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Abstract

In the loop O(n) model a collection of mutually-disjoint self-avoiding loops is drawn at
random on a finite domain of a lattice with probability proportional to

λ# edgesn# loops,

where λ, n ∈ [0,∞). Let µ be the connective constant of the lattice and, for any
n ∈ [0,∞), let λc(n) be the largest value of λ such that the loop length admits
uniformly bounded exponential moments. It is not difficult to prove that λc(n) = 1/µ

when n = 0 (in this case the model corresponds to the self-avoiding walk) and that for
any n ≥ 0, λc(n) ≥ 1/µ. In this note we prove that,

λc(n) > 1/µ ∀n > 0,

λc(n) ≥ 1/µ + c0 n + O(n2) as n→ 0,

on Zd, with d ≥ 2, and on the hexagonal lattice, where c0 > 0. This means that, when n
is positive (even arbitrarily small), as a consequence of the mutual repulsion between
the loops, a phase transition can only occur at a strictly larger critical threshold than
in the self-avoiding walk.
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1 Introduction

The loop O(n) model is defined as follows. Consider an infinite undirected graph
G = (V,E) of bounded degree. For any finite sub-graph G = (VG, EG) ⊂ G, let ΩG be the
set of spanning sub-graphs of G such that every vertex has degree either zero or two.
It follows from this definition that every connected component of the graph κ ∈ ΩG is
either an isolated vertex or a loop. For any κ, let oG(κ) be the total number of edges of κ
and let LG(κ) be the total number of loops of κ. Let n, λ ∈ [0,∞) be two parameters. The
measure of the loop O(n) model is a probability measure on ΩG which assigns weights,

PG,λ,n(κ) :=
λoG(κ) nLG(κ)

Zλ,n(G)
, κ ∈ ΩG, (1.1)
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Shifted critical threshold in the loop O(n) model

where Zλ,n(G) is a normalizing constant, to which we will refer as partition function (we
adopt the convention that 00 = 1).

The loop O(n) model was introduced on the hexagonal lattice as a graphical rep-
resentation of the spin O(n) model [4]. The central question concerning this model is
describing the structure and the size of the loops in the limit of large graphs. This model
presents a mathematically interesting and rich behaviour, which depends on the value
of the parameters and on the structure of the underlying graph. It can be viewed as a
model for random polymers interacting with a random environment through a ‘rigid’
potential. The study of random polymers in random environment is of great physical and
mathematical interest (see for example [14] for a review). Another reason to consider
this model is that it interpolates between several paradigmatic statistical mechanics
models, to which it reduces for specific values of n, and, thus, allows to compare them.
More precisely, the model reduces to self-avoiding walk when n = 0, the Ising model
when n = 1, critical percolation when n = λ = 1, the dimer model when n = 1 and λ =∞,
proper 4-coloring when n = 2 and λ =∞, integer-valued (n = 2) and tree-valued (integer
n ≥ 3) Lipschitz functions and the hard hexagon model (n =∞) on the hexagonal lattice.
We refer to [20] for an extensive discussion. Some of these relations are also valid on
Zd for a variant of this model where the loops are allowed to overlap and the number
of overlaps receives a weight which depends on n [3]. Furthermore, when n = 2, the
loop O(n) model is related to nearest-neighbour random lattice permutations [1, 2, 10],
whose study stems from physics, where they are related to the theory of Bose-Einstein
condensation [9], and when n = 2 and λ = ∞, it is related to the double-dimer model
(the only difference is that in random permutations and in the double-dimer model also
‘loops’ of length two are allowed).

We now briefly review the rigorous results on the loop O(n) model. It was proved
in [6] that, when G is the hexagonal lattice, H, and n is large enough, the loops are
exponentially small for any value of λ ∈ (0,∞) and that at least two distinct regimes
exist: a disordered phase in which each vertex is unlikely to be surrounded by any loops
(when nλ6 is small), and an ordered phase which is a small perturbation of one of the
three ground states (when nλ6 is large). It was proved in [7] that, when G = H, n ∈ [1, 2],

and λ = 1/
√

2 +
√

2− n (the so called Nienhuis’ critical point), the loop O(n) model
exhibits macroscopic loops. When n = 0, the loop O(n) model corresponds to the single
non-interacting random self-avoiding polygon (a self-avoiding walk which returns to the
starting vertex). To see this formally, one could slightly modify the definition (1.1) and let
LG(κ) be the number of loops in κ \ Po(κ), with Po(κ) being the connected component of
κ containing the origin, o. This way, when n = 0, only the loop containing the origin can
be observed and it gets a weight proportional to λ|Po|. It is well known that in this case
the length of Po admits uniformly bounded exponential moments when λ ∈ (0, 1/µ), with
µ = µ(G) being the so-called connective constant of G (see (2.1) for a definition). The

exact value of this constant is known on the hexagonal lattice [8], µ(H) = 1/
√

2 +
√

2.
Moreover, it was proved in [5] (in a slightly different setting) that P0 is weakly space-
filling when λ ∈ (1/µ,∞). A variant of this model, (1.1), where the loops are allowed to
intersect and the number of overlaps is weighted throught some vertex-factors which
depend on n has been considered in [3]. There, it was proved that, on the torus of Zd, for
any d ≥ 2, if n is a large enough integer, the loops are exponentially small for any value
of λ ∈ (0,∞), and that, when d = 2, for any positive integer n a break of translational
symmetry occurs at a non-trivial value of λ. However, such results do not apply to the
model under consideration in this paper, since they require that the vertex-factors are
bounded from below and from above by positive constants uniformly in n.

Thus, only part of the conjectured phase diagram of the loop O(n) model has been
rigorously proved. This note proves a new fact concerning the phase diagram and the
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loop structure of the loop O(n) model in H and in Zd, d ≥ 2. Let λc(n) be the supremum
among all values of λ such that the loops are exponentially small (see (1.2) for a formal
definition). In this paper we prove that, whenever n > 0, λc(n) > λc(0) = 1/µ(G). This
means that, as a result of the mutual repulsion between the loops, which is present
only when n > 0, it is more difficult for the loops to be long and, thus, the regime of
macroscopic loops (if it exists) can only occur above a critical threshold which is strictly
larger than in the case of no interaction. This is in accordance with the conjecture which
was formulated by Nienhuis [17, 18, 19], namely that on the hexagonal lattice the critical
threshold is strictly increasing with n when n is in [0, 2] and, more precisely, it equals

1/
√

2 +
√

2− n. A similar fact was proved in [1], where it was proved that the critical
threshold of random lattice permutations is strictly larger than 1/µ(G), but the proof
presented there is not valid for the model under consideration in this paper, since it
essentially requires the existence of ‘loops’ of length two. Moreover, we provide a bound
on the speed of convergence of λc(n) to 1/µ as n goes to zero, λc(n) ≥ 1/µ+ c0n+O(n2),
where c0 > 0, corroborating another qualitative feature of the predicted phase diagram.

For any κ ∈ ΩG, and x ∈ VG, let Px(κ) be the subgraph of κ corresponding to the
connected component containing x. Let |Px(κ)| be the number of edges of Px(κ). If
no edge of κ has x as end-point, then the graph Px(κ) contains only the vertex x and
|Px(κ)| = 0. We will not deal with arbitrary graphs G ⊂ G, but with domains. A graph
G = (VG, EG) ⊂ G = (V,E) is a said to be a domain if its edge set is EG = {{x, y} ∈ E :

x, y ∈ VG}. For any δ > 0, n ∈ (0,∞) and λ ∈ [0,∞), define

L(δ, λ, n) := sup
G⊂G:

G finite domain

sup
x∈V (G)

EG,λ,n
(
eδ|Px|

)
,

where EG,λ,n denotes the expectation with respect to PG,λ,n. If for some δ > 0 the previ-
ous quantity is finite, the loop length admits uniformly bounded exponential moments.
For any n ∈ (0,∞), we define the critical threshold,

λc(n) := sup
{
λ ∈ [0,∞) : L(δ, λ, n) <∞ for some positive δ

}
. (1.2)

Theorem 1.1. Let G be Zd, with d ≥ 2, or the hexagonal lattice, H, and let µ = µ(G) be
the connective constant. We have that,

λc(n) > 1/µ, ∀n ∈ (0,∞), (1.3)

λc(n) ≥ 1/µ+ c0 n+O(n2) as n→ 0, (1.4)

where c0 = c0(G) ∈ (0,∞) is a constant which depends only on G.

Our proof is very simple and uses two ingredients. The first ingredient is the cele-
brated Kesten’s pattern theorem, Theorem 2.3 below, which is used to prove that the
“typical” loop presents a huge number of many little ‘open loops’ (a self-avoiding walk
with one missing edge to make it a closed loop). The second ingredient is a multi-
valued map principle to show that it is expensive for the system not to close these
many ’open loops’. This leads to the upper bound PG,λ,n(Px = P̃) ≤ λ|P̃|c|P̃| for some
c = (λ, n) ∈ (0, 1), which holds uniformly in P̃, in G and x ∈ VG. The enhancement
λc(n) > 1/µ follows from the fact that c < 1.

Our result leads to the following natural questions. This paper proves that λc(n) >

λc(0) when n > 0. Is λc(n) a strictly increasing function of n? The critical threshold
of the loop O(n) model on the hexagonal lattice has been conjectured to satisfy such a
strict monotonicity property and it seems likely that the same is true also on Zd, d ≥ 2.
Furthermore, can one prove that λc(n) <∞ on Zd, d ≥ 3, for some values of n ∈ (0,∞)?
This should be the case, at least for small values of n.

This note is organized as follows. In Section 2 we present all the definitions and state
Kesten’s pattern theorem. In Section 3 we present the proof of Theorem 1.1.
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2 Kesten’s pattern theorem

In this section we introduce the definitions which are necessary to present the proof
of Theorem 1.1 and we state Kesten’s pattern theorem. All definitions and statements
refer to Zd, with d ≥ 2. Their generalization to the hexagonal lattice, H, is simple.

A self-avoiding walk ω on Zd beginning at the site x ∈ Zd is defined as a sequence
of sites (ω(0), ω(1), . . . ω(N)) with ω(0) = x, satisfying |ω(j + 1)− ω(j)|2 = 1, where | · |2
denotes the L2 norm, and ω(i) 6= ω(j) for all i 6= j. We write |ω| = N to denote the length
of ω. We let SAWx(N) be the total number of self-avoiding walks of length N beginning
at the site x ∈ Zd. The limit

µ := lim
N→∞

(
|SAWx(N)|

) 1
N , (2.1)

exists [11], it is known as connective constant, and it satisfies µ = µ(Zd) ∈ [d, 2d− 1].
A pattern is a short self-avoiding walk occurring in a longer self-avoiding walk.

Definition 2.1. A pattern P = (p(0), . . . , p(n)) is said to occur at the j-th step of the
self-avoiding walk ω = (ω(0), . . . , ω(N)) if there exists a vector v ∈ Zd such that ω(j+k) =

p(k) + v for every k = 0, . . . , n.

Kesten’s pattern theorem does not apply to general patterns, but to proper internal
patterns.

Definition 2.2. A pattern P is a proper internal pattern if for every k ∈ N there exists a
self-avoiding walk on which P occurs at k or more different steps.

We are ready to state Kesten’s pattern theorem, which was proved in [15] (see also
[16][Chapter 7]). For a pattern P , an integer N , a vertex x ∈ Zd, and a real number w,
let SAWx[N,w, P ] ⊂ SAWx(N) be the set of N -steps self-avoiding walks presenting the
pattern P at less than w steps.

Theorem 2.3 (Kesten, 1963). Recall that µ = µ(Zd) is the connective constant. For any
proper internal pattern P , there exists an a > 0 small enough such that

lim sup
N→∞

(
|SAWx[N, aN,P ]|

) 1
N < µ. (2.2)

Before presenting the proof of the main theorem, we will provide a rigorous definition
of self-avoiding polygon and state one important property. For N ≥ 4, an N -step self-
avoiding polygon P is an undirected graph P ⊂ G consisting ofN nearest-neighbour sites
and edges connecting them with the following property: there exists a corresponding
(N − 1)-step self-avoiding walk ω having |ω(N − 1)−ω(0)|2 = 1 such that the vertex set of
P contains all the elements of ω and the edge set of P contains the edge joining ω(N − 1)

to ω(0) and the N − 1 edges joining ω(i− 1) to ω(i) (i = 1, . . . , N − 1). Let SAPx(N) be
the set of N -step self-avoiding polygons P such that one vertex of P is x. We also define
the set SAPx(1), which includes only one graph, the (degenerate) 1-step self-avoiding
polygon P, which contains only the vertex x and no edges, and SAPx(N) is empty for
N = 2 or N odd.

Hammersley proved in [12] the remarkable fact that the connective constant of the
self-avoiding polygons exists and is the same as the connective constant of self-avoiding
walks,

µ(Zd) = lim
N→∞

(
|SAPx(N)|

) 1
N . (2.3)

From the super-multiplicativity property of self-avoiding polygons it also follows that

|SAPx(N)| ≤ (d− 1)

d
NµN . (2.4)

(see for example [16][Equations (3.2.1) and (3.2.5)]).
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3 Proof of Theorem 1.1

Fix a dimension d ≥ 2. We want to assign an orientation to self-avoiding polygons in
order define pattern occurrences. For any vertex x ∈ Zd, any integer N > 1, and any self-
avoiding polygon P ∈ SAPx(N), one can identify precisely two N − 1 steps self-avoiding
walks, ω1 = (ω1(0), . . . , ω1(N − 1)), and ω2 = (ω2(0), . . . , ω2(N − 1)) ∈ SAWx(N − 1),
such that, for any k ∈ {1, 2} and i ∈ [0, N − 2], {ωk(i), ωk(i + 1)} is an edge of P and
{ω(N−1), ω(0)} is an edge of P. Since the map which assigns to any self-avoiding polygon
P ∈ SAPx(N) the corresponding pair of self-avoiding walks {ω1, ω2} is a bijection, we
can define a new bijection f : SAPx(N) 7→ SAWx(N − 1) which assigns to any self-
avoiding polygon P ∈ SAPx(N) a unique self-avoiding walk f(P) ∈ {ω1, ω2} in some
arbitrary manner (for example, f might depend on some features P). The function f

is fixed in the whole proof and its definition will never be made explicit. We say that
a pattern P occurs at the step j ∈ [0, N − 1] of a self-avoiding polygon P ∈ SAPx(N) if
it occurs at the step j ∈ [0, N − 1] of the self-avoiding walk f(P) ∈ SAWx(N). We let
SAPx(N,w, P ) ⊂ SAPx(N) be the set of self-avoiding polygons of length N such that the
pattern P is present at less than w steps.

Consider a finite sub-graph G = (VG, EG) ⊂ Zd. Let also

Zλ,n(G) =
∑
κ∈ΩG

λoG(κ)nLG(κ), (3.1)

be the partition function, which depends on the graph G.
We now define one specific pattern. Let P ′ be the pattern corresponding to the

sequence of vertices (o, e2, e1 + e2, e1), with o ∈ Zd being the origin and ei the Cartesian
unit vectors (see Figure 1). It is not difficult to see that such a pattern is proper internal.
We start with an auxiliary lemma, which involves the self-avoiding polygons presenting
such a pattern at many steps. Given two graphs G1 = (VG1

, EG1
) ⊂ G2 = (VG2

, EG2
),

we let G2 \ G1 be the graph whose vertex set is VG2
\ VG1

and whose edge set is
{{x, y} ∈ EG2

: x, y ∈ VG2
\ VG1

}.
Lemma 3.1. For any a ∈ (0, 1) and N ∈ N, let G = (VG, EG) ⊂ Zd be an arbitrary finite
domain, let x ∈ VG be an arbitrary vertex, let P ∈ SAPx(N) be such that P ⊂ G and such
that P /∈ SAPx(N, aN,P ′). Then,

Zλ,n(G \ P)

Zλ,n(G)
≤ 1(

1 + λ4 n
)aN .

Proof. Given a self-avoiding polygon P ⊂ G (which was defined as a graph), we let U(P)

be the graph whose vertex set is VP and whose edge set is {{x, y} ∈ EG : x, y ∈ VP}.
Note that P does not necessarily equal U(P), but it is always contained in U(P). The
following relation holds,

Zλ,n(G) ≥ Zλ,n(G \ P)Zλ,n(U(P)). (3.2)

Indeed, in the right-hand side we have the weight of configurations κ ∈ ΩG such that no
loop contains one vertex in VP and one vertex in VG \ VP at the same time, while in the
left-hand side we have the weight of all configurations κ ∈ ΩG.

For a self-avoiding polygon P ∈ SAPx(N) satisfying the assumptions of the lemma,
let x1, x2, . . . xaN be the sequence of the first aN sites of f(P) where the pattern P ′

occurs, ordered in order of appearance along f(P), writing aN in place of daNe. For any
i ∈ [1, aN ], let now Qi be the (unique) self-avoiding polygon of length four containing the
vertices {xi, xi + e2, xi + e1 + e2, xi + e1} and the edges connecting them (see Figure 1).
Let ∪aNi=1Qi be the graph corresponding to the union of the vertex sets and of the edge
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Figure 1: Left: A self-avoiding polygon P presenting the pattern P ′ at the vertices
xi. Right: Self-avoiding polygons of length four, Qi, for the self-avoiding polygon P
represented on the left.

sets of the self-avoiding polygons Qi, i ∈ [1, aN ]. Since ∪aNi=1Qi ⊂ U(P) (here we use the
fact that G is a domain), we deduce that,

Zλ,n(U(P)) ≥ Zλ,n(∪aNi=1Qi). (3.3)

We deduce from (3.2) and (3.3) that,

Zλ,n(G \ P)

Zλ,n(G)
≤ Zλ,n(G \ P)

Zλ,n(G \ P)Zλ,n(U(P))
≤ 1

Zλ,n
(
∪aNi=1 Qi

) . (3.4)

We now claim that
Zλ,n

(
∪aNi=1 Qi

)
= (1 + λ4 n)aN , (3.5)

which concludes the proof of the lemma when replaced in the previous expression.
Thus, for a subset B ⊂ {1, 2, . . . aN} (which might be B = ∅), let κB ∈ Ω∪aN

i=1Qi
be

the configuration such that, for all i ∈ B, Pxi = Qi, and for all i ∈ {1, 2, . . . aN} \ B,
Pxi is a degenerate self-avoiding polygon containing only the vertex xi. We have that,
LG(κB) = |B| and that o(κB) = λ4|B|. Thus,

Zλ,n(∪aNi=1Qi) =
∑

B⊂{1,2,...aN}

n|B| λ4|B| =

aN∑
j=0

(
aN

j

)
nj λ4j =

(
1 + λ4 n

)aN
.

This concludes the proof of (3.5) and thus the proof of the lemma.

We now present the proof of Theorem 1.1. The starting point of the proof is the
observation that, if P ∈ SAPx[N ] with N > 1, then

PG,λ,n(Px = P) = nλ|P|
Zλ,n(G \ P)

Zλ,n(G)
≤ nλ|P|. (3.6)

We have that, for an arbitrary real a ∈ (0, 1), and ` ∈ N,

PG,λ,n(|Px| > `) =

∞∑
N=`+1

∑
P∈SAPx(N):
P⊂G

PG,λ,n(Px = P) (3.7)

=

∞∑
N=`+1

( ∑
P∈SAPx(N,aN,P ′):

P⊂G

PG,λ,n(Px = P)

+
∑

P∈SAPx(N):
P /∈SAPx(N,aN,P ′),P⊂G

PG,λ,n(Px = P)
)
. (3.8)
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We will now provide an upper bound for the two terms above. For the first term, we
apply Kesten’s pattern theorem, Theorem 2.3. Thus, fix a′ > 0 small enough such that

µ′ := lim sup
N→∞

|SAPx[N, a′N,P ′]|
1
N ≤ lim sup

N→∞
|SAWx[N, a′N,P ′]|

1
N < µ. (3.9)

Then, define λ′1 := 2
µ+µ′ , which satisfies λ′1 >

1
µ , and assume that λ ∈ (0, λ′1). We deduce

from (3.6) and (3.9) that there exists a constant c1 ∈ (0,∞) such that, for any ` ∈ N,

∞∑
N=`+1

∑
P∈SAPx(N,a′N,P ′):

P⊂G

PG,λ,n(Px = P)

≤ n

∞∑
N=`+1

|SAPx(N, a′N,P ′)|λN

≤ c1
∞∑

N=`+1

(µ+ µ′

2

)N
λN ≤ c1

1− λ
λ′
1

(
λ

λ′1
)
(`+1)

. (3.10)

We now use the previous lemma to provide an upper bound for the second term in
the right-hand side of (3.8). From (2.4), (3.6) and Lemma 3.1, we deduce that, if

λ <

(
1 + λ4 n

)a′N
µ

(3.11)

then there exists c2, c3 ∈ (0,∞), which depend only on λ and n, such that, for any ` ∈ N,

∞∑
N=`+1

∑
P∈SAPx(N):

P /∈SAPx(N,a′N,P ),P⊂G

PG,λ,n(Px = P)

= n

∞∑
N=`+1

∑
P∈SAPx(N):

P /∈SAPx(N,a′N,P ),P⊂G

λ|P|
Zλ,n(G \ P)

Zλ,n(G)

≤ n

∞∑
N=`+1

|SAPx(N)|λN
( 1

1 + λ4n

)a′N
≤ n

(d− 1)

d

∞∑
N=`+1

N
( λ µ

(1 + λ4n)a′
)N

= c2e
−c3`. (3.12)

Let λ1 = λ1(n) be the solution of

λµ = (1 + λ4n)a
′

(3.13)

and note that λ1(n) > 1
µ for any n > 0 and that (3.11) and (3.12) hold whenever λ ∈ (0, λ1).

Combining (3.10) and (3.12) in (3.8), we deduce that, if

λ < min{λ′1, λ1(n)}, (3.14)

we can find δ > 0 such that L(δ, λ, n) <∞. Thus, we proved that λc(n) ≥ min{λ′1, λ1(n)} >
1/µ and obtained (1.3).

We now prove (1.4). Using the fact that, for any n smaller than a positive value n0,
min{λ′1, λ1(n)} = λ1(n), using (3.13) and performing a Taylor expansion, we obtain that,
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for any n ∈ (0, n0),

λc(n)− 1/µ ≥ λ1(n)− 1/µ

=
(1 + λ4

1(n)n)a
′ − 1

µ

=
a′

µ
λ4

1(0) n+O(n2)

=
a′

µ5
n+O(n2).

This leads to (1.4) and concludes the proof.
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