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A B S T R A C T

There is no secret that despite the rapid development of new methods of cancer therapy, we still are not able to completely destroy the tumor. Every time we attack
the tumor, the tumor neutralizes our attempts. Carcinogenesis can be presented as a tree whose branches are different pro-tumor mechanisms and whose trunk is a
biological phenomenon that “feeds” those branches. A tree can be destroyed in two ways: either by cutting a branch for a branch without a guarantee that new
branches will not grow, or cutting down the trunk and letting the branches wither away. To cut down the trunk, it is necessary to understand the nature of the
biological phenomenon, which helps the tumor to avoid attack by the immune system, drugs and immunotherapy. The clue is that the pro-tumor mechanisms are
united by one goal – to increase the resistance of the tumor cell to immune factors and drugs. A phenomenon that improves cell resistance is well known in biology –
adaptation. If the immunity does not immediately destroy the tumor cell, the cell begins to adapt to it. Our hypothesis is that short range adaptation to immune
factors plays a role in the formation of tumor tolerance for immunity and immunotherapy. This gives rise to the idea of reducing the survival of tumor cells by
disrupting adaptation mechanisms. Indeed, “turning off” the immune system for a period of time before therapy and applying immunotherapy only to tumor cells that
have lost their increased resistance could be a new approach to increase the effectiveness of immunotherapy.

In 2018, 9.6 million people died of cancer [1] – exactly the same as
the number of soldiers who died during the First World War [2]. This
number is not going down. The task of developing effective ways of
treating cancer requires an understanding of the mechanisms of carci-
nogenesis. Discovery of the role of immunity in tumor growth has given
rise to a new method of cancer treatment – immunotherapy. However,
immunotherapy does not always help and does not help everybody.
Here we look at the interaction of immunity and tumors and types of
immunotherapy and explore how to increase the effectiveness of cancer
treatment.

The cancer-immunity cycle

When tumor cells appear, the immune system forms an immune
cycle against cancer. This cycle is described in the review by Daniel S.
Chen and Ira Mellman [3]. Here we briefly describe the main stages of
the cycle (Fig. 1).

At the first stage, the tumor, as a result of necrosis, releases tumor
antigens. At the second, antigen-presenting cells (APC) seize antigens
and expose them to the surface using the Major Histocompatibility

Complex (MHC). IL-1, TNF-α, INF-γ, CD40, Toll-like receptor ligands
and adjuvants stimulate the process, and IL-4, IL-10, IL-13 inhibit it [4].
Furthermore, APCs with antigen migrate to the lymph nodes.

There, at the third stage, tumor antigens associated with APCs bind
to the T cell receptor (TCR) of CD8 + T cells and stimulate differ-
entiation of T cells into cytotoxic T lymphocytes (CTL) [5]. At the same
time, APCs present tumor antigen in association with MHC II molecules
to T CD4 lymphocytes. Presentation of antigens in association with
MHC II molecules to CD4 + T cells help to increase CD8 + T cell re-
sponses.

The interaction of molecules B7-1 or B7-2 with CD28, CD137 and
CD137L, OX40 and OX40L, CD27 and CD70, as well as the effect of IL-2
and IL-12, stimulate this process, while interactions of CTLA-4 with
B7.1, PDL-1 with B7.1 or with PD-1 inhibit it (Fig. 2) [3].

At the fourth stage, CTLs enter the bloodstream and reach the organ
where the tumor is located with blood flow. The CTLs movement is
guided by the CX3CL1, CXCL9, CXCL10 and CCL5 [6].

At the fifth stage, CTLs from the bloodstream penetrate the vascular
wall and infiltrate the tumor [7]. The number of tumor infiltrating
lymphocytes (TIL) depends on the relationship between the stimulants
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of the process — LFA1, ICAM1 and selectin, and inhibitors — VEGF and
the endothelin B receptor [8].

At the sixth stage, CTLs interact with cancer cells by binding MHC I
presented antigens with their specific TCR [4].

At the seventh stage, CTLs destroy cancer cells [5]. Destroyed
cancer cells release a new batch of antigens (step 1). As a result, the
immune cycle is re-activated to produce the next turn to destroy the
tumor.

INF-γ enhances an efficient anti-tumoral immune response, while
PDL-1 and PD-1 molecules, TIM-3, BTLA, VISTA, LAG-3, IDO, arginase,
TGF-β, T regulatory cells (Treg), myeloid-derived suppressor cells
(MDSC) and M2 macrophages inhibit the function of CTL [4].

The cycle against cancer is regulated in order to prevent both ex-
cessive cycle activation and the development of an excessive in-
flammatory reaction, as well as weak activation and a decrease in anti-
tumor activity. The former problem is solved by co-inhibitory mole-
cules, and the latter by co-stimulating ones. Co-stimulating receptors
CD28 on T cells interact with CD80/B7-1 or CD86/B7-2 on APC and
activate the formation of CTL from T cells. A functional pair of a co-
inhibitory receptor with a ligand was called a checkpoint. Checkpoints
that form CTLA-4 (cytotoxic T-lymphocyte – associated antigen-4) and
PD-1 (programmed cell death-1) have been studied the most. CTLA-4
controls the antigen presentation at stage 3 of the cycle, and PD-1
controls the activity of CTL at stage 7 (Figs. 1 and 2).

CTLA-4 on T and T regulatory (Treg) cells inhibits T cell activation
due to: i. “Winning” in competition with the co-stimulatory receptor
CD28 for binding CD80 and CD86 on APC (Fig. 2); ii. reduced signalling
from TCR and CD28; iii. removing CD80 and CD86 on APC using
transendocytosis; iv. suppressor effects of Treg bearing CTLA-4 and v.
induction of tryptophan-splitting enzyme IDO (indoleamin 2,3-deox-
ygenase) [9].

PD-1 binds PD-L1 and PD-L2 on immune and tumor cells [10]. PD-1
inhibits CTL function by: i. reduced TCR phosphorylation; ii. Oppres-
sion division of CTL; iii. induction of apoptosis of CTL; iv. decrease in
the mobility of CTLs and the time of their interaction with APC and
tumor cells; and v. stimulating suppressor Treg [9].

Understanding the immune mechanisms of caricenogenesis is the
cornerstone of cancer immunotherapy development

The number of oncological diseases is increasing and this under-
mines faith in the effectiveness of immunity. The absence of an increase
in the frequency of induced tumors in mice without T cells has further
discredited the immune defense. The concept of immuno-editing, which
united the opposite roles of the immune system in cancer, has acted as
an “advocate” for anti-tumor immunity [11]. In one context, the im-
mune system recognizes a tumor and forms a cycle against cancer.
Spontaneous tumor regressions confirm the clinical significance of im-
munity. In another context, the tumor “edits” the anti-cancer cycle and
survives.

Immune-editing of cycle against cancer

Protumor editing occurs at each stage of the immune cycle (Fig. 1).
At the first stage of the immune cycle, the tumor releases its antigens,
and APC will recognize them. However, a tumor often carries normal
tissue antigens. For example, in prostate cancer (PC), these are prostatic
acid phosphatase (PAP), prostate specific antigen (PSA) and prostate
specific membrane antigen (PSMA) [12]. Therefore, APC and T cells,
recognizing these antigens, interfere with the immune response to the
tumor. In addition, the death of tumor cells can be apoptotic without
releasing antigens.

Fig. 1. Immunological cycle against cancer. Methods of pro-tumor immuno-editing aimed at this stage of the cycle are indicated in italics. Adapted from [3].
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At the second stage, when the APC captures the antigens, the mo-
lecular tools for immuno-editing are secreted by the tumor and tumor-
associated macrophage IL-4, IL-10, IL-13. These cytokines violate the
capture of antigens by APC [12].

At the fourth stage, the tumor interferes with CTL migration through
the endothelial barrier with i. chemokine disruption that attracts CTLs
[6], and ii. the release of VEGF, which inhibits the expression of ad-
hesion molecules on the vascular endothelium [8].

At the fifth stage, due to the production of VEGF, the tumor and M2
macrophages prevent the extravasation of CTLs [8] and reduce the
number of CTLs in the tumor [3].

At the sixth stage, when antigens are recognized, the number of
MHC I associated with tumor antigens decreases. The ability to re-
cognize cancer cells by cognate TCR CTLs is reduced [4].

At the seventh stage of the anti-cancer cycle, when the CTLs begin to
destroy cancer cells, the tumor secretes IDO, which depletes trypto-
phan. Tryptophan is necessary for the survival of CTLs. The number of
CTLs is thus reduced [13]. Interestingly, in prostate cancer, IDO pro-
duction is activated by IFN-γ and TNF-α [14] secreted by Th 1 and CTLs
to activate innate response. This is a shining example of protumor im-
muno-editing. In addition, many cancers increase the expression of PD-
L1, which inhibits CTL activity and contributes to tumor progression
[10].

Immune cells are also the tools of pro-tumor immune editing. For
example, a tumor reprograms anti-tumor M1 macrophages into pro-
tumor M2 macrophages that promote tumor growth and metastasis
[3,15].

Tumor microenvironment is an important determinant of immune-
editing and, as a result, of disease prognosis and success of therapy
[16]. The microenvironment may form either “hot” or “cold” tumors. If

tumor microenvironment is rich of T cells and myeloid cells, the tumor
is “hot”. The tumor infiltrating T cells are not able to kill a “hot” tumor
due to checkpoint-induced T cell inactivation. However, these T cells
can be activated by checkpoint inhibitors. “Hot” tumors often produce
neoantigens that can cause a strong immune response. “Hot” tumors are
often found in cancers of the bladder, head and neck, kidney, liver,
melanoma and non-small cell lung cancer, as well as cancers with high
microsatellite instability [17]. A microenvironment with a large
number of regulatory T cells, myeloid suppressor cells and M2 macro-
phages, but with a low content of T cells, forms “cold” tumors. Cells of
cold tumors create an immunosuppressive environment and therefore
an immune response against these tumors is very difficult to induce.
Cold tumors include glioblastoma, cancers of the ovaries, prostate and
pancreas [18].

Understanding of protumor immuno-editing is necessary in order to
develop an effective cancer therapy. Cancer immunotherapy uses im-
munity-stimulating technologies using vaccines and CTLs, technologies
of mimicking anti-cancer cycle stages using modified TCR and CAR-T
cell lymphocytes, and PD-1 and CTLA-4 inhibitors to eliminate im-
munosuppression.

Technologies to stimulate anti-tumor immunity: vaccines and CTLs

The idea behind vaccines based on dendritic cells was to remove
APC with a antigen from the tumor suppressive effect. To do this,
monocytes are isolated from the patient's blood, and tumor antigens are
extracted from the tumor biopsy or exosomes. Then the monocytes are
differentiated to dendritic cells and loaded with antigen. Such cells are
a vaccine capable of presenting a tumor antigen. When the vaccine is
administered to a patient, “trained” APCs stimulate the formation of

Fig. 2. Stimulating and inhibiting regulators of antigen presentation and interaction of T cells with a tumor.
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CTLs. The first vaccine on dendritic cells Sipuleucel-T presented the
PAP antigen. Sipuleucel-T improved the survival of patients with me-
tastatic prostate cancer by an average of 4 months and increased the
probability of survival for 3 years by 10% compared with the placebo
group [19].

Another type of vaccine is obtained using a viral vector that con-
tains the tumor antigen gene. The vector is introduced into the body,
enters the dendritic cells and embeds its DNA into their genome. As a
result of gene expression of the antigen, the dendritic cell receives a
tumor antigen and exposes it to the surface. This was how the PROS-
TVAC vaccine was created with the PSA gene. In clinical trials, PROS-
TVAC increased the life expectancy of patients with metastatic prostate
cancer by more than 8 months [20].

UV1 vaccine based on telomerase reverse transcriptase peptides is
an example of a peptide vaccine. After intradermal injection, UV1 in-
duced an immune response in more than 85% of patients with meta-
static prostate cancer. In 64% of these patients, PSA decreased to
normal values, and in 45% of patients MRI did not reveal prostate tu-
mors [21].

DNA vaccine is another way to stimulate the cycle against cancer.
This vaccine is a bacterial plasmid containing the tumor antigen gene
under the control of a eukaryotic promoter. After entering the cell, the
plasmid produces tumor antigens and, as a result, causes an antitumor
response. In clinical studies, DNA vaccines showed promising results
[22]. Compared with other vaccines, they are safer, easier to manu-
facture and have high stability.

The appearance of CTL in the tumor gave rise to the idea of adoptive
cell therapy (ACT) with the help of CTLs isolated from the tumor. The
ACT technology includes: isolation of CTLs from tumor biopsy material,
in vitro CTL expansion and reinfusion of a large amount of CTLs into the
patient. In clinical studies, ACT CTL caused a many-year remission in
most patients with metastatic melanoma [23]. However, for cancer of
the ovaries, breast, colon, cervix and kidney, ACT, CTL only resulted in
moderate improvements.

Technologies to mimic key stages of the anti-cancer cycle: lymphocytes with
modified TCR and CAR-T cells

Tumor antigen specific T cell are obtained by introducing genes
encoding either the antigen specific TCR or the chimeric antigen re-
ceptor (CAR).

The binding of the TCR to an antigen represented by MHC/HLA on
APC or a tumor cell activates T cells. A TCR consists of α- and β-chains
linked to CD3 on the surface of T cells (Fig. 3). A new pair of α- and β-
chains specific for a tumor antigen increases the specificity of T cells.
The technology for modifying T cells includes: isolating an antigen-
specific TCR from a tumor, sequencing its α- and β- chains; insertion of
the α and β chains of the antigen-specific TCR into viral vectors;
transduction of T cells from patient’s blood with ex vivo vectors; ex-
pansion of modified T cells and infusion of these cells into patients.

Therapy with TCRs with modified TCR for melanoma antigen
MART-1 resulted in prolonged regression of metastatic melanoma in at
least 10% of patients [25]. Side effects manifested in the form of: (i)
toxicity, which occurs when T cells recognize MART-1 autoantigens
inherent in both melanoma cells and normal melanocytes, nerve cells
and cardiomyocytes, and (ii) an acute release syndrome of in-
flammatory cytokines. Good results were also obtained when using
modified TCR to MAGE-A4 for esophageal cancer [26].

CAR-T cells are T cells with a genetically modified antigen receptor
(Fig. 3). The first-generation CAR consists of the antigen-binding do-
main of a tumor-specific antibody fused to the intracellular domain of
the TCR. The second-generation CAR contains the additional costimu-
latory domain CD28 or 4-1BB. Third-generation CARs include another
costimulatory domain. Additional domains enhance the activation of
CAR-T cells.

The production of CAR-T cells begins with the isolation of T cells

from the patient’s blood. Then, using viral vectors, the CAR gene is
introduced into the T cell genome and proliferation of CAR-T cells is
stimulated, increasing to the required number. After that, the end
product is administered to the patient [27].

CAR-T cells recognize surface tumor antigens. Unlike vaccines, they
do not require immunization, and unlike T cells with modified TCR,
they do not need MHC to bind to the antigen. Due to its independence
from MHC, CAR-T cells recognize tumor cells that, having lost MHC,
become “invisible” to T cells with native or modified TCR [28]. It is
estimated that each CAR-T cell and its progeny kill 1000 tumor cells.
Evidence of the clinical significance of CAR-T cells was found in acute
lymphoblastic leukemia. CAR-T cells targeting a CD19 tumor antigen
increased the life expectancy of patients by 13–20 months [29]. How-
ever, CAR-T cell therapy was accompanied by a neurotoxic effect and
severe cytokine release syndrome.

The effectiveness of CAR-T cells in prostate cancer was demon-
strated by doctors at Boston University in 2016 [30]. CAR-T cells, tar-
geting the PSMA antigen, reduced the level of the PSA tumor growth
marker by 70% in 40% of patients. There were no side effects. However,
in many patients with solid cancers, CAR-T cells did not provide long-
term clinical improvement [31].

PD-1 and CTLA-4-checkpoint inhibitors

Immunotherapy of the third group eliminates the immunosuppres-
sion created by the checkpoint [9]. For inhibition of CTLA-4 check-
point, the antibody preparation ipilimumab [32] was used, and for the
inhibition of PD-1 checkpoint, a drug preparation of antibodies, nivo-
lumab and pembrolizumab, was used [33–35] (Fig. 4).

Blocking CTLA-4 on T and Treg cells caused prolonged regression of
metastatic melanoma. The survival curve for patients reached a plateau
of 21% over 3 years and remained stable for 10 years [37]. With ad-
vanced lung cancer, hepatocellular carcinoma, colorectal cancer, me-
sothelioma and prostate cancer, the effectiveness of ipilimumab was
low, although in some patients there was an improvement and even
sustained remission [38]. Ipilimumab caused undesirable inflammation
in the gastrointestinal tract, skin, and endocrine glands, but these
complications were eliminated with the help of corticosteroids [32,39].

In preclinical models, PD-1 or PD-L1 blockade increased cytotoxi-
city, production of inflammatory cytokines and CTL proliferation,
contributing to tumor destruction [34]. In 2014–2015, the FDA ap-
proved nivolumab (anti-PD-1) and pembrolizumab (anti-PD-1) drugs
for the treatment of melanoma, lung cancer, and head and neck cancer.

In metastatic melanoma and in metastatic renal cell carcinoma, the
anti-tumor efficacy of nivoluumab exceeds the effectiveness of che-
motherapy [33,40]. Nivolumab showed unprecedented long-lasting
effects, maintaining the anti-tumor effect for melanoma up to
117 weeks. Pembrolizumab was more effective than ipilimumab in
patients with progressive melanoma [35] and showed anti-tumor ac-
tivity in prostate cancer [41]. Side effects of PD-1 checkpoint inhibitors
responded well to treatment with steroids [32].

However, four out of five patients are resistant to anti-PD1/PDL1
therapy. There are also patients who, after an initial good response to
therapy, eventually develop resistance to PD1/PDL1 inhibitors and
tumor growth resumes [42]. Therefore, there is an urgent need to study
resistance mechanisms, identify immunotherapy targets and novel ap-
proaches to improve patient care.

As a rule, pro-tumor immuno-editing affects not one, but several
stages of the cycle against cancer. Therefore, the simultaneous correc-
tion of several stages of the cycle is likely to be more effective in the
treatment of cancer than monotherapy. Given that the cycle against
cancer consists of seven stages, the number of combinations in combi-
nation therapy can reach 7 factorial, or 5040 variants. This is a huge
reserve for future developments. The task of researchers is to choose the
most effective options.
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Adaptation is a way for tumor cells to survive, and their
maladaptation is a way for immunotherapy to kill them
(hypothesis)

As immunotherapy methods developed, serious problems began to
arise concerning the way to achieve a reliable anti-tumor effect in pa-
tients. Immunotherapy and other methods could not guarantee 100%
success in cancer treatment. Why, despite the rapid development of new
methods of cancer therapy, can we not catch up with and completely
destroy the tumor? Every time the immunity or the doctor attacks the
tumor, the tumor neutralizes their attempts. When a surgeon excises a
tumor, the tumor metastasizes and develops elsewhere. When the im-
mune system recognizes tumor antigens, the tumor masks them or re-
sets or leaves the normal tissue antigens on its surface, so that when
CTL starts attacking a tumor cell, Treg lymphocytes perceive it as an
attack on their own cells, and suppress CTL activity [43]. When mac-
rophages infiltrate a tumor, the tumor reprograms these cells to the pro-
tumor phenotype [44]. When CTL or CAR-T cells attack a tumor, the
tumor creates an immunosuppressive environment [10,45–47]. When
the drug penetrates the tumor cells, the tumor synthesizes new channels
and takes the drug out [48]. It seems that the tumor is a unique pa-
thology, which, unlike other pathologies, has a dynamically changing
pathogenesis in response to treatment and the action of the immune
system.

New hopes, noted in 2018 by the award of Nobel Prize for Medicine
to James P. Allison and Tasuku Honjo were pinned on PD-1 and CTLA-4
inhibitors. However, in response to the inhibition of these checkpoints,
the tunor synthesizes molecules of other checkpoints [49]. This has
already generated considerable pessimism about this type of

immunotherapy.
The situation resembles the ancient Greek philosopher Zeno’s

paradox of the unsuccessful efforts of Achilles to catch up with the
tortoise – by the time Achilles gets to where the tortoise was, the tor-
toise has moved a fraction ahead of him. Paradoxically, this is so, if we
assume that Achilles runs discretely. Antitumor therapies are being
developed “discretely” according to the principle of “once a pro-tumor
mechanism is discovered, develop a medicine to inhibit it.” Checkpoint
inhibitors are the latest example. However, as soon as the doctor in-
hibits PD-1 and CTLA-4, the tumor synthesizes other checkpoints, for
example VISTA [49]. Zenon's paradox suggests that the goal of therapy
need to go beyond the capabilities of the tumor to level the therapeutic
effect. For this to succeed, you need to understand which biological
phenomena make the tumor resistant to various aggressive factors and
help it to avoid the immune system prosecution.

Carcinogenesis can be represented as a tree whose branches are
different pro-tumor mechanisms and whose trunk is a biological phe-
nomenon that “feeds” those branches. A tree can be destroyed in two
ways: either by cutting a branch for a branch without a guarantee that
new branches will not grow, or cutting down the trunk and letting the
branches wither away. Immunotherapy uses the first method, for ex-
ample by blocking a checkpoint. But soon the tumor synthesizes other
checkpoints and survives. To cut down the trunk, it is necessary to
understand the nature of the biological phenomenon, which helps the
tumor to avoid attack by the immune system, drugs and im-
munotherapy. The clue is that the pro-tumor mechanisms are united by
one goal – to increase the resistance of the tumor cell to immune factors
and drugs. A phenomenon that improves cell resistance is well known
in biology – adaptation.

Fig. 3. Genetically modified T cells. (A) T cells recognize an antigen by means of a TCR, which consists of α and β chains and CD3ζ, which transmits a signal to
activate T cells. T cells are modified by expressing new α- and β-chains with the desired specificity. (B) CAR consists of an antigen binding domain (scFv) fused to the
transmembrane and intracellular domain of CD3ζ from TCR. 1st generation CARs contain CD3ζ, 2nd generation CARs have one costimulatory CD28 or 4-1BB domain
fused to CD3ζ, and 3rd generation CAR has two costimulatory domains associated with CD3ζ. VH – variable heavy chain; VL – variable light chain. Adapted from
[24].
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On the basis of their nature and role in evolution, the adaptations
were classified into two categories: short range (temporary) and long
range (permanent) adaptations. The main principles of the concept of
short range adaptation were formulated by Felix Z. Meerson [50,51]:

1. Periodic action of a damaging factor increases the resistance of cells
to this factor of a greater, previously intolerable force, i.e. forms
adaptation. When adapting to one damaging factor, the resistance of
cells to another factor that the cell has not even encountered may
increase.

2. Adaptation to a damaging factor of a long enough duration is pro-
vided by a structural trace. A structural trace is a complex of
changes in cells, such as gene expression, an increase in the number
of ribosomes and mitochondria, which synthesize the proteins, ATP.

3. After the termination of the adaptive factor, the structural trace
disappears together with increased stability. This process is called
maladaptation.

The first principal of the concept of adaptation suggests that tumor
survives due to adaptation to aggressive factors of the microenviron-
ment, such as hypoxia, free radicals and inflammatory cytokines [52].
Cancer cells increase glucose uptake, neutralize free radicals, produce
many anti-inflammatory cytokines [52,53] and thereby increase their
resistance to hypoxia, oxidative stress and inflammation. In addition,
tumor anti-inflammatory cytokines reprogram macrophages into the
pro-tumor phenotype and inhibit CTL [15]. These processes reflect the
formation of the adaptation of tumor cells to the aggressive micro-
environment, which creates hypoxia and the immune system.

Thus, if the immunity does not immediately destroy the tumor cell,
the cell begins to adapt to it. If the doctor, with the help of im-
munotherapy, fails to increase the strength of the immune attack to a
level that kills the tumor, this leads to additional adaptation of the
tumor cell and increases its resistance. “What doesn’t kill us makes us
stronger” – an adaptation formula that Nietzsche himself unknowingly

used. This survival strategy was well known in Medieval France. French
kings, who took non-lethal doses of poison from childhood, over time
became immune to lethal doses. Similarly, an adapted tumor becomes
tolerant to the action of immune factors and immunotherapy. Probably,
therefore, immunotherapy is more effective in the early stages of tumor
development [19], when the adaptation of the tumor is not yet com-
plete than in the later stages, when the tumor has already adapted. The
weak immunogenicity of the tumor and the weakened immunity of the
elderly, causing weak immune responses, may contribute to the adap-
tation of the tumor.

Immuno-editing often involves several stages of the anti-cancer
immune cycle. Therefore, it is reasonable to assume that combined
strategies will more effectively overcome tumor adaptation than
monotherapies. Indeed, the combined therapy with PD-1/CTLA-4 in-
hibitors increased the effectiveness of treatment in patients with mel-
anoma compared to monotherapy with any of the blockers [54].

Target selection plays an important role in combined therapy. In
particular, in contrast to the PD1/CTLA4 combination [54], the therapy
with PD1 and IDO (epacadostat) inhibitors did not provide an increased
benefit in advanced melanoma [55] whereas the combined treatment
with IDO inhibitor and radiotherapy prevented the T cell exhaustion
and suppressed tumor growth [56].

The “regenerative potential” of the tumor defense mechanisms and
the development of resistance is another problem of combined therapy.
In response to the inhibition of CTLA-4 checkpoint, the tumor synthe-
sizes other checkpoints such as VISTA and “regenerates” the im-
munosuppressive mechanism [49] and resistance often develops in re-
sponse to PD-1 checkpoint inhibition and tumor growth resumes [42].

With a large number of potential therapeutic targets and individual
characteristics of carcinogenesis, the possibility of activating one de-
fense mechanism in response to the inhibition of another one and the
likelihood of resistance development, a special algorithm is required to
select an effective combination of targets. An example of such an al-
gorithm is a biomarker approach based on the analysis of the genomic

Fig. 4. Checkpoint inhibitors eliminate T cell immunosuppression. APC: antigen presenting cell; PD-1: programmed cell death protein 1; PD-L1: programmed death
ligand 1; TCR: T cell receptors. Adapted from [36].
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and immunologic landscape of a tumor. In particular, this approach
allowed to identify biomarkers of the HPV-positive head and neck
squamous cell carcinoma (HNSCC) such as viral oncoproteins E6 and
E7, p53 degradation and functional inactivation of Rb and HPV-nega-
tive HNSCC such as mutation in the TP53 and CDKN2A genes [57].
Understanding the genomic and immunologic landscape of a tumor will
help translational immune-oncologists to select targets for combination
therapies, more effectively.

Why does the immunity, which is designed to neutralize the tumor,
begins to promote its adaptation and survival? Tumor cells divide ra-
pidly and, as a result of mutations, expose non-host antigens. The si-
tuation resembles the development of the embryo. Probably, for reasons
of biological expediency, immunity uses adaptation mechanisms to
protect dividing tumor cells without noticing the difference from the
embryo.

Our hypothesis that adaptation to immune factors plays a role in the
formation of tumor tolerance for immunity and immunotherapy gives
rise to the idea of reducing the survival of tumor cells by disrupting
adaptation mechanisms.

The second principal of the concept of adaptation involves the
prevention of adaptation. This can be achieved by inhibition of the
activation of genes and proteins of the structural trace of adaptation in
tumor cells. Genomic and proteomic analysis can identify critical
components of the structural trace and show which genes to block.
Prevention of the formation of a structural trace in tumor cells could
increase the effectiveness of immunotherapy.

The above “biomarker approach”, as well as for prognosis [57],
could be used in a broader sense, to identify a specific structural trace of
the adaptation of a particular tumor, and in the end address an in-
dividualized therapeutic approach.

The third principal of the concept of adaptation addresses what to
do when the structural trace has already been formed – the termination
of the adaptive factor leads to the disappearance of the structural trace
and the loss of acquired stability. Within the context of cancer im-
munotherapy, this gives rise to the idea of “turning off” the immune
system for a period before the onset of tumor maladaptation, and then
applying immunotherapy only to tumor cells that have lost their in-
creased resistance. This hypothesis is consistent with the fact that
lymphodepletion is a critical step to create a favorable immune en-
vironment in patients prior to adoptive cell therapy [58,59]. It is pos-
sible that maladaptation of tumor cells as a result of the removal of
lymphocyte-derived mediators contribute to this effect.

The fact that therapy in the early stages of tumor formation is more
effective than in the later ones can be partly explained by the fact that
the formation of a systemic structural trace requires time, and in the
early stages there is still no adaptive increase in the resistance of tumor
cells. Another indirect example of the involvement of tumor adaptation
in the formation of tumor resistance is given by a bridging therapy prior
to CAR-T cells. Recently, DeSelm et al. showed that radiation sensitizes
tumors to immune rejection by CAR T cells as a result of the mitigate
antigen escape [60]. It can be assumed that antigen escape is a com-
ponent of the systemic structural trace of tumor cell adaptation and its
violation by radiation makes CAR T cell therapy more effective. Deep
understanding of the components of the systemic structural trace of
adaptation will result in more effective inhibition of tumor cell adaptive
resistance and will make tumor cells more vulnerable to both tradi-
tional and new cancer treatment methods.

A look at the problem of cancer from the positions of the concept of
adaptation allowed us to outline a new approach to increase the ef-
fectiveness of immunotherapy. This is the destruction of the structural
trace of adaptation in tumor cells using inhibitors, or disadaptation of
tumor cells by shutting down the immune system before the start of
immunotherapy.

A good theory should have predictive power, reveal the mechanisms
and have practical application. Within this context, it is interesting to
discuss the concept of adaptation for hot and cold tumors. In “hot”

tumors, T cells express PD-1 and tumor cells express PD-L1. The PD-1/
PD-L1 interaction blocks the cytotoxic activity of T cells. Therefore,
PD1/PD-L1 checkpoint inhibitors are very effective [61]. Solid “cold”
tumors, due to low immunogenicity, immunosuppressive micro-
environment and absence of T cells, do not respond to checkpoint in-
hibitors. To increase the effectiveness of checkpoint inhibitors, it has
been suggested to convert cold tumors into “hot” ones [62].

The concept of adaptation can help to understand the nature of hot
and cold tumors and contribute to more effective therapy. The first fact
to pay attention to is that the hot microenvironment contains molecular
and cellular factors of anti-tumor immunity, and these factors are as-
sumed to act on the tumor cell, form a systemic structural trace and
make the tumor adapt to anti-tumor conditions. In particular, one of the
components of the systemic structural trace is an increase in the ex-
pression of PD-L1. Therefore, a violation of one of the adaptation me-
chanisms with checkpoint inhibitors is a reasonable strategy for the
immunotherapy of hot tumors.

The microenvironment of a “cold” tumor impedes the action of
immune anti-tumor factors and is supposed to protect the tumor.
However, as a result of such protection, there is no adaptation to anti-
tumor immune factors and so, a systemic structural trace does not form
and consequently there is no an increase in the ligands of checkpoints.
Therefore, checkpoint inhibitors in absence of acquired adaptation are
not effective. A protective microenvironment can be considered as both
the strength and weakness of a cold tumor. It protects the tumor from
an aggressive immune response but it does not allow adaptation.

If our hypothesis is true, then tumor cells isolated from a “hot”
tumor should be more resistant to anti-tumor immune factors compared
to tumor cells isolated from a cold tumor. Therefore, it could be sug-
gested that in the case of “hot” tumors, the therapeutic target is an
adapted tumor cell, whereas in the case of “cold” tumors, the micro-
environment should become the target. After reprogramming the mi-
croenvironment of a cold tumor with cytotoxic lymphocytes, lympho-
cytes with modified T cell receptors or CAR-T cells, will effectively
destroy the non-adapted tumor cell. How to reprogram the micro-
environment of a cold tumor is a very important question, but it is
beyond the scope of this review. Here, it is suggested that the micro-
environment consists of immunosuppressive cells, that can become
targets of adaptation/maladaptation approaches.

The concept of adaptation within the context of the anti-tumor
immunotherapy allows a new vision of the problem of carcinogenesis
and the development of new therapeutic strategies.
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