
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=lpde20

Communications in Partial Differential Equations

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/lpde20

A dynamical system approach to a class of radial
weighted fully nonlinear equations

Liliane Maia, Gabrielle Nornberg & Filomena Pacella

To cite this article: Liliane Maia, Gabrielle Nornberg & Filomena Pacella (2021) A dynamical
system approach to a class of radial weighted fully nonlinear equations, Communications in Partial
Differential Equations, 46:4, 573-610, DOI: 10.1080/03605302.2020.1849281

To link to this article:  https://doi.org/10.1080/03605302.2020.1849281

Published online: 10 Dec 2020.

Submit your article to this journal 

Article views: 63

View related articles 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=lpde20
https://www.tandfonline.com/loi/lpde20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/03605302.2020.1849281
https://doi.org/10.1080/03605302.2020.1849281
https://www.tandfonline.com/action/authorSubmission?journalCode=lpde20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=lpde20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/03605302.2020.1849281
https://www.tandfonline.com/doi/mlt/10.1080/03605302.2020.1849281
http://crossmark.crossref.org/dialog/?doi=10.1080/03605302.2020.1849281&domain=pdf&date_stamp=2020-12-10
http://crossmark.crossref.org/dialog/?doi=10.1080/03605302.2020.1849281&domain=pdf&date_stamp=2020-12-10
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ABSTRACT
In this paper we study existence, nonexistence and classification of
radial positive solutions of some weighted fully nonlinear equations
involving Pucci extremal operators. Our results are entirely based on
the analysis of the dynamics induced by an autonomous quadratic
system which is obtained after a suitable transformation. This
method allows to treat both regular and singular solutions in a uni-
fied way, without using energy arguments. In particular we recover
known results on regular solutions for the fully nonlinear non
weighted problem by alternative proofs. We also slightly improve
the classification of the solutions for the extremal operator M�:
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1. Introduction and main results

In this paper we study positive radial solutions of the following class of fully nonlinear
elliptic equations

M6
k,KðD2uÞ þ jxjaup ¼ 0, u > 0 in X, (1.1)

where a > �1, p> 1, and M6 are the Pucci’s extremal operators which play an essen-
tial role in stochastic control theory and mean field games. Here, 0 < k � K are the
ellipticity constants, see Section 2 and [1] for their properties. The set X 2 R

N ,N � 3,
is a radial domain such as R

N , a ball BR of radius R> 0 centered at the origin, the
exterior of BR, or an annulus. However, most of the time X will be either the whole
space or a ball.
We deal with both regular and singular solutions u of (1.1) which are C2 for r> 0. In

the singular case X will be either RN n f0g or BR n f0g, and we assume the condition

lim
r!0

uðrÞ ¼ þ1, r ¼ jxj: (1.2)

Finally, whenever X has a boundary, we prescribe the Dirichlet condition

u ¼ 0 on @X, or u ¼ 0 on @X n f0g under ð1:2Þ: (1.3)

Let us recall some previous results when a¼ 0. A general existence result in bounded
domains X (not necessarily radial) was obtained in [2] under the condition
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1 < p �
~Nþ

~Nþ � 2
for Mþ

k,K , 1 < p �
~N�

~N� � 2
for M�

k,K (1.4)

if ~Nþ > 2, where ~N6 are the so called dimensional-like numbers

~Nþ ¼ k
K
ðN � 1Þ þ 1, ~N� ¼ K

k
ðN � 1Þ þ 1: (1.5)

The intervals in (1.4) describe the optimal range for existence of supersolutions to M6,
as shown in [3]. Some extensions and related results can be found in [4, 5].
When the Pucci’s operators reduce to the Laplacian (i.e. for k ¼ K), both exponents

(1.4) are equal to N
N�2 which is known as Serrin exponent. They do not provide optimal

bounds in terms of solutions of (1.1), as it is clear for instance by considering the semi-
linear case.
Nevertheless, as far as the radial setting is concerned, critical exponents which repre-

sent the threshold for the existence of solutions to (1.1) can be defined. They were
introduced for a¼ 0 by Felmer and Quaas in [6] in order to study existence and classi-
fication of radial positive solutions in R

N : These are also the watershed for existence
and nonexistence of positive solutions in the ball. Note that every positive solution in
the ball when a¼ 0 is radial, by [7], while this is not true in general for a 6¼ 0, even in
the semilinear case.
When k ¼ K the corresponding critical exponents are the same, both in radial and

nonradial settings; see [8] for a¼ 0, and [9] for a 6¼ 0: The identification of critical
exponents in the nonradial case for fully nonlinear operators is still open.
Let us recall some preliminary definitions.

Definition 1.1. Let u be a radial solution of (1.1) for X ¼ R
N : Set r ¼ jxj and a ¼ 2þa

p�1 :

Then u is said to be:

i. fast decaying if there exists c> 0 such that limr!1 r ~N�2uðrÞ ¼ c, where ~N is
either ~Nþ if the operator is Mþ or ~N� for M�, see (1.5);

ii. slow decaying if there exists c> 0 such that limr!1 rauðrÞ ¼ c;
iii. pseudo-slow decaying if there exist constants 0 < c1 < c2 such that

c1 ¼ liminf
r!1 rauðrÞ < limsup

r!1
rauðrÞ ¼ c2:

The definitions (i) and (ii) are classical from the theory of Lane-Emden equations. In
turn (iii) was introduced in [6] and is peculiar of the fully nonlinear case. It corre-
sponds to solutions oscillating at þ1 by changing concavity infinitely many times.

Theorem 1.2 (Theorems 1.1 and 1.2 in [6]). Assume a¼ 0, ~Nþ > 2, and k < K. Then
there exist critical exponents p�þ, p�� satisfying the bounds

max
~Nþ

~Nþ � 2
,
N þ 2
N � 2

( )
< p�þ <

~Nþ þ 2
~Nþ � 2

and
~N� þ 2
~N� � 2

< p�� <
N þ 2
N � 2

,

such that the following holds for X ¼ R
N:

i. if p 2 ð1, p�6Þ there is no nontrivial radial solution of (1.1);
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ii. if p ¼ p�6 there exists a unique fast decaying radial solution to (1.1);
iii. If p > p�6 there exists a unique radial solution of (1.1), which is either slow decay-

ing or pseudo-slow decaying.

In (i) and (ii) uniqueness is meant up to scaling.

In addition, in the case of Mþ the authors made precise the range of the exponent p
for which pseudo-slow decaying solutions exist.
The existence of a critical exponent unveils an important feature of the Pucci’s opera-

tors. It reflects some intrinsic properties of these operators and induces concentration
phenomena besides of energy invariance, see [10], as it happens in the classical semilin-
ear case.
The proof of Theorem 1.2 in [6] is involved. It is a combination of the Emden-

Fowler phase plane analysis and the Coffman Kolodner technique. The latter consists in
differentiating the solution with respect to the exponent p, and then studying a related
nonhomogeneous differential equation, from which they derive the behavior of the solu-
tions for p on both right and left hand sides of p�6, as well as the uniqueness of the
exponent p for which a fast decaying solution exists.

Figure 1. The flow behavior in 1Q for Mþ when p > ps, aþ :
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In this paper we study both regular and singular solutions of the more general
weighted problem (1.1). For the regular ones we prove results similar to those of
Theorem 1.2 but with different tools entirely based on a dynamical system approach.
Our solutions are understood in the classical sense out of 0 and they are of class C1

up to 0, since a > �1, see Proposition 3.8. Before stating our results it is useful to fix
some notations for relevant exponents, depending also on the number a > �1 which
characterizes the weight in (1.1):

pp, a6 ¼
~N6 þ 2aþ 2

~N6 � 2
, ps, a6 ¼

~N6 þ a
~N6 � 2

, paD ¼ N þ 2þ 2a
N � 2

, a ¼ 2þ a
p� 1

: (1.6)

Theorem 1.3 (Mþ regular solutions). Assume ~Nþ > 2, and k < K. Then there exists a
critical exponent p�aþ such that

maxfps, aþ , paDg < p�aþ < pp, aþ , (1.7)

and the following assertions hold:

i. if p 2 ð1, p�aþÞ there is no nontrivial radial solution of (1.1) in the whole R
N,

while for any R > 0 there exists a unique radial solution in the ball BR;
ii. if p ¼ p�aþ there exists a unique fast decaying radial solution of (1.1) in R

N;
iii. if p 2 ðp�aþ, pp, aþ � there is a unique pseudo-slow decaying radial solution to (1.1)

in R
N;

iv. if p > pp, aþ there exists a unique slow decaying radial solution of (1.1) in R
N;

v. if p > p�aþ there is no nontrivial solution to (1.1), (1.3) when X is a ball.

In (ii)–(iv) uniqueness is meant up to scaling.

Theorem 1.4 (M� regular solutions). If k < K, then there exists a critical exponent p�a�
satisfying

Figure 2. The flow behavior in 1Q for Mþ when p ¼ ps, aþ (LHS), and p < ps, aþ (RHS).
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pp, a� < p�a� < paD, (1.8)

and there exists e > 0 such that:

i. if p 2 ð1, p�a�Þ there is no nontrivial radial solution of (1.1) in the whole R
N,

while for any R > 0 there exists a unique radial solution of the Dirichlet problem
(1.1), (1.3) in BR;

ii. if p ¼ p�a� there exists a unique fast decaying radial solution of (1.1) in R
N;

iii. if p 2 ðp�a�, paD � e� there is a unique pseudo-slow or slow decaying radial solution
of (1.1) in R

N;
iv. if p > paD � e there exists a unique slow decaying radial solution of (1.1) in R

N;
v. if p > p�a� there is no nontrivial solution to (1.1), (1.3) when X is a ball.

In (ii)–(iv) uniqueness is meant up to scaling.

In the M� case our result slightly improves the corresponding one of [6], for a¼ 0,
by showing that for p near paD only a slow decaying solution exists; cf. point (iv) of
Theorem 1.4.
The proofs of the previous theorems rely entirely on a careful analysis of an autono-

mous quadratic dynamical system that we obtain after a suitable transformation, see
Section 2. It was used in [11] to study the classical semilinear Lane-Emden system.
Once the correspondence between the radial solution of (1.1) and the orbits of the
dynamical systems (2.9) and (2.11) is made (see Section 3), all existence and classifica-
tion results of Theorems 1.3 and 1.4 are derived by studying the stationary points and
the flow lines of these systems. In particular, the uniqueness of the critical exponent
and the behavior of the solutions, by varying the exponent p, are obtained as a direct
consequence of the properties of the vector fields which define the dynamical systems.
Note that these systems are derived from the Pucci fully nonlinear equations and are

piecewise C1. This, in particular, allows the presence of several periodic orbits which
produce regular and singular solutions with different features like pseudo-slow decay or
pseudo–blowing up behavior at infinity or at the origin.
One reason why our approach is quite simple is that the most relevant sets which

determine the flow generated by (2.9) and (2.11) are just straight lines; see Figures 1
and 2. Moreover, the presence of the weight jxja in (1.1) does not produce additional
difficulties, while it could be complicated via the method of [6]. We stress that the usual
change of variables which transforms Henon problems into non weighted ones for k ¼
K (see for instance [9, 11, 12]) does not seem to work for Pucci’s operators when k 6¼
K in order to achieve classification results. Finally we point out that our proofs do not
involve any energy function.
On the other hand, by the same analysis of the dynamics induced by (2.9) and (2.11)

we also get the classification of singular solutions of (1.1) in a punctured ball or in
R

N n f0g: Before stating the results we present some definitions.

Definition 1.5. Let u be a radial solution of (1.1) and (1.2), with either X ¼ R
N n f0g

or X ¼ BR n f0g for some R> 0. Then the singular solution u is said to be:
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i. ð~N � 2Þ–blowing up if there exists c> 0 such that limr!0 r
~N�2uðrÞ ¼ c, where ~N

is either ~Nþ if the operator is Mþ or ~N� for M�, see (1.5);
ii. a–blowing up if there exists c> 0 such that limr!0 rauðrÞ ¼ c, with a as in (1.6);
iii. pseudo–blowing up if there exist constants 0 < c1 < c2 such that

c1 ¼ liminf
r!0

rauðrÞ < limsup
r!0

rauðrÞ ¼ c2:

We highlight that Definition 1.5 (iii) corresponds to a type of solutions which change
concavity infinitely many times in a neighborhood of zero. The existence of such a type
of singular solutions was already detected for a more general class of uniformly elliptic
equations, for values of the exponent p close to the critical one, see [13, Section 6].

Remark 1.6. For all p > ps, aþ in the case of Mþ, resp. p > ps, a� for M�, the function
upðrÞ ¼ Cp r�a, Cp as in (3.8), is a singular solution of (1.1) in R

N n f0g: We call it
trivial singular solution.

Theorem 1.7 (Mþ singular solutions). Assuming ~Nþ > 2 and k < K, for (1.1)–(1.2)
it holds:

i. for any p � ps, aþ there is no singular radial solution in R
N n f0g, while for

each R> 0 there are infinitely many ð~Nþ � 2Þ–blowing up radial solutions of
(1.1)–(1.3) in BR n f0g;

ii. if ps, aþ � paD then for any p 2 ðps, aþ , paD� there is a unique a–blowing up radial solu-
tion in R

N n f0g with fast decay at þ1. Also, for any R > 0 there are infinitely
many a–blowing up radial solutions of (1.1)–(1.3) in BR n f0g;

iii. for each p 2 ð paD þ , p�aþÞ there exists a unique singular radial solution in
R

N n f0g with fast decay at þ1. Moreover, for any R > 0 there exist infinitely
many singular radial solutions of the Dirichlet problem (1.1)–(1.3) in BR n f0g;

iv. if p ¼ p�aþ there exist infinitely many pseudo–blowing up radial solutions in
R

N n f0g with pseudo-slow decay at þ1, and infinitely many a–blowing up in
R

N n f0g with pseudo-slow decay at þ1. Also, there is no singular radial
solution of (1.1)–(1.3) in BR n f0g;

v. if p 2 ðp�aþ, pp, aþ Þ there are infinitely many a–blowing up radial solutions in
R

N n f0g with pseudo-slow decay at þ1, and there is a pseudo–blowing up
radial solution with pseudo-slow decay at þ1. Further, there is no singular
radial solution of (1.1)–(1.3) in BR n f0g;

vi. if p 2 ½ pp, aþ , þ1Þ there are no nontrivial singular radial solutions, cf.
Remark 1.6.

Here, uniqueness in R
N n f0g is meant up to scaling.

Theorem 1.8 (M� singular solutions). If k < K, for the problem (1.1)–(1.2) we have:

i. if p � ps, a� there is no singular radial solution in the whole R
N n f0g, while for

any R > 0 there are infinitely many ð~N� � 2Þ–blowing up radial solutions of
(1.1)–(1.3) in BR n f0g;
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ii. for each p 2 ðps, a� , pp, a� Þ there exists a unique a–blowing up radial solution in
R

N n f0g with fast decay at þ1. Further, for any R > 0 there exist infinitely
many a–blowing up radial solutions of the Dirichlet problem (1.1)–(1.3)
in BR n f0g;

iii. for any p 2 ðpp, a� , p�a�Þ there are infinitely many pseudo–blowing up radial solu-
tions in R

N n f0g. Among them there is a unique fast decaying, a pseudo-slow
decaying, and infinitely many with slow decay at þ1. Moreover, for each R > 0
there exist infinitely many pseudo–blowing up radial solutions of (1.1)–(1.3)
in BR n f0g;

iv. if p ¼ p�a� there exist infinitely many pseudo–blowing up radial solutions in
R

N n f0g. Among them there are infinitely many with slow-decay at þ1, and
infinitely many pseudo-slow decaying at þ1. Further, there is no singular radial
solution of (1.1)–(1.3) in BR n f0g;

v. there exists e > 0 such that for p 2 ½ paD � e, þ1Þ no nontrivial singular radial
solution exists.

Here, uniqueness in R
N n f0g is meant up to scaling.

Our results on singular solutions are obtained by complementing the analysis of
the flow lines of the dynamical systems (2.9) and (2.11). To the best of our know-
ledge they are the first global classification results on singular solutions found for

Figure 3. Case p < ps, a6 for M6; A0 is a source and M0 belongs to the fourth quadrant. Below Cp

trajectories corresponding to infinitely many ð~N6 � 2Þ–blowing up solutions in a ball are shown,
while above Cp there are orbits corresponding to solutions in an annulus.
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this class of fully nonlinear equations. In [6, Remark 3.2] it is pointed out that, in
the case a¼ 0, periodic orbits of the Endem-Fowler system would produce singular
solutions, while in [13, Theorem 6.3] the existence of singular solutions is proved
near the critical exponent.
For the critical exponents p�a6, our dynamical systems (2.9) and (2.11) furnish infin-

itely many periodic orbits. On the other hand, for pp, a6 infinitely many periodic orbits
appear which do not correspond to C2 solutions for r> 0, see Remark 4.10. For p 2
ðp�a�, paD � eÞ the existence of singular solutions cannot be deduced directly from the
dynamical system approach.
Let us underline the fact that obtaining periodic orbits is in general a very difficult

task in the theory of dynamical systems. Even in the very particular case of a polyno-
mial autonomous system this question is not completely understood, see [14, 15].

Figure 4. Case p ¼ ps, a6 : p 2 C and A0 ¼ M0 has infinitely many unstable directions. Below Cp are
the orbits corresponding to infinitely many ð~N6 � 2Þ–blowing up solutions in a ball.

Figure 5. p > ps, a6 , cases p 2 C (LHS) and p 2 S (RHS) without periodic orbits. For instance, this
describes the range of p where Dulac criterion holds, for both operators M6:
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Finally, as a byproduct of the study of regular radial solutions of (1.1), either in R
N

or in a ball, we easily get the range of the exponents p for which a positive radial solu-
tion of the Dirichlet problem in the exterior of a ball does not exist. Indeed, we get the
following result.

Theorem 1.9. Let p> 1. Then there are no radial solutions of

M6ðD2uÞ þ jxjaup ¼ 0, u > 0 in R
N n BR, u ¼ 0 on @BR (1.9)

if p � p�a6 for each R> 0.

In the case of a¼ 0, Theorem 1.9 has been recently proved in [16] with different
arguments which rely both on the study of the second order ODE and on the analysis
of the Emden-Fowler system. Their work presents a complete picture of existence and
nonexistence of solutions for distinct intervals for the values of the parameter p.
However, through our arguments we get their nonexistence result by a considerably
shorter proof. Indeed, we will see in Sections 4 and 5 that the result of Theorem 1.9
becomes a straightforward consequence of the characterization of the critical exponents
p�a6 in terms of the associated quadratic system we consider. Let us point out that in
[16] also the existence and classification of the solutions of (1.9) are provided when

Figure 6. Case p 2 P for Mþ, p 2 ðp�aþ, pp, aþ Þ: Here M0 is a source. The orbits inside the displayed
periodic orbit correspond to infinitely many a–blowing up solutions with pseudo-slow decay at þ1:
All trajectories above Cp correspond to solutions either in the exterior of a ball or in an annulus.
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a¼ 0. Alternatively, this could be done through our methods. Since this is not the main
goal of our research we just refer to Section 4 for further comments.
To conclude, we stress that another advantage of our approach is that it treats in a

unified way several kind of solutions of (1.1). We refer the reader to Figures 3–8 where,
for a given value of the exponent p, all the orbits of the system corresponding to differ-
ent type of solutions of (1.1) are displayed simultaneously.
The paper is organized as follows. In Section 2 we write down the quadratic system

associated to the problem (1.1) and study its intrinsic flow properties. In Section 3 we
classify the different solutions of (1.1) in terms of orbits of the corresponding dynamical
systems. Finally, Sections 4 and 5 are devoted to the proofs of the main results for the
Pucci Mþ and M� operators, respectively. In the Appendix we provide some details
about the stationary points of the dynamical systems, for the reader convenience.

2. The associated dynamical system

In this section we define some new variables which allow to transform the radial fully
nonlinear equations into a quadratic dynamical system.
We start by recalling that the Pucci’s extremal operators M6

k,K, for 0 < k � K, are
defined as

Figure 7. Case p ¼ p�aþ 2 F : Here M0 is a source and Cp ¼ !p, see Remark 4.8. There are infinitely
many a–blowing up solutions with pseudo-slow decay (inside the minimal periodic orbit), and infin-
itely many pseudo–blowing up solutions with pseudo-slow decay (periodic orbits). Moreover, there
are no solutions in the exterior of a ball.
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Mþ
k,KðXÞ :¼ sup

kI�A�KI
trðAXÞ , M�

k,KðXÞ :¼ inf
kI�A�KI

trðAXÞ,

where A, X are N�N symmetric matrices, and I is the identity matrix. Equivalently, if
we denote by feig1�i�N the eigenvalues of X, we can define the Pucci’s operators as

Mþ
k,KðXÞ ¼ K

X
ei>0

ei þ k
X
ei<0

ei, M�
k,KðXÞ ¼ k

X
ei>0

ei þ K
X
ei<0

ei: (2.1)

From now on we will drop writing the parameters k,K in the notations for the
Pucci’s operators.
In the case when u is a radial function, with an abuse of notation we set uðjxjÞ ¼

uðrÞ for r ¼ jxj: If in addition u is C2, then the eigenvalues of the Hessian matrix D2u
are u00 which is simple, and u0ðrÞ

r with multiplicity N� 1. We then define the Lipschitz
functions

mþðsÞ ¼ ks if s � 0
Ks if s > 0

and MþðsÞ ¼ s=k if s � 0
s=K if s > 0;

��
(2.2)

m�ðsÞ ¼ Ks if s � 0
ks if s > 0

and M�ðsÞ ¼ s=K if s � 0
s=k if s > 0:

��
(2.3)

The equations MþðD2uÞ þ raup ¼ 0 and M�ðD2uÞ þ raup ¼ 0, for r 6¼ 0, in radial
coordinates for positive solutions then become, respectively,

Figure 8. Case p 2 ðpp, a� , p�a�Þ for M�, M0 is a sink. There are infinitely many pseudo–blowing up
solutions: a unique fast decaying (given via the orbit !p); a pseudo-slow decaying (periodic orbit h);
infinitely many in a ball (outside h); infinitely many slow decaying (inside h).
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u00 ¼ Mþð�r�1ðN � 1Þ mþðu0Þ � raupÞ, u > 0; ðPþÞ
u00 ¼ M�ð�r�1ðN � 1Þ m�ðu0Þ � raupÞ, u > 0, ðP�Þ

which are understood in the maximal interval where u is positive.

2.1. The new variables and the quadratic system

Let u be a positive solution of (Pþ) or (P�). Thus we can define the new functions

XðtÞ ¼ � ru0ðrÞ
uðrÞ , ZðtÞ ¼ � r1þa upðrÞ

u0ðrÞ for t ¼ ln ðrÞ, (2.4)

whenever r> 0 is such that uðrÞ 6¼ 0 and u0ðrÞ 6¼ 0:
We consider the phase plane ðX,ZÞ 2 R

2: Since we are studying positive
solutions, the points ðXðtÞ,ZðtÞÞ belong to the first quadrant when u0 < 0; or to the
third quadrant when u0 > 0: We denote the first and third quadrants by 1Q, 3Q
respectively.
As a consequence of this monotonicity, the problems (Pþ) and (P�) become in 1Q:

for Mþ : u00 ¼ Mþð�kr�1ðN � 1Þu0 � raupÞ, u > 0 in 1Q, (2.5)

for M� : u00 ¼ M�ð�Kr�1ðN � 1Þu0 � raupÞ, u > 0 in 1Q: (2.6)

On the other hand, since u0 > 0 implies u00 < 0, one finds out in 3Q:

for Mþ : ku00 ¼ �Kr�1ðN � 1Þu0 � raup, u > 0 in 3Q, (2.7)

for M� : Ku00 ¼ �kr�1ðN � 1Þu0 � raup, u > 0 in 3Q: (2.8)

In terms of the functions (2.4), we derive the following autonomous dynamical systems:

in 1Q,
_X ¼ X X þ 1�MþðkðN � 1Þ � ZÞ½ �,
_Z ¼ Z 1þ a� pX þMþðkðN � 1Þ � ZÞ� �

;

(
(2.9)

in 3Q, _X ¼ X X � ð~N� � 2Þ þ Z=K
� �

, _Z ¼ Z ~N� þ a� pX � Z=K
� �

, (2.10)

corresponding to (2.5), (2.7) for Mþ, where the dot : stands for d
dt : Similarly one has

in 1Q,
_X ¼ X X þ 1�M�ðKðN � 1Þ � ZÞ½ �,
_Z ¼ Z 1þ a� pX þM�ðKðN � 1Þ � ZÞ� �

;

(
(2.11)

in 3Q, _X ¼ X X � ð~Nþ � 2Þ þ Z=k
� �

, _Z ¼ Z ~Nþ þ a� pX � Z=k
� �

, (2.12)

associated to (2.6), (2.8) for M�:
We stress that (2.9), (2.11) correspond to positive, decreasing solutions of (Pþ), (P�).

We will see in Section 3 that this holds for regular and singular solutions of (1.1) in R
N

or in a ball.
On the other hand, given any trajectory s ¼ ðX,ZÞ of (2.9)-(2.12) either in 1Q or 3Q,

we define

uðrÞ ¼ r�aðXZÞ 1
p�1ðtÞ, where r ¼ et: (2.13)
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Then we deduce

u0ðrÞ ¼ �ar�a�1ðXZÞ 1
p�1ðtÞ þ r�a

p� 1
ðXZÞ 1

p�1�1ðtÞ
_XZ þ X _Z

r
¼ �Xr�a�1ðXZÞ 1

p�1ðtÞ

¼ �XðtÞuðrÞ
r

,

from which we recover (2.4). Since X 2 C1, then u 2 C2: From this, one immediately
sees that u satisfies either (Pþ) or (P�) from the respective equations for _X , _Z in the
dynamical system.
An important role in the study of our problem is played by the lines ‘6, defined by

‘þ ¼ fðX,ZÞ : Z ¼ kðN � 1Þg \ 1Q for Mþ,
‘� ¼ fðX,ZÞ : Z ¼ KðN � 1Þg \ 1Q for M�:

(2.14)

For each of the two systems (2.9) and (2.11) respectively, the lines ‘6 splits 1Q into two
regions, up and down:

Rþ
k ¼ fðX,ZÞ : Z > kðN � 1Þg \ 1Q, R�

k ¼ fðX,ZÞ : Z < kðN � 1Þg \ 1Q for Mþ,
(2.15)

Rþ
K ¼ fðX,ZÞ : Z > KðN � 1Þg \ 1Q, R�

K ¼ fðX,ZÞ : Z < KðN � 1Þg \ 1Q for M�:
(2.16)

In terms of ðP6Þ, ‘6 is the line where a decreasing solution u changes concavity in the
sense that, when ðXðtÞ,ZðtÞÞ 2 Rþ

k (or Rþ
K) then the corresponding solution u through

the transformation (2.13) is concave, while for ðXðtÞ,ZðtÞÞ 2 R�
k (or R�

K), u is convex.
Hence, these regions are essential to determine the precise expressions of (Pþ) and (P�)
according to Mþ and M� in (2.2), (2.3). For instance, when u00 � 0 and u0 < 0, (Pþ)
becomes

�u00ðrÞ � N � 1
r

u0ðrÞ ¼ ra
upðrÞ
k

,

for which the left hand side is the standard radial Laplacian operator; while for u00 > 0
and u0 < 0, (Pþ) reads as

�u00ðrÞ �
~Nþ � 1

r
u0ðrÞ ¼ ra

upðrÞ
K

,

where, in turn, the LHS is the Laplacian in the noninteger dimension ~Nþ, see (1.5).
Analogously one treats M�: Note that in 3Q we always obtain Laplacian operators in
dimensions ~N� (for Mþ) and ~Nþ (for M�), see (2.7), (2.8). Our system is then the
union of equations driven by different Laplacian-like operators. This explains the diffi-
culty in dealing with fully nonlinear operators.
We stress that Lane-Emden-Henon problems for Laplacian operators were already

studied in [11] in terms of the dynamical system (2.9) in the case k ¼ K ¼ 1 subject to
the transformation (2.4).
At this stage it is worth observing that the systems (2.9) and (2.11) are continuous on

‘6: More than that, the right hand sides are locally Lipschitz functions of X, Z, so the
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usual ODE theory applies. That is, one recovers existence, uniqueness, and continuity
with respect to initial data as well as continuity with respect to the parameter p.

2.2. Stationary points and local analysis

We start this section investigating the sets where _X ¼ 0 and _Z ¼ 0: Let us focus our
analysis on 1Q, since the only stationary point on the boundary of 3Q is the origin.
One writes the dynamical systems (2.9) and (2.11) in terms of the following ODE first
order autonomous equation

_x ¼ FðxÞ, where x ¼ ðX,ZÞ, FðxÞ :¼ ðf ðxÞ, gðxÞÞ: (2.17)

with _x ¼ ð _X , _ZÞ: For instance, in the case of the operator Mþ, then f, g are given by

f ðxÞ ¼
X X � ðN � 2Þ þ Z

k

� �
in Rþ

k

X X � ð~Nþ � 2Þ þ Z
K

� �
in R�

k

, gðxÞ ¼
Z N þ a� pX � Z

k

� �
in Rþ

k

Z ~Nþ þ a� pX � Z
K

� �
in R�

k :

8>>><
>>>:

8>>><
>>>:

We first recall some standard definitions from the theory of dynamical systems.

Definition 2.1. A stationary point Q of (2.17) is a zero of the vector field F. If r1 and
r2 are the eigenvalues of the Jacobian matrix DF(Q), then Q is hyperbolic if both r1, r2
have nonzero real parts. If this is the case, Q is a source if Reðr1Þ, Reðr2Þ > 0, and a
sink if Reðr1Þ, Reðr2Þ < 0; Q is a saddle point if Reðr1Þ < 0 < Reðr2Þ:
Next we recall an important result from the theory of dynamical systems which

describes the local stable and unstable manifolds near saddle points of the system
(2.17); see [15, theorems 9.29, 9.35]. Here the usual theory for autonomous planar sys-
tems applies since each stationary point Q possesses a neighborhood which is strictly
contained in Rþ

k or R�
k where the vector field F is C1.

Proposition 2.2. Let Q be a saddle point of (2.17). Then the local stable (resp. unstable)
manifold at Q is locally a C1 graph over the stable (resp. unstable) line of the linearized
vector field. In this case, if the linearized system has a stable line direction L, then there
exists exactly two trajectories s1 and s2 arriving at Q which admit the same tangent at
the point Q ¼ �s1 \ �s2 given by L. Analogously there are only two trajectories coming out
from Q with the same property.

We sometimes use the following notation to describe the limit of trajectories in the
phase plane.

Definition 2.3 (a and x limits). We call a-limit of the orbit s, and we denote it by
aðsÞ, as the set of limit points of sðtÞ as t ! �1: Similarly one defines xðsÞ i.e. the
x-limit of s at þ1:

We observe that both X and Z axes are invariant by the flow. In particular, each
quadrant is an invariant set for the dynamics. Moreover, let us keep in mind the follow-
ing segments in the plane (X, Z). For the system (2.9), we define

‘þ1 ¼ fðX,ZÞ : Z ¼ Kð~Nþ � 2Þ � KXg \ 1Q (2.18)
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which is the set where _X ¼ 0 and X> 0; also

‘þ2 ¼ ‘þ2þ [ ‘þ2� (2.19)

with ‘þ2þ ¼ fðX,ZÞ : Z¼ kðNþa�pXÞg\Rþ
k , ‘þ2� ¼ fðX,ZÞ : Z¼Kð~Nþþa�pXÞg\R�

k ,
which is the set where _Z ¼ 0 and Z>0; see Figures 1 and 2.
Notice that ‘þ1 is a segment entirely contained in R�

k , since there are no other points
in 1Q where _X ¼ 0 in the interior of the region Rþ

k : Moreover, (2.19) is the union of
two segments which join at the point ð1þa

p , kðN � 1ÞÞ 2 ‘þ \ �‘
þ
2 , see Figure 1. The

analogous sets for M� are

‘�1 ¼ fðX,ZÞ : Z ¼ kð~N� � 2Þ � kXg \ 1Q (2.20)

which is the set where _X ¼ 0 and X> 0 (contained in R�
K); and

‘�2 ¼ ‘�2þ [ ‘�2� (2.21)

with ‘�2þ ¼fðX,ZÞ :Z¼KðN�þa�pXÞg\Rþ
K , ‘

�
2� ¼fðX,ZÞ :Z¼ kð~N�þa�pXÞg\R�

K ,
which is the set where _Z ¼ 0 and Z>0.

Lemma 2.4. The stationary points of the dynamical systems (2.9)–(2.12) are:

for Mþ : O ¼ ð0, 0Þ, N0 ¼ ð0, kN þ kaÞ, A0 ¼ ð~Nþ � 2, 0Þ, M0 ¼ ðX0,Z0Þ,
where X0 ¼ a, and Z0 ¼ Kð~Nþ � paþ aÞ ¼ Kð~Nþ � 2� aÞ, see Figure 1;
for M� : O ¼ ð0, 0Þ, N0 ¼ ð0,KN þ KaÞ, A0 ¼ ð~N� � 2, 0Þ, M0 ¼ ðX0,Z0Þ,

where X0 ¼ a and Z0 ¼ kð~N� � paþ aÞ ¼ kð~N�2� aÞ:

Proof. We just show the Mþ case. First notice that the system does not admit station-
ary points in 3Q nor on the line ‘þ: In the region �Rþ

k we have already seen that _X ¼ 0
implies X¼ 0, since ‘þ1 does not intersect Rþ

k : By _Z ¼ 0 we obtain Z ¼ kðN þ a� pXÞ
since Z 6¼ 0 in Rþ

k : Hence we reach the equilibrium point N0. In �R�
k , from _X ¼ 0 we

have either X¼ 0 or Z ¼ Kð~Nþ � 2� XÞ, while by _Z ¼ 0 we deduce that either Z¼ 0
or Z ¼ Kð~Nþ þ a� pXÞ: Therefore we obtain the points O, A0, M0, and ð0,Kð~Nþ þ
aÞÞ: However, the latter does not belong to �R�

k as long as a > �1: w

Next we analyze the directions of the vector field F in (2.17) on the X, Z axes, on the
concavity line ‘6, and also on ‘61 , ‘

6
2 ; see (2.14), and (2.18)–(2.21).

Proposition 2.5. The systems (2.9) and (2.11) enjoy the following properties (see Figures
1 and 2):

i. Every trajectory of (2.9) in 1Q crosses the line ‘þ transversely except at the point
P ¼ ð1þa

p , kðN � 1ÞÞ. Moreover, it passes from Rþ
k to R�

k if X > 1þa
p , while it

moves from R�
k to Rþ

k if X < 1þa
p . The vector field at P always points to the right.

A similar statement holds for M� via the system (2.11) considering respect-
ively ‘�, ð1þa

p ,KðN � 1ÞÞ,Rþ
K , R�

K ;
ii. The flow induced by (2.17) on the X axis points to the left for X 2 ð0, ~N6 � 2Þ,

and to the right when X > ~N6 � 2. On the Z axis it moves up between O and
N0 , and down above N0;
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iii. The vector field F on the line ‘61 is parallel to the Z axis whenever X 6¼ a. It
points up if X < a, and down if X > a. Further, on the set ‘62 the vector field F is
parallel to the Z axis for X 6¼ a. It moves to the right if X < a, and to the left
if X > a:

Proof. (1) We just observe that _X ¼ XðX þ 1Þ > 0, and _Z ¼ Z ð1þ a� pXÞ on ‘6:

(2) For instance consider Mþ: Since the X axis is contained in R�
k , then _X ¼

XðX � ð~Nþ � 2ÞÞ which is positive for X < ~Nþ � 2 and negative for X > ~Nþ � 2:
Now, _Z ¼ ZðN þ a� Z=kÞ in Rþ

k is positive if Z < kðN þ aÞ and negative for Z >

kðN þ aÞ: On the other hand, _Z ¼ Zð~Nþ þ a� Z=KÞ > 0 in R�
k , since Kð~Nþ þ aÞ >

kðN � 1Þ for a > �1:
(3) Notice that _Z ¼ ðp� 1ÞZða� XÞ on ‘61 and _X ¼ ðp� 1ÞXða� XÞ on ‘62 : Both

are positive quantities for X < a, and negative when X > a: w

Remark 2.6. It is not difficult to see that an orbit can only reach the point P in
Proposition 2.5 (1) from R�

k : In fact by _X > 0 and the inverse function theorem, Z is a
function of X on ‘þ: Next, an analysis of the continuous function X 7!@2

XZðXÞ at P
shows that an orbit passing through P has a local maximum at this point; see the vector
field at that point in Figures 1 and 2.

The next proposition gathers the crucial dynamics at each stationary point.

Proposition 2.7 (M6). The following properties are verified for the systems (2.9)
and (2.11),

1. The origin O is a saddle point. The stable and unstable directions of the linearized
system are the X and Z axes respectively;

2. N0 is a saddle point. The tangent unstable direction is parallel to the line

Z ¼ �pkðN þ aÞ
N þ 2þ 2a

X if the operator is Mþ, Z ¼ �pKðN þ aÞ
N þ 2þ 2a

X for M�;

3. A0 is a saddle point for p > ps, a6 . The linear stable direction is parallel to the line

Z ¼�pð~Nþ � 2Þ þ 2þ a
~Nþ � 2

KX in the case of Mþ, Z ¼�pð~N� � 2Þ þ 2þ a
~N� � 2

kX for M�,

while the unstable tangent direction lies on the X axis. For p< ps,a6 A0 is a source; at
p¼ ps,a6 A0 coincides with M0 and belongs to the X axis. In this case, it is not a
hyperbolic stationary point.

4. For p < ps, a6 M0 belongs to the fourth quadrant. Also, M0 2 1Q () p > ps, a6 in
which case:
i. M0 is a source if ps, a6 < p < pp, a6 ;
ii. M0 is a sink for p > pp, a6 ;
iii. M0 is a center at p ¼ pp, a6 :

The dynamics at each stationary point depends upon the linearization of the system
(2.9). Since the point N0 belongs to Rþ

k where the system corresponds to the Henon
equation for the standard Laplacian, we could just refer to [11] for the local analysis of

588 L. MAIA ET AL.



N0, as long as p > pp, a6 : The other points O,N0,A0 instead belong to R�
k where the sys-

tem now corresponds to the Henon equation for the Laplacian in dimension ~N6: In
this last case some variations with respect to [11] are needed. Since the classification of
stationary points is the heart of our analysis and for reader’s convenience, details are
provided in the Appendix.
On the other hand, in both cases, some deeper analysis is required when p � pp, a6 :

We treat this case in Proposition 4.9 by using the dynamics of the system. For p ¼ pp, a6

we refer to the Appendix, see Proposition 6.1.
To finish the section, a local uniqueness result follows directly from Propositions 2.2

and 2.7.

Proposition 2.8. For every p> 1 there is a unique trajectory coming out from N0 at �1,
which we denote by Cp. Further, for p > ps, a6 there exists a unique trajectory arriving at
A0 at þ1 that we denote by !p. In terms of Definition 2.3,

for all p > 1, Cp is such that aðCpÞ ¼ N0; (2.22)

for all p > ps, a6 , !p is such that xð!pÞ ¼ A0: (2.23)

Remark 2.9. Notice that these trajectories uniquely determine the global unstable and
stable manifolds of the stationary points N0 and A0 respectively. In particular, by
Proposition 2.2 they are graphs of functions in a neighborhood of the stationary
points in their respective ranges of p. The tangent directions at N0, A0 are displayed
together in Figure 1 for p > ps, a6 : In fact, they both belong to the region where _X > 0
and _Z < 0 in their respective ranges of p.

2.3. Periodic orbits

In this section we continue investigating the limit sets of the trajectories. Let us see in
which intervals of p the dynamical systems (2.9) and (2.11) allow the existence of peri-
odic orbits.
The Poincar�e-Bendixson theorem [18] for planar autonomous systems says that the

only admissible x and a limits of bounded trajectories are either a stationary point or a
periodic orbit.
Observe that we have the following ordering for the exponents pp, a� < paD < pp, aþ

defined in (1.6).

Proposition 2.10 (Dulac’s criterion). Let k < K. For Mþ there are no periodic orbits of
(2.9) when 1 < p � paD or p > pp, aþ . For M� no periodic orbits of (2.11) exist if 1 < p <

pp, a� or p � paD. Moreover,

i. there are no periodic orbits strictly contained in Rþ
k [ ‘þ (resp. ðRþ

K [ ‘�Þ, for any
p > 1;

ii. periodic orbits contained in R�
k [ ‘þ (resp. R�

K [ ‘�Þ are admissible only at
p ¼ pp, a6 . Also, no periodic orbits at pp, a6 can cross the concavity line ‘6 twice.
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Proof. Define uðX,ZÞ ¼ XaZb, where b ¼ 3�p
p�1 and a as in (1.6). Set UðX,ZÞ ¼

@Xðuf Þ þ @ZðugÞ, with f and g defined in (2.17). For Mþ we have

UðX,ZÞ ¼
XaZb a

�
X � ðN � 2Þ þ Z

k

�
þ b N þ a� pX � Z

k

� �
þ ð2� pÞX þ 2� Z

k

" #
in Rþ

k ,

XaZb a

�
X � ð~Nþ � 2Þ þ Z

K

�
þ b ~Nþ þ a� pX � Z

K

� �
þ ð2� pÞX þ 2� Z

K

" #
in R�

k ,

8>>>>><
>>>>>:

¼ uðX,ZÞðp� 1Þ�1 �pðN � 2Þ þ ðN þ 2þ 2aÞ� �
in Rþ

k ,

uðX,ZÞðp� 1Þ�1 �pð~Nþ � 2Þ þ ð~Nþ þ 2þ 2aÞ
� �

in R�
k :

(

Both expressions are positive if 1 < p < minðpp, aþ , paDÞ ¼ paD; and both are negative if
p > maxðpp, aþ , paDÞ ¼ pp, aþ : Then one concludes by the same argument as in the classical
Bendixson–Dulac criterion, see also [17, Theorem 3.1]. Indeed, the vector field F ¼
ðf , gÞ is Lipschitz continuous in (X, Z), so Green’s area formula for the domain D
enclosed by a periodic trajectory applies such as

ð
@D
u ff dZ � g dXg ¼

ð
D
UðX,ZÞ dXdZ ¼

ð
Rþ
k \D

UðX,ZÞ dXdZ þ
ð
R�
k \D

UðX,ZÞ dXdZ:

(2.24)

The RHS is nonzero for p 2 ð1, paDÞ [ ðpp, aþ ,1Þ, but the LHS is zero because dX ¼
fdt, dZ ¼ gdt: Further, at paD one has U¼ 0 in Rþ

k and so the first integral in (2.24) (in
the RHS) vanishes, while the second one is positive. For M� the computations are
similar by using that minðpp, a� , paDÞ ¼ pp, a� and maxðpp, a� , paDÞ ¼ paD:
Next we look at the interval ½paD, pp, aþ � for Mþ: Note that Poincar�e-Bendixson theorem

guarantees the existence of a stationary point in the domain D inside a periodic orbit.
Since the only admissible stationary point in the interior of 1Q is M0 2 R�

k for p > ps, aþ ,
while for p � ps, aþ M0 is not an option (see Figure 2), then (i) follows.
To prove (ii) let us observe that if a periodic orbit is contained in R�

k [ ‘þ then by
Proposition 2.5 (1) it may intersect the line ‘þ only at one point, namely the point P.
Hence we can repeat the previous argument, neglecting the integral expression in Rþ

k :

Then we get that there are no periodic orbits in R�
k [ ‘þ for every p 6¼ pp, aþ : To finish, if

a periodic orbit existed which crossed twice the line ‘þ at pp, aþ , then the first integral of
(2.24) (in the RHS) would be positive, while the second one is equal to zero because
U¼ 0 in R�

k : The case for M� and pp, a� is analogous. w

Notably Dulac’s criterion brings out the critical exponents paD and pp, a6 : They corres-
pond to critical exponents for the two Laplacian operators DN and D~N6

, in dimensions
N and ~N6:

Other limit cycles h are admissible by the dynamical system as far as they cross ‘6
twice. They do appear for M6 as we shall see in Sections 4, 5. This happens because
Dulac’s criterion is inconclusive in a whole interval when k < K: Formally, the Pucci
problem opens space for new periodic orbits in order to appropriately glue both
Laplacian operators.
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2.4. A Priori bounds

We prove ahead important bounds for trajectories of (2.9) or (2.11) which are defined
for all t in intervals of type ð̂t , þ1Þ or ð�1, t̂Þ:
By Poincar�e-Bendixson theorem, if a trajectory of (2.9) or (2.11) does not converge

to a stationary point neither to a periodic orbit, either forward or backward in time,
then it necessarily blows up in that direction. In the next propositions we prove that a
blow up may only occur in finite time. The first result is obtained in the first quadrant.

Proposition 2.11. Let s be a trajectory of (2.9) or (2.11) in 1Q, with sðtÞ ¼ ðXðtÞ,ZðtÞÞ
defined for all t 2 ð̂t , þ1Þ, for some t̂ 2 R. Then

XðtÞ < ~N6 � 2, for all t � t̂: (2.25)

If instead, s is defined for all t 2 ð�1, t̂Þ, for some t̂ 2 R, then

ZðtÞ < kðN þ aÞ in the case of Mþ, ZðtÞ < KðN þ aÞ for M�, for all t � t̂:

(2.26)

In particular, if a global trajectory is defined for all t 2 R in 1Q then it remains inside
the box ð0, ~Nþ � 2Þ � ð0, kðN þ aÞÞ in the case of Mþ, while it stays in ð0, ~N� � 2Þ �
ð0,KðN þ aÞÞ for M�:

Proof. Let us first prove (2.25) when the operator is Mþ, ~Nþ � N: Arguing by contra-
diction we assume that for some t1 � t̂ we have Xðt1Þ � ~Nþ � 2: Notice that _X > 0 on
the half line Lþ ¼ fðX,ZÞ : X ¼ ~Nþ � 2g \ 1Q, see (2.18). Therefore XðtÞ > Xðt1Þ �
~Nþ � 2 for all t > t1:
We claim that XðtÞ ! þ1 as t ! þ1: To see this, first notice that Z is bounded

from t1 on, since _Z < 0 to the right of Lþ, see (2.19). If we had XðtÞ � C for some
C> 0 for t � t1, then s would be a bounded trajectory from t1 on. Then by Poincar�e-
Bendixson it should converge to a stationary point as t ! þ1: Notice that periodic
orbits are not allowed to the right of Lþ by the direction of the vector field, see Figure
1. This proves the claim, since no stationary points exist on the right of Lþ.
Thus, we can pick a time t2 such that Xðt2Þ > N � 2 � ~Nþ � 2: Again by monoton-

icity, XðtÞ > ~Nþ � 2 for all t � t2:
Then we have two cases: either the trajectory s reaches the region R�

k for some t3 �
t2, or it stays in Rþ

k for all time. If the first holds, then sðtÞ remains there for all t � t3,
since _Z < 0 to the right of Lþ, see Figure 1. Observe that the first equation in (2.9)
yields _X

X½X�ð~Nþ�2Þ� � 1: Moreover,

ð~Nþ � 2Þ _X
X X � ð~Nþ � 2Þ
� � ¼ _X

X � ð~Nþ � 2Þ �
_X
X
¼ d

dt
ln

XðtÞ � ~Nþ þ 2
XðtÞ

 !
for all t � t3:

(2.27)

Therefore, by integrating (2.27) in the interval ½t3, t� we get

XðtÞ �
~Nþ � 2

1� ceð~Nþ�2Þðt�t3Þ
, where c ¼ 1�

~Nþ � 2
Xðt3Þ 2 ð0, 1Þ, (2.28)

and in particular X blows up in the finite time t1 ¼ t3 þ ln ð1=cÞ
~Nþ�2

:
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If instead s stays in Rþ
k from t2 on, then the same computations developed with N in

place of ~Nþ imply, using the first equation in (2.9), that X blows up in finite time. Both
ways one gets a contradiction.
Let us now prove (2.26) for Mþ: Notice that _Z < 0 in the region above the line Z ¼

kðN þ aÞ which is contained in Rþ
k , see Figure 1. Now, if Z ¼ kðN þ aÞ occurs at some

point for the orbit s, then in particular there is some t0 such that Z > kðN þ aÞ for all
t � t0, thus _Z � ZðN þ a� Z=kÞ: In particular s remains in the region Rþ

k up to the
time t0. Hence,

kðN þ aÞ _Z
kðN þ aÞ � Z

¼
_Z
Z
�

_Z
Z � kðN þ aÞ ¼

d
dt

�
ln

�
ZðtÞ

ZðtÞ � kðN þ aÞ
��

for all t � t0:

integration in ½t, t0� as before gives us that the trajectory blows up in finite time.
The proof of (2.25) and (2.26) for the operator M� is analogous if one

uses ~N� � N: w

Now, a similar argument of Proposition 2.11 allows to characterize all the orbits
in 3Q.

Proposition 2.12. Every orbit of (2.10) or (2.12) in 3Q blows up in finite time, backward
and forward. The vector field in there always points to the right and down, with _X > 0
and _Z < 0:

Proof. Recall that in 3Q we have X,Z < 0: Let us consider Mþ: Hence, by the first
equation in (2.10) one gets _X � XðX � ð~Nþ � 2ÞÞ, which is positive. Similarly, by the
second equation in (2.12) one figures out that _Z � Zð~Nþ þ a� Z=KÞ, which is now
negative. Then integration as in (2.27), (2.28) gives us the result. For M� it
is analogous. w

3. Classification of solutions

In this section we classify the solutions of the second order equations (Pþ) and (P�)
and we show that this induces a classification of the orbits of the dynamical systems
(2.9)-(2.12). We investigate three kinds of solutions to (Pþ) and (P�): regular solutions,
singular solutions, and exterior domain solutions. The denomination of the latter ones
will be clarified in Section 3.3.
We begin by characterizing the blow ups admissible in the first quadrant.

Proposition 3.1 (Blow-up types in 1Q). Let u be a positive solution of (Pþ) or (P�) in
an interval (R1, R2), 0 < R1 < R2, and s ¼ ðX,ZÞ be a corresponding trajectory of (2.9)
or (2.11) lying in 1Q through the transformation (2.4). Then the following holds:

i. there exists r1 2 ðR1,R2Þ such that u0ðr1Þ ¼ 0 () there exists t1 2 R such that
ZðtÞ ! þ1 as t ! tþ1 . In addition, XðtÞ ! 0 as t ! tþ1 ;

ii. there exists r2 2 ðR1,R2Þ such that uðr2Þ ¼ 0 () there exists t2 2 R such that
XðtÞ ! þ1 as t ! t�2 . Further, ZðtÞ ! 0 as t ! t�2 :
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Moreover, no other blow-up types other than those of (i) and (ii) are admissible for s
in 1Q.

Proof. Let us first observe that u and u0 can never be zero at the same point r1.
Otherwise, by the uniqueness of the initial value problem we would have u � 0 in a
neighborhood of r1, which is not possible by the strong maximum principle.
(i) Assume that there exists r1 > 0 such that u0ðr1Þ ¼ 0: Thus uðr1Þ > 0 and by (2.4)

it is easy to deduce the limits of X(t) and Z(t) as t ! tþ1 , for t1 ¼ ln ðr1Þ: Viceversa, if
ZðtÞ ! þ1 as t ! tþ1 , by (2.4) we immediately get u0ðrÞ ! 0 as r ! r1 ¼ et1 , because
u is continuous in (R1, R2). This in turn gives that XðtÞ ! 0 as t ! tþ1 , and no other
asymptote parallel to the Z axis is admissible.
(ii) Suppose that uðr2Þ ¼ 0 for some r2 > R1: Then u0ðr2Þ < 0 and by (2.4) we easily

obtain the behavior of X and Z as t ! t�2 , where t2 ¼ ln ðr2Þ: Viceversa if XðtÞ ! þ1
as t ! t�2 then necessarily uðrÞ ! 0 as r ! r2 ¼ et2 , because u0 is continuous in (R1,
R2). Thus ZðtÞ ! 0 as t ! t�2 as before.
The arguments above also show that, in finite time, no other blow-ups are possible for s

in 1Q. Indeed, as soon as X or Z tends to infinity, then u or u0 vanishes at a positive radius.
Recall that a blow up in infinite time is not admissible by Proposition 2.11. w

Corollary 3.2. Let u be a solution of (Pþ) or (P�), and s be a corresponding trajectory of
(2.9) or (2.11) starting above the line ‘6 in 1Q. Then u changes concavity at least once.

Proof. Consider the Mþ operator, for M� is the same. If u never changed concavity,
then s ¼ ðX,ZÞ would remain inside the region Rþ

k for all time. By Lemma 2.4 and
Proposition 2.10 there are no stationary points or periodic orbits in Rþ

k : Recall that _X >

0, _Z < 0 in Rþ
k , see Figure 1. Then s must blow up at a finite forward time t̂ such that

XðtÞ ! þ1 and ZðtÞ ! Z1 as t ! t̂ , for some Z1 > kðN � 1Þ > 0: But this blow-up is
not admissible by Proposition 3.1. w

Remark 3.3 (Blow up in 3Q). Every orbit s ¼ ðX,ZÞ of (2.10) or (2.12) in 3Q verifies
XðtÞ ! 0 and ZðtÞ ! �1 as t ! t�1 for some t1 2 R such that r1 ¼ et1 and u0ðr1Þ ¼ 0:
Moreover, XðtÞ ! �1 and ZðtÞ ! 0 as t ! tþ3 for some t3 2 R where r3 ¼ et3

and uðr3Þ ¼ 0:

3.1. Regular solutions

Let us consider the following initial value problem:

u00 ¼ M6 �r�1ðN � 1Þ m6ðu0Þ � rajujp�1u
� 	

, uð0Þ ¼ c, u0ð0Þ ¼ 0, c > 0, (3.1)

where M6 and m6 are defined in (2.2), (2.3).
By regular solution we mean a solution u ¼ up of (3.1) which is twice differentiable

for r> 0, and C1 up to 0. We denote by Rp, with Rp � þ1, the radius of the maximal
interval ½0,RpÞ where u is positive.
Hence, in such interval u is a solution of ðP6Þ: Obviously, if Rp ¼ þ1 then u corre-

sponds to a radial positive solution of (1.1) for X ¼ R
N : When Rp < þ1 it gives a

positive solution of the Dirichlet problem (1.1), (1.3) in the ball X ¼ BRp :
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Remark 3.4. Given a regular positive solution u ¼ up in ½0,RpÞ satisfying (3.1) for some
c > 0, then the rescaled function vðrÞ ¼ su s

1
arð Þ, for a as in (1.6) and s > 0, is still a

positive solution of the same equation in ½0, s�1
aRpÞ with initial value vð0Þ ¼ sc, see also

[6, Lemma 2.3].
If u is defined in the whole interval ½0, þ1Þ, thus there is a family of regular solu-

tions obtained via v ¼ vs, for all s > 0: In this case we say that u is unique up
to scaling.
On the other hand, a solution in the ball of radius Rp automatically produces a solu-

tion for an arbitrary ball, by properly choosing the parameter s > 0:

Remark 3.5. Note that, by rescaling a fast decaying solution, we get infinitely many fast
decaying solutions which give a different value for the constant c in Definition 1.1(i),
see (3.7). The same happens for the ð~N � 2Þ–blowing up solution in Definition 1.5(i).
Instead it is easy to see that for the slow decaying solutions or a–blowing up solutions
in definitions 1.1(ii) and 1.5(ii), the constant c is independent of the rescaling, see (3.8).

Now, using the transformation (2.4) our goal is to characterize the regular solutions
of (Pþ) or (P�) as trajectories of the dynamical systems (2.9) and (2.11) in the
first quadrant.

Proposition 3.6. Let u¼ up be any positive regular solution of (Pþ) (resp. (P�)). Then the
corresponding trajectory belongs to 1Q and is the unique trajectory of (2.9) (resp. (2.11))
whose a-limit is N0.

Proof. The proof is the same for both operators M6: The solution u ¼ up satisfies
limr!0 uðtÞ ¼ uð0Þ ¼ c and limr!0 u0ðtÞ ¼ u0ð0Þ ¼ 0, for some c > 0: In terms of the
trajectory (X, Z), by the definition of X in (2.4) we easily find

lim
t!�1XðtÞ ¼ 0: (3.2)

Moreover, in the simpler case when a¼ 0 we have

lim
t!�1ZðtÞ ¼ lim

r!0

�rupðrÞ
u0ðrÞ ¼ �cp lim

r!0

r
u0ðrÞ � u0ð0Þ ¼ � cp

u00ð0Þ 2 ð0, þ1Þ,

since it is easier to check from the equation that u00ð0Þ < 0: When a 6¼ 0 we need some
other argument to show that Z(t) has a finite limit as t ! �1: First let us show that

there exists R1 > 0 such that u0 6¼ 0 for all r 2 ð0,R1Þ: (3.3)

If this was not true, then there would exist a sequence of positive radii rn ! 0 such that
u0ðrnÞ ¼ 0: By the mean value theorem this yields the existence a sequence sn 2
ðrn, rnþ1Þ such that u00ðsnÞ ¼ 0: Thus, since u0 cannot be identically zero in a neighbor-
hood of 0 by the equation (Pþ), then u changes infinitely many times its concavity in a
neighborhood of 0.
In terms of the dynamical system, say (2.9) for Mþ, this means that the respective

trajectory intersects the line ‘þ (see (2.14)) more than once as t ! �1: In particular it
should pass from Rþ

k to R�
k infinitely many times, which, by Proposition 2.5 (1), may
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only occur at XðsnÞ > 1þa
p for a > �1: This contradicts the fact that XðsnÞ ! 0 for large

n from (3.2).
By (3.3) we have that Z(t) is well defined in some interval ð�1, t̂Þ so that (2.26) in

Proposition 2.11 yields ZðtÞ < kðN þ aÞ for all t < t̂ : Hence limt!�1 ZðtÞ < þ1: Note
that the trajectory cannot belong to 3Q when blow-up in finite time occurs both back-
ward and forward, by Proposition 2.12. Moreover, it cannot converge to O by
Propositions 2.5 (2) and 2.7(1). Indeed, the unstable manifold at O is on the Z axis
which cannot correspond to the solution u in any interval ð0, rÞ: Hence it converges to
N0, independently of the initial datum c > 0:

Remark 3.7. Thus, by Propositions 3.6 and 2.8 one concludes that a regular solution up,
corresponds to the unique trajectory Cp labeled in (2.22), for all p> 1. Here, Cp is
defined in a maximal interval ½0,TpÞ,Tp ¼ lnRp � þ1:

Note that the fact that Cp does not depend on the initial datum of up is not a surprise
since we already observed that the change of initial datum is equivalent to rescaling the
radius. This, in turn, is equivalent to shifting the time for the systems (2.9), (2.11),
which does not produce any change in the trajectory since the system is autonomous.
We now prove the monotonicity and concavity properties of the regular solutions,

deriving them directly by the dynamical systems (2.9) or (2.11), and not from the
second order ODEs.

Proposition 3.8. All regular solutions u of (Pþ) or (P�) are concave in an interval ð0, r0Þ
for some r0 > 0 and change concavity at least once. Moreover, they are decreasing as long
as they remain positive. Further, u0ðrÞ ¼ Oð�r1þaÞ and u00ðrÞ ¼ Oð�raÞ as r ! 0,
for a > �1:

Proof. Let us consider the Mþ case; for M� is the same. By Proposition 3.6 the corre-
sponding trajectory Cp starts at �1 from the stationary point N0 and enters the region
Rþ
k which is above the concavity line ‘þ; see Proposition 2.7 (item 2) and Remark 2.9.

Then we immediately deduce that u is concave near r¼ 0 and changes concavity at least
once; see Corollary 3.2. Next, since 1Q is invariant by the flow and corresponds to posi-
tive decreasing solutions of (Pþ) we get the monotonicity claim. For the asymptotics
one computes

�cp lim
r!0

r1þa

u0ðrÞ ¼ lim
t!�1ZðtÞ ¼ kðN þ aÞ, from which lim

r!0

u00

ra
¼ � cp

k
aþ 1
N þ a

: w

Given an exponent p> 1, for a regular solution up of (Pþ) or (P�), which is positive in
½0, þ1Þ, Definition 1.1 holds according to its behavior at infinity. Taking into account
that up is unique, up to rescaling, as in [6] we define the following sets:

F ¼ fp > 1 : up is fast decayingg;
S ¼ fp > 1 : up is slow decayingg;

P ¼ fp > 1 : up is pseudo-slow decayingg:
(3.4)

Then we add the set

C ¼ fp > 1 : ðP6Þ has a solution up with upðRpÞ ¼ 0g, (3.5)
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where, as before, Rp is the radius of the maximal positivity interval for up. We charac-
terize the previous sets in terms of the orbits of the dynamical systems (2.9) or (2.11).

Proposition 3.9. In terms of the dynamical systems (2.9) or (2.11), the previous sets can
be equivalently defined as follows:

F ¼ fp > 1 : xðCpÞ ¼ A0 g; S ¼ f p > 1 : xðCpÞ ¼ M0g;
P ¼ fp > 1 : xðCpÞ is a periodic orbit around M0g;
C ¼ fp > 1 : lim

t!T
XðtÞ ¼ þ1 and lim

t!T
ZðtÞ ¼ 0 for some T > 0g,

(3.6)

where CpðtÞ ¼ ðXðtÞ,ZðtÞÞ is as in Remark 3.7. In particular, ð1, þ1Þ ¼ C [ F [
P [ S:

Proof. The proof is the same for both operators M6, i.e. for both systems (2.9)
and (2.11).
In the case of the sets F ,S and P, up (as in Proposition 3.6) is positive in ð0, þ1Þ

which implies that Cp is defined for all t 2 R: By Proposition 2.11 this trajectory is
bounded, and so by Poincar�e-Bendixson theorem it converges as r ! þ1 either to a
stationary point or to a periodic orbit. In the first case only A0 and M0 are admissible.
Moreover, via the transformation (2.4),

xðCpÞ ¼ A0 () lim
r!þ1 uðrÞr ~N6�2 ¼ Cp, c for some Cp, c > 0, (3.7)

and u ¼ up has fast decay at þ1: On the other hand u is slow decaying at þ1 when

xðCpÞ ¼ M0 () lim
r!þ1 uðrÞra ¼ Cp with Cp ¼ ðX0Z0Þ

1
p�1, (3.8)

where M0 ¼ ðX0,Z0Þ is given explicitly in Lemma 2.4.
Indeed, (3.8) comes from the identity XðtÞZðtÞ ¼ r2þaup�1 for all t 2 R: On the other

hand,

lim
t!þ1XðtÞ ¼ ~N6 � 2 is equivalent to

d
dr

ln ðuðrÞÞ ¼ u0ðrÞ
uðrÞ 	 �

~N6 � 2
r

as r ! þ1:

Then, integration in ½r0, r� for a fixed large r0 implies (3.7) with Cp, c ¼ uðr0Þr ~N6�2
0 , u ¼

up, c: Now, by rescaling, the function v ¼ vs in Remark 3.4 satisfies

lim
t!þ1 vðrÞr ~N6�2 ¼ s1�

~N6�2
a Cp, c under 3:7ð Þ; lim

r!þ1 vðrÞra ¼ Cp under 3:8ð Þ:

Thus Cp is independent of the initial value c > 0 in (3.1).
Finally, assume that xðCpÞ is a periodic orbit h. Note that the region inside h is

bounded, and by Poincar�e-Bendixson theorem it must contain M0. Using again XZ ¼
r2þaup�1 one defines

cp�1
1 :¼ inf

t2R
fXðtÞZðtÞ : ðX,ZÞ 2 hg; cp�1

2 ¼ sup
t2R

fXðtÞZðtÞ : ðX,ZÞ 2 hg:
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Therefore we deduce

xðCpÞ ¼ h () 0 < c1 ¼ liminf
r!þ1 uðrÞra < limsup

r!þ1
uðrÞra ¼ c2: (3.9)

Now we consider the set C: The corresponding trajectory Cp cannot be defined for all time
since uðRpÞ ¼ 0: So it must blow up at the finite time Tp ¼ ln ðRpÞ by Proposition 3.1.
Viceversa if F ,S,P, C are defined in terms of the property of the trajectory Cp of the

dynamical system then they give exactly the same sets as defined for up , by using (2.4)
and (2.13), and arguing in a similar way.

Remark 3.10 (C is open). When p 2 C, the trajectory Cp crosses the line L ¼ fðX,ZÞ :
X ¼ ~Nþ � 2g and next blows up in finite time. This property is preserved for p0 close
to p.

3.2. Singular solutions

As mentioned in Section 1, by singular solution we mean a radial solution u of (1.1)
satisfying (1.2). Hence u ¼ uðjxjÞ ¼ uðrÞ is a singular solution of ðP6Þ satisfying
limr!0 uðrÞ ¼ þ1: It may be either positive for all r 2 ð0, þ1Þ, or be equal to zero
at a certain radius R> 0. In the latter case it produces a solution in BR n f0g:
In terms of the systems (2.9), (2.11), this means that the corresponding trajectory, say

Rp, will be defined either in R or in an interval ð�1,TÞ, for some T < 1: Under the
latter, as in the characterization of C in (3.6) we have that Rp blows up forward in a
finite time T < þ1: Otherwise, by Proposition 2.11 the global trajectory Rp is con-
tained in the box

Qþ¼ ð0, ~Nþ� 2Þ � ð0, kðN þ aÞÞ for Mþ;Q� ¼ ð0, ~N� � 2Þ � ð0,KðN þ aÞÞ for M�:

Then the a and x limits can be either a periodic orbit or a stationary point.
We point out that Rp cannot converge to N0, neither backward nor in forward time,

because the stable direction at N0 is the Z axis, while the unstable direction corresponds
to the regular trajectory Cp , for all p> 1. So all possible a and x limits of Rp are M0,
A0, or a periodic orbit.
By the analysis of the stationary points M0 and A0, and of the periodic orbits given

in Section 2.3, the a and x limits of Rp depend on the exponent p. Then a classification
of the singular solutions, according to Definition 1.5 can be easily formulated in terms
of the dynamical systems (2.9), (2.11), analogously to Proposition 3.9. Obviously if Rp

is defined in R they are also classified according to the behavior at þ1, as in
Definition 1.1. Here we just emphasize that, as for the regular solutions, the so called
pseudo–blowing up solutions, see Definition 1.5 (iii), may only occur at the values of p
for which Rp has a periodic orbit as a-limit.

3.3. Exterior domain solutions

By exterior domain solution we mean a solution u of (Pþ) or (P�) defined in an inter-
val ½q0, q�, for q0 2 ð0, þ1Þ and q � þ1, and verifying the Dirichlet condition
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uðq0Þ ¼ 0: Fixing q0 ¼ 1, then u satisfies the initial value problem

uð1Þ ¼ 0, u0ð1Þ ¼ d, for some d > 0: (3.10)

The equations (Pþ), (P�), together with (3.10) were studied in [16] and [18]. It was
shown that for any p> 1 and for each d > 0 there exists a unique solution u ¼ ud
defined in a maximal interval ð1, qdÞ where u is positive, 1 < qd � þ1: Moreover,
there exists a unique ld 2 ð1, qdÞ such that

u0dðrÞ > 0 for r < ld , u0dðldÞ ¼ 0 , u0dðrÞ < 0 for r > ld : (3.11)

If qd ¼ þ1 we get a positive radial solution in the exterior of the ball B1. In the second
case, a positive solution in the annulus ð1, qdÞ is produced. Note that equations (Pþ),
(P�) together with (3.10) are not invariant by rescaling.
Now we would like to describe the trajectories of the dynamical systems (2.9)-(2.11)

which correspond to ud through the variables X, Z in (2.4).

Proposition 3.11. Let p> 1 and ud ¼ ud, p be a positive solution of (Pþ) (resp. (P�)) satis-
fying (3.10). Then there exists a unique trajectory Nd, p in 1Q for the system (2.9) (resp.
(2.11)) which blows up backward in a finite time td. More precisely, if Nd, pðtÞ ¼
ðXðtÞ,ZðtÞÞ then

lim
t!tþd

ZðtÞ ¼ þ1 and lim
t!tþd

XðtÞ ¼ 0, (3.12)

where td ¼ ln ðldÞ, ld given in (3.11). The trajectory Nd, p corresponds, after the trans-
formation (2.4) to the restriction of ud to the interval Id ¼ ðld, qdÞ, qd � þ1:

Proof. The proof works for both operators M6: We fix p and d. By (3.11), ud is positive
and decreasing in the interval Id: Then, after (2.4), to ud corresponds a unique trajectory
Nd ¼ Nd, p contained to 1Q and is defined for all t 2 ðtd, ln ðqdÞÞ: Thus, by Proposition
3.1 we get (3.12). w

When qd ¼ þ1 we can classify the solutions accordingly to their behavior at þ1,
i.e. ud is fast, slow, or pseudo-slow decaying via the limits (i)-(iii) as r ! þ1 in
Definition 1.1.

4. The Mþ case

In this section we study the solutions of the equations involving the Pucci Mþ oper-
ator. Hence we refer to the dimension-like parameter ~Nþ and the relevant exponents
for Mþ defined in (1.5) and (1.6), as well as their ordering: maxf ps, aþ , paDg � pp, aþ :

4.1. Some properties of regular trajectories

We first consider the case of a regular solution of (Pþ) whose corresponding trajectory
for the system (2.9) will be denoted by Cp ¼ CpðtÞ as in Section 3.1. We also keep the
other notations already introduced, in particular for the sets F ,S,P, C defined in (3.4),
(3.5), and Proposition 3.9.

Lemma 4.1. For any p> 1, with Cp ¼ ðXp,ZpÞ, we have:
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i. if Cp reaches the line ‘þ1 (see (2.18)) at some t0 with Xpðt0Þ � a, then p 2 S [ P,
i.e. the corresponding solutions up of (Pþ) are either slow decaying or pseudo-slow
decaying. In the latter case Cp crosses ‘þ1 and ‘þ2 (see (2.19)) infinitely
many times;

ii. if Cp does not intersect the line ‘þ1 , then it intersects the concavity line ‘þ exactly
once. Moreover, _Xp > 0 and _Zp < 0 for all time. In particular this happens
for p 2 F [ C:

Proof. We recall that Cp starts at �1 from the stationary point N0 and must cross the
concavity line ‘þ at least once, see Proposition 3.8.
(i) If Cp reaches ‘þ1 for Xpðt0Þ ¼ a then clearly limt!þ1 CpðtÞ ¼ M0, whenever M0

belongs to 1Q (see Figure 1). If instead Xpðt0Þ > a, by taking into account Proposition
2.5 (3) (see again Figure 1) and that Cp cannot self intersect, we have that Cp is con-
tained in a bounded region from which it cannot leave. Thus, by Poincar�e-Bendixson
theorem the x-limit of Cp is either M0 or a periodic orbit h which contains M0 in its
interior. In the latter case Cp goes around h clockwisely according to the direction of
the vector field, intersecting ‘þ1 and ‘þ2 infinitely many times.
(ii) If Cp does not intersect ‘þ1 then it cannot turn back and cross the concavity line

‘þ another time because of the direction of the flow. Moreover, it can neither intersect
nor be tangent to the line ‘þ2 where _Z ¼ 0, since a C1 trajectory of (2.9) may only inter-
sect the line ‘þ2 transversely by passing from left to right, see Proposition 2.5 (3) and
Figure 1. This fact and item (i) conclude the final assertion. w

The next proposition is crucial to study the behavior of Cp for different values of p.

Proposition 4.2. Assume that p1 2 F [ C, and let Cp2 be any regular trajectory with
p2 6¼ p1. Then Cp1 and Cp2 can never intersect.

Proof. Both Cp1 and Cp2 have their a-limit at the stationary point N0 which is a saddle
point. By Proposition 2.7(2) the tangent unstable directions for Cp1 and Cp2 at N0 are
given, respectively, by

Z ¼ � p1kðN þ aÞ
N þ 2þ 2a

X and Z ¼ � p2kðN þ aÞ
N þ 2þ 2a

X: (4.1)

Assume by contradiction that Cp1ðtÞ ¼ ðX1ðtÞ,Z1ðtÞÞ and Cp2ðtÞ ¼ ðX2ðtÞ,Z2ðtÞÞ inter-
sect. Let us denote by Q the first intersection point. Since the dynamical system (2.9) is
autonomous, one may assume that the intersection happens at the same time for both
trajectories, i.e. Q ¼ ðX1ðt0Þ,Z1ðt0ÞÞ ¼ ðX2ðt0Þ,Z2ðt0ÞÞ:
To fix the ideas assume p1 < p2: Then, by (4.1), at least in a neighborhood of N0, Cp1

is above Cp2 because X ! 0þ (from the right). Moreover, from (2.9) and Lemma 4.1(ii)
we have

_X1ðt0Þ ¼ _X2ðt0Þ > 0, _Z2ðt0Þ < _Z1ðt0Þ < 0, (4.2)

since only _Z depends on p. In particular Cp1 remains above Cp2 after intersecting. Thus
the two trajectories must have the same tangent at the point Q, which is not possible by
(4.2). The case p2 < p1 is analogous. w
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From the previous results we immediately get that a fast decaying solution can exist
for only one value of p.

Corollary 4.3. There exists at most one p in the interval ðps, aþ , þ1Þ such that p 2 F :

Proof. Assume by contradiction that p1, p2 2 F for some ps, aþ < p1 < p2: This means that the
corresponding trajectories Cp1 and Cp2 both come out from N0 at �1 and converge to A0 at
þ1:We have already observed by (4.1) that Cp1 stays above Cp2 in a neighborhood of N0.
On the other hand, since A0 is a saddle point for p > ps, aþ , looking at the linear stable

directions given by Proposition 2.7(3), we have that Cp1 and Cp2 arrive at A0 with a
reversed order; i.e. Cp2 is above Cp1 : This is because X ! ð~Nþ � 2Þ from the left.
Hence, Cp1 and Cp2 should intersect, but this is not possible by Proposition 4.2. w

Another important consequence of Proposition 4.2 is the following result.

Corollary 4.4. Let p0 2 F , p0 > ps, aþ , then p 2 C for ps, aþ < p < p0, and p 2 P [ S
for p > p0:

Proof. If p0 2 F then Cp0 cannot intersect any other regular orbit Cp for p 6¼ p0, by
Proposition 4.2. This means that if Cp is above or below Cp0 in a neighborhood of N0,
it remains so for all time. Moreover, p 62 F for p 6¼ p0 by Corollary 4.3.
Thus, if p < p0, Cp lies above Cp0 and so cannot converge to M0 ¼ M0ðpÞ neither to

a periodic orbit around it, since the line ‘þ1 is below Cp0 : Notice that ‘þ1 does not
depend on p. So p 2 C:
On the other hand, if p > p0 then Cp lies below Cp0 and therefore cannot cross the

line L ¼ fðX,ZÞ : X ¼ ~Nþ � 2g in order to blow up in finite time. Hence p 62 C and so
must be in P [ S: w

4.2. The critical exponent

Our goal here is to define and characterize the critical exponent which will be proved
to have all properties listed in Theorem 1.3.
We start by showing that S and C contain the intervals ðpp, aþ , þ1Þ and ð1, pDÞ

respectively.

Proposition 4.5. If p > pp, aþ then p 2 S:
Proof. In case p > pp, aþ , by Proposition 2.10 we know that there are no periodic orbits
of the system (2.9), hence p 62 P: Moreover, M0 is a sink by Proposition 2.7. Let us
show that p 62 C [ F :

If p 2 C, then Cp crosses the line L :¼ fðX,ZÞ : X ¼ ~Nþ � 2g, and blows up in
finite time. Then the region D enclosed by Cp, L and the X, Z axes form a bounded
domain from which an orbit can only leave D forward in time through L. Thus, an
orbit arriving at M0 2 D cannot go anywhere in backward time, giving a contradiction
with Poincar�e-Bendixon theorem.
If instead p 2 F , then the bounded set whose boundary is given by Cp together with

the X and Z axes, is invariant and contains M0. Again the orbits arriving at M0 cannot
escape in backward time. Therefore p 2 S: w
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Proposition 4.6. For p 2 ð1,maxfps, aþ , paDgÞ it holds that p 2 C:

Proof. If 1 < p < ps, aþ , then A0 is a source and M0 62 1Q: In particular there are no peri-
odic orbits contained in 1Q. Hence p 62 F [ S [ P, so if maxfps, aþ , paDg ¼ ps, aþ the proof
is complete.
Assume ps, aþ < paD: Then, at p ¼ ps, aþ no periodic orbits are allowed by Proposition

2.10, whose proof also shows nonexistence of homoclinics at A0 ¼ M0 (i.e. orbits s with
xðsÞ ¼ aðsÞ ¼ A0). Therefore, if we had xðCpÞ ¼ A0 then the orbits which come out
from A0 could not go anywhere. Alternatively, see Proposition 4.9. In particu-
lar, ps, aþ 62 F [ S [ P:
Finally, if ps, aþ < p < paD, then M0 is a source by Proposition 2.7. The trajectory Cp

cannot be bounded, otherwise it could only converge to A0 as t ! þ1: As in the proof
of Proposition 4.5 this would produce a contradiction, because the region D enclosed
by Cp, and the X, Z axes would be an invariant set from which any trajectory issued
from M0 cannot exit. In any case Cp blows up in finite time, and so p 2 C: w

By Propositions 4.6 and 4.5 we have that the set C is nonnempty and bounded from
above. Therefore we define

p�aþ ¼ sup C (4.3)

and obviously p�aþ 2 ½maxfps, aþ , paDg, pp, aþ �: From now on we refer to p�aþ as the critical
exponent for the Pucci operator Mþ with weight jxja: The next result character-
izes p�aþ:

Theorem 4.7. The number p�aþ defined in (4.3) belongs to F . Thus it is the only exponent
in the equation (Pþ) for which there exists a unique, up to scaling, fast decaying solution.
Moreover, if k < K, then p�aþ 6¼ paD, p�aþ 6¼ pp, aþ , and (1.7) holds. Further, P ¼

ðp�aþ, pp, aþ �, and for any p 2 P the corresponding trajectory Cp crosses the concavity line
‘þ infinitely many times.

Proof. First, p�aþ 62 C i.e. C does not have a maximum because C is open, see Remark
3.10. By Proposition 2.7 we know that M0 is a source for every p 2 ½ paD, pp, aþ Þ; and M0

is a center at p ¼ pp, aþ : Whence p 62 S for all p 2 ½ paD, pp, aþ �, and in particular p�aþ 62 S:
On the other side, if p�aþ 2 P then Cp�aþ would cross the line ‘þ1 by Lemma 4.1(ii). Thus,
by continuity with respect to p, the trajectory Cp should also cross ‘þ1 for p close to
p�aþ: But every trajectory Cp for p 2 C does not cross ‘þ1 , by Lemma 4.1.
Therefore p�aþ 62 P:
Hence p�aþ belongs to F and the trajectory Cp�aþ together with the X and Z axes

enclose a bounded invariant region D which contains M0 in its interior. Since M0 is a
source for p 2 ½paD, pp, aþ Þ, and a center for p ¼ pp, aþ , the set D contains periodic orbits
which cross the line ‘þ twice. Indeed, the flow is subjected to Poincar�e-Bendixson the-
orem, see Figure 7. This implies that p�aþ can be neither paD nor pp, aþ if k < K, by
Proposition 2.10. In fact, at paD there are no periodic orbits at all, while at pp, a6 no peri-
odic orbits cross ‘þ twice.
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Note that we obtain (1.7) as long as paD � ps, aþ : If paD < ps, aþ we still need to prove that
p�aþ 6¼ ps, aþ : For instance this follows by well known Liouville results in [3].
Alternatively, a proof of this fact is accomplished in Proposition 4.9 which give nonexis-
tence of entire positive solutions for p ¼ ps, aþ :

Next, by Corollary 4.4 we get ðp�aþ, pp, aþ � ¼ P, since we have already observed that
½paD, pp, aþ Þ \ S ¼ ;: By the definition of P, the corresponding trajectory Cp goes around
a periodic orbit h. By Proposition 2.10, if p < pp, aþ then h must necessarily intersect
both Rþ

k and R�
k , while for p ¼ pp, aþ the maximal periodic orbit h0 does not inter-

sect Rþ
k :

We claim that h0 is tangent to ‘þ at the point P ¼ ð1þa
p , kðN � 1ÞÞ 2 ‘þ \ ‘þ2 when

p ¼ pp, aþ : If this was not the case, then C ¼ Cpp, aþ
would belong to the region R�

k for all
t 2 I ¼ ½T, þ1Þ for some T> 0. Let us consider the restriction of C to I, namely s.
Since s is a part of a trajectory for the Laplacian operator in dimension ~Nþ, we may
follow s backward in time as a trajectory of the respective Laplacian-like dynamical sys-
tem. However, the characterization of pp, aþ as the critical exponent there immediately
contradicts the existence of s. Indeed, at the critical exponent only periodic trajectories
are admissible around M0, see for instance the proof of Proposition 6.1.
Thus, in both cases Cp for p 2 P must cross the concavity line ‘þ infinitely

many times. w

Remark 4.8 (Cp ¼ !p). The critical exponent p�aþ is the unique value of p for which Cp

and !p coincide, see Proposition 2.8.

Proof of Theorem 1.3. One establishes the conclusion of Theorem 1.3 by combining
(4.3), Corollary 4.4, Propositions 4.5 and 4.6, together with Theorem 4.7.

4.3. Singular and exterior domain solutions

Here we show how the analysis of the regular trajectories performed in the previous
sections almost completely determines the behavior of the other orbits of the dynamical
system (2.9).
Let us start by considering singular solutions. When p � ps, aþ we saw in Proposition

4.6 that p 2 C: On the other hand, there is not a unique trajectory arriving at the sta-
tionary point A0 as in Proposition 2.8. Indeed, for p < ps, aþ , A0 is a source and M0

belongs to the fourth quadrant, see Proposition 2.7. The case p ¼ ps, aþ is a bit more
involved. The point A0 ¼ M0 is not a hyperbolic point, and we complement its local
study in what follows.

Proposition 4.9. At p ¼ ps, aþ , there exist infinitely many unstable orbits issued from M0

¼ A0 below the line ‘þ1 . They move clockwisely and blow up in finite forward time.

Proof. At p ¼ ps, aþ the eigenvalues of A0 ¼ M0 are ð~Nþ � 2Þ and 0. In particular, A0 is
not hyperbolic and Proposition 2.2 no longer applies. The linear direction correspond-
ing to ð~Nþ � 2Þ lies on the X axis, while the one corresponding to 0 coincides with the
line ‘þ1 : However, through the flow analysis in Proposition 2.5 (3) (see Figure 2) it is
easy to conclude that M0 has infinitely many repulsive directions between these two
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lines. In this case, the orbits are issued from A0, with respective tangent lines between
the X axis and the line ‘þ1 :
To see this let us first observe that ‘þ1 and ‘þ2 intersect at A0. Then note that _X > 0

in the region above ‘þ1 : On the other hand, an orbit coming out from A0 needs to
increase its Z values, so staying below ‘þ2 : If it started between ‘þ1 and ‘þ2 , then it
should initially decrease its X values, which gives a contradiction. Hence the only way
to come out from A0 is below the line ‘þ1 :
We have already deduced in the proof of Proposition 4.6 that periodic orbits at ps, aþ

are not admissible if ps, aþ < paD by Dulac’s criterion (Proposition 2.10). However, this is
true even if ps, a � paD by the flow direction, see Figure 2. Indeed, the region _X , _Z < 0
does not intersect 1Q. By the same reason, the trajectories near M0 ¼ A0 move clock-
wisely, by intersecting both lines ‘þ1 and ‘þ2 exactly once.
To conclude we infer that the behavior of the flow on the lines ‘þ1 and ‘þ2 does not

allow any orbit to reach A0 ¼ M0 in forward time. Assume on the contrary that there
exists a homoclinic orbit s with xðsÞ ¼ aðsÞ ¼ A0: In this case s creates a bounded
invariant region D such that any orbit inside D is also homoclinic, by Poincar�e-
Bendixson theorem. Fix a point Q0 2 R�

k \ ‘þ2 \ D, and consider the unique trajectory
s0 passing through this point at time t¼ 0. By construction, s0 lies entirely in the region
R�
k : However, the proof of Proposition 2.10(ii), applied to the region D0 enclosed by the

trajectory s0, yields a contradiction with the fact that ps, aþ 6¼ pp, aþ : w

It is interesting to observe that when p � ps, aþ these results give a simple proof of
some Liouville theorems in [3], concerning radial solutions. The same holds for M�,
as we shall see in Section 5.

Remark 4.10. For all p > ps, aþ , as already mentioned in Section 1, there exists a singular
trivial solution given by up ¼ Cp r�a, Cp as in (3.8). This corresponds to the stationary
trajectory Rp � M0: Moreover, any periodic orbit of the dynamical system (2.9) which
intersects the concavity line ‘þ twice corresponds to a classical pseudo–blowing up solu-
tion for the problem (Pþ). Instead, in the case p ¼ pp, aþ , periodic orbits around the cen-
ter configuration of M0 lying entirely in the region R�

k (see Proposition 6.1) cannot
correspond to C2 solutions when r> 0, since they oscillate between the two functions
c1r�a and c2r�a indefinitely for some 0 < c1 < c2, without never changing convexity.
We stress that these two types of solutions originated from periodic orbits do exist in
the case of the Laplacian in dimensions N and ~Nþ, for the critical exponents paD and
pp, aþ respectively, see Theorem 6.1(iii) in [19].

Lemma 4.11. If p > p�aþ then !p (see Proposition 2.8) blows up in finite backward time.
In particular, !p does not correspond to a singular solution for any p > p�aþ:

Proof. If p 2 ðp�aþ, pp, aþ � we have p 2 P, and there exists a maximal periodic orbit hp
around M0 such that xðCpÞ ¼ hp: If að!pÞ ¼ hp, then Cp and !p would cross some-
where. Indeed, this comes from the fact that the stable linear tangent direction at A0 is
above the line ‘þ2 (see Figure 1), and the vector field on ‘þ2 points down for X > a, by
Proposition 2.5 (3). Obviously, crossings are not admissible by uniqueness of the ODE
problem. On the other side, for p > pp, aþ , M0 is a sink and periodic orbits are not
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allowed by Proposition 2.10. Thus, in both cases, using Proposition 2.11, we get that !p

blows up backward in finite time.

Proof of Theorem 1.7. (i) First we recall that for p 2 ð1, ps, aþ � there are no periodic orbits,
by Proposition 2.10 and the proof of Proposition 4.9. Moreover, we know by Corollary
4.4 and Theorem 4.7 that the regular trajectory Cp blows up forward in finite time.
Hence, Cp together with the line L ¼ fðX,ZÞ : X ¼ ~Nþ � 2g and the X, Z axes, create a
bounded region D from which an orbit of (2.9) may only leave through L.
Thus, if p < ps, aþ , any trajectory issued from A0 (which is a source by Proposition

2.7) crosses the line L and then blows up in finite time. If p ¼ ps, aþ the same holds, by
Proposition 4.9. In both cases there are infinitely many such trajectories which corres-
pond to singular solutions in an interval ð0,RÞ, R> 0, see Proposition 3.1. They are
ð~Nþ � 2Þ–blowing up, cf. (3.7) with the x-limit exchanged by a-limit. Therefore there
cannot be singular solutions in R

N n f0g for this range of p.
(ii)-(iii) For p 2 ðps, aþ , p�aþÞ, as in (i), the trajectory Cp, the line L and the X, Z axes

determine a bounded region D from which an orbit may only leave through L. Recall
that for these values of p, A0 is a saddle point and M0 is a source, see Proposition 2.7.
Thus, the unique orbit !p arriving at A0 (see Proposition 2.8) can either converge to
M0 or to a periodic orbit around M0, backward in time. If p � paD there are no periodic
orbits (Proposition 2.10), so !p corresponds to a–blowing up solution of (Pþ); in par-
ticular this is the case for each p 2 ðps, aþ , paD� if ps, aþ � paD:
If in turn p 2 ðpaD, p�aþÞ there could be periodic orbits around M0, so that !p corre-

sponds to either a pseudo–blowing up or a a–blowing up solution of (Pþ).
All the other orbits coming out from M0 or from a periodic orbit h around M0

(whenever such h exists) must necessarily leave D by crossing the line L in forward
time, and therefore blow up in finite time. This gives infinitely many singular solutions
of (Pþ); they are either a–blowing up or pseudo–blowing up in intervals ð0,RÞ, R> 0.
If h exists, we have in addition infinitely many orbits s issued from M0 and converg-

ing to a minimal periodic orbit (which is h if the system has only one limit cycle). Each
s crosses infinitely many times the line ‘þ when t ! þ1, and so corresponds to a
a–blowing up solution of (Pþ) with pseudo-slow decay at þ1 as in (3.9). On the other
hand, a periodic orbit itself in this range of p’s crosses ‘þ twice, so corresponds to a
pseudo–blowing up solution to (Pþ), see Remark 4.10; they are pseudo-slow decaying
and change concavity infinitely many times both as r ! 0 and r ! þ1:

(iv) When p ¼ p�aþ, the regular trajectory Cp�aþ together with the X and Z axes delimit
an invariant set D containing M0. Since M0 is a source, we have already seen that there
exists a periodic orbit around M0; say h is the minimal one. We then infer that there
exist infinitely many periodic orbits in the region D n intðhÞ, at least in a neighborhood
of @D, see Figure 7. Indeed, the existence of a maximal periodic orbit h0 inside D
would create a bounded region D n intðh0Þ in which the orbits issued from h0 could not
go anywhere, thus violating Poincar�e-Bendixson theorem.
(v) When p 2 ðp�aþ, pp, aþ Þ, we have that M0 is a source and there exists a minimal

periodic orbit h around M0. In this case, h crosses the line ‘þ twice since p < pp, aþ , see
Proposition 2.10. Thus, all trajectories issued from M0 converge to h in forward time.
These and the periodic orbits give us singular solutions as in the last part of the proof
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of (iii). Finally, note that no singular solutions converge to A0 by Lemma 4.11, so the
assertion holds.
(vi) By Propositions 2.7, 2.10, and 6.1 we have that for p ¼ pp, aþ the stationary point

M0 is a center while for p > pp, aþ M0 is a sink without periodic orbits. These and the fact
that A0 is a saddle point, whose unstable manifold is the X axis, imply that no singular
nontrivial solutions are admissible. w

Finally we consider the case of exterior domain solutions, proving Theorem 1.9 for
Mþ: The proof for M� turns out to be the same.
In Section 3.3 we have observed that a solution u of (3.10) necessarily satisfies (3.11).

Hence the corresponding trajectory Np blows up backward in finite time, see
Proposition 3.11. Thus, to prove Theorem 1.9 it is enough to show that for p 2 ð1, p�aþ�
there are no orbits of the dynamical system (2.9) defined in ðT, þ1Þ for some T> 0
with this kind of blow-up behavior.

Proof of Theorem 1.9. By the definition and properties of the critical exponent in
Sections 4.1, 4.2, we know that p 2 C for p 2 ð1, p�aþÞ, while p�aþ 2 F : In the first case
the regular trajectory Cp together with the X and Z axes and the line L ¼ fðX,ZÞ : X ¼
~Nþ � 2g bound a region D from which any trajectory can only escape in forward time
through L. In the second case Cp and the X and Z axes enclose a bounded invariant
region D. In both cases the closure of D contains the points M0 (for p � ps, aþ ) and A0.
By contradiction assume that a radial solution of (1.9) exists. Then, by Proposition

3.11 the corresponding trajectory Np is defined in an interval ðtd, þ1� for some td >
�1, and blows at td satisfying (3.12). Since it does not blow up in forward time, by
Proposition 2.11 (see (2.25)) and Poincar�e-Bendixson theorem the x-limit xðNpÞ is
either M0 (if p > ps, aþ ), or A0, or a periodic orbit around M0. In any case Np should
cross Cp which is not possible.

Remark 4.12. It is proved in [16], when a¼ 0, that for every p 2 ðp�aþ, þ1Þ both a
fast decaying and infinitely many slow or pseudo-slow decaying solutions of (1.9) exist.
In terms of our quadratic system (2.9) this could be proved using Lemma 4.11 for the
fast decaying solutions, or studying the trajectories arriving at M0 or at a periodic orbit
for the slow or pseudo-slow decaying solutions. However, since the proof of [16] easily
extends to the case a 6¼ 0, we prefer to omit the details.

Note that with the analysis of the trajectories blowing up backward in finite time one
can only get the existence of a solution u satisfying (3.11) at some radius l > 0: Then
the solution should be continued (in 3Q) to reach a positive radius q0 > 1 where
uðq0Þ ¼ 0, so to verify the Dirichlet problem in the exterior of a ball. This is possible
by using a shooting argument from l, as done for instance in [16, proof of
Theorem 6.1].

5. The M2 case

In this section we analyze the complementary case for the operator M�: Recall its
respective dimension-like parameter from (1.5) satisfying ~N� � N: The main difference
with the case of Mþ is the reverse ordering of the exponents paD and pp, a� from (1.6),
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with ps, a� � pp, a� � paD: Also, if k < K then the stationary point M0 is a sink in the inter-
val ðpp, a� , paDÞ, see Proposition 2.7 (4).
We start by pointing out that all properties stated for Mþ in section 4.1 also hold

for M�: In particular, one gets that the set F possesses at most one point, which splits
the interval ð1, þ1Þ into two components C and P [ S accordingly to Corollary 4.4.
Moreover, each of these components is nonempty, since one verifies, as in Propositions
4.5 and 4.6, the following result.

Proposition 5.1. If p > paD then p 2 S, and for p < pp, a� it holds that p 2 C:
This allows to define, as in Section 4, the critical exponent p�a� as follows

p�a� ¼ sup C:
Then, by Proposition 5.1, p�a� 2 ½ pp, a� , paD � and, as for Mþ, we call it the critical
exponent for M�: Next we show that p�a� 2 F and p�a� is in the interior of the previ-
ous interval.

Theorem 5.2. The critical exponent p�a� belongs to F . Thus it is the only exponent in the
equation (P�) for which there exists a unique, up to scaling, fast decaying solution.

Moreover, if k < K, then (1.8) holds and there exists e > 0 such
that ðpaD � e, þ1Þ 
 S:
Proof. Obviously p�a� 62 C because C is open, see Remark 3.10. Moreover, p�a� cannot
belong to P; otherwise Cp�a� should cross the line ‘þ1 by Lemma 4.1(ii), while Cp for p 2
C never does it.
Finally we show that p�a� 62 S: In Cp�a� deed, if this was the case then p�a� > pp, a�

because M0 is a center at pp, a� , see Proposition 6.1. Hence M0 ¼ M0ðpÞ is a sink for
every p in a neighborhood Ie ¼ ðp�a� � e, p�a� þ eÞ for some e > 0, by Proposition 2.7
(4). Then there exists a maximal ball Bgp centered at M0ðpÞ with the property that any
trajectory sp entering in Bgp satisfies xðspÞ ¼ M0ðpÞ, see [15]. Since we are assuming
that p�a� 2 S then xðCp�a�Þ ¼ M0ðp�a�Þ: By the continuity of the dynamical system with
respect to the parameter p, also xðCpÞ ¼ M0ðpÞ for p 2 Ie (up to diminishing e). But
this contradicts the definition of p�a�, since Cq blows up in finite time when q 2 C:
Hence, p�a� 2 F : The proof that p�a� cannot be pp, a� nor paD is the same as the one for

Mþ, see Theorem 4.7. It relies on Proposition 2.10 which states, in particular, that
there are no periodic orbits of (2.11) for paD: This also proves that the regular trajectory
CpaD

converges to M0 ¼ M0ðpaDÞ, so that paD 2 S: Next, a continuity argument as in the
first part of this proof shows that p 2 ðpaD � e, paDÞ also belongs to S for sufficiently
small e > 0: Consequently, for such p’s it does not exist a periodic orbit around M0,
and the proof is complete. w

Proof of Theorem 1.4. All previous results obtained for M� prove the theorem. In par-
ticular, the statements (iii)–(iv) follow from Theorem 5.2. w

We finish the section with the proof of Theorem 1.8 about singular solutions.

Proof of Theorem 1.8. It is enough to prove (iii) and (v), since the proof of the other
items are the same as for Theorem 1.7. Let us analyze the whole interval p 2 ðpp, a� , paD�:
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Recall that M0 is a sink whenever p > pp, a� : Therefore, there is no trajectory coming
out from M0 in the range p 2 ðpp, a� , paD�: In particular, að!pÞ is never M0 in this range
of p.
For p 2 ðpp, a� , p�a�Þ we have p 2 C: In this case the regular trajectory Cp and the line

L ¼ fðX,ZÞ : X ¼ ~N� � 2g, together with the X and Z axes, create a bounded region
from which any orbit may only leave forward in time through L; recall that the flow is
going out on L, see Figure 1. Therefore, Poincar�e-Bendixson theorem implies the exist-
ence of a periodic orbit hp around M0 such that að!pÞ ¼ hp: This immediately deter-
mines four types of nontrivial positive pseudo–blowing up solutions of (1.1)–(1.2) (in
the case of M�):

(1) a fast decaying solution corresponding to the trajectory !p;
(2) solutions with slow decay, whose corresponding orbits lie inside a minimal

periodic orbit h0 around M0; here h0 crosses ‘� twice due to Proposition 2.10;
(3) solutions of the Dirichlet problem in BR n f0g, such that the corresponding

orbits are issued from hp and blow up in finite forward time;
(4) pseudo-slow decaying solutions, which correspond to the periodic orbits.

All of these singular solutions change concavity infinitely many times in a neighbor-
hood of r¼ 0. Further, there are infinitely many solutions of types (2) and (3); see
Figure 8. Thus, (iii) holds.
To prove (v), let us recall that at paD no periodic orbits are admissible by Proposition

2.10. Also, by Theorem 5.2 there exists e > 0 such that p 2 S for all p 2 ðpD � e, þ1Þ:
Now, arguing as in Lemma 4.11 one sees that !p blows up in finite backward time for
p > p�a�, so (v) is proved.

Remark 5.3. In the case of M� the existence of singular solutions in the range
ðp�a�, paD � eÞ is not guaranteed, though solutions as in the cases (2)–(4) in the proof
above are admissible.

Concerning the exterior domain solutions, we have already observed in Section 4.3
that the proof of Theorem 1.9 is the same for both operators M6:
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Appendix

A.1. Local study

In this section we detail the proof of Proposition 2.7. The linearization for Mþ, ~N ¼ ~Nþ, is

LðX,ZÞ ¼ @Xfþ @Zfþ

@Xgþ @Zgþ

� �
¼

2X � ðN � 2Þ þ Z
k

X
k

�pZ N þ a� pX � 2Z
k

0
BB@

1
CCA in Rþ

k ,

LðX,ZÞ ¼ @Xf� @Zf�

@Xg� @Zg�

� �
¼

2X � ð~N � 2Þ þ Z
K

X
K

�pZ ~N þ a� pX � 2Z
K

0
BB@

1
CCA in R�

k :

For instance, at N0 ¼ ð0, kðN þ aÞÞ and A0 ¼ ð~N � 2, 0Þ one has

LðN0Þ ¼ 2þ a 0
�pkðN þ aÞ �N � a

� �
, LðA0Þ ¼ ~N � 2

~N � 2
K

0 ~N þ a� pð~N � 2Þ

0
@

1
A:

The eigenvalues for N0 are 2 and �N � a, while for A0 are r1 ¼ ~N6 � 2 and r2 ¼ ~N6 þ a�
pð~N � 2Þ: Recall that M0 ¼ ðX0,Z0Þ, where X0 ¼ a ¼ aþ1

p�1 and Z0 ¼ Kð~N � paþ aÞ ¼ Kð~N�
2� aÞ,

LðM0Þ ¼ a
a
K

�pKð~N � paþ aÞ �ð~N � paþ aÞ

0
@

1
A:

In order to analyze the eigenvalues of LðM0Þ one needs to look at the roots of the equation

r2 þ r
Z0

K
� X0

� �
þ X0ðp� 1ÞZ0

K
¼ 0:

They are given by 2r6 ¼ X0 � Z0
K 6

ffiffiffiffi
D

p
, where D ¼ ðZ0

K � X0Þ2 � 4ð2þ aÞ Z0
K :

Note that X0 ¼ Z0
K is equivalent to a ¼ ~N�2

2 , i.e. p ¼ pp, aþ : In this case Reðr6Þ ¼ 0 and the
roots are purely imaginary. Moreover, X0 >

Z0
K () p < pp, aþ , and X0 <

Z0
K () p > pp, aþ :

If Imðr6Þ 6¼ 0, this already determines the sign of Reðr6Þ: Assume then Imðr6Þ ¼ 0 i.e.
r6 2 R: Observe that D < ðX0 � Z0

KÞ2 as far as M0 stays in 1Q. This yields r� > 0 for ps, aþ < p <
pp, aþ (so r6 > 0 and M0 is a source); while rþ < 0 if p > pp, aþ (so r6 < 0 and M0 is a sink).

It is possible to prove that M0 is a saddle point in the fourth quadrant when 1 < p < ps, aþ :
However, this would correspond to solutions of the absorption problem Mþu� up ¼ 0: See [11]
in the case of the Laplacian operator.

A.2. Energy analysis

Let us consider the energy functional E of the operator Mþ in the region R�
k , which is a slight

variation of the energy of the Laplacian operator in dimension ~Nþ treated in [11],

Eðt,X,ZÞ ¼ etð~Nþ�2�2aÞ XðXZÞa X
2
þ Z
Kðpþ 1Þ �

~Nþ
pþ 1

( )
in R�

k [ ‘þ

understood as natural extension up to ‘þ: In terms of u, the energy functional E for Mþ reads
as
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EðrÞ ¼ Eðr, uÞ ¼ r
~Nþ ðu0Þ2

2
þ 1
K
raupþ1

pþ 1

 !
þ

~Nþ
pþ 1

uu0r ~Nþ�1 if u00 � 0:

Of course these two expressions are equivalent after the transformation (2.4). Moreover,

E0ðrÞ ¼ r
~Nþþa�1ðu0Þ2

~Nþ þ a
pþ 1

�
~Nþ � 2

2

 !
if u00 � 0,

and so the following monotonicity holds

_E < 0 if p > pp, aþ , _E ¼ 0 if p ¼ pp, aþ , _E > 0 if p < pp, aþ in R�
k [ ‘þ: (A.1)

Now we investigate the precise behavior of the trajectories close to M0 at p ¼ pp6: Here, k � K
and the result gives an alternative proof in the case of the Laplacian operator k ¼ K ¼ 1 in [19].

Proposition 6.1. M0 is a center when p ¼ pp, a6 :

Proof. We present the proof for Mþ; for M� it is the same in light of Section 5. Let s ¼
ðX,ZÞ be an orbit contained in R�

k [ ‘þ: Let us show that s is periodic. To simplify notation let
a¼ 0, ~N ¼ ~Nþ: The energy of s on the line ‘þ2 is given by

Ej
‘þ
2
\R�

k

¼ E�j
‘þ
2

ðXÞ ¼ �Ka ~N Xaþ2 ð~N � pXÞa at p ¼ ppþ ¼ pp, 0þ :

Since the energy is a constant function of t when p ¼ ppþ with aþ2
a ¼ p, then

ð~N � pXÞXp � c > 0 on ‘þ2 : (A.2)

Now we may translate the information from (A.2) in terms of the function h defined as

hðXÞ ¼ ð~N � pXÞXp, for X 2 1=p, ~N=p
� �

where p ¼ ppþ,

for which (A.2) represents its level curves. The domain ½ 1=p, ~N=p � entails the behavior of h in
the respective interval delimited by ‘þ2 on R�

k , up to the boundary.
Let us analyze the function h; it is positive at 1=p, and equals to zero at ~N=p: Since

h0ðXÞ ¼ pXp
~N
X
� 1� p

� �
, with

~N
1þ p

¼
~N � 2
2

¼ a, p ¼ ppþ,

then h is increasing when X < a, decreasing for X > a, and it assumes the positive maximum
value hðaÞ ¼ apþ1 :¼ c1 at X ¼ a: Moreover, note that hð1=pÞ ¼ ð~N � 1Þð1=pÞpþ :¼ c1:

Here h is a polynomial function which prescribes the value of the energy on ‘þ2 \ R�
k , namely

h ¼ �E1=a � c: For any k 2 N with ck 2 ½ c1, c1Þ, the line h � ck intersects the graph of h at
exactly two points Xk

1,X
k
2 such that Xk

1 < a < Xk
2: Also, they satisfy

ck ¼ hðXk
1Þ ¼ hðXk

2Þ ! hðaÞ ¼ c1 when Xk
i ! a as k ! þ1, i ¼ 1, 2: (A.3)

Furthermore, the line h ¼ c1 intersects the graph of h only once at the point X ¼ a:
In our phase plane context, this means that any trajectory s contained in R�

k [ ‘þ bisects the
line ‘þ2 at exactly two points P1 ¼ ðX1,Z1Þ,P2 ¼ ðX2,Z2Þ, with X1 < a,X2 > a: By Proposition
2.5 (3) the flow moves horizontally on ‘þ2 , namely to the right for X < a, and to the let
when X > a:

Observe that ‘þ2 is a transversal section to the flow, on which any trajectory approaching M0

must pass across, either in the past or in the future. Hence, the trajectory s has to be closed, by
moving clockwisely. Since this dynamics is realized for any trajectory contained on R�

k [ ‘þ, and
(A.3) holds, in particular any trajectory close to M0 is periodic, so M0 is a center. w
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