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Q1
Sport performances are often showcases of skilled motor control. Efforts to understand
the neural processes subserving such movements may teach us about general
principles of behavior, similarly to how studies on neurological patients have guided
early work in cognitive neuroscience. While investigations on non-human animal models
offer valuable information on the neural dynamics of skilled motor control that is still
difficult to obtain from humans, sport sciences have paid relatively little attention to
these mechanisms. Similarly, knowledge emerging from the study of sport performance
could inspire innovative experiments in animal neurophysiology, but the latter has been
only partially applied. Here, we advocate that fostering interactions between these two
seemingly distant fields, i.e., animal neurophysiology and sport sciences, may lead to
mutual benefits. For instance, recording and manipulating the activity from neurons of
behaving animals offer a unique viewpoint on the computations for motor control, with
potentially untapped relevance for motor skills development in athletes. To stimulate
such transdisciplinary dialog, in the present article, we also discuss steps for the
reverse translation of sport sciences findings to animal models and the evaluation of
comparability between animal models of a given sport and athletes. In the final section
of the article, we envision that some approaches developed for animal neurophysiology
could translate to sport sciences anytime soon (e.g., advanced tracking methods) or
in the future (e.g., novel brain stimulation techniques) and could be used to monitor
and manipulate motor skills, with implications for human performance extending well
beyond sport.

Keywords: information processing, motor control, neural networks, Q11animal models, sport performance

INTRODUCTION

Numerous sport performances appear esthetically appealing and deceptively simple. At the heart of
such performances are complex dynamics involving body mechanics and neural control. Here we
argue for a stronger interaction between sport neuroscience and non-human (henceforth simply
animal or basic) neurophysiology, to provide mutual benefits for both disciplines, i.e., behavioral
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outcome in sport and cellular mechanisms in animal
studies, toward a deeper understanding of the nature of
motor performance.

Indeed, many sports gestures can be regarded as prominent
showcases of skilled motor control and thus, considering the
central nervous system (CNS) as a machine producing adaptable
movements, are of great relevance for various disciplines
including cognitive neuroscience (Shadmehr and Krakauer,
2008; Graziano, 2009; Yarrow et al., 2009). Unsurprisingly,
investigations on the neural bases of sport performance
raised interest also in human physiology and biomedicine.
Classic physiological research focused, among others processes,
on fatigue, with the long-dominating view considering it a
muscular limit. This view is now partially disrupted in favor
of evidences indicating that, at the bottom of muscular fatigue,
there is also an exhaustion of the nervous system (Noakes,
2012). In biomedicine, sport was assessed mostly as either a
health-promoting or harming intervention. In the first case,
sport serves to model increased level of physical activity,
with a typical intervention goal being prevention of non-
neural pathologies associated with sedentary lifestyle, while
a more recent focus has been to use sport as a way of
promoting “brain health” (Boecker et al., 2012; Malm et al.,
2019; Logan et al., 2020). In the second case, sport entails
increased risks for traumatic CNS injuries (especially sports
like Boxing or American Football), and it is possible to predict
the magnitude of the behavioral impairments based on the
intensity of the head impacts (Gavett et al., 2011; Castellani
and Perry, 2017; Mckee et al., 2018; Leeds et al., 2019). Also,
epidemiological data support the hypothesis that some athletes,
like football players, have an increased risk of developing certain
neurodegenerative diseases, including possibly amyotrophic
lateral sclerosis (Blecher et al., 2019).

A more recent research line aims to investigate the neural
bases of motor performance, and a first milestone has been
to uncover behavioral and neural differences between naive
and expert athletes, contributing to the establishment of sport
neuroscience (Yarrow et al., 2009; University of Tsukuba,
2019). This new field leverages mainly upon concepts and
methodologies of sport psychology and cognitive neuroscience
(Milne, 2007; Gee, 2010; Zhou and Zhou, 2019), and the
integration of methods and/or concepts emerging from
neurophysiological studies will likely provide a groundbreaking
stimulus toward a mechanistic understanding of the neural bases
of human performance.

ON THE DEFINITIONS OF SPORT

While in some contexts, physical activity and exercise (Caspersen
et al., 1985) are terms used interchangeably with the term
sport, for the latter we embrace the following definition: “an
activity involving physical exertion and skill, especially one
regulated by set rules or customs in which an individual or team
competes against another or others” (Oxford English Dictionary,
2020). Also, the effects of physical activity and exercise at
the neural level are already well established in human and

animal studies; sport has lagged behind. In addition, sport is
an umbrella term encompassing disparate disciplines associated
with quite heterogeneous sets of cognitive and motor abilities.
Broadly, two sport categories can be distinguished, namely,
closed skill sports (CSS) and open skills sports (OSS), whereby
the first category includes those sports that are often based
on the alternate and rhythmic repetition of limb movements,
where the context is relatively constant and predictable (e.g.,
swimming) (Wang et al., 2013a). At variance, in OSS the
athlete’s performance is embedded in an environment that
is dynamic, difficult to predict, and externally paced (e.g.,
tennis) (Wang et al., 2013a; Bove et al., 2017). Hence, while a
CSS also involves central networks associated to, e.g., energy
management, most CSSs are mainly based on variation of
locomotion parameters and thus could be regarded as “less
cognitive” and more associated with low-level motor control and
circuits (i.e., spinal) (Wang et al., 2013a). In OSS, on top of fine-
tuning of locomotion parameters, other aspects, such as skilled
object manipulation, action observation and anticipation, and a
coral, tactical strategy, are necessary to succeed. It may thus seem
intuitive to consider animal modeling of, e.g., running to be less
complex than, say, tennis and that differential insights on the
cognitive bases of sport performance may be extracted. Here, we
exclude sports involving the active involvement of animals (such
as horse racing).

In addition to canonical sports, competitive video gaming
(Winkie, 2019) is emerging as a new sport discipline termed
electronic sport (eSport). Movements of eSport athletes are
usually constrained to keystrokes, gamepads, joystick, and
mouse movements, which facilitates, compared to many real
world sports, hypothesis testing and task manipulations typical
of laboratory-based experimentation. Critically, virtual reality
studies are routinely performed in both humans and animals
and could be readily adapted to model eSport, which could
be harvested toward a mechanistic understanding of motor
performance (Sousa et al., 2020). Whether eSport can be
considered as a “true” sport is still debated (Parry, 2019); however,
it is worth mentioning that eSport-related activities are on the
verge of being incorporated in future Olympics (Grohmann,
2017). Independently of such organizations’ regulations, eSports
could be an important research tool for assessing cognitive
processes underlying some aspects of sport performance, similar
to what has been done using, e.g., flight simulations for military
training/testing. Future research will establish the extent to
which spatial scaling of the motor effector used in virtual
versus physical environments could influence the performance
and/or whether scale-invariant parameters [possibly obeying the
fractal ordering principle, (Turvey and Fonseca, 2009; Michalski
et al., 2019)] emerge. Some initial indications come from mice
studies, where virtual reality tasks are associated with partially
altered hippocampal dynamics compared with a real-world task
(Aghajan et al., 2015), implicating that similar variation in neural
computation may occur in humans. The fidelity with which
virtual reality settings, including eSports, can emulate aspects of
physical sports remains an active field of research. In the case of
CSSs, for instance, cycling, a partial convergence between these
two worlds (electronic/virtual and physical/real), has already
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taken place. For instance, commercial systems allow integrating
the use of a stationary bike with the rear wheel placed onto
a motorized roller, whose bidirectional communication with
a computer permits to adjust the resistance and the virtual
landscape (Lazzari et al., 2020). Achieving such convergence
in the case of OSSs is more challenging; however, encouraging
results have been obtained by showing that free throw in
basketball can be improved when subjects are trained in a virtual
reality simulator (Covaci et al., 2012). We address readers to
some recent extensive reviews of this field (Campbell et al., 2018;
Akbaş et al., 2019) for a more dedicated appraisal on the subject
of eSports virtual reality applied to sports. In the future, it will
be interesting to assess neural parameters using an approach
similar to the one used in the rodent study mentioned above,
that is, examining subjects in both environments, to assess for
potential neural similarities/differences in the physical versus
virtual environment.

Based on the above premises on sports-specific characteristics,
a body of work has tested the hypothesis that behavioral and
neural processes display variations not only between athletes
and non-athletes but also between athletes from different
sports [e.g., CSS vs. OSS (Kizildag and Tiryaki, 2012; Wang
et al., 2013b)], or between naive subjects, professional athletes,
and elite athletes, the latter acting as statistical outliers in
terms of sport performance (Aitken, 2004; Hardy et al.,
2017). In the following section, we discuss some recent
work encompassing these levels of investigation and relate
some of these findings to laboratory-based studies of human
motor performance.

READY, SET, GO! ON COGNITIVE AND
NEURAL FEATURES OF ATHLETES

By definition, in sport contexts, the subjects’ performances are
pushed to the limit and as such may teach us critical principles
of human expert behavior (Walsh, 2014). If these performances
are considered as complex (individual and/or interpersonal)
acts, then their study places them at the core of emerging
concepts in neural sciences, including embodied cognition
theories, which state that “cognition should be described in
terms of agent–environment dynamics rather than computation
and representation” (Press, 2020). While shortcomings of such
approach are self-evident, re-evidencing the role of the body
as well as the environment for a deeper understanding of
the brain may have its merits. From an anatomophysiological
point of view, investigating on athletes, like musicians in the
artistic setting (Münte et al., 2002), is informative for learning
about neuroplasticity and maladaptive plasticity resulting from
aberrant training of a specific motor action [mostly through
cross-sectional studies, and some longitudinal studies (Ioannou
et al., 2018; Bravi et al., 2019)].

Because sport neuroscience is a relatively new field, a
characterization of cognitive performances and their neural bases
in athletes can be considered still in its infancy. Nonetheless,
what is required to be successful at the highest level in sport is
intuitively a multifaceted set of cognitive abilities. We readdress

on this regard interested readers to pertinent reviews (Yarrow
et al., 2009; Nakata et al., 2010) or books (Boecker et al., 2012;
Carlstedt, 2018) and mention here only a few striking instances
linked to the above described categories (athlete vs. non-athlete,
CSS’s athlete vs. OSS’s athlete, normal vs. elite athlete).

Among the behavioral parameters shown to be modified
in athletes, inhibitory control (Benedetti et al., 2020), i.e., the
suppression of inappropriate behavioral responses, is improved
in elite athletes (Brevers et al., 2018), and there is a robust
difference among players of OSS vs. CSS, with the former
outclassing the latter (Wang et al., 2013a). Skilled athletes can
predict the outcome of actions performed by others, based on
the kinematic information inherent in others’ actions, earlier and
more accurately than less-skilled athletes (Unenaka et al., 2018).
Also, proactive control was also evidenced to be modulated by
motor skill experiences, with OSS athletes showing higher levels
of efficiency than CSS athletes (Yu et al., 2019).

Not surprisingly, some of the behavioral traits of motor
know-how are complemented by anatomical evidence. For
example, corpus callosum is thicker in expert performers
(Gooijers and Swinnen, 2014; Meier et al., 2016). Concerning
neurophysiological data, signals obtained from humans with, e.g.,
electroencephalography (EEG) or functional magnetic resonance
imaging (fMRI), show activity related to movement and motor
expertise, such as reduced brain activation in experts (neural
efficiency) (Guo et al., 2017; Del Percio et al., 2019) and
different threshold to elicit corticospinal facilitation (Fomin
et al., 2010; Fomin and Selyaev, 2011; Wang et al., 2014;
Wright et al., 2018).

While EEG has lower spatial resolution with respect to
methods like fMRI and functional near-infrared spectroscopy, it
provides superior temporal resolution and is thus more suitable
for investigating neocortical activation patterns associated with
fast (i.e., in the millisecond range) movements typical of
sports. While other methods such as magnetoencephalography
(Mäkelä, 2014) and event-related optical signal (Gratton and
Fabiani, 1998) have a comparable temporal resolution, EEG-
based investigations have been far more frequently applied
to sport performance. In addition, the rise of portable EEG
devices further offers an invaluable opportunity to study sport
gestures outside laboratory settings (Park et al., 2015; Wang
et al., 2019). We thus restrict our focus on some relevant
EEG studies. The most common approaches are based on
comparisons such as preperformance vs. movement execution,
good vs. bad performance, expert vs. novice, competitive vs. non-
competitive athletes, disabled vs. non-disabled athletes, baseline
vs. learning, and practice vs. competition. Two main categories
of movement responses are usually investigated in EEG studies
of motor performance, namely, movement-related potentials,
including Bereitschaftspotential (readiness potential) and motor
potential, and action-monitoring potentials, such as error-
related negativity (Carlstedt, 2018). A well-known frequency-
domain manifestation of movement includes the Mu rhythm,
a decrease of alpha band and beta band power occurring in
the sensorimotor regions of the neocortex during movement
preparation (Jenson et al., 2020), and OSS athletes (karate
and fencing) compared to control subjects display reduced
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alpha band activity even during simple upright standing (Del
Percio et al., 2009). Reduced activity in the alpha band has
been reported in CSS athletes (cyclists) as well, which would
suggest that enhanced neural efficiency does not depend on the
type of OSS or CSS sport category practiced (Ludyga et al.,
2015). In contrast, a bilateral increase in parietal areas has
been reported in football players during action observation (Del
Percio et al., 2019). Within the time domain of EEG signals,
motor expertise (fencers) has been linked to altered event-
related potentials and faster stimulus discrimination during go–
no-go tasks (Di Russo et al., 2006). Faster reaction time is
associated with shorter readiness potential in athletes (baseball
players) during go trials, while in no-go trials, they display
an augmented P300 amplitude in the frontal regions, implying
that improved stimulus responses depend on faster response
selection and more robust inhibition (Nakamoto and Mori,
2008). In a similar fashion, other OSS experts (table tennis player)
exhibit superior response inhibition compared to non-athletes
(Yu et al., 2019).

Growing evidence suggests that baseline cognitive ability
could be used to predict future achievements in sports, and
studies have shown that both core and higher-level executive
functions predict the success of athletes (Vestberg et al., 2012,
2017; Mangine et al., 2014). The level of expertise is also expressed
by a sort of “immunity” against distractive stimuli in elite
athletes: novice athletes are affected strongly by distracting tasks,
whereas experts are shielded against this distraction, indicating
highly automatic performance (French et al., 1995; Gray, 2004;
Yarrow et al., 2009).

Interrogating neural networks in humans implies limited
access to cellular, spiking data in vivo, excluding extracellular
recordings during neurosurgeries, and even then, the role
played by different classes of neurons can only be indirectly
inferred. Besides monitoring the activity of brain networks,
to determine a causal role of a given neural pattern for
performance, manipulation techniques, such as transcranial
magnetic stimulation and transcranial direct current stimulation
(tDCS), are advancing rapidly from clinical settings to sport
(Goodall et al., 2014; Edwards et al., 2017; Gazerani, 2017).
Interestingly, such methods provide an opportunity to improve
sport performance. Endurance performance is increased in
recreationally active participants after anodal, but neither
cathodal nor sham, bilateral stimulation of motor cortices,
and this effect is associated with increased corticospinal
excitability of the knee extensor muscles and reduced perception
of effort (Angius et al., 2018). Aside from ethical aspects
associated with the possibility of stimulation techniques to
become part of enhancement tools known as neurodoping
(Davis, 2013; Kamali et al., 2019), and the fact that the long-
term effects of brain stimulation are unknown, the possibility
of increasing performance by refining brain stimulations
methods is an exciting, although controversial, area of research.
Technically, major limitations of current methods are the coarse
spatial resolution and that the stimulation is not cell type–
specific. Hence, efforts to improve our understanding of the
neurophysiology could help develop more efficient approaches
in sport settings.

For both monitoring and stimulating neural activity, animal
models offer the opportunities to dissect, within a reverse
engineering approach, brain circuits to determine the causal role
of specific patterns and develop novel neurotechnologies well
beyond the state of the art available in humans. In the following
section, we discuss examples from animal research that could
contribute, from a conceptual and/or a methodological stance, to
gain a more fine-graded understanding of the neuronal basis of
athletic performance.

OBSERVING AND HACKING THE
ANIMAL BRAIN DURING MOTOR
BEHAVIOR

Songbirds (Clayton, 2019), rodents (Makino et al., 2017; Hwang
et al., 2019; Quarta et al., 2020; Sauerbrei et al., 2020, preprint
article Q12), and non-human primates studies (Churchland et al.,
2012) provide valuable insights into the neurophysiology of
motor skills; however, sport science has paid relatively little
attention to these mechanisms of expert behavior. For example,
neural recordings from finches have been classically used to
investigate the dynamics of motor learning by imitation (Roberts
et al., 2012), which is a learning approach at the core of
sport performances in developing athletes (Unenaka et al.,
2018). In this regard, a potentially important role is played by
the well-known mirror neurons, discovered in the premotor
and posterior parietal cortex of NHPs (Ferrari and Rizzolatti,
2014). Importantly, mice improved their acquisition of a simple
operant conditioning task by observational learning, with medial
prefrontal cortex and the nucleus accumbens significantly
involved in the acquisition and proper task performance
(Jurado-Parras et al., 2012). Driven by results arising from
animal studies, experiments on the role played by motor
imagery training for sport performance have gained momentum
(Lewthwaite and Wulf, 2010).

Research lines on the role played by physical activity for
the homeostasis of neural circuits and behavior are now well
established in rodents. As a notable instance, specific physical
exercise protocols in rodents, for example, running, have been
repetitively associated with enhanced levels of neuroplasticity and
improved behavioral learning (van Praag et al., 1999; Kobilo et al.,
2011; Li and Spitzer, 2020).

Rodents have recently gained momentum to investigate
certain aspects of motor performance, and it is now established
that cellular actors including neurotrophins such as brain-
derived neurotrophic factor (BDNF) mediate motor skill learning
(Arango-Lievano et al., 2019). For example, it was demonstrated
that BDNF signaling is necessary for the behavioral effects
of tDCS to occur (Fritsch et al., 2010). Importantly, in the
same work, the authors extended their findings to humans,
demonstrating a limited effect of tDCS stimulation in subjects
with a polymorphism known to reduce [18–30% (Egan et al.,
2003; Chen et al., 2006)] the secretion of BDNF, implying that
the effects are likely mediated by this type of cellular signaling in
humans as well (Fritsch et al., 2010). In any case, the relationship
between motor behavior and BDNF signaling has been under
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intense scrutiny in both rodents (Boger et al., 2011; Besusso et al.,
2013) and humans (Grégoire et al., 2019).

Selected types of sensorimotor transformations, such as
locomotion, are beginning to be understood at the cellular level
in rodents (Ferezou et al., 2007; Papale and Hooks, 2018). The
investigation of the neural dynamics subserving more complex
movements such as reaching and grasping, which form the motor
building blocks for many sports gestures, is classically studied in
NHPs and more recently adapted for rodents (Guo et al., 2015).
In rodents, which allow precise neurophysiological dissection,
thanks to the availability of powerful genetic engineering and
optical methods, a cortical characterization has been recently
made available (Guo et al., 2015; Wang et al., 2017; Quarta et al.,
2020, preprint article; Sauerbrei et al., 2020).

The relevance of neocortical circuits for manipulative
behaviors in rodents has been classically established via lesion
or pharmacological approaches. For instance, local anesthetics
injected in the forelimb area of mice were shown to alter
movement parameters (Estebanez et al., 2017; Galinanes et al.,
2018). Also, recent evidence shows a direct involvement of the
facial area of the rabbit motor cortex in the acquisition and
performance of conditioned eyeblinks (Ammann et al., 2016).

Technological development, most notably in vivo
optogenetics, opened the opportunity to perform cell type–
specific, reversible, and temporally precise (in the millisecond
range) excitation or inhibition of neurons in behaving animals,
at times with a spatial resolution allowing to dissect the specific
role of a given cellular (sub) population (Fenno et al., 2011; Chen
et al., 2018).

Using such a method for the study of motor behavior, it
was, for instance, discovered that inhibitory neurons in the
contralateral sensorimotor cortex command specific phases of
reaching and grasping in the mouse (Guo et al., 2015), that
cerebellar anterior interposed nucleus exerts control over the
speed of reaching movement (Becker and Person, 2019), and
that perturbing the thalamocortical communication impairs
forelimb movement kinematics in a frequency-dependent
manner (Sauerbrei et al., 2020).

Nevertheless, a neuroanatomical limit of comparison
of motor circuits between rodents and primates is the
corticomotoneuronal pathway, which is thought to serve
fine movements in NHPs and humans (Fetz et al., 1989). While
tract-tracing experiments could evidence a direct corticospinal
connection in rodents with concurrent physiology consistent
with corticospinal cells (Sheets et al., 2011; Oswald et al.,
2013), current evidence indicates no functional contacts
between corticospinal axons and motoneurons in adult rodents
(Alstermark et al., 2004). In their seminal work, Alstermark and
colleagues also demonstrated that in rodents this pathway is
polysynaptic, with additional cell types located in the reticular
formation, as well as due to segmental interneurons in spinal
cord (Alstermark et al., 2004). A direct corticomotoneuronal
pathway could be recently maintained in adult mice via genetic
engineering, and when this tract is present, their manual
dexterity is improved (Gu et al., 2017).

On the other side, a major effort has been made to
translate advanced tools for neural circuit interrogation

from phylogenetically lower species such as rodents to NHPs
(Galvan et al., 2017; O’Shea et al., 2017). Remarkable results
have been achieved; for instance, it was demonstrated that
dendritic activity recorded optically from the motor cortex of
monkeys transfected to express a fluorescent activity reporter
in excitatory neurons could reliably be employed to predict the
direction of the arm movement [Trautmann et al., 2019, preprint
article]. Manipulating cerebellar neurons via optogenetics
could drive saccade movements (El-Shamayleh et al., 2017),
while performing similar recordings and stimulation in the
motor cortex of marmoset monkeys has been employed
to investigate the neural dynamics of arm movements
(Ebina et al., 2018, 2019).

In summary, animal models, in particular, rodents and NHPs,
offer the opportunity to investigate mechanistic aspects of
behavioral expertise (Mayse et al., 2014).

OF MICE AND MEN: EXAMPLES
TOWARD ANIMAL MODELS OF SPORT

While we acknowledge that not all aspects of sport performance
will benefit from inputs from animal neurophysiology of motor
behavior, we discuss below successful examples that may spark
discussion across disciplines.

Optimal Arousal for Optimal
Performance
A Q13remarkable example of successful translation of concepts
from animal studies to human performance is represented by
the pioneering work by Yerkes and Dodson on the optimal
level of arousal needed to achieve the highest performance. In
their study, rats were requested to solve an easy or a difficult
task and were given a motivational varying cue of different
intensity based on errors they made during training (Yerkes
and Dodson, 1908). Upon increasing stimulus intensity, the
performance of the rats increased monotonically for easy or well-
learned task, while for a task considered difficult the performance
decreased abruptly when the stimulus intensity exceeded a certain
threshold. The experimental data on the latter fitted well a
parabolic function and led to the formulation of the Yerkes–
Dodson law, stating an inverted-u relationship between arousal
and behavioral performance. Since then, similar conclusions
were achieved in humans, including in sport settings, and
this relationship is related to the well-known phenomena of
clutching and of choking under pressure (Kamata et al., 2002;
Yu, 2015).

The Playing Rats
Sport, even in its most competitive settings, has a hedonic
motivation. It has been long thought that the latter is
an almost exclusive trait of humans; however, recent
evidence suggests that even rodents engage in a task
“just for fun of it;” Brecht and collaborators were able
to demonstrate that rats can play hide-and-seek with a
human (Reinhold et al., 2019). Rats quickly learned the
game and learned to alternate between hiding versus seeking
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FIGURE 1 | ProposedQ5 cycle

Q6

of information sharing between animal neurophysiology and sport science. Top: Animal models of skilled motor control. From left to
right. Considering skilled behavior largely depends on commands issued by the nervous system, efforts to shine light on such mechanisms may lead us to a better
understanding of sport performance. Animal models allow dissecting such mechanisms in much higher detail, compared to humans. For example, selected neuronal
mechanisms for motor learning by imitation can be investigated already in phylogenetic older species such as birds [e.g., finches (Sober and Brainard, 2009;
Garst-Orozco et al., 2014; Sober et al., 2018)]. The neural control of limb movements in mammals is increasingly investigated in laboratory rodents, especially rats
and mice, which employ powerful optical and genetic tools for cell type–specific analysis of neural dynamics, while permitting to carry out increasingly complex
motor tasks (Guo et al., 2015; Ash et al., 2017; Arango-Lievano et al., 2019, preprint article; Quarta et al., 2020, preprint article). The closest experimental organisms
to humans, non-human primates (NHPs), have the highest manual dexterity and still allow single-cell-level interrogation of neural activity during skilled motor control
(Gallego et al., 2020). Bottom: The athlete’s brain as a model of skilled motor control. From right to left. By integrating both concepts and technologies originally
developed in animals, advanced analysis of human sport performance metrics allows multivariate data analysis and hypothesis formulation to be tested in athletes,
also in laboratory settings involving behavioral tasks mimicking sport gesture (Dhawale et al., 2017), using marker-based and, increasingly, markerless approaches
(Mathis et al., 2018; Lapinski et al., 2019). Movement data, acquired also via inertial measurement units and eye trackers, are complemented by, e.g., EEG, which
permit coarse-resolution level analysis of neural networks involved in skilled motor control (Rito Lima et al., 2020), serving as a potential starting point for animal
studies.

Frontiers in Systems Neuroscience | www.frontiersin.org 6 November 2020 | Volume 14 | Article 596200

https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/systems-neuroscience#articles


fnsys-14-596200 November 1, 2020 Time: 21:55 # 7

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

Quarta et al. Sport Sciences Meet Animal Neurophysiology

roles, with specific neural activity patterns emerging in the
prefrontal cortex. Clearly, these findings have important
implication for the goal of modeling sport (with hide-and-
seek being an unusual, yet a candidate Olympic sport)

performance in animals, including potential next steps such
as optogenetic experiments to alter the activity in the prefrontal
cortex to determine the necessity of specific patterns for
behavioral performance.

FIGURE 2 | Approximate resolution of neural and behavioral data across experimental organisms. While species-specific morphological and phenotypical
characteristics largely separated the motor behaviors one can model in animals, mammals such as mice and rats share remarkable similar motor traits compared to
humans (e.g., reach and grasp movements). In this regard, there have been efforts to model progressively more complex movement in animal models during the last
decade (graphically represented here as the height of the graph). Concomitantly, a top-down approach has permitted to obtain increasingly better spatiotemporal
resolution on the neural dynamics during motor behaviors in NHPs and humans (graphically represented here as the gradient of the graph). Organisms are ranked by
phylogenetic distance to athletes, from left to right. Height of the upper and lower graphs approximate visually the motor task complexity obtained across organisms,
with the human as gold standard to which the animal models compare. The color bar at the center (resolution of the neural data) refers to the ability of the methods
most commonly used in each organism to discriminate increasingly fine structures (from neural areas to single neurons) and/or events (e.g., spike trains). Upper
graph, period 2000–2010. In this period, novel physiological methods became widely used to investigate neural activity also at single-cell level in behaving mice (Tian
et al., 2009; Yang and Yuste, 2017). Lower graph, period 2010–2020. Methods for neural interrogation became gradually adapted for rats (Igarashi et al., 2018; Scott
et al., 2018) and NHPs (El-Shamayleh et al., 2017; Galvan et al., 2017; Kondo et al., 2018; Trautmann et al., 2019), with first clinical trials in humans (Delbeke et al.,
2017). Concomitantly, the complexity of the motor task for rodents became higher (Quarta et al., 2020; Sauerbrei et al., 2020, preprint article) (Guo et al., 2015).
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Motor Skills of an Olympic Mouse: Too
Far Reaching?
It seems intuitive to reject the hypothesis that a trained
animal may be informative about how motor skills emerge in
sportspeople, possibly because “being the best of the best as an
athlete encompasses more than having a very high level of motor
skill after a lot of training” (Krakauer, 2017). However, this limit
may be due not to biology per se (Grandin and Whiting, 2018)
but is rather associated with the common research methodology
concerning motor control in animals, which tends to focus on
population average (mean motor performance) rather than on
the upper statistical outliers (elite motor performance). As a
potentially relevant point, genetic tools and selective breeding
(e.g., for longer legs) available in animal neurophysiology allow
to perform hypothesis testing difficult to perform in humans (e.g.,
the importance of a genetic background), informing us about the
relative importance of specific traits for motor performance. This
intended mutual information exchange is drawn as a self-feeding
cycle (Figure 1).

DISCUSSION: THE ROADMAP FOR A
TRANSDISCIPLINARY DIALOG

To stimulate a transdisciplinary dialog, a back-translation of
sport sciences findings to animal models and the evaluation
of comparability between animal models of a given sport and
athletes will require several intermediate steps. Behaviorally, non-
invasive tools developed in animal research will most likely be
employed in sport settings anytime soon, in particular methods
for markerless tracking based on machine learning approaches,
which evidence that detailed information on motor behavior can
be extracted from animal and humans with the same approach
(Mathis et al., 2018).

Encouragingly, in recent years, there has been a successful
effort to translate neurophysiological techniques that allow cell
type–specific interrogation from rodents to NHPs. Thus, at least
in theory, it is procedurally feasible to extend this range of
techniques in humans as well. As a notable instance, in the
last 10 years, optogenetics has moved from rodent to NHPs for
basic neurophysiology studies and has entered preclinical trials
in human patients (Simunovic et al., 2019; Figure 2).

An intriguing intermediary step could be the opportunity
of investigating the dynamics of human neurons in vivo by
transplanting induced pluripotent stem cell–derived neurons
into the mouse brain (Real et al., 2018). While an investigation
on expert motor behavior is yet prospective, this type
of xenotransplants could inform us about the mechanisms
underlying the neural bases of (sport) performance in a subject-
specific manner.

Overall, investigating athletes and trained animals with a
logic comparable to early cognitive neuroscience studies on
neurologically impaired individuals (Agis and Hillis, 2017) will
not only teach us about general principles of behavior but
could rather provide a bedrock for novel and more efficient
training and rehabilitation methods (Reiman and Lorenz, 2011).
This would be conceptually similar to a main use of animal
models in biomedical research, that is, to inform us about the
mechanisms through which neurodegenerative disorders affect
neural circuits and behavior and to test potential new treatments
and/or neuroprotective agents, such as neurotrophic factors,
physical exercise, and, increasingly, motor expertise (Cai et al.,
2014; Quarta et al., 2015, 2018; Nie and Yang, 2017; Dawson et al.,
2018; Ng et al., 2019; Tsai et al., 2019).

Thus, an exciting dawn of opportunities lies ahead, which
will allow to control, and possibly improve, movements in
human subjects extending the limit of human performance
(Triviño, 2014).
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