ghom(C, €n) + €,

e—0

where the constant ¢ > 0 depends only on L,n, (. Then Proposition 4.1 gives
9(Csen) = F(ugm, Q(n) < liminf Fe(ue, Q(0)) < ghom (€, €n) + e,

and we obtain the required inequality thanks to the arbitrariness of n > 0.
As a first step we define a function @r : Z" — R? which is T-periodic in the
directions (eq,...,e,—1) inside the stripe {|(x, e, )| < T/2} by setting

) wp "7 i i € Zy(T5 + TQ) for some j' € 2" x {0},
Uup =
T UZ” (i) otherwise in Z™.

For every € > 0 and every i € Z.(R™) we then set u’ := ué(s, and we observe that as

€n

e — 0 the sequence (u.) converges in L'(Q;R?) to ug". It remains to show that (u.)
satisfies (4.61). To this end, for every € > 0 we consider the stripe

Se(T) :={z e R": |(x,e,)| < eT/2}.
For € < n/T we can rewrite the energy as
(4.62) |
Fo(ue,Qm) = Y & gi({a;r%}jezs(]l{i")) + ) e {uE i+ §) ez @m)-

i€21(1/eQ)NS1(T) 1€Z:(Q(M)\S:(T)

Thanks to the upper bound for constant functions (2.7) the second term on the right-
hand side of (4.62) is at most proportional to n. In fact, we have

(4.63) Yo U i+ D jeza@n) < (er + De#Hi € Z.(Qm)} < en
1€Z-(QM)\S(T)
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with ¢ depending only on n. We continue estimating the first term on the right-hand
side of (4.62). Since T is fixed, the function @ takes only finitely many values. Thus,
there exists g = €o(T,n) > 0 such that for every € € (0,¢0) and every i € Z" we

have either EPTP|V17L€LT\(i) > A(n/T) or |V, pur|(i) = 0, where A(n/T) is given by
(Hy2). As a consequence, setting e; := min{eo, é(n/T")} with é(n/T') again given by
(Hy2), for every € € (0,e1) and every ¢ € Z" we obtain

S/f~i+j _i+% n
s (Y jezn) — evs({tg © ez @m)| < T

Combining the above estimate with (4.62) and (4.63) we deduce that for every ¢ €
(0,e1) there holds

(4.64)
Q) s 3 e i e + 2 (2 10) i) +en

i€Z1(1/eQ)NS1(T)

Note that there exists a constant ¢ > 0 depending only on n such that

5n1#<Z1 (1Q> N Sl(T)) < T for every € > 0.
€

Thus, setting
Z.(T) = {j € 2" x {0}: eTj' +eTQNQ # 0},

the estimate in (4.64) can be continued as

(4.65) Fe(us, Q) <e™ ' > Yo wi{ur Y ezn) +en.

J'€Z(T) iz, (Tj'+TQ)
Note that for every j' € Z.(T) and for every i € Z1(Tj’ +TQ) we have
(4.66) ai = uiTTIH for every j € Zy(LQ).

In fact, the above equality holds true by definition of ar if i € Z;(Tj + TQ) is such
that QL (i) C Tj'+ TQ. If instead i € Z1(Tj' +TQ) is such that Qr(¢) N (R™\ Tj' +
TQ) # (), then the boundary conditions satisfied by ur, together with the fact that
(j',en) = 0, ensure that

Sidj _engs s =T+
Uy =u"(i+7) = up .

Moreover, in combination with the locality property and periodicity, (4.66) gives

Yo vi(arYjezn)

i€Z1(Tj'+TQ)

= Y G e = Y i {ui e,

1€Z1(T§'+TQ) i€Z1(TQ)

Thus, since #Z.(T) < ([ 2] +1)"7*, from (4.65) we deduce that
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n—1 L
P, @m) < 0 (| 2 +1) 7 i 3 et e + e
i€2,(TQ)

< (sT)”-l(LiTJ + 1)"_1(ghom(<,en)

1 S e . .
ot 2 G+ ) e)) +on,
1€Z1(0TQ)
where to establish the second inequality we also used (4.60) and the boundary condi-
tions satisfied by up. Finally, we remark that for every ¢ € Z,(0TQ) with |(i,e,)| >
L/2 the function ug" (i + -) coincides with the constant function sign(i,e,) on L@, so
that ¢35 ({u™7}ezn) = 0. If instead |(i, e, )| < L/2, we use the upper bound in (Hs3)
to deduce that 97 ({u"*7};ezn) < ¢6(|¢| +1). Hence, we obtain
1 s en (7 . . c
ot 2o U{ug i+ D Yezn) < e#Z1(0TQN{|(i en)| < L/2}) < o < e,
1€Z1(0TQ)

where the constant ¢ depends only on n, L, (. Letting € — 0 we eventually find

lim sup Fs(usv Q(ﬂ)) < ghom(Cv en) + cn;

=0
that is, the sequence (u.) satisfies (4.61), and we may conclude. |
Proof of Theorem 4.3. The result follows combining Theorem 3.1, Proposition
4.1, Proposition 4.12, and Proposition 4.15. ]
5. Examples.

5.1. Pair interactions. In the special case of interaction-energy densities ¢
that take into account only pairwise interactions of the point ¢ with the remaining
lattice points, Theorem 3.1 provides a result analogous to [2, Theorem 3.1] in the
GSBV-setting (see also [21] and [29] for the case of interaction-energy densities that
are independent of the position 7). More precisely, our result can be applied to energies
of the form

(5.1) Fou)= Y & > fi(i, Diu(i)),
I€Z.(Q) cen™
i+e€€N

i.e., when ¢ : (R%)%=(%) — [0, +00) are given by

i+ jezomn) = D [, DE(0)).

Here we assume that there exist constants at,at > 0 and bg,@g > 0 such that for
every € > 0 and every & € Z™ we have

(5.2)
3 X3
min {a§|c|”, bf} < f£(i,¢) < min {&Elcvz %} for every (i,¢) € Z.(9) x R?,

where the constants a$, a$, bs 135 satisfy the following hypotheses:

e Uesr Ve
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(Hpwl) (upper bound): We have

(5.3) M := limsup Z Z (a8 4 b8) < +o0,
e—0 «eN tezm
[€loc >

and for every n > 0 there exists M, > 0 such that

(5.4) lim sup Z Z (af +b%) <.
aeN cez”

My

U

(Hpw2) (lower bound): There exist a,b > 0 such that a%* > a, b%* > b for every
e >0 and every k € {1,...,n}.

(Hpw3) (relative control): There exists v > 0 such that for every ¢ > 0 and every
€ € Z" with af # 0 there holds [£[b§ < ~al.

Under the above assumptions, ¢5 satisfy hypotheses (H1) and (H3)—(H6). In fact, (H1)

is automatically satisfied, since ¢ depends on {z’ }jez. (o) only through differences

2J — 2!, Moreover, for £ small enough the upper bound (H3) is satisfied with ¢; :=

limsup, a¢ + 1, which is finite thanks to (5.3). The lower bound (H4) holds true
in view of (Hpw2).

To verify the mild nonlocality condition (H5) we observe that for any £ > 0,

i€ Z.(Q), a €N, and z,w : Z.(€;) — R? with 27 = w’ for all j € Z.(eaQ) we have

#({# ez ) = >, fi0,DEw(0)+ > f4(i, DE2(0))

§€Z1(aQ) [€loc>F
i+e£EQ
€ J indablné P 55
<oi{w'hiez )+ Y, min{afDEO), =},
i+e£€N

where the second inequality follows from the positiveness of the f& and (5.2). Thus,
the required sequence c;’g in (H5) is obtained by setting

e . Jat+bE if gl > 5, 5 =0,
oo 0 otherwise,

which satisfies (2.4) and (2.5) thanks to (5.3) and (5.4), respectively.

It remains to establish (H6). To this end, let z,w : Z.(Q;) — R? and ¢ : Z.(;) —
[0,1] be a cut-off and set v := @z + (1 — @)w. Let us show that ¢ ({v/};cz. () <
Ré(z,w, ) with RS (z,w,¢) as in (H6). We start by observing that

(5.5)
DEv(0) = p(0)DE2(0) + (1 — (0)) DEw(0) 4+ DEp(0)(2°¢ — wse) for every & € Z".

Thus (5.2), together with the convexity of | - |P and the subadditivity of the min,
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ensures that

. ) ) bé
¢ (v} jez.a)) < Y min {af | DE(0)7, £}
Eez™
i+e£EQ

. Y .
+ min {af| DE(O)7, = | + | DEp(0)]7|2€ — we .
Eventually, from (Hp.,3) we deduce that for every & € Z™ there holds
b b
min {a§|D§z(o)|P, i} — 4¢ min {|D§z(o)|P, ?‘f} < 4¢ min {\Dﬁz(0)|p, l}
€ age el¢]
and the same estimate holds with w in place of z. Since, moreover,

(5.6) |IDSp(0)P < sup  |DFp(1)|P for every € € Z™ with i 4 &€ € Q,
1€2.(
ke{l,.(..ﬂz}

we obtain ¢5({v7}ez.(a,)) < RS (2, w,¢) with

Ri(zw,0) = EeZznaﬁw +1)(min {|DE(0))7, %} + min { | DEw(0)]7, %}

i+e€EN
+ sup [DEGIP[2%€ — w€|?).

1€Z. ()
ke{l,....,n

To conclude, it then suffices to remark that (2.6) is satisfied due to (5.3).

Summarizing we find that the energy densities ¢5 satisfy all hypotheses of The-
orem 3.1 except (H2). We observe that (H2) would be immediately fulfilled if we
required that for every £ € Z", every ¢ > 0, and every i € Z.(Q) the function
f5(i,-) : R? — [0, +00) was increasing in the sense that

(5.7) F8(0,¢1) < f8(i, Go) for all ¢i, G € R? with |G| < [Cal-

We conclude this section on pairwise interactions by showing that condition (5.7)
above can be replaced by a weaker condition that requires (5.7) essentially only for
“large gradients.” More precisely, we assume that there exists ¢pon > 0 such that for
every £ € Z™, every € > 0, and every i € Z.(2) there holds

(5.8)

fsg(l,Cl) < fE(iy¢) forall (1,6 € R?  with cmon|Ci| < |G| and |G| > %ﬂ

Then, following the lines of [26, Lemma 4.1] one can show that the discrete energies
F_ almost decrease along the truncation operators T} defined in section 2, which is
enough to obtain Theorem 4.3. This can be done using the following lemma.

LEMMA 5.1. Let F. be as in (5.1), and suppose that f& satisfy (5.2), hypotheses
(Hpwl)—(Hpw3), and (5.8). Let n > 0, and let N € N be sufficiently large such that
2M max{y, 1} max{2,2}

N <.

(5.9)
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Moreover, let 8 > 3 be such that B > cmon + 1, and, given k > 0, let ky, ..., knyy1 >0
be such that

(5.10) k1 >k, kmy1 > Bkm forallme{l,...,N},

so that, in particular, |Ty, ullpe < kyi1 and Ty, u = u a.e. on {|Ju| < k} for
every u € LY(Q;RY). Then, for every A € A"9(Q), every € > 0 sufficiently small
(depending on A), and every u € A (;RY) there exist m € {1,...,N} (possibly

depending on A,e,u) and a constant ¢, > 0 such that

(511)  F(Thnu, A) < (1+n)Fa(u, A) +n(|A] + e M (94) + 1).

Proof. Let n, N, k,k1,...,kn+1 be as in the statement, and let A € A(Q), € > 0,
and u € A (4RY). For every m € {1,...,N} we have D:Ty, u(i) = DSu(i) if
|u'| < kp, and [u'te¢| < ky,, and DETy, u(i) = 0 if [u?] > ka1, [0S > k.
Moreover, |DSTy,,, u(i)| < |DSu(i)| for every i,&. Thus, from (5.2) we deduce that

Fe(Th,u,A) < Y > 'S, Duli))
i€Z.(A) EEL™itetEQ
| <km |68 <k,

(5.12) + > Y " min {&§|D§u(i)\p,

1€Z:(A) cez™
ko <|t?| <Ky, HEEEQ

™ ‘m?:
H,—/

b
+ Y 3 5”min{d§|D§u(i)|p7—5}
i€Z(A)  EEL™i+efEQ <
Fm <|u' T8 | <Ekpman

+ Y S e fE(i, DET, (i)

1€Z:(A) E€L™,itefeq
[uf | <km [0 >k

+ > > "fEG DET, u(i).
1€Z.(A) EEL™i+e£EQ
|ui‘2km+1 |ui+5£‘gk7n

If i € Z.(A) and € € Z" are such that |u’| < k,, and |u***¢| > k41, then (5.10) and
the choice of 3 ensure that

||

el¢]

(5.13)  [DSu(i)| > Fmit —km o (B = Dk

= = 2 Cmon Dng:mu ] )
€] e 1De T )]

= (-1

and hence f&(i, DTy, u(i)) < f&(i, DDu(i)), and a similar argument holds in the
case when|u'| > k,, 41 and |u't%¢| < k,,. Moreover, summing up over m and us-
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ing (Hpw3) we obtain

N bE
(5.14) 3 3 Yoo mm{ §| DEu(i)P, i}
m=1 i€Z.(A) £ez™ c
ko <|ul|<kmy1 TTEEEQ

. L O
+ | Z Z " min {ag\Dgu(z)F’, ;})
1€Z.(A)  EEL™,i+ebEQ
B <|u' T8 | <kpp1

< 2max{vy,1} Z Z &genmin{\Dgu(in,%}a

i€Z.(A) EezL™
i+e£€)

and we estimate the term on the right-hand side of (5.14) by splitting the sum into
four terms as follows. For every § > 0 we set A5 := {x € A: dist(z,0A) > §}, and we
choose dp > 0 such that for all § € (0, 8] there holds H" 1 (0As) < H" "1 (DA) + 1.
We then estimate the sum in (5.14) via

> X e min {0 S}

1€2Z:(Ag yme) EELT
1+ef€A, e

+ Y Y agen mm{wf()\ |£|}

1€Z-(A\Ay e ) EELT
i+e€Q

. . , 1
Z Z aSe™ min {|D§u(z)|”, %}
i€Z.(Asy) €L
i+eEEQ\Ay /.

R . . 1
. 3 aée”mm{wgu(znp,m},
ieZE(AzﬁE\A(;O) cez™
1+e£€QN Ay /e

and we estimate the terms above separately. The first sum can be bounded using a
local version of Lemma 3.7. In fact, the arguments in Lemma 3.7 (see also [2, Lemma
3.6]) show that

Z as Z 5”min{|D§u(i)|P,%} < Z at Z c mm{zwk 7}

EET™ i€Z(Ay sme) €I ieZ.(A)
i+€§€A2ﬁE
(5.15) <= Z aSF.(u, A).
EEZﬂ

Moreover, for e sufficiently small we have

Z Z ase mln{|Df (4)] } Z aSe"  H# 7. ( (A\ Ay /me)

1€Z: (A\Ag me) EELZ™ £ezm
i+e€€N

(5.16) < M(e, H" 1 (0A) +1).
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To estimate the third sum we observe that for i € Z.(As,) and £ € Z" the inclusion
i+ef € Q\ Ay /. implies that e[]o > 5—“ for € small enough. In addition, according

to (2.5) we can choose M, > 0 such that for ¢ small we have both ZIE\ g aé < %

and 50 > f’ so that
(5.17) Z Z asem mln{|D5 (@)|", |§|} 7571#2 (As,) Z at < |Al.
i€Z-(Asy) €€L” 1€] 00> T2
i+eEEQ\A, /.

Finally, for every i € Z.(A) we set a.(i) := sup{a € N: i +ca@Q C A}. Thanks to the
choice of g, for € small we can estimate the fourth term via

€ n . 1
Z Z ase mln{|D§u(z)|p,m}

1€Z: (Ag me \Asg) gezn
i+e€€QN\Ay /7.
(5.18)
<> e i € Zo(Ag i \ Asy): ac(i) = a} Y af < (e H"TH(0A) + )M
aeN |€loo>g

Eventually, gathering (5.12)—(5.18) and averaging over m € {1,..., N}, for ¢ suffi-
ciently small (depending on A) we find 7 € {1,..., N} such that

Fo(Thu, A) < Fe(u, A) + % (ZFg(u,A) A + 26, HHOA) + 2),

which, thanks to (5.9), yields (5.11). 0

As in [26, Lemma 4.2], under the assumptions of Lemma 5.1 one can show that
for every A € A™9(Q) and every u € GSBVP(Q;R?) N L'(Q;R?Y) there exists m €
{1,...,N} such that F"(u, A) < (1 +n)F"(u, A) + n(|A] + cp, H"*"*(OA) + 1), which
still allows us to obtain Theorem 3.1.

We also observe that the analysis carried out in section 3 can be adapted with
minor changes to the case where in (5.2) a¢|¢|P and a&|¢|P are replaced by as(|¢[P —
1) and a&(|¢|P + 1) (see, e.g., [2] and [23] or [26]). Then the relaxed monotonicity
assumption (5.8) would allow us to consider, e.g., energies of the form

F(u)= Y 5"zn:min{(|Dfu(z')|—1)7),%},

i€Z.(Q) k=1

which are prototypical energies not satisfying (H2) and, in particular, with a set of
nontrivial minimizers.

5.2. Multibody weak-membrane energies. Prototypical examples of func-
tionals F. as in (2.3) where the interaction-energy densities ¢ depend not only on
pairwise interactions of ¢ with ¢ + £ but also on multiple interactions of ¢ with
i+e&,...,i+e€y for some N € N are so-called generalized weak-membrane energies.
These have been studied in detail in [39]. In our setting a generalized weak-membrane
energy can be written as in (2.3) with ¢ given by

(519 G hemwn) =L X Y EIDEGIP),
§€Z1(LQ) j€Z:(eLQ)
jte€€eLQ
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where L € N is the maximal range of interaction, ¢ > 0 for every & € Z;(LQ), and
for every € > 0 and i € Z.(Q2) the function f.(4,-) : [0, +00) — [0,+00) is increasing
and satisfies

(5.20) min {ait, b;} < f.(i,¢) < min {agt, b;}
for some aé,&é,bi,lﬁ > 0. By construction the functions ¢¢ satisfy (H1) and (H2).
To ensure that hypotheses (H3)—(H6) are fulfilled we assume that the following hold:
(Hym1) There exist a,a,b,b € (0,+00) such that a’ > a, b > b, a¢ < a, bl < b for
every € > 0 and every i € Z.(Q).
(Hwm?2) For every k € {1,...,n} there holds ¢ > 0.
The uniform bounds on @& in (Hyy,1), together with the upper bound in (5.20), imply
that (H3) holds true with ¢; := amax{c: ¢ € Z1(LQ)}#Z1(LQ))?, while thanks to
the uniform bounds on a’, b in (Hym1), (Hym?2), the lower bound in (5.20), and the
monotonicity of f.(i,-) hypothesis (H4) is satisfied with ¢y := min{a, b} min{c®: 1 <
kE<n}>0.
Moreover, the mild nonlocality condition (H5) holds true by construction, since
only finite-range interactions are taken into account. More precisely, in view of (Hy,1)
we can choose the sequence ¢/, in (H5) as

)

T max{a, b}t if a < L, £ € Z1(LQ), j € Z(eLQ),
=70 otherwise,

which satisfies (2.4) and (2.5).

Eventually, for every z,w : Z.(€2;) — R? and every cut-off ¢ : Z.(€;) — [0,1] we
can combine (5.5) and (5.6) with the upper bounds in (5.20) and (Hym,1) to deduce
that

o ({e’2 + (1= o)’ }jez. (o))

< max{a, b} Z * ( Z sup  |DFo(D)|P|2%¢ — wo|P

§€21(LQ) \ jez.(-LQ) [JEL=()
1 Jj+5§e€5LQ ke{l,...,n}
. e jip L . e qp L
+m1n{|Dsz]|p,f}—|—m1n{|D€w]|p,f} ,
€ €

which gives (H6) by setting ¢/¢ := max{a, b}t for € € Z1(LQ), j € Z.(eLQ), and
cl¢ := 0 otherwise.

Under the above assumptions the functionals F defined according to (2.3) with
¢S as in (5.19) satisfy all assumptions of Theorem 3.1 and thus I'-converge up to
subsequences to a free-discontinuity functional of the form (3.1). We eventually give
sufficient conditions under which the sequence (F.) satisfies the assumptions of Theo-
rem 4.3. The first condition is e K-periodicity of f. in i, that is, f.(i+eKey, ) = f:(i,")
for every k € {1,...,n}, every ¢ > 0, and every i € Z.(2). We then extend f. to
Z.(R™) x [0, +00) by periodicity, and in the same way we extend ¢5 to (R%)Z=R"),
Moreover, we can assume that a’,at, b, 3’6 are e K-periodic in ¢. Finally, we show that
(Hy1)—-(Hy3) are satisfied if we assume that, in addition, for every i € Z;([0, K)")
there exist a’, b’ > 0 such that

(5.21) st —»d', @St —a' and b = b b = b ase — 0
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that is, the functions fc(4,-) approach a single truncated potential. By periodicity,
(5.21) extends to i € Z". We claim that the required functions 1?3 : (R4)%" —
[0,400) are obtained by setting

W{FYjezn) =a' Y > DG,
§€EZ1(LQ) jEZ1(LQ)
J+EELQ

0 if 27 = 20 for every j € Z1(LQ),
b'  otherwise.

V7 ({7 }jenn) = {

First, note that (H,3) is automatically satisfied. We next establish (Hy1). Let 7 >0,

A > 0, and suppose that z : Z" — R? is such that |V 12|(0) < A. Set zJ := ez* for
every j € Z.(R™). Arguing as in Lemma 4.5 to establish (H},7) we deduce that

(5.22) > oo EDE(G)r= Y. Y DG

£€Z1(LQ) jEZ-(eLQ) £€Z1(LQ) jeZ1(LQ)
jteteeLQ jH+EELQ
<2771 max (14 #Z,(LQ))AP.
mx c(1+#21(LQ)

Let us choose & = &(n, A) > 0 sufficiently small such that

(5.23)

b ) )
Ag:=2r71 S(1 4+ #2Z,(LQ))AP < — e —adll<
o gerzrf(ifQ)C (14+#Z1(LQ))AP < ae lag" —a'[<

o

AEi_ Z<
g —a< 4

a
Ao’
for every e € (0,&) and every i € Z1([0, K)™). The first condition in (5.23), together
with (5.22) and (Hym1), ensures that

) bei
aZ’ E E DSz ()P < = for every i € Z".
€
£eZ1(LQ) jeZc(eLQ)
jtegcel@

Thus, (5.20) gives

at ) > ED (G < o ({2 Y jez )
£€Z1(LQ) j€Z:(eLQ)
jte€€eLQ

<af E § DSz ()P,
§€EZ1(LQ) jE€EZe(eLQ)
Jjte€€elQ

which in view of the second and third estimates in (5.23) and (5.22) finally gives

7 ({#' }jezn) — d5({2L} jez )l < .
It remains to show that ¢ satisfies (H,2). We start by choosing A > 0 such that

AP n}cin cok 5

1<k<
(5.24) —_— > -
cinpP—12p a

where ¢; is the constant provided by Lemma 4.4. Moreover, given 17 > 0 we choose

¢ = £(n) small enough such that |[bg' — bi| < 5, [bE — bi| < 5 for every ¢ € (0,8)
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and every i € Z;([0, K)"). Let ¢ € (0,4), and suppose that z : Z" — R? satisfies
e |V1,02/(0) > A. Then Lemma 4.4, together with Jensen’s inequality, yields

n
AP <PV 12 P(0) < e PemrT2n T ST | DEa()I.
k=1 jeZ1(LQ)
jter€LQ

In particular, the rescaled functions Z. obtained by setting Z. := 2% for every j €
Z.(R™) satisfy

n AP min c®* 1
. 1<k<n
> et IDEZ.(j)[P > €7 min ¢ E > DF()P > —— -
) 1<k<n cnP~12p ¢
k=1 jeZ.(eLQ) k=1 jeZ, (LQ)
jteer€eLQ JjH+er€LQ

and hence the choice of A in (5.24) and (Hy,1) ensure that

pei o X 1 ) Bei
= —min{a Yoot Y DERGIP 2} < 05 ({E en ) < =
k=1 jeZ.(eLQ)

Jjteer€eLQ

for every i € Z.(R™). Eventually, since ¢ € (0,€(n)), this gives
b= < <egsi ({2} jem@n) <BE <O+
If, on the other hand, z : Z" — R? is such that |V 12](0) = 0, we obtain

¢§i({5g}jezs(Rn)) =0= %‘S({Zj}jezn)
for every i € Z™, and we conclude that the functions ] satisfy (H2).

5.3. Weak membrane with long-range small-tail interactions. In [13] the
author studies the asymptotic behavior of weak-membrane energies of the form

1
(5.25) Z Z epe(e€ — 1) m1n{|D5 ()|27g}7

EEL i€Z.(Q)
i+e€€N

where 2 C R is an open, bounded interval. Assuming only a locally uniform summa-
bility condition for the functions p. : eZ — [0,400), it is shown that the T-limit is a
nonlocal integral functional. Moreover, the author provides examples of specific func-
tions pe, including very long-range interactions with small tails, for which the I'-limit
is a (local) free-discontinuity functional. Among them are the discrete functionals as
in (5.25) with p. : €Z — [0, 4+00) given by

1 ift=¢,
pe(t) = { VE ift=c| L],

0 otherwise,

which are shown to I'-converge to the functional

/|u 2at+ 3 minfl + [t (8) — u” (9], 2}.

teESy
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We observe that thanks to our very mild nonlocality condition (H5), the above exam-
ple can be recast in our framework by setting

0
. . z z
G120 = min { |5 F

Lell) _ 50
| Eh

1 vemn

%]
Indeed, note that ¢7 satisfies (H1)-(H4) for every € > 0 and every i € Z.($2). More-
over, (H5) is satisfied with the sequence (cZ%,) defined by setting

1 ifa<2 j=0, =1,
c?fm = \/g lfOZSQL%J,j:(),&:L%J,
0 otherwise.

The sequence (c£4,) fulfills the required summability condition (2.4), since

20
Z Z Ze :2+Z\@§4 for every € > 0.
a€eNjeZ (R) E€EZ a=1

Moreover, the decaying-tail condition (2.5) is satisfied since ¢f§, = 0 for every a >
ZL%j Thus, for every n > 0 the sequence (M) can be chosen independently of 7 as
My = 2L%J, which satisfies the constraint e My — 0 as ¢ — 0. Eventually, (H6) can

be verified by using expression (5.5) together with the convexity of z — 2P and the
subadditivity of the min.
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