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Abstract: The Hedgehog (HH) pathway governs cell proliferation and patterning during embryonic
development and is involved in regeneration, homeostasis and stem cell maintenance in adult tissues.
The activity of this signaling is finely modulated at multiple levels and its dysregulation contributes
to the onset of several human cancers. Ubiquitylation is a coordinated post-translational modification
that controls a wide range of cellular functions and signaling transduction pathways. It is mediated by
a sequential enzymatic network, in which ubiquitin ligases (E3) and deubiquitylase (DUBs) proteins
are the main actors. The dynamic balance of the activity of these enzymes dictates the abundance and
the fate of cellular proteins, thus affecting both physiological and pathological processes. Several E3
ligases regulating the stability and activity of the key components of the HH pathway have been
identified. Further, DUBs have emerged as novel players in HH signaling transduction, resulting
as attractive and promising drug targets. Here, we review the HH-associated DUBs, discussing the
consequences of deubiquitylation on the maintenance of the HH pathway activity and its implication
in tumorigenesis. We also report the recent progress in the development of selective inhibitors for the
DUBs here reviewed, with potential applications for the treatment of HH-related tumors.
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1. The HH Signaling Pathway and Tumorigenesis: An Overview

The HH pathway is a mitogen and morphogen signaling, conserved from Drosophila to mammals.
It plays a crucial role in organogenesis and central nervous system (CNS) development [1,2].
In post-embryonic stages, HH signaling regulates tissue homeostasis and repair, modulating the
specification of the adult stem cells [3,4]. Several studies have highlighted similarities and divergences
between Drosophila and mammals HH signal transduction (Figure 1A,B). Both in flies and in
vertebrates the HH pathway activation is finely orchestrated by two membrane receptors: the
multi-pass transmembrane protein Patched (Ptc/PTCH) and the heptahelical transmembrane co-receptor
Smoothened (Smo/SMO). In Drosophila, in absence of the Hh ligand, Ptc keeps off the signaling by
directly affecting Smo activity and preventing its accumulation on the plasma membrane. In this
state, Costal-2 (Cos2; Costa-FlyBase), a kinesin family protein, Fused (Fu), a serine-threonine kinase
and the Suppressor of fused [Su(fu)] inhibit the bifunctional transcription factor Cubitus interrupts
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(Ci), endowed of both repressor and activator domains. The full-length Ci protein is proteolytically
processed by the Skp1-Cullin1-Slimb (SCFSlimb) ubiquitin ligase complex, in a truncated form (CiR) that
acts as transcriptional repressor of Hh target genes when translocated into the nucleus (Figure 1A) [5,6].
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Figure 1. The Hedgehog signaling pathway. (A) The Hedgehog signaling pathway in fly. In absence
of Hh, Ptc inhibits the localization of Smo on cell membrane. In the cytoplasm, Cos2, Fu and Sufu
assemble in complex with Ci-FL protein, favoring its phosphorylation by PKA, CK1, and GSK3.
This event induces the Ci-FL ubiquitylation by SCFSlimb E3 ligase thus leading both to proteasome
degradation and cleavage into truncated repressor form (CiR). CiR blocks the transcription of Hh target
genes. On the contrary, in the presence of Hh ligand, Ptc releases the inhibitory effect exerted on Smo
which is activated by PKA and CK1 phosphorylation on the C-terminal domain, and then bound by
Cos2 and Fu. These processes culminate in the Ci activation, promoting Hh transcription. (B) The
Hedgehog signaling pathway in vertebrates. When the pathway is turned off, PTCH prevents the
accumulation of SMO in the primary cilium. SUFU restrains GLI transcription factors in the cytoplasm
where PKA, CK1α, and GSK3β kinases promote their phosphorylation. This process attracts the
SCFβTrCP E3 ligase that determines the processing of GLI2 and GLI3 (GLI2/3R) in their repressor forms
and the proteasome-mediated degradation of GLI1. In presence of HH ligand, PTCH inhibition is
relieved. SMO is accumulated in the primary cilium and activated by GRK2 and CK1α phosphorylation.
GLI activator forms (GLIsA) translocate into the nucleus and induce the transcription of HH target genes.

In mammals, three ligands belonging to the HH family are secreted: Desert hedgehog (DHH),
Indian hedgehog (IHH) and Sonic hedgehog (SHH). The proteins, encoded by three paralogous
mammalian genes, share high similarity in the affinity with HH-binding proteins. SHH is
mostly expressed in brain cells and implicated in central nervous system (CNS) development,
while IHH modulates chondrogenesis, and DHH regulates spermatogenesis and nerve-Schwann cell
interactions [7].
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A peculiar characteristic of HH signal transduction is the role of the primary cilium. This organelle
is a microtubule-based protrusion of the cell membrane that coordinates protein trafficking events,
recruits and stabilizes a regulative dynamic network among the core of HH components [8].

The complexity of HH signaling in vertebrates is also provided by the GLI zinc-finger transcription
factors, the final effectors of the pathway (Figure 1B). Three GLI members have been identified, GLI1,
GLI2 and GLI3: GLI1 acts exclusively as activator, instead GLI2 and GLI3, which have an N-terminal
repressor domain, can work either as repressors or activators [9]. The balance between activator and
repressor forms is widely ruled by SUFU, an essential negative regulator that controls HH signaling
through its direct interaction with GLI factors [9,10].

When the HH pathway is off, phosphorylated GLI1 is recognized by the Skp1-Cullin1-βTrCP
(SCFβTrCP) ubiquitin ligase complex and degraded by proteasome system, whereas GLI2 and GLI3
undergo a proteolytic process that converts them into cleaved transcriptional repressor forms.
Otherwise, the binding of mature HH ligand to PTCH receptor releases the inhibition exerted
on SMO, resulting in its activation and translocation into the cilium. These events lead to the nuclear
localization of GLI activator forms where they induce the expression of HH-target genes, which include
GLI1 itself, thus triggering a positive feedback loop that amplifies the signal [11,12].

The HH pathway output is tightly regulated at multiple levels by different post-translational
modifications, such as phosphorylation and ubiquitylation [13–15]. The pattern of GLI phosphorylation
triggered by the protein kinase A (PKA), the casein kinase 1 (CK1α) and the glycogen synthase kinase
3 (GSK3β) establishes multiple states of GLI activity and ultimately influences the HH transcriptional
program [16]. The sequential phosphorylation of GLI proteins leads to the recruitment of the SCFβTrCP,
thus promoting GLI ubiquitylation and proteasome-mediated processing, as also described for its
homolog Ci in Drosophila [17].

The ubiquitin-mediated processes of GLI factors are also triggered by other E3 ligases, such as the
RING Cullin3-HIB/Roadkill/SPOP complex, the acetyltransferase/E3 ligase PCAF (P300/CBP-associated
factor), and the HECT E3 ligase Itch. Importantly, Itch controls HH signaling by distinct routes:
it mediates regulatory events on SUFU and proteasome degradation of GLI1 and PTCH1 by the
interaction with the adaptor proteins β-arrestin2 and Numb, respectively [18–25].

In the last years, post-translational modifications have also been described to control SMO activity.
As GLIs, SMO is regulated, in response to HH stimuli, by PKA/CK1-mediated phosphorylation in
Drosophila and GRK2/CK1α in mammals, and downregulated by ubiquitin-mediated endocytosis and
ubiquitin-dependent lysosome or proteasome degradation [26]. In Drosophila, Smo ubiquitylation and
trafficking on cell surface is regulated by the HECT E3 ligases Smurf and Herc4, and the E3 ligase
complex formed by Cullin4 and DNA-damage-binding protein 1 (DDB1), recruited by Smo through
the β subunit of trimeric G protein (Gβ) [27,28]. Moreover, in mammals HERC4 has been described as
tumor suppressor in non-small cell lung cancer (NSCLC) able to control SMO protein stability [29].

Given the essential role of HH signaling for a proper development, mutations in its key players
cause congenital malformations [30]. An uncontrolled and permanent activity of the HH pathway
is also associated to various human cancers such as basal cell carcinoma (BCC), medulloblastoma
(MB), gliomas, pancreatic, colorectal, prostate, lung, and breast cancers (Figure 2) [31–33]. Indeed,
aberrant HH activation involves and triggers pro-tumorigenic events, such as proliferation, survival,
angiogenesis, migration and epithelial-mesenchymal transition (EMT) [34], thus affecting every step of
carcinogenesis, from early development to metastatic progression [31,32].
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Figure 2. Schematic representation of HH-related tumors. The hyperactivation of HH signaling is
involved in the tumorigenesis of several human malignancies here reported.

Hyperactivation of HH signaling can occurs through either ligand-independent or
ligand-dependent mechanisms. Tumorigenesis is ligand-independent when the pathway is
constitutively activated in the absence of ligand via mutations in HH signaling components.
Loss-of-function mutations in PTCH or SUFU or gain-of-function mutations in SMO, as well as
GLI1 overexpression or GLI2 amplification have been identified in BCC, a common human skin cancer,
and in MB, a highly malignant pediatric brain tumor [35–39]. Depending on the type of HH ligand
release, two mechanisms of ligand-dependent pathway hyperactivation have been described in cancers,
generating a tumor-stromal crosstalk [40]. Ligand-dependent autocrine/juxtacrine secretion occurs
when the HH ligand is profusely released and caught by the same tumor cells, thus activating the
pathway. Tumors that arise from this condition may display HH ligand overexpression or high levels
of PTCH1 and GLI1 [41–43]. Alternatively, a paracrine secretion of HH ligand by tumor cells can
induce the activation of the HH pathway in stromal cells of tumor microenvironment. As consequence,
the stroma secretes paracrine growth signals to induce tumor growth [44]. For instance, in prostate
cancer specimens, the expression of HH was detected in the tumor epithelium, while GLI1 expression
was found in the tumor stroma cells, suggesting their paracrine crosstalk [45]. Moreover, this mechanism
of HH signaling activation can work in a reverse paracrine manner in which cancer cells take the HH
ligand released by stromal cells. For example, HH ligand released by bone marrow, nodal and splenic
stroma can activate the HH pathway and maintain the survival of B and plasma cells in hematological
malignancies [46]. Interestingly, HH-producing microenvironment is required for GLI activation in
gliomas [47].

Of note, HH signaling also regulates the expression of the stemness genes Nanog and Oct4,
thus participating in the formation or maintenance of cancer stem cells (CSCs) responsible of tumor
initiation, relapse and drug resistance [48–50]. For all these reasons, the HH pathway is emerged as an
attractive druggable target for anti-cancer therapy. A various number of SMO antagonists, able to block
the pathway at upstream level, have been identified and patented. Some of them, vismodegib and
sonidegib, and recently glasdegib, have been approved by the Food and Drug Administration (FDA)



Cancers 2020, 12, 1518 5 of 29

for the treatment of BCC and Acute Myeloid Leukemia (AML), respectively [34]. Many others, such as
GANT61 and GlaB, have been designed targeting GLI1, the downstream effector of HH signaling,
and have shown efficacy in preclinical study [34,51,52]. The major issue in employment of HH-inhibitors
is the recurrence of drug-resistance mutations or alternative mechanisms of activation. Consequently,
multi-target therapy is emerging as a promising strategy for the treatment of HH-dependent cancers.
The best approach envisioned so far is the development of further inhibitors, or the identification of
additional regulators of the HH pathway that could be targeted in tumorigenesis.

2. Ubiquitylation Process

Ubiquitylation dictates the fate and function of most cellular proteins increasing the complexity of
the proteome. This modification is a dynamic and tightly regulated post-translational event with many
distinct outcomes affecting protein stability, localization, interactions, and activity.

Ubiquitin (Ub) is a small globular protein consisting of 76 amino acids encoded in mammals by four
different genes (UBB, UBC, RPS27, and UBA52) that ensure high cellular Ub levels [53]. Ubiquitylation
is a multi-step process orchestrated by an enzymatic cascade that relies on Ub and three different
enzymes: Ub-activating (E1), Ub-conjugating (E2), and Ub-ligating (E3) [54]. During the catalytic
reactions, Ub is activated in an ATP-dependent way by an E1 enzyme, subsequently transferred to
the active cysteine (Cys) residue of an E2 enzyme via a trans-(thio) esterification reaction, and finally
attached with an isopeptide bond to a substrate by an E3 enzyme (Figure 3A). In humans, two E1s,
around 30 E2s and over 600 E3s have been identified [55,56]. The latter are the major determinants and
provide specificity for substrate recognition. Based on their functional domains and on the mechanism
of catalysis, E3s are divided into three main families: the Really Interesting New Gene (RING), the
Homologous to the E6-associated protein Carboxyl-Terminus (HECT) types, and RING-between-RING
(RBR), which can be considered a RING-HECT hybrid [57,58]. Each class of E3 ligases can create Ub
linkages of different length and architecture. The transfer of the Ub moiety to substrate occurs through
the formation of the covalent bond between α-carboxyl group of the terminal glycine (Gly) residue of
Ub and, commonly, ε-amino group of an internal lysine (Lys) residue of the substrate. Of note, for a
subset of substrates the attachment of Ub may interest their N-terminal residue, a process known as
N-terminal ubiquitylation [59], or serine and threonine residues, further expanding the complexity
and the biological relevance of this process. In this regard, Ub modifications of a target protein occur
in various forms: attachment of a single Ub moiety on a single substrate residue (monoubiquitylation),
a single Ub on multiple residues (multi-ubiquitylation), or additional Ub molecules to initial Ub
yielding an ubiquitin chain (poly-ubiquitylation). Typically, mono- and multiubiquitylation regulate
endocytosis, signal transduction, DNA repair, and often result in changes in the cellular localization
and protein activity [60–62]. By contrast, polyubiquitylation is the most abundant modification that
controls protein homeostasis. Indeed, the polyubiquitylated target substrates are recognized by the
26S proteasome, a multiprotein complex, that degrades the proteins into small peptides and releases
the Ub for cyclic utilization [63]. Besides regulating protein degradation, polyubiquitylation brings
different functional consequences depending on Ub chain linkage-type [64]. Ub has seven Lys residues
(K6, K11, K27, K29, K33, K48, and K63) that may serve as polyubiquitylation points. Depending upon
the Lys used, length of the chains and linkage type, distinctive forms of Ub chains may be achieved
to drive the fate of target proteins [65]. Lys48-linkage targets protein for proteasome-dependent
degradation, whereas Lys63-linkage is associated to regulative processes, including trafficking, protein
localization, protein-protein interaction; the biological significance of other Ub modifications is still
largely unclear [66]. Further complexity is provided by Ub modifications (i.e., phosphorylation,
acetylation, sumoylation) and by the linkage of Ub to other Ub-like proteins (i.e., NEDD8, SUMO),
creating a multitude of distinct signals. The combination of all these parameters has been referred as the
“Ub code” [65]. The Ub code governs the fate of the targeted substrates by modulating their interactions
with many other proteins that incorporate Ub-binding domains and determine their accessibility to
deubiquitylating enzymes (DUBs), a family of protease conserved from yeast to humans [67].
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Figure 3. (A). Ubiquitylation processes. Ubiquitylation is a multi-step process that involves three
enzymes: E1 (Ub-activating enzyme), E2 (Ub-conjugating enzyme) and E3 (Ub-ligase). Initially, Ub is
linked to E1 through a high energy thioester bond. After, Ub activated by E1 is conjugated to a
sulfhydryl group on E2 enzyme. Finally, E3 ligase specifically catalyzes the transfer of Ub from E2
to a Lys residue on a substrate protein. The formation of a poly-ubiquitin (poly-Ub) chain can lead
the substrate toward a degradative or regulative pathway. (B). Deubiquitylation and DUBs function.
Ubiquitylation can be reversed by deubiquitylating enzymes (DUBs) that hydrolyze the isopeptide or
peptide bond, leading to Ub deconjugation from the ubiquitylated protein. DUBs have many functions.
1. Precursor processing: Ub is encoded by four genes and translated as a linear fusion protein consisting
of multiple Ub copies, which require the cleavage by DUBs in order to generate free single Ub; 2. Rescue
from degradation: DUBs can rescue protein from proteasomal or lysosome degradation; 3. Recycling:
DUBs maintain Ub homeostasis preventing its degradation following substrate proteolysis; 4. Removal
of non-degradative events: DUBs can remove Ub chains from substrates that are not committed to
degradation; 5. Editing: DUBs can also affect the fate of ubiquitylated substrates by cleaving inter-Ub
chains (switching from degradative to non-degradative ubiquitylation).
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3. Deubiquitylating Enzymes: Functions and Classification

Like other important post-translational modifications, ubiquitylation is a dynamic and reversible
process counteracted by DUBs activity [65]. DUBs are proteases that hydrolyze isopeptide or peptide
bond removing Ub conjugates from substrates and disassembling anchored Ub chains (Figure 3B) [65,68].
DUBs may remove Ub moieties from the distal end or through the cleavage within chains in two
distinct ways: i) via direct interaction with specific substrates; ii) through selective recognition for
particular Ub chain architecture. Both chain length and linkage type may drive the choice of the
target proteins. Importantly, linkage selectivity may occur within the catalytic domain or through the
cooperation with Ub-binding domains within DUBs or their interaction partners [68].

Given their crucial role in opposing E3 ligases function, DUBs control protein homeostasis and
activities, and are implicated in the regulation of various physiological and pathological processes,
such as development, metabolism, immune response and tumorigenesis.

Currently, 99 cellular DUBs have been identified and are classified into six main families
depending on distinct catalytic domains: the largest group ubiquitin-specific proteases (USPs),
ubiquitin C-terminal hydrolases (UCHs), ovarian tumor proteases (OTUs), JAD/PAD/MPN-domain
containing metalloenzymes (JAMMs), Machado-Joseph disease domain proteases (MJDs or Josephins)
and motif interacting with Ub-containing novel DUB family (MINDYs) [69,70]. Unlike of the JAMM
family, classified as a zinc-dependent metalloproteinase, the other DUBs classes are cysteine proteases.
Available data indicate that each family may display linkage or substrate preferences. For instance,
OTU family exhibits linkage type specificity, whereas USP group members show differences in catalytic
rate constants [68,71,72]. Studies aimed at defining the abundance of individual DUBs suggest that
those with constitutive functions show high copy number, while DUBs with peculiar roles are the rarer
forms [70]. Different approaches used to determine the intracellular localization of the DUBs allowed
highlighting that subsets of these proteases show particular association with subcellular compartments.
Although many DUBs are nuclear, several USP members localize to defined structure including plasma
membrane, microtubules, endosome, and endoplasmic reticulum (ER) [73].

To date, a growing body of evidence indicated that DUBs can act as oncogenes or tumor suppressors
emerging as a promising class of therapeutic targets. For these reasons, many efforts are devoted to the
development of highly selective DUBs inhibitors for anti-cancer therapies.

4. Oncogenic DUBs Involved in the Regulation of the HH Pathway

4.1. DUBs Acting on SMO

SMO is the main upstream signal transducer of the HH pathway in both insects and vertebrates.
SMO is classified as an atypical G protein-coupled receptor (GPCR), since it possesses stereotypical
GPCR functional domains: seven transmembrane domains (TM), an intracellular C-terminal tail,
an amino-terminal cysteine rich domain (CRD), three extracellular and three intracellular loops (ECL
and ICL) [74,75].

The molecular mechanisms that induce SMO activity in response to the activation of the HH
pathway represent a crucial question in the understanding of HH signal transduction. In Drosophila,
activated Smo accumulates in the plasma membrane [76,77], while in vertebrates it translocates into
the primary cilium, a small protruding organelle in which all the key components of HH signaling
are enriched [78,79]. Post-translational modifications regulate Smo activity. At present, the positive
role of phosphorylation on Smo subcellular trafficking and activation is well established: in Drosophila
protein kinase A (PKA) and casein kinase 1 (CK1)-mediated phosphorylation promotes Smo cell
surface localization [80–83], whereas in vertebrates GRK2 and CK1α-dependent phosphorylation of
SMO C-tail has been found to be pivotal for its ciliary accumulation [83]. In the last years, the role of
ubiquitylation as negative modulator of Smo, due to the involvement in its endocytosis, trafficking
and degradation has increasingly emerged [26,84].
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4.1.1. USP8

Ubiquitin-specific protease 8 (USP8) is a multi-domain deubiquitylating enzyme with pleiotropic
functions. Besides its canonical role in protein trafficking and receptor tyrosine kinase degradation,
USP8 controls other biological processes, such as endosomal sorting, mitochondrial quality control,
ciliogenesis and apoptosis [85]. Indeed USP8 was found to deubiquitylate the E3-ubiquitin ligase
Parkin, involved in autophagy of dysfunctional mitochondria, the HIF1α protein, important for
endosome trafficking-mediated ciliogenesis, and c-FLIP a master anti-apoptotic player [85]. Recently,
the involvement of USP8 in the regulation of Hh signaling, through the stabilization of Smo,
has been described.

Two independent studies have demonstrated that the absence of Hh ligand induces both the poly-
and monoubiquitylation of Smo, leading to its endocytosis and degradation both by the lysosome- and
proteasome-mediated pathway, in order to keep Hh signaling off [26,84]. Conversely, upon ligand
stimulation, Smo is deubiquitylated and hence accumulated on the cell surface, where it becomes
activated [84]. By using an in vivo RNAi screen that targeted Drosophila DUBs, Xia and colleagues
identified USP8 as a deubiquitylase that prevents Smo ubiquitylation and is required for Hh-induced
cell surface accumulation of Smo, thus increasing Hh signaling activity [84].
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Figure 4. (A) E3-ubiquitin ligases and DUBs involved in Smo regulation. In Drosophila, when the Hh
pathway is OFF, Smo is ubiquitylated by multiple E3 ligases (Uba1, Cul4-DDb1, Smurf, Herc4) that
induce Smo lysosome or proteasome degradation. Conversely, when Hh signaling is activated, Smo is
deubiquitylated by USP8 or UCHL5/UCH37 and then accumulated on cell surface, where it is active.
This event is induced by PKA- and CK1-phosphorylation at the C-terminal region of Smo. (B) Structure
of Drosophila dUSP8, human hUSP8, and UCHL5/UCH37. The boxes on the right indicate the main
HH-related tumors in which USP8 and UCHL5/UCH37 are involved. USP: ubiquitin specific protease
domain; MIT: microtubule interacting and trafficking molecule domain; RH: Rhodanese-like domain;
CC: coiled coil domain.

Similar results have been obtained in NIH3T3 cells, suggesting a conserved mechanism that
controls SMO in mammals. Moreover, the authors sustain a link between phosphorylation and
ubiquitylation in controlling Smo activity. Indeed, Hh promotes the interaction of USP8 with Smo
aa625–753, the residues phosphorylated by PKA and CK1, showing that phosphorylation of Smo
induces the formation of Smo/USP8 complex and amplifies Hh stimulation (Figure 4A,B). Parallelly,
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the sumoylation of Smo at K851 induced by Hh, recruits USP8 to inhibit Smo ubiquitylation and
degradation, leading to its cell surface trafficking and amplifying the Hh pathway activity, both in
Drosophila and mammals [86]. These data stand USP8 as a positive regulator in the HH pathway, able to
prevent SMO localization to early endosomes, promoting its stability [84].

4.1.2. UCHL5/UCH37

A similar role to USP8 has been described by Zhou et al. for the deubiquitylase UCHL5
able to increase the protein stability and the cell membrane accumulation of Smo [87]. UCHL5
(also known as UCH37 in mammals) is a deubiquitylase involved in the regulation of several
substrates (i.e., type I TGF-β receptor, E2 promoter binding factor 1) [88,89] and is formed by an
N-terminal UCH and a C-terminal extension domains (Figure 4B) [90]. In Drosophila, the UCH
region of UCHL5 binds Smo C-tail [87]. Through its C-terminal fragment, UCHL5 recruits Rpn3, a
proteasome subunit that increases UCHL5 deubiquitylating activity and forms a trimetric complex
with Smo, thus reducing its ubiquitylation. Moreover, UCHL5 inhibits the interaction of Smo with
the hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs), known to promote Smo
ubiquitylation [91]. Interestingly, ubiquitylation assays performed in knockdown conditions of UCHL5
and USP8 demonstrated that this two DUBs cooperate to deubiquitylate and stabilize Smo [87].
The activation of the Hh pathway does not affect the expression levels of UCHL5, but increases the
affinity between UCHL5 and Smo, stabilizing the receptor with its consequent localization at the
cell membrane [87]. Importantly, this mechanism is conserved in mammals through its homolog
UCH37 [87]. Many evidence show that UCH37 is upregulated in a wide spectrum of tumors, suggesting
its potential oncogenic role in tumorigenesis [92–94].

Although the negative role of Smo ubiquitylation in the control of Hh activity is well established,
only recently the E3 ligases involved in this process have been identified in Drosophila, and include Uba1,
Cul4-DDB1, Smurf, and Herc4 (Figure 4A) [26–28,84,95,96]. In particular, recent findings displayed that
the HECT E3 ligase Herc4 binds Smo and mediates its mono- and polyubiquitylation at multiple Lys
residues, thus promoting its lysosome and proteasome degradation. The interaction between Smo and
Herc4 is inhibited by Hh that prevents Herc4-mediated Smo ubiquitylation in a manner independent
of PKA-primed phosphorylation [95]. Importantly, Herc4 interacts with USP8 and UCHL5 and their
overexpression almost abolishes Herc4-mediated Smo ubiquitylation, by blocking the association
between Herc4 and Smo [95]. In mammals, HERC4 binds SMO and induces its degradation. In human
NSCLC, HERC4 knockdown activates HH signaling and promotes NSCLC cell proliferation thus
standing as a tumor suppressor [29].

Multiple E3 ligases and DUBs are involved in the fine regulation of SMO stability and trafficking,
and the perturbation of their function could alter the HH pathway activity. In particular, given the
positive role of DUBs in controlling HH signaling, they emerged as a potential drug target for
HH-related tumors.

4.2. DUBs Acting on GLI Factors

GLI zinc finger transcription factors are the main effectors of HH signaling. Both SMO-dependent
and independent HH pathway activation culminate with the nuclear translocation of GLIs, promoting
the expression of HH target genes. GLIs function is widely ruled by post-translational modifications.
In particular, GLI ubiquitylation is orchestrated by several E3 ligases belonging both to the RING (such
as SCFβTrCP and Cullin3-HIB/Roadkill/SPOP [17,97,98]) and the HECT (Itch) families [24,99], and the
non-canonical E3 ligase PCAF [25,100]. This modification leads to proteolytic cleavage of GLI2 and
GLI3 factors [97,98] or massive degradation especially for GLI1 protein [17,23,24].

4.2.1. USP7

Ubiquitin-specific protease 7 (USP7, also called Herpes virus-associated protease, HAUSP) is
the first identified deubiquitylase isolated as a partner of the herpesvirus protein [101]. USP7 is a
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cysteine peptidase primarily located in the nucleus where it controls the stability of multiple proteins
involved in the Zhou and colleagues described USP7 as positive modulator of HH signaling in flies
and vertebrates. Indeed, Usp7 in Drosophila and its homolog HAUSP in mammals antagonize multiple
E3 regulation of DNA damage response, transcription, epigenetic control of gene expression, immune
response, and viral infection. Indeed, among the many substrates of USP7 are included the tumor
suppressor proteins p53 and PTEN, the oncoproteins C-Myc and N-Myc, the transcription factors
Foxp3 and FOXO family members, the DNA methyltransferase 1 (DNMT1), the checkpoint kinase 1
(CHK1) and viral proteins, such as EBNA1 and ICP0 [102].

In mouse Usp7 knockout is lethal [103,104], while in human its mutations and deletions have been
recently identified in children suffering from neurodevelopmental disorders [105]. ligases function
to maintain the HH pathway activity [106]. In particular, upon Hh treatment Usp7 interacts with
Ci through multiple P/AxxS motifs and increases its protein stability [106]. Usp7 localizes in both
cytoplasm and nucleus and counteracts respectively SCFSlimb and Hib-Cul3-mediated Ci degradation
(Figure 5A) [106].
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Figure 5. (A) E3-ubiquitin ligases and DUBs involved in GLI proteins regulation. In mammals, all GLI
factors undergo ubiquitylation processing by different E3-ubiquitin ligase (βTrCP, SPOP, Itch, PCAF).
When the pathway is OFF, SCFβTrCP E3 ligase promotes the proteasome-dependent degradation of
GLI1 and GLI2, and the proteolytic cleavage of GLI3 and to lesser extent GLI2 into the repressor forms.
This modification blocks the transcriptional activity of GLIs. Ubiquitylation events are counteracted
by the activity of DUBs (USP7, USP37, USP48, USP21, OTUB2) which remove Ub moieties from GLI
factors. GLI proteins are then stabilized and can exert their activity promoting the expression of HH
target genes. (B) Structure of human DUBs acting on GLI proteins. The boxes on the right indicate the
main HH-related tumors in which these DUBs are involved. USP: ubiquitin specific protease domain;
DUSP: dual-specificity phosphatase domain; UBL: ubiquitin-like domain; UIM: ubiquitin-interacting
motif; OTU: ovarian tumour domain; MATH: meprin and TRAF homology domain.
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Similarly, USP7 binds all GLI factors in mammals, and these interactions are favored by HH
and hindered by SUFU [106]. USP7 stands as positive regulator of HH signaling that stabilizes
GLIs protein levels by antagonizing either the Itch-dependent degradation of GLI1 [24,99], and the
SPOP/CUL3-dependent degradation of GLI2/GLI3 (Figure 5A) [107,108].

Usp7 knockout in mouse cause embryonic lethality at embryonic days (E) 6.5–7.5 [103], while in
human USP7 shows an oncogenic role in neoplastic diseases such as NSCLC, human prostate and
liver cancers [109,110]. Zhan and collaborators also investigated the effects of USP7 modulation on
human MB, the most common pediatric tumor of the cerebellum [111]. About 30% of all MBs arises
from HH signaling aberrant activation (HH-MBs) [112]. USP7 depletion inhibits the proliferation rate,
the migration capability and the invasiveness of human HH-MB Daoy cells due to the decrease of GLIs
protein levels and of HH target genes transcription [113]. The treatment of Daoy cells with the USP7
inhibitors, P5091 and P22077, blocks their proliferation and metastasis [113] standing USP7 as potential
druggable target in SHH-MBs.

4.2.2. USP48

Ubiquitin-specific protease 48 (USP48) contains an ubiquitin C-terminal hydrolase (UCH) domain,
required for its catalytic activity, and an ubiquitin-specific proteases (DUSP) domain mostly involved
in protein-protein interaction (Figure 5B) [114]. Several substrates of USP48 have been recently
identified, such as the tumor necrosis factor receptor-associated factor 2 (TRAF2) related to JNK
pathway, the histone H2A and RelA, a member of the avian reticuloendotheliosis/NF-κB transcription
factors family [115–117]. Moreover USP48 is a novel binding partner of Mdm2, promoting its
stability with a deubiquitinase activity-independent mechanism [118]. USP48 is expressed in almost
all human tissues [119] and is upregulated in malignant melanoma [120]. Zhou and co-authors
recently highlighted the USP48 involvement in HH signaling regulation and its role as promoter of
glioblastoma cell proliferation and tumorigenesis [121]. USP48 and GLI1 co-localize in the nucleus,
interacting through the N-terminal sequence of GLI1 and the C-terminal DUSP domain of USP48 [121].
This interaction protects GLI1 from proteasome-dependent degradation thus increasing its protein
stability (Figure 5A). The specific function of USP48 on GLI1 promotes the proliferation and the
colony formation of glioma cells in vitro. Moreover, its depletion abrogates the tumor formation and
extends the survival rate of orthotopic glioblastoma mouse models in vivo [121]. Zhou and colleagues
sustained a positive feedback loop by which HH signaling activates USP48 through the binding of GLI1
to Usp48 promoter. Of note, USP48 and GLI1 expression levels directly correlate in human glioblastoma
specimens, and they are linked to tumor malignancy grade. This evidence underlies the relevance of
USP48-GLI1 regulatory axis for glioma cell proliferation and glioblastoma tumorigenesis [121].

4.2.3. USP21

The ubiquitin specific peptidase 21 (USP21) is the only centrosome and microtubule-associated
DUB and localizes at the basal bodies in ciliated cells [73]. USP21 activity leads to the stabilization
of many substrates, such as the pluripotency factor Nanog and the Mitogen-activated protein kinase
kinase 2 (MEK2), a member of MAPK signaling cascade, thus sustaining stemness and cell proliferation,
respectively [122,123]. Heride et al. described that USP21 positively regulates HH signaling either
acting on the formation of primary cilium or altering GLI1 transcription activity [124], without excluding
the interplay between these two mechanisms (Figure 5A). The authors demonstrated that USP21 and
GLI1 form a complex and, together with PKA, colocalize at the centrosome in U2OS cells. Indeed, USP21
recruits GLI1 close to active PKA thus stimulating GLI1 phosphorylation [124,125]. Both depletion and
overexpression of USP21 can hinder HH signaling, highlighting its regulatory role in the modulation
of this pathway [124].
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4.2.4. USP37

Ubiquitin specific peptidase 37 (USP37) mainly localizes in the cytoplasm [126] and it has been
initially described as a potent regulator of cell cycle at the G1/S transition, due to its ability to stabilize
cyclin A. [127,128]. Moreover, USP37 is involved in the regulation of the stemness marker Nanog,
of the EMT transcription factor Snail and of the oncoprotein C-Myc [129,130]. Qin et al., described the
interplay among USP37 expression, the HH pathway, and EMT in breast cancer stem cells (BCSCs) [131].
In particular, they observed that genetic depletion of USP37 in these cells induces the reduction of HH
key components at protein level (such as SMO and GLI1) as well as of stem cell markers (i.e., ALDH1
and OCT4) [131]. In contrast, the activation of HH signaling induced by the agonist purmorphamine
(PM) results in enhanced USP37 gene expression that in turn stabilizes GLI1 (Figure 5A), and impacts on
EMT in BCSBs [131]. These findings confirm the role of HH signaling in the maintenance of stem cells
and EMT [132,133] and the implication of DUBs deregulations on these oncogenic processes [134,135].
Indeed, USP37 downregulation attenuates cell invasion and EMT markers expression by suppressing
the HH pathway [131]. Moreover, in vivo xenograft mouse model of breast cancer showed that tumors
resulting from USP37 silenced cells are more sensitive to cisplatin, and have impaired HH target and
stemness genes expression, together with lower proliferation ability compared to control group [131].
Overall these data indicate the relevance of USP37 in the regulation of breast cancer progression via
the activation of the HH pathway.

4.2.5. OTUB2

Ubiquitin thioesterase otubain-2 (OTUB2) is a deubiquitylating cysteine protease belonging to the
ovarian tumor (OTU) superfamily of DUBs. Virus can encode DUBs to alter Ub-mediated host cell
processes [136,137], and OTUB2 has been reported for its inhibitory activity on virus-triggered
signaling through the deubiquitylation of TRAF3 and TRAF6 [138]. Further, OTUB2 affects
DNA damage-dependent ubiquitylation, by protecting the polycomb molecule L3MBTL1 from
RNF8-dependent degradation in an early phase of the DNA double-strand response (DDR) [139].
Recently, Li and co-workers described a new role for OTUB2 in the regulation of GLI2 stability
(Figure 5A) [140]. In particular, the authors demonstrated the interaction between the two proteins
and elucidated their interplay. The over-expression of OTUB2, but not of its catalytically inactive
mutant C51A, protects GLI2 from proteasome-dependent degradation thus stabilizing and extending its
half-life in U2OS cells [140]. Since HH signaling plays a relevant role in osteogenic differentiation during
embryogenesis [141], Li et al. investigated the effects of OTUB2 genetic depletion in mesenchymal
stem cells (MSCs). They observed that HH stimulation promotes the expression of key drivers of
osteoblast differentiation and bone formation, an effect that is inhibited in OTUB2 knockdown condition.
These findings outline OTUB2 as an agonist of HH signaling demonstrating its ability to stabilize GLI2
protein levels [140].

5. HH-Related DUBs: Inhibitors and Therapeutic Applications

Since the relevant role of DUBs in tumorigenesis, in the last decade many efforts have been
devoted to the identification of selective DUBs inhibitors, demonstrating their therapeutic potential
as anti-cancer agents [142–144]. DUBs that regulate key components of the HH pathway, such as
USP7, USP8 and UCHL5/UCH37, are promising targets for the treatment of HH-dependent tumors.
Their specific inhibitors with related chemical structures are summarized in Tables 1 and 2, respectively.

USP7 is one of the most studied and best characterized DUB for its implication in different human
diseases and in a wide spectrum of human cancers [145]. The first USP7 inhibitor was HBX 41,108,
a cyanindenopyzazine derivative. HBX 41,108 acts on USP7 [146] through an uncompetitive reversible
mechanism, binding this DUB after the formation of the enzyme/substrate complex. Although this
molecule has shown selectivity towards USP7 in HCT116 human colon cancer cells, its weak activity
against other related proteases limits the use for further pre-clinical studies [146].
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Few years later, the same research team identified structurally distinct USP7 antagonists; among
them, HBX 19,818 exhibits an excellent selectivity for this DUB [147]. Reverdy and colleagues
demonstrated that HBX 19,818 covalently binds the Cys223 located in the USP7 active site impairing
cell proliferation and promoting apoptosis and cell cycle arrest in HCT116 cells. Of note, the viability
of three cancer cell lines with different p53 status is equally impaired by HBX 19,818 treatment, strongly
suggesting that p53, one of the major USP7 target, is not required for the cellular response to USP7
inhibition. These findings suggest the existence of other USP7 substrates important for the proliferation
of colon cancer cells [147]. To date, HBX 19,818 antitumor activity in vivo has not been yet described.

Subsequently, P5091 a trisubstituted thiophene, and its analog P22077
((1-(5-((2,4-difluorophenyl)thio)-4-nitrothiophen-2-yl)ethanone)) have been identified as new
USP7 inhibitors [148–150]. Although P22077 showed a cross-reactive effect against USP47, it has
been used as USP7 antagonist in pre-clinical studies for neuroblastoma treatment. This compound
significantly impairs tumor growth both in vitro and in vivo by inducing p53-mediated apoptosis
or suppressing MYCN activity in MYCN-amplified neuroblastoma [151,152]. Interestingly, P22077
efficacy has been reported to suppress NSCLC and hepatocellular carcinoma tumor growth [153,154].

P5091 is one of the most well studied first-generation USP7 inhibitors, whose structure has
been used as scaffold for chemistry optimization to develop new antagonists [150,155]. P5091 shows
potent selective activity against USP7, inhibiting its ability to cleave high molecular weight poly-Ub
chains in a dose-dependent manner. Chauhan and colleagues provided pre-clinical data on the
anti-cancer efficacy of P5091 in multiple myeloma xenograft models. Interestingly, P5091 treatment
impairs tumor growth by inducing apoptosis also in cells resistant to conventional and bortezomib
therapies. All these evidence strongly support the clinical investigation of USP7 inhibitors, alone or in
combination, as a valid therapeutic strategy for the treatment of multiple myeloma [150]. In addition,
the potential therapeutic application of P5091 has also been reported for the treatment of various
malignancies (Table 1) [156–162]. Notably, Zhan and colleagues showed that both P22077 and P5091
block proliferation and migration of MB cells, by reducing GLI proteins levels and inhibiting HH
signaling [113].

Following advances in understanding the crystal structures of USP7, USP7-ligand complexes and
its functional domains, several non-covalently binding USP7 inhibitors have been identified, including
the 4-hydroxypiperidines XL188 [163,164], FT671 and compound 4 [165,166], the 2-aminopyridine
GNE6640, GNE776 and the thiazole derivatives C7 and C19 [167,168]. Although these molecules show
good potency and selectivity against USP7, further in vivo studies will be required to evaluate their
therapeutic relevance in cancer treatment.

Noteworthy, USP7 inhibitors have also been identified from natural sources, such as spongiacidin
C, a pyrrole alkaloid obtained from the marine sponge Stylissa massa [169]. Despite biochemical assays
show a good selectivity for USP7 for these compounds, their efficacy in cells remains to be determined.

Finally, in the last year, two new USP7 antagonists have been identified. XL177A, an analogue
of XL188, is a small molecule that irreversibly inhibits USP7 with sub-nanomolar potency and
selectivity, and whose effectiveness seems to be associated with p53 mutational status in multiple
cancer lineages [170]. On the contrary, compound 41 is a reversible, highly potent, selective, and orally
bioavailable USP7 inhibitor. In in vivo xenograft models of multiple myeloma, this molecule impairs
the tumor growth of both p53 wild-type and mutant tumor cell lines, confirming that USP7 inhibition
can suppress tumor growth affecting different pathways [171].

Currently only two molecules have been described as specific USP8 antagonists
due to its pleiotropic function [85]. Colombo and colleagues identified the compound
9-ethyloxyimino-9H-indeno [1,2-b]pyrazine-2,3-dicarbonitrile as the first specific USP8
inhibitor [172]. Subsequently, the effectiveness of this molecule has been reported to markedly
decrease the in vitro and in vivo tumor growth of both gefitinib-sensitive and -resistant NSCLC
cells [173].
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The second USP8 inhibitor, Ubv.8.2, is an engineered ubiquitin variant identified to be a highly
specific and potent inhibitor of this enzyme, showing the ability to occlude its Ub-binding site [174].
The only evidence of a potential anti-cancer activity for this molecule has been reported by MacLeod
and co-workers, who demonstrated that the lentiviral expression of Ubv.8.2 leads to cell viability
reduction in glioblastoma stem cell lines [175].

The potential application of DUBs inhibitors for the treatment of HH-related tumors includes
also the exploitation of small molecules specific for those DUBs associated with proteasome, such as
UCHL5 and USP14 [176]. These enzymes broadly act on substrates addressed to degradation
machinery and represent the most investigated druggable DUBs. Indeed, their inhibition might
have considerable effects on tumor cells, resulting in a less toxic strategy than targeting directly the
proteasome complex [142].

Most of the UCHL5 inhibitors are also able to block the activity of USP14, known to modulate the
HH pathway by controlling ciliogenesis [177]. Among the UCHL5/USP14 inhibitors identified so far,
b-AP15 (3,5-bis[(4-nitrophenyl)methylidene]-1-prop-2-enoylpiperidin-4-one) has been widely used
for pre-clinical studies, exhibiting anti-cancer activity in both in vitro and in vivo models of different
tumor types [178–189]. VLX1570, a derivative of b-AP15 [190], has been tested at pre-clinical level for
the treatment of endometrial cancer, Ewing’s sarcoma and acute lymphoblastic leukemia [189,191,192].
Of note, this compound is the first DUB inhibitor to enter in clinical trial for the treatment of relapsed
multiple myeloma (NCT02372240), although it has been suspended in Phase 1 for dose-limiting
toxicity [190,193,194].

Despite UCHL5 and USP14 have very similar functions, selective inhibitors that individually
target these enzymes have been identified. Among them, IU1 (1-[1-(4-fluorophenyl)-2,5-dimethyl-
1H-pyrrol-3-yl]-2-pyrrolidin-1-yl-ethanone) and its analogues are reversible small molecules that block
specifically USP14 catalytic site and their antitumor effects have been recently tested in in vitro and
in vivo studies for breast and lung cancers [195–198].

In the last decade, DUBs inhibitors are also emerged as versatile tools to define the structure
and the cellular functions of these proteases. In addition, their potential application as anti-cancer
agents stimulates the discovery of new and more specific antagonists. Research in this field could
be particularly important, especially for those malignancies that have a complex biology such as
HH-driven tumors.
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Table 1. Inhibitors of HH-related DUBs.

DUB Compound Cancer Type
(In Vitro and/or In Vivo Studies) In Vivo Drug Administration References

USP7

HBX 41,108 Colon cancer - [146]

HBX 19,818 Colon cancer - [147]

P22077

Neuroblastoma,
Non-small cell lung cancer,
Medulloblastoma,
Hepatocellular carcinoma

Neuroblastoma orthotopic xenograft and hepatocellular carcinoma allograft
mouse models: IP injection with P22077 dissolved in DMSO. [113,148,151–154]

P5091

Multiple Myeloma, Colorectal cancer,
Prostate cancer,
Ovarian cancer, Urothelial bladder cancer,
Esophageal squamous cell carcinoma,
Chronic lymphocytic leukemia,
Medulloblastoma

Multiple myeloma xenograft mouse model: IV injection of P5091 dissolved in
4% NMP (N-methyl-2 Pyrrolidone), 4% Tween-80, and 92% H2O.
Colorectal cancer xenograft mouse model: IP injection of P5091 dissolved in
4% NMP, 3%, Tween-80 and 20%, PEG400 in H2O.
Esophageal squamous cell carcinoma xenograft mouse model: SC injection of
P5091 dissolved in DMSO and 10% 2-hydroxypropyl-β-cyclodextrin (HPBCD).

[113,150,156–162]

XL188 Ewing’s Sarcoma - [163,164]

FT671
Colon cancer,
Osteosarcoma Neuroblastoma,
Multiple Myeloma

Multiple myeloma xenograft mouse model: oral gavage of FT671 dissolved in
10% DMA, 90% PEG400. [165]

Compound 4

Colon cancer,
Breast cancer,
Osteosarcoma,
Prostate cancer

- [168]

GNE6640, GNE6776

Colon cancer,
Osteosarcoma,
Acute myeloid leukemia,
Breast cancer

Acute Myeloid Leukemia and breast cancer xenograft mouse models: oral
gavage of GNE-6776 dissolved in 0.5% methylcellulose, 0.2% Tween-80 [166]

C7, C19
Colon cancer,
Multiple Myeloma,
Lung cancer

- [167]

Spongiacidin C Not reported - [169]

XL177A Breast cancer,
Ewing’s Sarcoma - [170]

Compound 41 Multiple Myeloma,
Small cell lung cancer

Multiple Myeloma and small cell lung cancer xenograft mouse models: oral
gavage. [171]



Cancers 2020, 12, 1518 16 of 29

Table 1. Cont.

USP8

9-ethyloxyimino-
9H-indeno [1,2-b]
pyrazine-2,3-
dicarbonitrile

Non-small cell lung cancer Non-small cell lung cancer xenograft mouse model: IP injection. [172,173]

Ubv.8.2 Glioblastoma - [174,175]

UCHL5
USP14

b-AP15

Squamous cell carcinoma,
lung carcinoma,
Colon cancer,
Breast cancer,
Acute myeloid leukemia,
Multiple myeloma,
Prostate cancer,
Melanoma,
Large B cell lymphoma,
Neuroblastoma,
Ewing’s sarcoma,
Hepatocellular carcinoma

Squamous cell carcinoma, Lewis lung carcinoma, colon cancer, breast cancer
xenograft and acute myeloid leukemia allograft mouse models: b-AP15
dissolved in Cremophor EL and polyethylene glycol 400 (1:1).
Multiple myeloma xenograft mouse model: IV injection of b-AP15 dissolved in
Cremophor EL/polyethylene glycol 400 (1:1).
Prostate cancer xenograft mouse model: b-AP15 dissolved in a vehicle
composed by DMSO, Cremophor and 0.85% NaCl at (1:3:6) ratio.
Melanoma xenograft mouse model: IP injection of b-AP15 dissolved in 90:1:9
mix of Labrafil:Tween 80:DMA.
Large B cell lymphoma xenograft mouse model: IP injection of b-AP15
dissolved in Cremophor.EL: PEG400: saline (2:2:4).
Neuroblastoma and Ewing’s sarcoma xenograft mouse models: b-AP15
dissolved in DMSO.

[178–189]

VLX1570

Ewing’s sarcoma,
Multiple myeloma,
Endometrial cancer,
Acute lymphoblastic leukemia

Ewing’s sarcoma xenograft mouse model: IP injection of VLX1570 dissolved in
DMSO.
Multiple myeloma orthotopic xenograft mouse model: IV injection of VLX1570
dissolved in PEG:Chemophore:Tween (50:10:40).
Relapsed Multiple myeloma patients (clinical trial NCT02372240): IV infusion.

[189–193]

USP14 IU1 and analogues Breast cancer,
Lung cancer - [195–198]

IP: intraperitoneal; IV: intravenous; SC: subcutaneous.
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Table 2. Cont.

Target Compound Structure References

USP8

9-ethyloxyimino-
9H-indeno[1,2-b]

pyrazine-2,3-
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6. Conclusions

The HH pathway is involved in the tumorigenesis of several malignancies and has emerged as a
valid therapeutic target for anti-cancer therapy. At present, the main strategies to impair HH signaling
are focused on inhibitors acting either on SMO or on GLIs, or through multi-targeting approaches
working on both upstream and downstream levels [52,199,200]. A number of SMO antagonists have
entered in clinical phases but only two of them, vismodegib and sonidegib, have been approved
by the FDA for the treatment of BCC. Nevertheless, the response to SMO antagonists has been
variable in other HH-dependent tumors such as MB, showing relapse due to lack of efficacy on SMO
drug-resistant mutations and SMO-independent HH activation [201–203]. These limitations arose
the need to develop alternative approaches. Even if GLI inhibitors have shown promising results in
preclinical studies, few of them have entered in clinical studies, and only the Arsenic Trioxide (ATO)
has been approved by FDA for the treatment of AML [33,34,51,200]. Currently, ATO is in several
clinical trials for both solid tumors and hematological malignancies, but there are only preclinical
studies for some HH-driven cancers such as MB. These results highlight that further efforts need to be
spent on the development of more effective anti-cancer strategies for the treatment of HH-dependent
tumors. In the last years, the possibility of hitting a tumorigenic pathway at multiple regulatory levels
has emerging as a valid therapeutic frontier in the field of oncological research. The genetic and
molecular heterogeneity of HH-driven malignancies stimulates the identification of novel molecular
players of this pathway as potential druggable targets. In particular, ubiquitylation deeply rules HH
signaling, and its pharmacological inhibition is an attractive tool to hinder this pathway at a further
crucial level of regulation. In this regard, DUBs are emerging as interesting therapeutic targets in
various HH-related tumors given their positive role in the control of the main performers of HH
signaling. In addition to promoting the activity of SMO and GLIs, as here reviewed, DUBs affects HH
signaling regulating ciliogenesis and the ciliary recruitment of HH regulatory proteins, as described
for USP14 [177]. Moreover, multiple components of the HH pathway can be stabilized by the activity
of DUBs. USP8, here presented for the function exerted on Smo, also regulates Itch, a HECT E3 ligase
involved in GLI1 ubiquitylation. [204,205]. Notably, USP17, FAM/USP9X, and YOD1 have also been
identified as modulators of Itch activity, enhancing its stability [206–208]. Recently, the involvement of
βTrCP-bound deubiquitylase enzyme USP47 has been described in HH signaling. The interaction of
the positive HH regulator ERAP1 with USP47 induces the degradation of βTrCP, thus protecting GLIs
from βTrCP-dependent degradation and stimulating HH activity [209].
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Increasing findings in this field of study highlight the interest in the development of more efficient
and selective DUBs inhibitors for anti-cancer therapy, without affecting the fine physiologic balance of
the Ub proteasome system that governs the proper functioning of all pathways, including HH.
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