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1 Introduction

Awell-known solution to the Basel problem [asking for a closed form for ζ(2)] is essentially
due to Euler and goes through the following identity:

ζ(2) =
∑

n≥1

1

n2
= 3

∑

n≥1

1

n2
(2n
n

) .

It can be proved in a variety ofways, for instance through creative telescoping or by exploiting
(shifted) Legendre polynomials . It is interesting to point out that the RHS of the previous

identity is directly relatedwith theTaylor series of the squared arcsine, fromwhich ζ(2) = π2

6 .
The purpose of our work is to provide a fair amount of generalizations of this approach, in
order to exhibit some rather surprising closed forms for values of the hypergeometric function
4F3, defined as

4F3 (a, b, c, d; e, f, g; z) =
∑

n≥0

(a)n(b)n(c)n(d)n

n!(e)n( f )n(g)n zn, (a)n = �(a + n)

�(a)
.

A key identity for the following manipulations is the main property of the Beta function:

∫ 1

0
xa−1(1 − x)b−1 dx = B(a, b) = �(a) �(b)

�(a + b)
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holds [1] for every a, b with positive real part. We will prove, in particular, that

4F3

(
1, 1, 1,

3

2
; 5
2
,
5

2
,
5

2
; 1

)
= 27

2
(7 ζ(3) + (3 − 2G) π − 12)

with G being Catalan’s constant, and that 4F3
(
1, 1, 1, 3

2 ; 4
3 ,

5
3 , 2; 4z

27

)
is given by a com-

bination of a squared arctangent and a squared logarithm, just like ζ(2) is deeply related
with arcsin2(z). In the former case we will employ a convolution argument, in the latter a
functional identity for the dilogarithm function. The results presented here follow from an
attempt to use the convolution technique to compute a closed form for

∑

n≥1

cos n

n2
(3n
n

) ,

Instead of tackling this sum with the convolution approach, we computed it by exploiting an
unexpected connection between Li2 and 4F3.

2 The first surprising identity on 4F3

The problem of finding a closed form for

4F3

(
1, 1, 1,

3

2
; 5
2
,
5

2
,
5

2
; 1

)

appeared on math.stackexchange.com [4] in February 2017. We will give a complete outline
of our original solution, based on the following Lemmas:

∫ π/2

0
sin(x)2n+3 dx = 4n(2n + 2)

(2n + 3)(2n + 1)
(2n
n

) (1)

arcsin2(x) = 1

2

∑

n≥0

4n+1x2n+2

(2n + 2)(2n + 1)
(2n
n

) (2)

If we integrate both sides of (2) we get:

− 2x + 2
√
1 − x2 arcsin(x) + x arcsin2(x) = 1

2

∑

n≥0

4n+1x2n+3

(2n + 3)(2n + 2)(2n + 1)
(2n
n

) (3)

We just have to gain an extra 1
(2n+3) factor. For such a purpose, we divide both sides of (3)

by x and perform termwise integration again, leading to:

−4x + 2
√
1 − x2 arcsin(x) + x arcsin2(x) + 2

∫ arcsin(x)

0

u cos2(u)

sin(u)
du

= 1

2

∑

n≥0

4n+1x2n+3

(2n + 3)2(2n + 2)(2n + 1)
(2n
n

) (4)

Now we evaluate both sides of (4) at x = sin θ and exploit (1) to perform
∫ π/2
0 (. . .) dθ . That

leads to:

∑

n≥0

16n

(2n + 3)3(2n + 1)2
(2n
n

)2 = (π − 4) +
∫ π/2

0

∫ θ

0

u cos2(u)

sin(u)
du dθ (5)
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and we are extremely close to a conclusion, since the last integral boils down to∫ π/2
0

∫ θ

0
u

sin u du dθ , that is well-known. Since
∫

u du

sin u
= C + u

(
log(1 − eiu) − log(1 + eiu)

)
+ i

(
Li2(e

−iu) − Li2(e
iu)

)

we have
∫ π/2
0

∫ θ

0
u

sin u du dθ = −πG + 7
2 ζ (3) and

Theorem 1

4F3

(
1, 1, 1,

3

2
; 5
2
,
5

2
,
5

2
; 1

)
= 27

∑

n≥0

16n

(2n + 3)3(2n + 1)2
(2n
n

)2

= 27

2
(7 ζ(3) + (3 − 2G) π − 12)

where G is Catalan’s constant,
∑

n≥0
(−1)n

(2n+1)2
. Remarkably, in 2017 no widespread mathe-

matical software (Mathematica, Maple, Mathcad, Sage, . . .) were able to derive such closed
form, despite the proof only relies on a sort of convolution argument/ Parseval’s identity.
The same applies to the following identities we are going to prove. Before starting the next
section, it is worth mentioning that a simplified version of the above technique also shows
that

∑

n≥1

16n

(2n + 1)2(2n + 3)2
(2n
n

)2 = π − 3,
∑

n≥1

16n

n2(2n + 1)2
(2n
n

)2 = 4(π − 3)

i.e. connects π with 3F2(1, 2, 2; 7
2 ,

7
2 ; 1) and 3F2(1, 1, 1; 5

2 ,
5
2 ; 1). These identities can also

be proved by exploiting the contiguity relations [2] for 3F2, as Computer Algebra Systems
correctly recognize.

3 The second surprising identity on 4F3

The series we are going to tackle in this section will provide something similar to Clausen’s
formula [5]

3F2

(
2c − 2s − 1, 2s, c − 1

2
; 2c − 1, c; x

)
= 2F1

(
c − s − 1

2
, s; c; x

)2

but for a 4F3 hypergeometric function. In particular, we will start dealing with

∑

n≥1

zn

n2
(3n
n

) = z

3
· 4F3

(
1, 1, 1,

3

2
; 4
3
,
5

3
, 2; 4z

27

)
.

The forthcoming manipulations can be summarized as follows:

• We may express
(3n
n

)−1
in terms of the Beta function and consider the usual integral

representation of B(n, 2n),
∫ 1
0 xn−1(1 − x)2n−1 dx ;

• Assuming that z is sufficiently close to zero, we are allowed to exchange the integral∫ 1
0 (. . .) dx and the series

∑
n≥1, converting the original series in an integral of the form∫ 1

0
log pz(x)+log pz(1−x)

x dx , where pz(x) is the polynomial 1 − zx2 + zx3;
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• We may recall that
∫ 1

0
− log

(
1 − x

α

) dx

x
= Li2

(
1

α

)
,

where the dilogarithm function Li2(z) is the analytic continuation of
∑

n≥1
zn

n2
;

• We may recall that the dilogarithm function, according to Zagier [6], has a good sense
of humour, i.e. fulfills a lot of interesting functional identities. Among them we are
interested in

Li2(1 − x) + Li2(1 − x−1) = −1

2
log2(x)

that is straightforward to prove by differentiating both sides and considering the particular
case x = 1. Through the change of variable x = w−1

w
such reflection formula takes the

form

Li2

(
1

w

)
+ Li2

(
1

1 − w

)
= −1

2
log2

(
w − 1

w

)

that is extremely well-suited for our purposes;
• Indeed, if we assume that the roots of pz(x) are αz, βz, γz , by the previous steps we get

that the original series just depends on the following sum of squared logarithms:

log2
(
1 − 1

αz

)
+ log2

(
1 − 1

βz

)
+ log2

(
1 − 1

γz

)
.

Here we proceed in full detail:

∑

n≥1

zn

n2
(3n
n

) =
∑

n≥1

2zn�(n)�(2n)

�(3n + 1)
= 2

3

∑

n≥1

zn

n
B(n, 2n)

= 2

3

∑

n≥1

∫ 1

0

znx2n−1(1 − x)n−1

n
dx

= 2

3

∫ 1

0

⎛

⎝
∑

n≥1

(
zx2(1 − x)

)n

n

⎞

⎠ dx

x(1 − x)

= 2

3

∫ 1

0

− log(1 − zx2 + zx3)

x(1 − x)
dx

[
1

x(1 − x)
= 1

x
+ 1

1 − x

]
= 2

3

∫ 1

0

− log pz(x) − log pz(1 − x)

x
dx

[Li2 reflection formula] = −1

3

∑

ξ∈{αz ,βz ,γz}
log2

(
1 − 1

ξ

)
.

If we consider the case z = 1
2 we get that the roots of pz(x) are given by −1 and 1 ± i . In

particular:

Theorem 2

1

6
4F3

(
1, 1, 1,

3

2
; 4
3
,
5

3
, 2; 2

27

)
=

∑

n≥1

1

n22n
(3n
n

) = π2

24
− log2(2)

2
.
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Due to the dilogarithm reflection formula Li2(z) + Li2(1− z) = π2

6 − log(x) log(1− x)
we also get the identity:

π2

24
=

∑

n≥1

1

n22n

(
1 − 1

(3n
n

)

)
. (6)

In a similar fashion, if we replace x with
√

1−x
2 in both sides of (2) and perform

∫ 1
0 (. . .) dx

we get:
π

2
− 1 =

∑

n≥1

2n

(n + 1)n2
(2n
n

) . (7)

If we consider the case z = 1
12 we get that the roots of pz(x) are given by −2 and 3±i

√
15

2 .
In particular:

Theorem 3

1

36
· 4F3

(
1, 1, 1,

3

2
; 4
3
,
5

3
, 2; 1

81

)
=

∑

n≥1

1

n212n
(3n
n

) = 2

3
arctan2

(√
15

9

)
− 1

2
log2

(
3

2

)
.

If we take some real number m > 1
2 (this constraint ensures we stay in the domain of

analytic continuation of the dilogarithm function, that is crucial for exploiting the dilogarithm
reflection formula as we did) and enforce −m to be a root of pz(x), we get z = 1

m2+m3 and

Theorem 4 (Thai identity)

1

3m2 + 3m3 · 4F3
(
1, 1, 1,

3

2
; 4
3
,
5

3
, 2; 4

27(m2 + m3)

)
=

∑

n≥1

1

n2(m2 + m3)n
(3n
n

)

= 2

3
arctan2

√
3m − 1

(m + 1)(2m − 1)2
− 1

2
log2

(
1 + 1

m

)
.

Through a suitable change of variable this identity proves that 4F3
(
1, 1, 1, 3

2 ; 4
3 ,

5
3 , 2; z

)

has a closed form in terms of a squared logarithm and a squared arctangent. For instance, in
the limit case m = 1

2 we get:

8

9
· 4F3

(
1, 1, 1,

3

2
; 4
3
,
5

3
, 2; 32

81

)
=

∑

n≥1

8n

n23n
(3n
n

) = π2

6
− log2(3)

2
. (8)

Theorem 4 might have some unexpected consequences. The involved series are fast-
convergent, hence they canbeused to provide accurate numerical approximations of (squared)
logarithms or arctangents. Additionally the arithmetic structure of the general term is pretty
simple, hence Theorem 4might be useful for estimating the irrationalitymeasure of (squared)
logarithms or arctangents. Moreover, such identity for 4F3 might be an important adjunct to
the Wilf-Zeilberger recursion method for evaluating series involving binomial coefficients,
since it provides a starting point for the recursion in a non-trivial case.
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4 An extension to 5F4

The technique introduced in the previous section is flexible enough to be able to deal with

∑

n≥1

zn

n2
(4n
n

) = z

4
· 5F4

(
1, 1, 1,

4

3
,
5

3
; 5
4
,
3

2
,
7

4
, 2; 27z

256

)

with just aminor fix. By defining pz(x) as 1−zx3+zx4 and denoting its roots asαz, βz, γz, δz
we have:

∑

n≥1

zn

n2
(4n
n

) =
∑

n≥1

3zn�(n)�(3n)

�(4n + 1)
= 3

4

∑

n≥1

zn

n
B(n, 3n)

= 3

4

∑

n≥1

∫ 1

0

znx3n−1(1 − x)n−1

n
dx

= 3

4

∫ 1

0

⎛

⎝
∑

n≥1

(
zx3(1 − x)

)n

n

⎞

⎠ dx

x(1 − x)

= 3

4

∫ 1

0

− log(1 − zx3 + zx4)

x(1 − x)
dx

[
1

x(1 − x)
= 1

x
+ 1

1 − x

]
= 3

4

∫ 1

0

− log pz(x) − log pz(1 − x)

x
dx

[Li2 reflection formula] = −3

2

∑

ξ∈{αz ,βz ,γz ,δz}
log2

(
1 − 1

ξ

)
.

By imposing that pz(x) vanishes at αz = −m we get z = − 1
m3+m4 . In this case, however,

the final expression does not simplify as nicely as before, involving a fair amount of cube
roots. The cubic function in Theorem 4 and the quartic function arising in the 5F4 case are
related to the so-called pull-back transformations, already studied by Mitsuo Kato in [3].

5 Back to 3F2

Surprisingly, many Computer Algebra Systems cannot seem to manage

∑

n≥1

zn

n
(3n
n

) = z

3
· 3F2

(
1, 1,

3

2
; 4
3
,
5

3
; 4z
27

)

either, but our method takes care of such hypergeometric function too, giving:

∑

n≥1

zn

n
(3n
n

) = 2

3

∫ 1

0

xz

1 − z(1 − x)x2
dx .

In the particular case z = 1
2 we have:

Theorem 5

1

6
· 3F2

(
1, 1,

3

2
; 4
3
,
5

3
; 2

27

)
=

∑

n≥1

1

n2n
(3n
n

) = π

10
− log 2

5

123



Surprising identities for the hypergeometric. . . 409

and in general, for anym > 1
2 the previous hypergeometric function evaluated at z = 1

m2+m3

can be expressed in terms of logarithms and arctangents only.
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