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Abstract

Predicting mortality is a major challenge for both demographers and actuaries.
The latter need to anticipate various future mortality scenarios with the greatest
possible accuracy, as in the case of annuities pricing and longevity risk assessments.
However, the current wide range of stochastic mortality models highlights some
deficiencies in predicting future mortality realizations, particularly when accelerations
or decelerations of longevity occur. The aim of this research thesis is to investigate the
adequacy of a new mortality forecasting approach based on artificial Neural Networks.
To this end, after an examination of the theoretical Neural Networks fundamentals,
the present work shows the Neural Networks competitiveness in predicting the future
dynamics of human mortality, also allowing the efficacy of already existing predictive
models, such as the canonical Lee-Carter model. Therefore, our data-driven proposal
contributes to the mortality literature as new advance in mortality forecasting, that
is the neural forecasting approach.
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Chapter 1

Introduction

Nowadays, the continuous increase in longevity has become a proven fact worldwide.
Population death dynamics have shown the beneficial effects of the lack of worst
living conditions, as in the extreme case of wars or shortages in the medical and
social sciences. Indeed, developments in medicine, public health, and socio-economic
attitudes over the past century have led to unprecedented extensions of life expectancy
around the world. Considering also reductions in fertility, the resulting global
population ageing presents new opportunities, as well as challenges. In particular,
financial challenges emerge for life insurers, pension plans and social security schemes
involving benefits related to illness, death or survival of people. For all these entities,
is crucial understand the demographic nature of longevity and contextualize it into
business processes.

Currently, longevity improvements are moved by multiple, heterogeneous factors,
such as nutrition, education, lifestyles, pollution levels, technological advances
diseases treatment, and so on (Riley (2001)). How each of these factors impact on
mortality is difficult to analyse, also requiring a biometric parameters granularity
that is hardly available. Thus, actuarial modelling typically involves models to
describe mortality by an aggregate perspective, looking at the insured population or
the national one. By a stochastic approach to projections, a widely used basis to
anticipate mortality is the class of extrapolative models, starting from the pioneering
Lee–Carter model (Lee and Carter (1992)). In their original paper, Lee and Carter
(1992) present a log-bilinear relation both to explain and to predict the age-period
death rates. Consequently, the Lee-Carter model establishes life expectancy forecast
that first increases at the historical trend and then decelerates over time. Such a
lifespan demeanour seems to be reasonable. However, as was introduced by Oeppen
and Vaupel (2002), the life expectancy has increased fairly linearly for more than 150
years, breaking predictions and limits figured out by actuaries. Several model variants
and extensions has been proposed in literature in order to boost the Lee-Carter
proposal (see, for instance, Brouhns et al. (2002), Renshaw and Haberman (2006)
and Cairns et al. (2009)), reaching more actual mortality scenarios. Undeniably,
Lee-Carter model improvements has been implied the addition of parameters within
the mortality model, leading with parameter identification problems. Therefore,
practitioners and researchers often apply models with a simpler parametric form,
being able to guarantee both robustness and biological reasonableness upon projected
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life tables (Cairns et al. (2011)). However, while longevity continues to increase over
time, it is changing its rate of growth (Debonneuil et al. (2018)) and some future
non-linear mortality behaviour may occur. In some extent, the need of accurate
mortality forecasts remains nowadays a compelling task.

The present research work is born to accept this predictive challenge. The
main objective of the research carried out is to increase the explanatory capacity
of predictive analysis on mortality, by resorting a new modelling approach: the
artificial Neural Networks. The latter was born as computational system in order to
reproduce how the biological brain works. The artificial Neural Networks models are
based on the cognitive paradigm to calculus: given a set of examples, the network
learns their relations and try to generalize them to predict new occurrences. The
Neural Network learning process stems from well posed theoretical studies (see for
example Vapnik (1999)), formalizing mathematically how the network is shaped
according to the data. Basically, the Neural Networks are data-driven tools, as well
as the overall class of machine and deep learning techniques, whose way of working
meets mathematical and statistical postulates. In light of this, Neural Network
are flexible models capable to catch hidden features within data, representing the
fundamental functional relations describing the inspected phenomenon. In other
words, as new advance in mortality forecasting applications we will investigate the
suitability of Neural Networks models to discover patterns within mortality data
and reproduce them on designed forecasting horizon.

The reminder of the present work is the following.

Chapter 2. We will briefly recall the analytical foundations necessary to proba-
bilistically study the mortality dynamics. In particular, we will focus
both on the indicators and on the mortality models that will be the
subject of further elaborations in the course of this thesis;

Chapter 3. With our goal in mind, a necessary examination of the Neural Networks
foundations is presented. Specifically, we aim to offer to the reader a
harmonious guide within the Neural Networks, reaching the explanation
of the model to which we will refer to investigate the future mortality: the
Recurrent Neural Networks with a Long Short Term Memory architecture.
At the state of the art, the latter identifies the best performing non-hybrid
tool in the field of deep learning forecast;

Chapter 4. We will illustrate our first research analysis on the Neural Network
suitability in predicting mortality. Such a study will concern the predic-
tion of life expectancy and lifespan disparity, both independently and
simultaneously. The research carried out makes a new contribution to
the relevant literature, both in terms of a new predictive approach and
for the joint prediction of lifespan indicators at birth and age 65. We
emphasize that Chapter 4 is an excerpt from the following peer-reviewed
research work:

• Nigri, A., Levantesi, S. and Marino M. (2020). Life expectancy and
lifespan disparity forecasting: a long short-term memory approach.
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Scandinavian Actuarial Journal.
DOI:10.1080/03461238.2020.1814855.

Chapter 5. As a further investigative analysis, we plan to study the predictive
capacity gain over canonical mortality models by mixing them with
Neural Network. In doing so, we propose the concept of model integration
within the Lee-Carter model framework, both about the accuracy of
expected mortality trend and its uncertainty. Our contribution to the
mortality literature is twofold: on the one hand, we introduce the
use of Neural Networks in projection phase, replacing the use of the
classic time series models, such as the ARIMA; on the other hand, we
propose a methodology for estimating the uncertainty of future mortality
realizations stemming from a data-driven model. The Chapter 5 is
extrapolated from the following peer-reviewed research works:

• Nigri, A., Levantesi, S., Marino, M., Scognamiglio, S., Perla, F.
(2019). A Deep Learning Integrated Lee–Carter Model, Risks 7(1):
33. DOI:10.3390/risks7010033

• Marino M., Levantesi S. (2020). Forecasting Neural Network Lee-
Carter model with parameter uncertainty: the case of Italy. Appear-
ing to Mathematical and Statistical Methods for Actuarial Sciences
and Finance.

Finally, the present work considers a final discussion in Chapter 6 about
the results achieved, emphasizing further suitable research projects for mortality
forecasting through Neural Networks.
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Chapter 2

Mortality modeling

We provide a dutiful recall of mortality modelling characterization. In details, we
summon the fundamental framework about demographic variables and prominent
discrete time stochastic mortality models employed to fashion and predict mortality
by ages and over time.

2.1 Demographic variables

Whatsoever mortality analysis founds on an essential mathematical framework
to formalize the main demographic variables to model mortality. As stressed in
Pitacco (2004) and Pitacco et al. (2010), an age-period mortality representation
is necessary in a dynamic context. Hence, considered biometric variables shall be
expressed as a function of both age x ∈ X = {0, 1, . . . , ω} and the calendar year
t ∈ T = {t0, t1, . . . , tn}, where 0 ≤ t0 < t1 < · · · < tn < ∞. We remind that ω is the
so called extreme age, i.e. the maximum attainable age in life by an individual.
Let us denote as T0(t− x) the random lifetime of a newborn in the calendar year
(t−x) and let St(x) the survival function, i.e. the probability that T0(t−x) is longer
than x attained in t:

St(x) = P (T0(t− x) > x) . (2.1)

Furthermore, let us denote as µx,t the instantaneous death rate, or force of
mortality, for an individual aged x at time t. Assuming St(x) differentiable with
respect to x, the following holds:

µx,t = − ∂

∂x
lnSt(x), (2.2)

so that, solving Eq.(2.2) with initial condition St(0) = 1, we have:

St(x) = exp
(

−
∫ x

0
µs,tds

)
. (2.3)

In doing so, death and survival probabilities can be determined recognizing the
force of mortality. Indeed, the probability that an individual aged x at time t dies
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before age x+ h, with h > 0, is:

hqx,t = P (x < T0(t− x) ≤ x+ h|T0(t− x) > x) =

= St(x) − St(x+ h)
St(x) =

= 1 − exp
(

−
∫ x+h

x
µs,tds

)
,

(2.4)

and the probability to alive at age x+ h, for the same individual, is:

hpx,t = exp
(

−
∫ x+h

x
µs,tds

)
. (2.5)

Often, especially in actuarial assessments, the force of mortality is assumed to
be a piece-wise constant function, that is:

µx+k,t+h = µx,t, k, h ∈ [0, 1) (2.6)

and, consequently, death and survival probabilities become, respectively:

hqx,t = 1 − exp (−hµx,t) , hpx,t = exp (−hµx,t) . (2.7)

Additionally, we can describe the force of mortality behaviour over the interval
(x, x+ h) exploiting the so called mortality coefficient m(x,x+h),t. It is defined as the
age-continuous weighted mean of µx,t in (x, x+ h), where the survival function acts
as weighting function, that is:

m(x,x+h),t =
∫ x+h

x µs,tSt(s)ds∫ x+h
x St(s)ds

. (2.8)

From Eq.(2.8), posing h = 1, stems the central death rate mx,t, so outlined:

mx,t = St(x) − St(x+ 1)∫ x+1
x St(s)ds

. (2.9)

Under assumption (2.6), it is straightforward notes that µx,t = mx,t.
To appraise the central death rate, awareness of survival function is crucial. However,
it is demonstrated that (see, for example, Pitacco et al. (2010)) the maximum
likelihood estimate for mx,t, and for µx,t under assumption (2.6), is the following:

m̂x,t = Dx,t

Ec
x,t

(2.10)

where Dx,t is the number of deaths occurred in year t among the people aged
x and Ec

x,t is the central exposed to risk, namely the average number of the living
people aged x in t. The estimate in Eq.(2.10) plays an important role within discrete
time stochastic mortality models framework, as we will recall in Section 2.2.
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2.1.1 Some keys to summarize lifetime distribution

The random lifetime distribution investigation allows to summarize key information
about mortality. In particular, location measures, such as expectation, offer a first
insight.
Let us denote as Tx(t) the random lifetime of an individual aged x in the calendar
year t. We indicate with ex,t = E (Tx(t)) the life expectancy at age x in t and it is
defined as follows:

ex,t =
∫ ω

x St(s)ds
St(x) . (2.11)

Life expectancy is generally wielded to compare mortality of various populations.
However, populations characterized by the same level of life expectancy could
experience substantial differences in the time of death (Aburto et al. (2020)), with
different age-at-death distributions. Being a location measure, life expectancy is not
likely to detect variations in lifespan, which are instead captured by lifespan disparity
allowing to describe variations in lifespan distribution (Bohk-Ewald et al. (2017))1.
While life expectancy has been proved to hide heterogeneity in individual mortality
paths, lifespan disparity measures the dispersion of observations around the time of
death, evaluating from, respectively, a probabilistic and a descriptive point of view,
uncertainty in age-at-death distribution and heterogeneity (van Raalte et al. (2018),
Kaakai et al. (2019)). When mortality is highly variable, some individuals will die
at a much younger age than the expected age-at-death, contributing many lost years
to life disparities; conversely, when mortality is highly concentrated around older
ages or the modal age, life disparity decreases (Aburto and van Raalte (2018)).
Therefore, is useful formalize the lifespan disparity measure, e†

x,t, representing the
life expectancy lost due to death by an individual aged x at time t

e†
x,t =

∫ ω
x es,t ·Dt(s)ds

St(x) , (2.12)

where Dt(x) is the law governing death occurrences at age x and at time t.

A in depth life expectancy and lifespan disparity examination, mostly looking at
their forecasting issues, will be explored in Chapter 4.

2.2 Discrete time stochastic mortality models

Different methods has been proposed in actuarial and demographic literature to
fashion and project mortality. For forecasting reasons, predictive models based on
an extrapolation procedures are commonly used. Generally speaking, a family of
discrete time stochastic mortality models, namely generalized age-period-cohort
(GAPC, from now on) models, can be mentioned as in Currie (2017), Hunt, Blake
(2015) and Villegas et al. (2015). By a statistical point of view, the GAPC family

1In addition to life disparity, other inequality measures have been proposed in literature, e.g. the
Gini coefficient and the Keyfitz’s entropy (Wilmoth and Horiuchi (1999), Shkolnikov et al. (2003),
van Raalte and Caswell (2013)) that appear to be linearly related and negatively correlated to life
expectancy at birth (Colchero et al. (2016), Nemeth (2017) and Aburto et al. (2020)).
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mirrors the wider class of generalized non-linear models, and several stochastic
mortality models in literature can be embedded within this family.
A GAPC stochastic mortality models assumes:

• the death counts, Dx,t, as a random component described by a probability
distribution falling in the overdispersed exponential class. In practice, the
death counts, Dx,t, follow a Poisson distribution (see, for example, Brouhns et
al. (2002)):

Dx,t ∼ Poi(Ec
x,tmx,t); (2.13)

• a predictor, ηx,t, viz. a systematic component catching effects of ages, calendar
years and years of birth on mortality dynamics:

ηx,t = αx +
N∑

i=1
β(i)

x k
(i)
t + β(0)

x γt−x (2.14)

where:

– αx is an age-dependent parameter depicting the age-mortality shape;

– β
(i)
x is the ith age-dependent parameter portraying age-specific sensitivity

to mortality behaviour over time;

– k
(i)
t is the ith time-dependent parameter describing a peculiar mortality

trend over time;

– γt−x reports the cohort effect, with β
(0)
x inflecting its influence across

ages.

The GAPC family supposes that time indexes parameters, k(i)
t and γt−x, are

stochastic processes. Hence, their modeling provides probabilistic forecasts
achievements of future mortality rates;

• a link function g associating the expectation of the random component to the
predictor:

g

(
E
(
Dx,t

Ec
x,t

))
= ηx,t. (2.15)

Under Poisson distribution assumption for the death counts, the link function
employed is the canonical one, that is the log link function g (·) = ln (·);

• a set of parameter constraints ensuring a unique parameters estimate.

Furthermore, models in the GAPC framework can be divided into following sub-
classes:

• the Lee and Carter (LC, from now on) class. It relies on the pioneering study
presented in Lee and Carter (1992) and linked variants and extensions after
submitted in literature, such as Booth et al. (2002), Brouhns et al. (2002),
Hyndman and Ullah (2007), Li and Miller (2005), and Renshaw and Haberman
(2006).
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• the Cairns, Blake and Dowd (CBD, from now on) class. Unlike the LC class, the
CBD one exploits a combination of multi-periods and cohort effects to design
the predictor, without an age-dependent parameter marking the mortality
surface. Cornerstones are the CBD models in Cairns et al. (2006) and Cairns
et al. (2009).

Finally, a merge between LC and CBD classes exists and it is set out in Plat (2009).

2.2.1 The Poisson LC model

We briefly delve into LC model as in Brouhns et al. (2002), i.e the LC model with
a Poisson distribution assumption for the death counts as in Eq.(2.13). Therefore,
according to Eq.(2.14) and Eq.(2.15), the linear predictor, ηx,t, contemplates the
age-parameter term, N = 1 time-dependent parameter, kt = k

(1)
t , and absence of

cohort term. Formally, ηx,t is detailed as a Poisson log-bilinear equation as below:

ηx,t = ln
(
E
(
Dx,t

Ec
x,t

))
= lnmx,t = αx + βxkt, (2.16)

We stress again that the link function under assumption (2.13) is the canonical one,
i.e. the natural logarithm of the central death rate.
To calibrate the predictor (2.16), formulation (2.10) is considered. Therefore, select-
ing a time horizon T where a dataset of observations

{(
Dx,t, E

c
x,t

)
, t ∈ T , x ∈ X

}
is available, the predictor is fitted finding the optimal estimates α̂x, β̂x and k̂t.
Consequently, in order to produce predictions about the future mortality, let tn
the forecasting year and let T ′ = {tn + h, h = 1, . . . , s, s ∈ N} the forecast horizon.
The estimates α̂x and β̂x are time-invariant, so that the future mortality matures
according to the time-index pattern suggesting the linear predictor equation over
the forecast horizon, for each age x:

lnmx,tn+h = α̂x + β̂xktn+h. (2.17)

The future time-index values stems from an ARIMA(0,1,0) process, like the
following equation states:

ktn+h = ktn + hδ +
h∑

k=1
ϵtn+k, (2.18)

where δ is the drift parameter and the ϵtn+k’s are indipendent and normally dis-
tributed innovations with zero mean and variance σ2

ϵ , i.e.
∑h

k=1 ϵtn+k ∼ N
(
0, h2σ2

ϵ

)
.

To develop LC model forecasting ability, a general ARIMA(p,d,q) process could be
acknowledged, and the random walk in Eq.(2.18) would be a special case. Properly,
the ktn+h value is extracted from its dth-differences equation:

▽dktn+h = hδ +
p∑

i=1
ϕi ▽d k(tn+h)−i +

q∑
j=1

θjϵ(tn+h)−j +
h∑

k=1
ϵtn+k, (2.19)
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with p the autoregressive order, d the degree of differencing, q the moving-average
order and ϕ, θ the autoregressive and moving-average coefficients, respectively, and
▽ is the difference operator.
Profit from Eq.(2.19), the following forecasting equations are derived:

• The point prediction equation for the log-death rates:

ln m̂x,tn+h = E (lnmx,tn+h) =

= α̂x + β̂x

hδ +
p∑

i=1
ϕi ▽d k(tn+h)−i +

q∑
j=1

θjϵ(tn+h)−j

 . (2.20)

• The prediction interval equation for the log-death rates:

ln m̂x,tn+h ± β̂x

√
hσϵzα

2
. (2.21)

with zα the α-quantile of a Standard Normal distribution.
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Chapter 3

Neural Networks foundamentals

The artificial Neural Networks (NNs, from now on) appeared for the first time
in literature thanks to the pioneering works of McCulloch and Pitts (1943) and
Turing (1948). NNs models are adaptive systems based on the cognitive paradigm
to calculus. The building blocks of a NN model are the so called neurons or units.
They represent the network nodes apt to receive information, elaborate them and
produce an output communicated to the next units. Since neurons are linked through
weighted connections, each network unit receives a pondered information, namely
activation. This one are transformed applying a differentiable function, namely
activation function. In doing so, each neuron provides an own output useful for
further computations. Overall, a NN model figures out a function such that a given
output is provided by propagating different transformations of the input, using the
weights as intermediate parameters.

We can also interpret a NN model in terms of computational graph constitutes
by different layers wherein one or more neurons are present. The first and the last
layers are namely the input and the output layer, respectively, while the intermediate
layers are the so called hidden layers. The NN processing flow typically moves from
the input layer to the output one, passing through hidden states: this is how work
feed-forward NNs. Moreover, exist several types of NN architectures with peculiar
ways to elaborate data. For example, in the feed-forward NN structure it is possible
adds recurrent connections among neurons, getting the so called Recurrent Neural
Networks.
For the sake of simplicity, we briefly recall the simplest feed-forward NN, namely
perceptron (see Rosenblatt (1958)), whose structure is composed by a single layer of
input neurons, as depicted in Figure 3.1. Therefore, given an input vector x ∈ Rn we
can associate its input layer in the NN, later computing the activation A =

∑n
i=1wixi,

with w ∈ Rn the vector of weights. The NN output y ∈ R is obtained applying the
activation function, f : R → R, to the activation A.
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Figure 3.1. Graph for a perceptron, with n input units and one output unit.

NNs with multiple layers can be built adding hidden layers. Such a NN structure
is called Multilayer Perceptron (MLP, from now on), allowing for very in depth
input transformations. In particular, MLP architecture manifests the NNs power
to discover hidden features in a set of examples and generalize them. In order
to define the MLPs structure, let N0, Np, NP +1 ∈ N be, respectively, the number
of neurons within the input layer, the pth hidden layer and the output layer, for
p ∈ {1, . . . , P}, P ∈ N. Let A(p) : RNp−1 → RNp an affine map defining the pth

hidden layer activation, given the output produced by the (p− 1)th hidden layer.

Definition 1. Let ϕ : RNp → RNp be a differentiable activation function. The pth

hidden layer output is:

H(p) =
(
ϕ ◦A(p)

) (
H(p−1)

)
= ϕ

(
⟨W (p), H(p−1)⟩ + b(p)

)
, (3.1)

where W (p) ∈ RNp×Np−1 is the weight matrix for feed-forward hidden layer con-
nections and b(p) ∈ RNp is the bias term. The latter is an additional parameter
necessary to govern the triggering value of the activation function ϕ. Therefore, each
bias component acts as a neuron activation threshold.

Definition 2. Let D =
{

(x,y) ,x ∈ RN0 ,y ∈ RNP +1
}

be a dataset wherein x is the
explicative variable and y is the associated response. Denoting with W the set of all
parameters employed along the NN graph, a feed-forward NN model is a function
fNN : RN0 → RNP +1 such that:

y = fNN (x; W) + γ = ψ ◦
(
H(P ) ◦H(P −1) ◦ · · · ◦H(1)

)
(x; W) + γ. (3.2)

where ψ : RNP → RNP +1 is the output layer activation function and γ is a data
noise, having zero mean and constant variance.

Figure 3.2 offers a graphical visualization of the NN structure according to
Eq.(3.2).
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Figure 3.2. Graph for a P -hidden layered NN, with N0 input units and NP +1 output units.

Eq.(3.2) shows the strength of neural models with respect to the classical sta-
tistical ones. Indeed, combining multiple neurons in different layers the learning
ability of the model increases, discovering complex relations in the input-output
data. Mathematically speaking, this NN feature is nowadays well-known as the
universal functional approximation property.

3.1 The universal approximation property

According to Eq.(3.2), a NN model is described by composition and superposition
of differentiable functions, and the resulting outputs stem from the conjunction of
several non-linearities. In doing so, the NN function can be viewed as a map with
functional approximation capability. In 1989 Cybenko (1989), Hornik et al. (1989)
and Funahashi (1989) proved, for the first time in literature, the approximation prop-
erty of feed-forward NNs. In particular, Cybenko (1989) showed that NNs with one
hidden layer and an arbitrary continuous sigmoid activation function can approximate
continuous functions, with arbitrary accuracy and without constraints on the number
of hidden neurons. Therefore, considering a space of continuous functions C

(
RN0

)
and a continuous sigmoid function σ(x) = (1 + e−x)−1 ∈ C

(
RN0

)
, x ∈ RN0 , for

any g ∈ C
(
RN0

)
and ε > 0 exists a finite sum:

G(x) =
N1∑
i=1

wiσ
(
⟨w(1)

i ,x⟩ + bi

)
(3.3)

such that: ∣∣∣∣G(x) − g(x)
∣∣∣∣ < ε ∀x ∈ RN0 , (3.4)
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i.e. G(x) is dense in C
(
RN0

)
. This result is presented in Cybenko (1989), and

therein extended for any function g ∈ C
(
RN0

)
over any Lesbegue-measurable

partition of RN0 , as well as for discontinuous sigmoid functions. Similarly, Funahashi
(1989) proved the approximation property for both one and two hidden layered
feed-forward NNs. Finally, Hornik et al. (1989) demonstrated that MLPs constitute
a class of universal functional approximators for any Borel-measurable function on
finite dimensional spaces, achieving high accuracy with an arbitrary number of hidden
neurons. Thus, since ’90 a line of research on the NNs functional approximation
capabilities was born. We refer the reader to Siegel and Xu (2019), and references
therein, for a formal and well-posed literature review.
We stress that the approximation property implies the following considerations:

• The approximation property refers to high precision in reproducing maps,
involving the trade-off between model accuracy and its interpretability. NNs
present high accuracy with a low interpretability, earning the ephitet of "black
box" models. Properly, the NNs function are not merely "black boxes", but
for sure their interpretability depends on the dimensionality of the functional
composition;

• NNs models can approximate any continuous (and several discontinuous)
functions with an arbitrary number of hidden neurons. Therefore, the learning
ability of a NN model derives from the tuning procedures in order to define
the optimal architecture of the graph, i.e. the dimensionality of both function
superposition and composition;

• NN outputs approximate a realization of a map, exploiting an adequate dataset
of examples. From a statistical perspective, a NN model could be view as an
estimator, whose functional form is shaped according to the data.

The approximation property has opened up a wide area of NNs applications for
solving various theoretical and practical tasks, testing how effectively the approxi-
mation property itself responds to the observed features within data.

3.1.1 Neural Networks and the Statistical Learning Theory

Because of the universal approximation property, NNs have been systematically
included in the field of Statistical Learning Theory. The latter concerns the study of
conditions for a consistent approach to function estimation problems. Essentially, the
goal is to define a learning model apt to express a solid, universal approximator given
a set of observations. As stated in Vapnik (1999), learning models like NNs allow to
minimize estimation errors in the main statistical learning problems, as in the case
of regression estimation. Recalling D =

{
(x,y) ,x ∈ RN0 ,y ∈ RNP +1

}
the available

set of observations, the variable x is a realization from an unknown distribution
P (x), while the response variable stems from the probability distribution P (y|x).
However, such distributions are unknown and a possible set of theoretical maps,
Σ = {y = f (x,w) ,w ∈ W}, should be addressed to represent the input-output
relation. Thus, the goal of the learning process is to identify a function f (x,w⋆) ∈ Σ,



3.2 Neural Network learning 21

given the data D, in order to minimize the discrepancy with respect to y. Letting
L (y, f (x,w)) the measure of discrepancy, namely risk o loss function, then the
learning process aims to solve the following problem:

min
w∈W

EP(x,y) (L (y, f (x,w))) =
∫

L (y, f (x,w)) dP (x,y) .

where the joint probability distribution P (x,y) is also unknown and the only available
knowledge is the dataset D. For example, in regression estimation problems the
scope is to approximate the regression function

EP(y|x) (y|x) =
∫

y dP (y|x)

finding the function f (x,w⋆) ∈ Σ such that

L (y, f (x,w)) = (y − f (x,w))2

reaches its minimum value. Since the probability distributions of the considered
variables are unknown, the datata D is exploited to replace the expected discrepancy
measure with its empirical version

Ê (L (y, f (x,w))) = 1
N0NP +1

N0NP +1∑
i=1

f (x,wi) .

As stated in Vapnik (1999), this is the Empirical Risk Minimization induction
principle: lacking any information about distributions, we elect as the best functional
approximator the one allowing for the minimum empirical mean error.
In this framework, the NN guarantees consistency in the learning process, a non-
asymptotic behaviour of the rate of convergence towards the minimum error and a
performing generalization capacity. However, the NN generalization ability depends
on how well they minimize the empirical risk. In particular, some problems may
emerge regarding the algorithms speed of convergence, as well as multiple local
minima occurrences for the risk function. Therefore, the empirical risk minimization
heavily depends on the learning process.

3.2 Neural Network learning

The NNs learning process is focused on the search of both the best NN graph
architecture, f̂NN (·), and the optimal value for the weights, Ŵ, starting from
available data. Fixing the NN architecture, the network parameters are calibrated
in order to provide the minimum empirical error. According to Eq.(3.2), the output
estimated by the NN is:

ŷ = f̂NN

(
x; Ŵ

)
. (3.5)

To optimize the weights value, gradient-based methods are employed. In particular,
considering a differentiable loss function, L (y, ŷ), the weights are iteratively adjusted
up to minimize the empirical error following the rules below:

∆w(p)
ij = −η∂L (y, ŷ)

∂w
(p)
ij

, (3.6)
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where ∆w(p)
ij is the variation of the weight related to the output elaborated by the

neuron j within the (p − 1)th layer, and received by the units i in the pth layer,
for j = 1, . . . , Np−1 and i = 1, . . . , Np. The parameter η ∈ R+ is the learning
rate governing the speed of convergence to the minimum. To calculate the loss
variations to changes in parameters, the procedure proposed in Rumelhart et al.
(1986), namely backpropagation (BP, from now on), represents a milestone. The BP
algorithm allows to backpropagate the error along the NN graph, determining what
is the necessary weights adjustment to attain a smaller loss function value, up to a
minimum.
BP algorithm implementation concerns two specific phases, namely the forward and
backward phases. In the former, each hidden layer values are computed up to the
output layer, getting the NN result ŷ. Consequently, the loss function magnitude
can be figure out. The backward phase spreads the error from the output layer to
the input one, revising the parameters value. Such parameters adjustment requires
the computation of the partial derivative of the loss function with respect to the NN
weights, that is:

∂L (ŷ,y)
∂W =

P +1∑
p=1

∂L(p) (ŷ,y)
∂W (p) =

=
P +1∑
p=1

∂L(p) (∂ŷ,y)
∂ŷ

∂ŷ

∂H(p)
∂H(p)

∂W (p) =

=
P +1∑
p=1

∂L(p) (∂ŷ,y)
∂ŷ

∂ŷ

∂H(p)

P∏
j=p

∂H(j+1)

∂H(j)
∂H(p)

∂W (p) =

=
P +1∑
p=1

∂L(p) (∂ŷ,y)
∂ŷ

∂ŷ

∂H(p)

P∏
j=p

ϕ′
(
⟨W (p), Hp−1⟩ + b(p)

)
W (p) ∂H

(p)

∂W (p) .

(3.7)
Within Eq.(3.7), the BP algorithm engages the counting of loss function gradient

for each layer, implementing the following procedure:

1. Consider a random parameters initialization to make the forward phase, pro-
ducing a NN output so that the loss function is computed;

2. Start the backward phase computing the error to propagate backwards along
the NN graph. To this end, the error attributable to each layer is:

δ(p) :=
∂L(p) (y, ŷ)
∂A(p) , (3.8)

and it must computed from the output layer up to the input one, that is:

δ(P +1) =
∂L(P +1) (y, ŷ)
∂A(P +1) =

∂L(P +1) (y, ŷ)
∂ŷ

∂ŷ

∂A(P +1) = ∇ŷL (y, ŷ)⊙ψ′
(
A(P +1)

)
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δ(P ) =
∂L(P ) (y, ŷ)
∂A(P ) =

∂L(P ) (y, ŷ)
∂ŷ

∂ŷ

∂A(P +1)
∂A(P +1)

∂H(P )
∂H(P )

∂A(P ) =

= δ(P +1)∂A
(P +1)

∂H(P )
∂H(P )

∂A(P ) =
[(

W (P +1)
)T

δ(P +1)
]

⊙ ϕ′
(
A(P )

)
...

δ(1) =
∂L(1) (y, ŷ)
∂A(1) =

∂L(1) (y, ŷ)
∂ŷ

∂ŷ

∂A(P +1)

P∏
k=1

∂A(k+1)

∂H(k)
∂H(1)

∂A(1) =

=
[(

W (2)
)T

δ(2)
]

⊙ ϕ′
(
A(1)

)
,

where the operator ⊙ is the Hadamard product. We can note that the BP
phase is based on the recursive calculus of the error for each layer, i.e. holds
that:

δ(p) =
[(

W (p+1)
)T

δ(p+1)
]

⊙ ϕ′
(
A(p)

)
,

and other quantity involved in are all defined in the above forward phase;

3. Since the error is computed and backpropagated, the weights changes can be
computed for each layer according to Eq.(3.6), i.e.:

∆W (p) = −η
∂L(p) (y, ŷ)
∂W (p) = −ηH(p−1)δ(p). (3.9)

After step 3., new weights are available and then a new forward phase can begin, so
that steps from 1. to 3. are repeated until the empirical error is small as desired.
The number of iterations of steps 1.-3. are technically called epochs, and we can
speed up the algorithm implementing the early stopping technique. This simply
consists in stopping the iterations after a certain number of epochs if the loss function
improvements are not significant.
Finally, we stress that the BP method is executed fixing the NN architecture, i.e.
considering a certain dimensionality in functions composition. So, given the input-
output examples, the BP allows to operationally determine the best weights value to
optimize the loss function: this is the concept of NN training. However, the learning
process includes also procedures to define what is the best composition of the NN
architecture, f̂ (·). This is the concept of NN tuning.
The first step for tuning and training a NN model is to split the available dataset
in different partitions. Commonly, the dataset is divided into three parts: the
training set, the validation set and the testing set. The training data are used to
build the model architecture, which is technically defined by the so called model
hyper-parameters and learning hyper-parameters. Both are parameters different
from the weights, but the former allowing to define the NN structure, while the latter
serves to technically support the optimization problem. For example, the number
of hidden layers, the number of neurons within each hidden layer and the types of
activation functions to employ are model hyper-parameters; while, the learning rate
magnitude, the epochs level and the parameters governing the early stopping rules
are learning hyper-parameters. The search of both the best model and learning
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hyper-parameters value constitutes the tuning process. Moreover, during the tuning
process also the weights are optimized through the aforementioned BP method.
Hence, for a NN architecture we assign its optimal set of weights.

The actual evaluation of the best NN model is not done on the training data,
but on the validation set. Indeed, we consider an hyper-parameters domain con-
taining several values attributable to the hyper-parameters, trying each architecture
combination on the training data and, finally, validate it on the validation set. The
favourite alternative of hyper-parameters is selected through accuracy measures on
the validation set. In doing so, every model architecture, equipped with its optimized
weights, are tested for the first time on the validation data to understand the NN
ability to generalize. Finally, the testing set is utilized to prove the accuracy of
the final tuned NN model. It is essential that the testing data are not employed
during the tuning process, in order to express a consistent judgment on both model
efficiency and robustness. To inspect the wide range of algorithmic techniques for
tuning purposes, we refer the reader to Aggarwal (2018) and Goodfellow et al. (2016),
and references therein.

3.3 Neural forecasting

In the field of forecasting, NNs are suitable tools for practitioners and researchers
in many predictive tasks. As highlighted in Makridakis et al. (2020), deep learning
based models represents the state of the art in time series forecasting. Deep learning
models are NN models capable to reach high level of abstraction thanks to the
presence of several hidden layers o recurrent connections among neurons. In doing
so, very in depth data features are discovered, supercharging classical forecasting
models or figuring out new predictive approaches. In the area of deep learning
models, MLPs structure identifies a vanilla design. However, by construction, MLPs
are not adequate to explore temporal relations among data, since phenomena like
serial correlations or time invariant patterns are not caught. Therefore, ad hoc NN
architecture for handle sequential data, such as time series, has been created: the
Recurrent Neural Networks (RNN, from now on).

3.3.1 Recurrent Neural Networks

RNNs are network models characterized by neurons self-connected or connected
to units of the previous layers, in addition to the feed-forward connections. The
presence of recurrences donates to the RNN the nature of dynamic system, since each
data of a sequence is analysed jointly with information stored from the past inputs.
Hence, a dynamic memory is naturally formed, allowing for a proper inspection
of temporal correlations between events that may be far from each other (see, for
example, Rumelhart et al. (1986), Werbos (1988) and Elman (1990)). This latter
feature is vital for time series learning and their forecasting. In particular, let us
consider a temporal sequence of input-output pairs {(xt,yt)}, where xt is the input
received by the network at time t and yt is the related target. The role of a RNN is
to approximate the temporal map φ : xt 7→ yt. To this end, RNNs working is based
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on two essentials concepts: the unfolding operation and the weights sharing. Indeed,
by construction, a RNN is a cyclical graph to which it is possible to associate its
acyclic version, called unfolded RNN. Unrolling the RNN implies the transformation
of recurrent connections in feed-forward connections following the data sequential
order. On the unfolded RNN operates the weights sharing: for each sequence of
unrolled nodes, the elaborated data are pondered by the same weights.

An illustration of the RNN architecture and its unfolded version is provided in
Figure 3.3.
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Figure 3.3. A one-hidden layered vanilla RNN and its unfolded version.

Therefore, in a RNN the data manipulation stems from a one-to-one correspon-
dence between the layers within the acyclic graph and the time-stamp of a single
data in the sequence. Given the weights sharing, for each time-stamp we apply the
same set of parameters, ensuring a coherent modelling over the time.
Referring to a vanilla RNN with a single, recurrent, hidden layer as in Figure 3.3, let
H

(1)
t ∈ RN1 be the hidden layer output at time t and let fH and fy be the differen-

tiable activation functions of the hidden layer and the output one, respectively. H(1)
t

is defined as function of the input at the same time step and the hidden layer of
the previous time step, H(1)

t−1, while the output at time t is a function of the hidden
layer at the same time step. Therefore, the target of this dynamic system is defined
by the following equation:

yt = fy

(
H

(1)
t

)
= fy

(
fH

(
xt, H

(1)
t−1

))
. (3.10)

Since NNs are parameter-dependent maps (see Eq.(3.2)), let define

W =
{

W (1),U (1),W (2), b(1), b(2)
}

the set of parameters characterizing the RNN, where:

• W (1) ∈ RN1×N0 is the weight matrix between the input and the hidden layer;

• U (1) ∈ RN1×N1 is the recurrences weight matrix within hidden layers, i.e. the
weights shared along the unfolded graph;

• W (2) ∈ RN2×N1 is the weight matrix between the hidden layer and the output.
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• b(1) ∈ RN1 and b(2) ∈ RN2 are the bias vectors of the hidden layer and the
output layer, respectively.

Therefore, Eq.(3.10) is rewritten as follow:

yt = fy

(
⟨W (2), H

(1)
t ⟩ + b(2)

)
=

= fy

(
⟨W (2),

(
fh

(
⟨W (1),xt⟩ + ⟨U (1), H

(1)
t−1⟩ + b(1)

))
⟩ + b(2)

) (3.11)

As emerges in Eq.(3.11), the RNN is a function obtained by composition and
superposition of differentiable activation functions, as well as feed-forward NNs. The
only difference is related to the model complexity: composition and superposition are
execute over one or more layers and over different time steps. In light of this, RNNs
fall within the set of deep learning models even without involving many hidden
layers. Obviously, a general multi-layer representation is useful and it is expressed
in the following Definition 3 and 4.

Definition 3. Let A(p)
t : RNp−1 → RNp an affine map defining the pth hidden layer

activation at time t. Let ϕ : RNp → RNp a differentiable activation function. The
output at time t from the pth hidden layer is:

H
(p)
t =

(
ϕ ◦A(p)

t

) (
H

(p−1)
t , H

(p)
t−1

)
= ϕ

(
⟨W (p), H

(p−1)
t ⟩ + ⟨U (p), H

(p)
t−1⟩ + b(p)

)
,

(3.12)
where W (p) ∈ RNp×Np−1 is the weight matrix for feed-forward hidden layer connec-
tions, U (p) ∈ RNp×Np is the weight matrix for recurrent hidden layer connections
and b(p) ∈ RNp is the bias term.

Definition 4. Let us consider a dataset D =
{

(xt,yt) ,xt ∈ RN0 ,yt ∈ RNP +1
}

,
where xt is the input received by the network at time t and yt is the related target.
An RNN model is a function fRNN : RN0 → RNP +1 such that:

yt = fRNN (xt; W) + γt = ψ ◦
(
H

(P )
t ◦H(P −1)

t ◦ · · · ◦H(1)
t

)
(xt; W) + γt, (3.13)

with ψ : RNP → RNP +1 is the output layer activation function, and γt is the zero
mean data noise at time t.

Finally, as for feed-forward NNs, also for RNNs holds the universal functional
approximation property (Schäfer and Zimmermann (2007)). Hence, RNNs are used
as data-driven predictors approximating temporal maps and being able to produce
realizations over a designed forecast horizon.

3.3.2 Learning over the time

The RNN learning process follows the same philosophy explained in Section 3.2. As
stated in Werbos (1988), to train a RNN the steps provided by the BP method are
employed, with some necessary adjustment to take into account the peculiarities of the
RNN structure: the resulting optimization procedures are named backpropagation
through the time (BPTT, from now on). The latter requires to run the input
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elaboration in the forward direction, producing a time-indexed output and computing
the loss function for each time step. Consequently, the backpropagation begins
considering the gradients of the loss with respect to the weights over the unrolled
graph, starting from the last time step in the last layer and continuing to scale on
times and layers. Because of the weights are shared among different time stamp, the
BPTT method is a BP applied recursively over the various temporal nodes, within
each layer.
Formally, given the overall loss function L (ŷ,y), the following derivative must be
computed:

∂L (ŷ,y)
∂W =

P +1∑
p=1

T∑
t=1

∂L(p)
t (ŷ,y)
∂W =

=
P +1∑
p=1

T∑
t=1

t∑
i=1

∂L(p)
t (ŷ,y)
∂ŷt

ŷt

∂H
(p)
t

t−1∏
j=i

∂H
(p)
j+1

∂H
(p)
j

∂H
(p)
i

∂W (p) =

=
P +1∑
p=1

T∑
t=1

t∑
i=1

∂L(p)
t (ŷ,y)
∂ŷt

ŷt

∂H
(p)
t

·

·
t−1∏
j=i

diag
(
ϕ′
(
⟨W (p), H

(p)
j+1⟩ + ⟨U (p), H

(p)
j ⟩ + b(p)

))
U (p) ∂H

(p)
i

∂W (p) ,

(3.14)

where each addendum of the sum is calculated through classical BP method defined
in Section 3.2. However, dealing with RNNs an important training problem emerges,
namely vanishing or exploding gradient problem (Bengio et al. (1994) and Pascanu et
al. (2013)). In particular, when the length of the sequence increases, the derivative in
Eq.(3.14) is affected by short-term dependencies. Indeed, any change in the hidden
state has a multiplicative effect so that, if the number of recurrences increases, the
multiplication in Eq.(3.14) rapidly converges to 0 when the Jacobian eigenvalues
are less than 1. This means that, if the largest eigenvalue is less than 1, the
gradient will vanish, otherwise it explodes. Denoting with λ

⟨H⟩
max and λ

⟨U⟩
max the

largest eigenvalues associated to ||diag
(
ϕ′
(
⟨W (p), H

(p)
j+1⟩ + ⟨U (p), H

(p)
j ⟩ + b(p)

))
||

and ||U (p)||, respectively, holds that:

∣∣∣∣∣∣∂H(p)
j+1

∂H
(p)
j

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣diag (ϕ′

(
⟨W (p), H

(p)
j+1⟩ + ⟨U (p), H

(p)
j ⟩ + b(p)

)) ∣∣∣∣∣∣·∣∣∣∣∣∣U (p)
∣∣∣∣∣∣ ≤ λ⟨H⟩

maxλ
⟨U⟩
max,

(3.15)

∣∣∣∣∣∣∂H(p)
t

∂H
(p)
i

∣∣∣∣∣∣ =
∣∣∣∣∣∣ t−1∏

j=i

∂H
(p)
j+1

∂H
(p)
j

∣∣∣∣∣∣ ≤
(
λ⟨H⟩

maxλ
⟨U⟩
max

)t−i
. (3.16)

As the sequence becomes longer, i.e the distance between t and i increases, the eigen-
values will determine if the gradient either becomes exceptionally large (explodes)
or very small (vanishes). The vanishing problem has been overcome by managing
the recurrent hidden units through special neuronal engineering, namely gates. In
light of this, in the recent years different gated RNN has been created, and at the
state of the art the most popular is the Long Short-Term Memory (LSTM, from
now on) thanks to its forecasting performances.
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3.3.3 Learning to forget: the LSTM block

The LSTM has been introduced by Hochreitern and Schmidhuber (1997) as solution
to the vanishing (exploding) gradient problem. In particular, the LSTM is not
properly a NN, but a particular neurons engineering oriented to both control the
information flow and to maintain temporal characteristics learned. Hence, the LSTM
neuron, or LSTM block or LSTM cell, depicts an innovative units structure grafted
into a RNN, resulting the so called RNN model with LSTM architecture. Initially
employed for natural processing language tasks, the LSTM has showed its ability
to handle sequential data, avoiding gradients problems and being able to learn
what time dependencies to preserve or to forget. Developments and variants have
been presented in past literature (see, for example, Gers et al. (1989), Gers and
Schmidhuber (2000), Graves et al. (2009)), involving forecasting intents of several
fields, from natural sciences to economics.
The vanilla LSTM neuron is made up of two fundamental parts. The first is the
memory or cell unit, ct, which incorporates significant information over time, allowing
long-term dependencies to be maintained by integrating them from time to time
with the inputs of the current time step. The second one refers to the gates, that is
perceptrons inserted into the the LSTM neuron. At each time t, the LSTM block
receives as input three type of data: the memory state at time (t − 1), ct−1, the
elaboration of the previous node, Ht−1, and the current input, xt. All of them are
processed through the gates in order to generate a two-fold output to transmit to
the next node: the updated long-term memory, ct, and the short-term outcome, Ht.
In particular, the LSTM gates are the following:

• the forget gate, ft, whose role is to establish if the inputs received should be
take into account to modify the memory state acquired. To this purpose, the
previous hidden state result and the current input are transformed by the
sigmoid function. Given the codomain of the latter, the forget gate output is
in [0, 1]: the closer to 0 implies forgetting and the closer to 1 means keeping;

• the input gate, it, that aims to update the current memory state given the
previous hidden state and current input. This information are treated thanks
to a sigmoid function, so that an output close to 0 does not affect the current
memory state, vice versa in the case of the input gate output tends to 1. To
fulfil its role, the input gate is helped by an auxiliary perceptron, that receives
the hidden state and the current input as arguments of the hyperbolic tangent
function. In doing so, the input gate working is regulated;

• the output gate, ot, necessary to compute the current hidden state result.
Also the output gate collects both the previous hidden state result and the
current input, passing them into a sigmoidal function. The sigmoidal output is
multiplied with an hyperbolic tangent output in order to produce the current
hidden state, embedding also the current memory influences.

The Figure 3.4 displays the LSTM block as mentioned above.



3.3 Neural forecasting 29

σ σ Tanh σ

× +

× ×

Tanh

ct−1

Ht−1

xt−1

ct

Ht

Figure 3.4. Representation of a single LSTM neuron and its internal forward flow.

Formally, the LSTM neuron working stems from the system of equations posed
in the following Definition 5.

Definition 5. Let H(p)
t−1 and c

(p)
t−1 the hidden state and the memory state, respectively,

resulting at the time (t− 1) within the pth hidden layer, and let H(p−1)
t the current

input. Given the LSTM gates equations below:

Forget gate : f
(p)
t = σ

(
⟨W (p)

f , H
(p−1)
t ⟩ + ⟨U (p)

f , H
(p)
t−1⟩ + b

(p)
f

)
,

Input gate : i
(p)
t = σ

(
⟨W (p)

i , H
(p−1)
t ⟩ + ⟨U (p)

i , H
(p)
t−1⟩ + b

(p)
i

)
,

Output gate : o
(p)
t = σ

(
⟨W (p)

o , H
(p−1)
t ⟩ + ⟨U (p)

o , H
(p)
t−1⟩ + b(p)

o

)
,

(3.17)

the LSTM outputs at time t within the pth hidden layer stems from the following
equations:

Memory state : c
(p)
t = f

(p)
t ⊙ c

(p)
t−1 + i

(p)
t ⊙ tanh

(
⟨W (p)

c , H
(p−1)
t ⟩ + ⟨U (p)

c , H
(p)
t−1⟩ + b(p)

c

)
,

Short-term output : H
(p)
t = o

(p)
t ⊙ tanh

(
c

(p)
t

)
,

(3.18)
where σ(x) is the sigmoid function, tanh(x) = (ex − e−x) (ex + e−x)−1 is the

hyperbolic tangent function,
{

W
(p)
l , l = f, i, o, c

}
are the weights matrices for gates

feed-forward connections and
{

U
(p)
l , l = f, i, o, c

}
are the weights matrices for gates

recurrent connections.

Definition 6. Let us consider a dataset D =
{

(xt,yt) ,xt ∈ RN0 ,yt ∈ RNP +1
}

,
where xt is the input received by the network at time t and yt is the related target. A
RNN model with a LSTM architecture is a function fLST M : RN0 → RNP +1 wherein
each composition arguments is defined according to Eq.(3.18) and such that:

yt = fLST M (xt; W) + γt = ψ ◦
(
H

(P )
t ◦H(P −1)

t ◦ · · · ◦H(1)
t

)
(xt; W) + γt. (3.19)
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The Figure 3.5 exposes a graphical example for an unrolled RNN with a LSTM
architecture.
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Figure 3.5. An explicative unrolled graph for a 2-hidden layered RNN with a LSTM
architecture.

Remark. Considering the learning process for a RNN with a LSTM architecture,
the backward flow involved in the BPTT, for each LSTM block in each hidden layer,
concerns also the memory cell changes over the time:

∂c
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t
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, (3.20)

where zt = tanh
(
⟨W (p)

c , H
(p−1)
t ⟩ + ⟨U (p)

c , H
(p)
t−1⟩ + b

(p)
c

)
. We notice that at each time

step the algorithm backpropagates the error through both loss function and memory
unit of the next time step. Hence, we observe that if the terms ∂c

(p)
t

∂c
(p)
t−1

start to converge
towards zero, higher gates values could be set to reach the value close to 1, thus
preventing the gradients from vanishing.

Nowadays, predictive models based on the LSTM are the state of the art in neural
forecasting. Hence, we will investigate the LSTM suitability to achieve mortality
forecasts for demographic and actuarial purposes, as explained in the following
Chapter 4 and Chapter 5.
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Chapter 4

Life expectancy and lifespan
disparity forecasting

Since nineteenth century, developed countries have been experiencing a steady
improvement in mortality level, and the impact of human longevity on population
dynamics has become crucial in defining social and financial policies. The achievement
of longer lives has been driven by a decline in infant mortality, and by reductions
in mortality at older ages after the WWII (Rau et al. (2008); Vaupel (1997)). The
investigation on human lifespan boundaries leads to new approaches focused on life
expectancy, bringing new perspectives into mortality forecasting. A breakthrough
has been posed by Oeppen and Vaupel (2002) who introduced the concept of best-
practice life expectancy (BPLE, from now on), i.e. the maximum life expectancy
observed among national populations in a given calendar year. They underlined the
absence of an impending limit in human life expectancy, disproving the historical
estimates of the human life boundary. The constant improvement of BPLE suggests
that the mortality reductions should not be viewed as a disconnected sequence
of unrepeatable revolutions, but rather as a regular flow of continuous progress
(Oeppen and Vaupel (2006)). Indeed, mortality developments are linked to social
progress in terms of health, nutrition, education, hygiene, and medicine (Riley
(2001)). However, could be substantial differences in the time of death among
countries having same life excpectancy level. Hence, lifespan disparity measure,
such as in Eq.(2.12), becomes crucial to a suitable inspection of lifetime evolution.
Moreover, since the same information is involved in the calculation of both life
expectancy and lifespan disparity, the relationship between these two indicators
has been discussed by several researchers. For example, Bohk-Ewald et al. (2017)
proposed to evaluate the performance of extrapolative mortality models by analysing
both the average lifespan and lifespan disparity, while Rabbi and Mazzuco (2020) to
adjust the time component of the LC model with the observed lifespan disparity.
Aburto and van Raalte (2018) explored trends in lifespan disparity under periods of
life expectancy decline by focusing on Central and Eastern Europe. They measured
the relationship between life expectancy and lifespan disparity by their absolute and
relative changes. Aburto et al. (2020) developed a mathematical framework to jointly
explore the evolution over time of life expectancy at birth and life span equality
analysing three different indicators of life span equality: life table entropy, Gini
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coefficient, and coefficient of variation of the age-at-death distribution. They found a
strong link between life expectancy and each lifespan inequality indicator, especially
when life expectancy is less than 70 years. These studies generally investigate life
expectancy and lifespan variation since birth, without considering the dispersion in
the time of death conditioned on survival at a specific age, as well as the forecasting.
Both life expectancy and lifespan disparity might be understood as latent variables
encompassing many factors that, directly or indirectly, affect mortality dynamics.
This latent behaviour should be emphasized in forecasting by incorporating both
short term history and contribution from long term improvements in more recent
periods. Bearing in mind the latter, we need models able to catch more in-depth the
unobservable features in the historical observations. Therefore, we rely on the LSTM
network to meet these needs. The goal is to provide more accurate forecasts of
life expectancy and lifespan disparity with respect to other well-established models,
overcoming the above limitations. In particular, our investigations contribute to the
present literature by proposing a new method for forecasting life expectancy and
life disparity, at birth and at age 65. In fact, LSTM allows to predict future values
maintaining the noteworthy influence of the past trend and adequately reproducing
it into forecasting. Therefore, the resulting future values of life expectancy and
lifespan disparity should be more consistent with the historical dynamics and meet
biological reasonableness criteria, first the non-linearity. Our approach mainly
consists of forecasting life expectancy and life disparity independently using an
univariate network. The analysis of lifespan disparity may allow us to acquire further
knowledge on the life expectancy future evolution. However, these indicators may be
linked by a long-term relationship (Bohk-Ewald et al. (2017), Aburto and van Raalte
(2018), Aburto et al. (2020)), therefore the forecasting accuracy might take advantage
by simultaneous modelling, exploiting the potential link between the dynamics of the
two series. Within the recurrent neural network setting, the simultaneous forecasting
of two time series requires the construction of a bivariate network. Thus, we also
propose a bivariate LSTM framework aimed at forecasting life expectancy and
lifespan disparity simultaneously. We provide a numerical application carried out
on five countries of the world, Australia, Italy, Japan, Sweden, and the USA, to
demonstrate the strong predictive power of univariate LSTM networks. We refer to
other life expectancy forecasting models as comparison terms, such as the ARIMA
model and the Double Gap model (DG) proposed by Pascariu et al. (2018), which
applies to life expectancy but not to lifespan disparity. The ARIMA model can be
considered as a benchmark for time series forecasting, while the DG model represents
a prominent approach which might be seen as an improvement of ARIMA, allowing
to consider the gender gap in life expectancy trend. In addition, we provide a
further comparison with two extrapolative models: the LC Poisson model (Brouhns
et al. (2002)) and the CoDa (Oeppen (2008)) model, which is based on the principal
component analysis. The bivariate LSTM is compared to the first order Vector
Autoregression model (VAR) that is often used as a benchmark for multivariate
series forecasting.
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4.1 Life expectancy and lifespan disparity modeling

In this section, we will describe the model used to forecast country-specific life ex-
pectancy and lifespan disparity, both independently and simultaneously, considering
two ages: x = 0 and x = 65.
Let {ex,t}ts

t=t0
and

{
e†

x,t

}ts

t=t0
, for t0 < ts, be the country-specific observed time series

of life expectancy and lifespan disparity, respectively. Let
{
ex,t, e

†
x,t

}ts

t=t0
be the

country-specific bivariate series we would like to model simultaneously. Following an
appropriate rule, each series is split into a training set and a testing set, where the
first one is used for fitting the model parameters, while the second one to test the
model prediction and calculate the error. Let tτ be the calendar year corresponding
to the last realization on the training set. The training and testing sets for the life
expectancy series are defined as follows:

TRAINING SET : T R(e) = {ex,t}tτ

t=t0

TESTING SET : T S(e) = {ex,t}ts

t=tτ +1

Similarly, we can define training and testing sets for lifespan disparity, T R(e†) and
T S(e†), and for the bivariate series, T R(e,e†) and T S(e,e†).

4.1.1 LSTM model

In the LSTM network, aimed at forecasting life expectancy and lifespan disparity,
we adopt a first-order autoregressive approach. Therefore, according to Eq.(3.19),
the model is described by:

ex,t = f
(e)
LST M (ex,t−1; W) + γ

(e)
t or

e†
x,t = f

(e†)
LST M

(
e†

x,t−1; W
)

+ γ
(e†)
t or[

ex,t, e
†
x,t

]
= f

(e,e†)
LST M

{[
ex,t−1, e

†
x,t−1;

]
; W

}
+ γ

(e,e†)
t .

(4.1)

where γ(·)
t is a zero mean error. The set of functions f (·)

LST M is the map linking
life expectancy or lifespan disparity or both at an annual pace. In a first-order
autoregressive approach, the network learns at each time step the relationship
between consecutive values on the training set and, according to the same logic,
predicts the future values on the testing set. This process is optimized using a L2
loss function:

min
W

1
2

tτ∑
t=t0

(ex,t − êx,t)2 or

min
W

1
2

tτ∑
t=t0

(
e†

x,t − ê†
x,t

)2
or

min
W

1
2

tτ∑
t=t0

{[
ex,t, e

†
x,t

]
−
[
êx,t, ê

†
x,t

]}2
,

(4.2)

where W =
{{

W
(p)
l

}
∪
{

U
(p)
l

}
∪
{

b
(p)
l

}
, l = f, i, o, c, p = 1, . . . P

}
is the LSTM

parameters set.
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LSTM in a demographical framework

We are now going to connect the concepts from RNN, exposed in Chapter 3, to the
input data used in the application, aiming at creating a bridge between RNN and
demography. In the following, we will only refer to life expectancy (the extension
to life disparity and to the bivariate case is straightforward). In our model, the
input received by the network at state t is life expectancy at a given age x, i.e.
xt ≡ ex,t. The output of the network at state t is the life expectancy at time
t + 1, consistently with the first-order autoregressive pattern, that is yt ≡ ex,t+1.
Therefore, following the Eq.(3.19), ex,t+1 ≡ ψ

(
⟨W (P +1)

e , H
(P )
t ⟩ + b

(P +1)
e

)
+ γt+1 is

the theoretical relationship defining the life expectancy at year t+ 1, given the life
expectancy at year t, and the LSTM block processing. The final output of LSTM,
after the estimation procedure, which implies to estimate the weights, becomes:

êx,t+1 = ψ
(
⟨Ŵ (P +1)

e , H
(P )
t ⟩ + b̂(P +1)

e

)
(4.3)

Where êx,t+1 is the life expectancy estimation resulting from the application of
the estimated parameters through the BPTT described in Section 3.3.2.

4.1.2 Other models

The actuarial and demographic literature provides a wide variety of mortality models.
In our analysis, the performance of the univariate LSTM network is compared to
the ARIMA, DG, LC and CoDa models. LSTM, ARIMA and DG models allow
to directly work with the life expectancy and life disparity time series, without
passing through an extrapolative stochastic models which provides the mortality
rates used to calculate such demographical indicators. However, we also consider
two extrapolative models: LC, which is probably the most used by practitioners
and CoDa, which forecasts the life table distributions of deaths using principal
component analysis in a compositional data pattern. While the performance of the
bivariate LSTM is compared to the VAR model. A brief description of these models
is reported in the follow.

ARIMA model is a well-established approach that can be considered as the
reference model for the forecast of mortality. This model has three parameters
p, d, q, representing respectively the auto-regressive, the differencing and the moving
average order. The generic ARIMA(p, d, q) for life expectancy takes the following
form:

▽dex,t = δ +
p∑

i=1
ϕi ▽d ex,t−i + ϵt +

q∑
j=1

θjϵt−j (4.4)

where δ is the drift process, ϕi are the autoregressive parameters, ϵt the error terms
normally distributed with zero mean and variance σ2

ϵ and θj are the moving average
parameters.

Double Gap model is one of the most recent and most prominent approaches in
forecasting life expectations. It provides the life expectancy forecasts for both the
genders by modeling first the gap between country-specific female life expectancy, ef ,
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and female BPLE (the female world record level), ebp, and then the gap between male
life expectancy, em, and female life expectancy, ef , in a given country. Therefore, the
future female life expectancy at age x and time t for a given country is calculated
as the difference between the future ebp

x,t and the predicted values of the gap, Dx,t,
between the country-specific female life expectancy and the female best-practice trend:
ef

x,t = ebp
x,t−Dx,t. While, the future male life expectancy is calculated as the difference

between the future female life expectancy and the predicted values of the gap, Gx,t,
between the country-specific female and male life expectancy: em

x,t = ef
x,t −Gx,t. The

first gap, Dx,t, is modeled according to a traditional ARIMA(p, d, q):

▽dDx,t = δ(1) +
p∑

i=1
ϕ

(1)
i ▽d Dx,t−i + ϵ

(1)
t +

q∑
j=1

θ
(1)
j ϵ

(1)
t−j (4.5)

where δ(1) is the drift process, ϕ(1)
i are the autoregressive parameters, ϵ(1)

t the error
terms normally distributed with zero mean and variance σ2

ϵ(1) and θ(1)
j are the moving

average parameters. The second gap, Gx,t, is modeled by a linear model and a
random walk without drift:

G∗
x,t =

β0 + β1 ·Gx,t−1 + β2 ·Gx,t−2 + β3 ·
(
ef

x,t − τ
)+

+ ϵ
(2)
t if ef

x,t < A,

Gx,t−1 + ϵ
(3)
t otherwise

Where τ and A are fixed levels calculated on historical data by maximizing the
resulting maximum likelihoods of the linear model over integer values of τ and A
(see Pascariu et al. (2018) for further details on the estimation procedure). The
algorithm is implemented by the function available in the R package MortalityGap.
The DG model is not applied in the case of lifespan disparity due to the non-existence
of a best practice for disparity measures.

LC model works with the linear extrapolations of age-specific mortality rates on the
logarithmic scale. Its first formulation (Lee and Carter (1992)) based on the latent
approach using SVD has been widely improved across time. We use the extension
proposed by Brouhns et al. (2002), widely described in Section 2.2.1.

CoDa model was proposed by Oeppen (2008) and suggests forecasting dx,t using
principal component analysis in a compositional data pattern, following the Lee and
Carter’s original approach:

clr(dx,t ⊖ αx) = κtβt + ϵx,t (4.6)

Where clr is one of the log-ratio representations of compositional data. According
to Bergeron-Boucher et al. (2017) it is defined as the logarithm of the composition
divided by its geometric mean: clr(dx,t = ln(dx,t

gt
)), where gt is the geometric mean

of the age-composition at time t. The ⊖ operator represents the standard operation
in compositional data analysis consisting in perturbing a composition by the inverse
element of another composition. It is used to center the matrix while retaining
the constant sum. The parameter, obtained by SVD, are κt = uts and βt = vx,
where s is the leading singular value, ut and vx refer to period and age components
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that are respectively the first left and the first right-singular vectors, and the αx

is the age-specific geometric mean of dx,t over time. Then, the model provides the
age at death distribution through the closing procedure C[·] used to transform the
estimates into compositional data summing up to the initial constant:

dx,t = αx ⊗ C[eκtβx+ϵx,t ] (4.7)

Vector autoregression model, also known as VAR, is one of the most applied
models in empirical economics and finance for the analysis of multivariate time
series. It is a multivariate stochastic process that can be used to model the joint
evolution of two or more series over time. We refer to the first-order VAR model
which consists in jointly modeling life expectancy and life disparity as follows:

ex,t = ϕ0 + ϕ1ex,t−1 + ϕ2e
†
x,t−1 + ϵex,t (4.8)

e†
x,t = θ0 + θ1ex,t−1 + θ2e

†
x,t−1 + ϵe

†
x,t (4.9)

Where ϕi and θi (for i = 0, 1, 2) are the model parameters, and the errors ϵex,t and
ϵe

†
x,t follow a bivariate normal distribution with a zero mean vector and a constant

covariance matrix.

4.2 Empirical investigation and results

In the numerical application, we consider historical mortality data collected by
gender from the HMD (www.mortality.org) for Australia, Italy, Japan, Sweden, and
USA.
It is well known that mortality modelling is a process that should fulfil some
qualitative criteria, robustness, among others. Thus, the forecast should not be
too sensitive towards the selected period’s choice, but it should be consistent with
historical data. Therefore, in our analysis, we will carry out an out-of-sample test
considering the same forecast horizon for two different overlapping estimation periods:
1938-1999 and 1947-1999. The time frame 2000-2014 is then used as evaluation
chunk. In this way, we obtain a sufficient size for training and testing sets in both
the time frames, according to the common splitting rule: 80% and 20%. Finally, to
assess the models’ accuracy, we calculate the Root Mean Square Error (RMSE) and
Mean Absolute Error (MAE).

Before training the LSTM for all countries and both genders, we will implement
a preliminary tuning process to identify the optimal hyper-parameters, such as
mini-batch size, epochs, and neurons number for each hidden layer. For this purpose,
we will select a finite set for each hyper-parameter, exploring the specification
minimizing the loss function. The best combination obtained in the training phase
is used to calibrate LSTM in the forecasting one. The mini-batch size is equal
to the number of training samples in one forward/backward pass before updating
the model weights. In our case, the mini-batch size is equal to 1, as our input
data have been arranged into a column vector, where each row represents the life
expectancy at a generic time t. Therefore, we need to compute the weight’s update
for each one-time step. It is worth noting that a batch size greater than 1 is not
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consistent with our autoregressive framework based on one-order of differentiation.
Not least, the literature suggests that the use of small batch sizes improves the
out-of-sample performance and the optimization convergence (LeCun et al. (2012),
Keskar et al. (2016)) requiring small memory (then gaining efficiency) by exploiting
memory locality. The architectures with a single hidden layer work better than
others, and the number of neurons and epochs depends on the specific-country data.
In our model, the loss function is minimized over the neural network weights using
the Adadelta (Zeiler (2012)), a variant of the Stochastic Gradient Descent (SGD)
method. We use the Rectified Linear Unit (ReLU) (Glorot et al. (2011)) as output
layer activation function, ψ, that outperformed the other tested functions.

The LSTM performances are compared to the models presented in Section 4.1.2.
Therefore, we will compare the univariate LSTM to the best ARIMA(p, d, q), DG,
LC and CoDa models, while the bivariate LSTM is compared to the VAR model. All
these models are trained aiming at generating life expectancy and lifespan disparity
projections on the testing set. The following goodness of fit measures are used to
evaluate the forecasting quality:

• Mean Absolute Error

MAE =
∑ts

t=tτ +1 | ex,t − êx,t |
(ts − tτ − 1) , (4.10)

• Root Mean Square Error

RMSE =

√√√√∑ts
t=tτ +1 (ex,t − êx,t)2

(ts − tτ − 1) . (4.11)

where êx,t represents the future estimation of life expectancy produced by the models.
These measures are also used to evaluate the forecasting of the lifespan disparity
e†

x,t and the bivariate series
[
ex,t, e

†
x,t

]
.

All the experiments were performed using the R packages: keras and tensorflow
(version 1.13.1) for LSTM, forecast for ARIMA, MortalityGap for DG model, Mor-
talityForecast for CoDA model, StMoMo for LC model and vars for VAR model.

4.2.1 Results of the out-of-sample test: independent modeling

This section will provide the estimated future life expectancy and lifespan disparity
at birth and age 65 from separate modeling. The results are provided for five
countries, Australia, Italy, Japan, Sweden, and USA, and both genders over the
testing period. As already pointed out, mortality models should also satisfy biological
reasonableness criteria, with respect to both the short and the long term dynamics
must be biologically consistent. Hence, we will perform the considered models on
two different time windows, carrying out a sensitivity analysis based on two periods
according to the historical demographic changes. The longest period (1938-1999)
covers the WWII mortality shocks, which is excluded in the shortest one (1947-1999).
Japan is not considered in the period starting from 1938 as data were made available
starting from 1947. Finally, to illustrate our findings, the results are displayed in a
tabular form, posing the associated graphical depiction in Appendix A.
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Results for life expectancy: e0,t and e65,t

Table 4.1 shows MAE and RMSE values of life expectancy at birth for both the
estimation periods and each country by gender. Overall, the univariate LSTM
provides remarkably high accuracy compared to the other models, overperforming
in 72% of cases. Our model is only beaten in case of Japan females, Italy, and
US females for both periods, however reaching the second-best performance. By a
graphical perspective (see Figure A.1 in Appendix A) we generally observe that when
life expectancy does not experience any trend changes, the reduction of mortality
compression does not provide any evidence of imminent interruption (Bohk-Ewald
et al. (2017)) as detected by lifespan disparity (see Fig. Figure A.3 in Appendix A).

Table 4.1. Out-of-sample test for e0,t: MAE and RMSE for LSTM, ARIMA, DG, LC
and CoDa model by country and gender. Years 2000-2014. Fitting periods: 1938-1999
(columns 3-6) and 1947-1999 (columns 7-10).

Country Model
Fitting period: 1938-1999 Fitting period: 1947-1999
Female Male Female Male

MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Australia

ARIMA 0.3118 0.4149 0.8111 0.8504 0.2167 0.2844 0.2901 0.3216
DG 0.3139 0.4175 0.2693 0.2896 0.1945 0.2277 0.3219 0.3468

LSTM 0.1139 0.1412 0.1485 0.1895 0.1110 0.1362 0.1407 0.1804
LC 0.2525 0.2806 1.0740 1.2133 0.2869 0.3204 1.0368 1.1640

CoDa 0.1347 0.1655 1.1936 1.2763 0.1304 0.1639 1.0022 1.0629

Italy

ARIMA 1.5759 1.8872 0.9157 1.0819 0.3434 0.4455 0.1768 0.2155
DG 0.2986 0.3836 0.2355 0.2697 0.2314 0.2722 0.2209 0.2444

LSTM 0.1914 0.2304 0.1396 0.1767 0.2104 0.2587 0.1758 0.2124
LC 0.1663 0.2068 1.8194 1.9259 0.1518 0.1969 1.5136 1.6463

CoDa 0.4275 0.5507 0.9763 1.0531 0.4156 0.5356 1.0985 1.1880

Sweden

ARIMA 0.4305 0.4659 0.4760 0.5484 0.4467 0.4672 0.2696 0.3058
DG 0.4305 0.4659 0.1659 0.1888 0.4467 0.4671 0.3983 0.4232

LSTM 0.0773 0.0964 0.0574 0.0703 0.0752 0.1000 0.0598 0.0718
LC 0.1761 0.1973 0.9698 1.0815 0.0823 0.1149 1.0199 1.1245

CoDa 0.4079 0.4574 0.9496 1.0627 0.6612 0.7449 0.8578 0.9571

USA

ARIMA 0.7358 0.8898 0.1892 0.2449 0.6822 0.8165 0.1455 0.1845
DG 0.7358 0.8898 1.3553 1.5444 0.6821 0.8164 1.0669 1.2119

LSTM 0.2466 0.2939 0.1140 0.1381 0.3522 0.4279 0.1137 0.1375
LC 0.1173 0.1451 0.5017 0.5950 0.3847 0.4096 0.7549 0.8336

CoDa 0.2390 0.2688 0.4505 0.5432 0.1038 0.1266 0.4529 0.5451

Japan

ARIMA - - - - 0.1712 0.2291 1.2220 1.4085
DG - - - - 0.5569 0.5894 0.3721 0.4210

LSTM - - - - 0.3342 0.3694 0.2252 0.2662
LC - - - - 0.6543 0.7650 0.4330 0.5068

CoDa - - - - 1.2086 1.5032 0.9961 1.2106

The results of the backtesting exercise for life expectancy at age 65 are reported
in Table 4.2 for both the estimation periods and each country by gender. Also, by
graphical analysis, the univariate LSTM seems to well catch the nonlinearity of
the future mortality trend, showing its aptitude to better represent the decreasing
dynamics of mortality at age 65. In this case, our model overperforms all the other
models in 69% of cases. Overall, e65 shows a nonlinear behavior and irregular
patterns, especially for males, and the gain provided by LSTM is more evident if
compared to the other models (see Figure A.2 in Appendix A). Indeed, one of the
main features of LSTM is to reproduce in the projections the irregular patterns of
a phenomenon observed in the past. In particular, in the case of US females, we
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speculate that the historical periods 1973-1979 and 1989-1992 seem to strongly affect
the LSTM weights, by reproducing in the forecasts the sudden longevity growth
after the stagnation following the WWII.

Table 4.2. Out-of-sample test for e65,t: MAE and RMSE for LSTM, ARIMA, DG, LC
and CoDa model by country and gender. Years 2000-2014. Fitting periods: 1938-1999
(columns 3-6) and 1947-1999 (columns 7-10).

Country Model
Fitting period: 1938-1999 Fitting period: 1947-1999
Female Male Female Male

MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Australia

ARIMA 0.2928 0.3271 0.1501 0.1811 0.2277 0.2587 0.2846 0.3664
DG 0.3205 0.3564 0.8552 0.9366 0.2817 0.3151 0.8163 0.8928

LSTM 0.0804 0.0999 0.0764 0.0998 0.0782 0.0975 0.0764 0.0996
LC 0.4688 0.4962 1.2422 1.3336 0.3583 0.3878 1.0972 1.189

CoDa 0.1842 0.2143 0.9851 1.0834 0.1295 0.1569 0.8639 0.9467

Italy

ARIMA 0.2604 0.2954 1.0379 1.1296 0.2732 0.3059 1.0918 1.2212
DG 0.2604 0.2954 0.5539 0.5946 0.2732 0.3059 0.5669 0.6100

LSTM 0.1578 0.1972 0.1529 0.1803 0.1591 0.2022 0.1576 0.1893
LC 0.4672 0.4936 1.4899 1.5551 0.3479 0.3798 1.2268 1.2999

CoDa 0.2347 0.2765 0.7775 0.8372 0.2437 0.2878 0.8047 0.8681

Sweden

ARIMA 0.1361 0.1705 0.8900 0.9902 0.2786 0.3042 0.7178 0.8177
DG 0.1007 0.1384 0.4020 0.4703 0.2786 0.3042 0.2381 0.2836

LSTM 0.1058 0.1357 0.0828 0.1015 0.1147 0.1455 0.0861 0.1032
LC 0.1095 0.1248 1.15 1.2278 0.0541 0.0637 0.9145 1.0011

CoDa 0.2121 0.2575 0.8872 0.9903 0.1015 0.1181 0.7832 0.8718

USA

ARIMA 0.2529 0.2923 0.9051 1.0138 0.3112 0.3753 0.6753 0.7572
DG 0.2616 0.2734 0.3081 0.3449 0.1775 0.2047 0.7755 0.8431

LSTM 0.6146 0.7095 0.2773 0.3109 0.5283 0.6094 0.2485 0.2963
LC 0.2212 0.2512 0.9987 1.093 0.2601 0.2979 0.9337 1.0345

CoDa 0.1915 0.2226 0.9193 1.0245 0.2732 0.3267 0.8893 0.9908

Japan

ARIMA - - - - 0.2804 0.3762 0.1815 0.2073
DG - - - - 0.2590 0.3287 0.3436 0.4494

LSTM - - - - 0.2928 0.3189 0.2173 0.2392
LC - - - - 0.5048 0.5775 0.3906 0.4240

CoDa - - - - 0.5747 0.7193 0.4275 0.5262

Results for lifespan disparity: e†
0,t and e†

65,t

The results of the out-of-sample test for e†
0 are shown in Table 4.3 for both the

estimation periods and each country by gender. We can observe that for lifespan
disparity at birth, the univariate LSTM outperforms the other models in 83% of the
cases. Our model does not reach the best performance only for Australia females
for both periods, where however, the prediction errors are incredibly low. The most
remarkable out-of-sample result for e†

0 is provided by US females. Such a result
shows a decreasing trend periodically interrupted by stagnation periods. In this case,
the LSTM weights are probably influenced by the two short periods of stagnation,
1960-1970 and 1985-1990, that are reproduced in the projections, allowing to reach
a high level of accuracy (see Figure A.3). The same speculation holds for US males
where the stagnation periods are more evident. We assume that a similar forecast
behavior is challenging to be achieved by a canonical model that could ignore the
long-short term dynamics.
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Table 4.3. Out-of-sample test for e†
0,t: MAE and RMSE for LSTM, ARIMA, LC and CoDa

model by country and gender. Years 2000-2014. Fitting periods: 1938-1999 (columns
3-6) and 1947-1999 (columns 7-10).

Country Model
Fitting period: 1938-1999 Fitting period: 1947-1999
Female Male Female Male

MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Australia

ARIMA 0.0916 0.0985 0.1058 0.1348 0.0718 0.0994 0.1426 0.1618
LSTM 0.0906 0.1018 0.0631 0.0756 0.0794 0.0929 0.0880 0.1103

LC 0.0729 0.0949 0.0844 0.1150 0.1931 0.2041 0.0764 0.0981
CoDa 0.0757 0.0864 0.2147 0.2270 0.0845 0.0924 0.1601 0.1785

Italy

ARIMA 0.3209 0.3709 0.9104 1.0565 0.5013 0.5810 0.3444 0.3955
LSTM 0.0545 0.0643 0.0702 0.0866 0.1362 0.1528 0.0646 0.0827

LC 0.2100 0.2222 0.3984 0.4641 0.1649 0.1792 0.3860 0.4513
CoDa 0.2451 0.2833 0.2807 0.3247 0.2331 0.2702 0.3533 0.4073

Sweden

ARIMA 0.2438 0.2666 0.3020 0.3390 0.2944 0.3262 0.2166 0.2442
LSTM 0.0598 0.0736 0.0468 0.0550 0.0572 0.0669 0.0439 0.0565

LC 0.1204 0.1291 0.0559 0.0734 0.1025 0.1126 0.1798 0.1955
CoDa 0.2195 0.2398 0.0612 0.0729 0.2379 0.2634 0.0771 0.0920

USA

ARIMA 0.5569 0.6499 0.8677 0.9733 0.4795 0.5508 0.5935 0.6626
LSTM 0.0457 0.0547 0.0497 0.0603 0.0517 0.0561 0.0529 0.0628

LC 0.1670 0.2006 0.3277 0.3742 0.3281 0.3514 0.1659 0.1931
CoDa 0.3269 0.3885 0.4529 0.5027 0.1970 0.2433 0.4246 0.4715

Japan

ARIMA - - - - 0.0635 0.0868 0.2265 0.2863
LSTM - - - - 0.0573 0.0760 0.0726 0.0799

LC - - - - 1.1321 1.1351 0.7256 0.7276
CoDa - - - - 0.9129 0.9958 0.5617 0.6017

The results for e†
65 are shown in Table 4.4 for both the estimation periods and

each country by gender. The MAE and RMSE values highlight the LSTM ability
to detect the hidden patterns of noisy time series, outperforming the other models
in 89% of the cases. Indeed, e†

65 is characterized by a high variability level, since it
summarizes disparity across individuals who have already survived to age 65. In case
of US male (Figure A.4 in Appendix A), the LSTM prediction is not consistent with
the historical values and might be influenced by short-term stagnation dynamics.

4.2.2 Results of the out-of-sample test: simultaneous modeling

The estimates of future life expectancy and lifespan disparity at birth and age 65
given by the out-of-sample test, resulting from the simultaneous modeling (namely
LSTM-2D) are shown in the following tables, compared with the first-order VAR
model that is used as a benchmark for multivariate series forecasting. The results for
e0 and e65 are respectively reported in Table 4.5 and Table 4.6 for both the estimation
periods and each country by gender. We note that the LSTM-2D outperforms the
VAR model for life expectancy at birth in 86% of the cases, while this percentage
drops to 47% at age 65. Similar behavior can be observed for lifespan disparity
(Tables 4.7 and 4.8), where LSTM-2D obtains the best performance in 78% of the
cases at birth and 58% at age 65. In some few cases, the bivariate network provides
lower errors if compared to the other models (univariate and bivariate), especially for
life expectancy at birth: for example, Italy females in the fitting period 1947-1999,
Sweden males in the fitting period 1938-1999 and for e65 Japan females in the fitting
period 1947-1999.



4.2 Empirical investigation and results 41

Table 4.4. Out-of-sample test for e†
65,t: MAE and RMSE for LSTM, ARIMA, LC and CoDa

model by country and gender. Years 2000-2014. Fitting periods: 1938-1999 (columns
3-6) and 1947-1999 (columns 7-10).

Country Model
Fitting period: 1938-1999 Fitting period: 1947-1999
Female Male Female Male

MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Australia

ARIMA 0.2077 0.2265 0.1743 0.1883 0.2119 0.2304 0.0905 0.1048
LSTM 0.0466 0.0525 0.0399 0.0525 0.0435 0.0539 0.0469 0.0596

LC 0.3093 0.3176 0.1887 0.1962 0.2895 0.2976 0.1354 0.1450
CoDa 0.1148 0.1285 0.0771 0.0932 0.1128 0.1263 0.0646 0.0789

Italy

ARIMA 0.1284 0.1499 0.2735 0.3149 0.1405 0.1636 0.2755 0.3111
LSTM 0.0505 0.0605 0.0441 0.0583 0.0498 0.0595 0.0425 0.0532

LC 0.0988 0.1154 0.4352 0.4586 0.0727 0.0856 0.3720 0.3943
CoDa 0.0566 0.0743 0.2217 0.2633 0.0659 0.0841 0.2174 0.2592

Sweden

ARIMA 0.0733 0.0836 0.1412 0.1548 0.1379 0.1494 0.1408 0.1554
LSTM 0.0286 0.0342 0.0307 0.0388 0.0290 0.0353 0.0308 0.0388

LC 0.0705 0.0788 0.2767 0.2831 0.0541 0.0637 0.2316 0.2377
CoDa 0.0814 0.0937 0.0668 0.0821 0.1015 0.1182 0.0701 0.0860

USA

ARIMA 0.0733 0.0826 0.1033 0.1341 0.0599 0.0693 0.1074 0.1411
LSTM 0.0439 0.0539 0.1221 0.1613 0.0446 0.054 0.1153 0.1532

LC 0.1872 0.1948 0.1673 0.1879 0.2361 0.2407 0.1295 0.1510
CoDa 0.0634 0.0860 0.1092 0.1462 0.0470 0.0585 0.1158 0.1543

Japan

ARIMA - - - - 0.0896 0.1050 0.1923 0.2363
LSTM - - - - 0.0647 0.0765 0.0773 0.0912

LC - - - - 0.2086 0.2174 0.1232 0.1519
CoDa - - - - 0.3542 0.3695 0.1402 0.1461

Our empirical analysis shows that the simultaneous modeling of life expectancy and
lifespan disparity may be not suitable, however, it leads us to speculate that only life
expectancy at birth projections may take advantage of a simultaneous forecasting
with life disparity.

Table 4.5. Out-of-sample test for e0,t: MAE and RMSE for LSTM-2D and VAR, by
country and gender. Years 2000-2014. Fitting periods: 1938-1999 (columns 3-6) and
1947-1999 (columns 7-10).

Country Model
Fitting period: 1938-1999 Fitting period: 1947-1999
Female Male Female Male

MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Australia LSTM-2D 0.1331 0.1674 0.4488 0.5152 0.1497 0.1916 0.5602 0.6343
VAR 0.6999 0.7269 0.8535 0.8658 0.2134 0.2520 0.4687 0.5386

Italy LSTM-2D 0.2442 0.3019 0.4417 0.4991 0.1235 0.1646 0.1392 0.1654
VAR 0.2957 0.3409 2.4970 2.6610 0.2957 0.3409 2.3200 2.5000

Sweden LSTM-2D 0.2437 0.2851 0.0488 0.0605 0.0909 0.1180 0.1001 0.1176
VAR 0.8205 0.9675 1.9560 2.1530 0.4442 0.5284 0.8585 0.9164

USA LSTM-2D 0.1786 0.2257 0.2413 0.2754 0.1216 0.1488 0.1960 0.2262
VAR 0.5654 0.6964 0.1471 0.1824 0.6170 0.7516 0.2121 0.2993

Japan LSTM-2D - - - - 0.3225 0.3734 0.5602 0.6343
VAR - - - - 0.3320 0.3685 1.2200 1.3300
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Table 4.6. Out-of-sample test for e65,t: MAE and RMSE for LSTM-2D and VAR, by
country and gender. Years 2000-2014. Fitting periods: 1938-1999 (columns 3-6) and
1947-1999 (columns 7-10).

Country Model
Fitting period: 1938-1999 Fitting period: 1947-1999
Female Male Female Male

MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Australia LSTM-2D 0.0986 0.1144 0.3142 0.3618 0.0826 0.1127 0.2934 0.3339
VAR 1.1765 1.3661 1.2694 1.6620 1.1546 1.3594 1.2624 1.6553

Italy LSTM-2D 0.4061 0.4615 0.3784 0.4227 0.6179 0.6510 0.4195 0.4622
VAR 0.2985 0.3436 1.3782 1.4669 0.2219 0.2586 1.2280 1.2955

Sweden LSTM-2D 0.6780 0.7144 0.4292 0.4767 0.5264 0.5452 0.6009 0.6173
VAR 0.6617 0.7070 0.2310 0.2425 0.5137 0.5524 0.3113 0.4375

USA LSTM-2D 0.3981 0.4398 0.6644 0.7180 0.8393 0.9477 0.8614 0.9118
VAR 0.2985 0.3436 0.1725 0.2435 0.3174 0.3729 0.3627 0.3983

Japan LSTM-2D - - - - 0.1317 0.1365 0.2139 0.2490
VAR - - - - 0.4882 0.5486 0.6607 0.6680

Table 4.7. Out-of-sample test for e†
0,t: MAE and RMSE for LSTM-2D and VAR, by

country and gender. Years 2000-2014. Fitting periods: 1938-1999 (columns 3-6) and
1947-1999 (columns 7-10).

Country Model
Fitting period: 1938-1999 Fitting period: 1947-1999
Female Male Female Male

MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Australia LSTM-2D 0.1247 0.1363 0.1406 0.1620 0.1450 0.1569 0.1846 0.2054
VAR 0.0929 0.1027 0.1627 0.2000 0.1084 0.1150 0.2076 0.2670

Italy LSTM-2D 0.2178 0.2416 0.5282 0.5353 0.2840 0.3237 0.0630 0.0782
VAR 0.7315 0.7936 0.0830 0.1004 0.7315 0.7936 0.2318 0.2737

Sweden LSTM-2D 0.1868 0.2190 0.0393 0.0445 0.0950 0.1194 0.0584 0.0701
VAR 0.3118 0.3414 0.1111 0.1371 0.2304 0.2496 0.2177 0.2375

USA LSTM-2D 0.1192 0.1436 0.2004 0.2306 0.1199 0.1406 0.2228 0.2615
VAR 0.1478 0.1557 0.5467 0.6241 0.2365 0.2424 0.5103 0.5956

Japan LSTM-2D - - - - 0.2758 0.2902 0.0875 0.0995
VAR - - - - 0.1818 0.2353 0.0897 0.1107

Table 4.8. Out-of-sample test for e†
65,t: MAE and RMSE for LSTM-2D and VAR, by

country and gender. Years 2000-2014. Fitting periods: 1938-1999 (columns 3-6) and
1947-1999 (columns 7-10).

Country Model
Fitting period: 1938-1999 Fitting period: 1947-1999
Female Male Female Male

MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Australia LSTM-2D 0.1781 0.1875 0.3494 0.3727 0.1628 0.1713 0.2981 0.3175
VAR 0.5819 0.6067 0.5209 0.5642 0.5427 0.5669 0.4879 0.5262

Italy LSTM-2D 0.2813 0.3151 0.5826 0.6568 0.2225 0.2483 0.4985 0.5704
VAR 0.2895 0.2940 0.1536 0.1842 0.2695 0.2990 0.1417 0.1694

Sweden LSTM-2D 0.1042 0.1118 0.2810 0.3086 0.1074 0.1151 0.2179 0.2393
VAR 0.2735 0.2841 0.2687 0.2943 0.2519 0.2624 0.1438 0.1645

USA LSTM-2D 0.1459 0.1582 0.2301 0.2328 0.1476 0.1574 0.1277 0.1346
VAR 0.2895 0.2940 0.0667 0.0788 0.2735 0.2783 0.1048 0.1310

Japan LSTM-2D - - - - 0.1174 0.1131 0.1348 0.1573
VAR - - - - 0.1442 0.1281 0.1210 0.1384



43

Chapter 5

A Neural Network integration of
stochastic mortality models

Since the second half of the 20th century, mortality has exhibited notable improve-
ments engaging attention from life insurers and pension systems, as well as from
actuarial and demographic researchers. Principally, mortality reductions in modern
populations arise from a continuous flow of social progress (Oeppen and Vaupel
(2006)). In fact, industrialized countries made efforts to improve the socio-economic
development, health system, and lifestyle of their populations, impacting on how
mortality will vary in the future. Various factors move human longevity trends and
different mortality scenarios should be anticipated through predictive analysis. The
need of accurate forecasting to address longevity risk and adequately pricing the
annuities products has led actuaries towards more sophisticated extrapolative meth-
ods, in a stochastic environment, see for instance Lee and Carter (1992), Brouhns et
al. (2002), Renshaw and Haberman (2006), Cairns et al. (2006), Booth and Tickle
(2008), Cairns et al. (2009), Plat (2009), Hunt and Blake (2014) and Currie (2017).

Demographers and actuaries have concentrated their efforts on the model func-
tional form and its parametrization in order to better explain the mortality structure.
In most of these models, mortality projections arise from time-dependent parameters,
modeled by time series analysis techniques, the class of ARIMA processes among
all. However, alternative mortality forecasting methods have been suggested in
past literature. For instance, a P-spline based approach is proposed in Currie et
al. (2004), where forthcoming values are interpreted as missing-value findable by
smoothing procedures. A development of this model is presented in Camarda (2019),
overcoming robustness forecasting problems. An innovative proposal has been intro-
duced in Mitchell et al. (2013), wherein the LC time-index is predicted through a
Normal Inverse Gaussian distribution, attaining accuracy in the approximation of
the observed force of mortality. Furthermore, new advances in mortality modeling,
grounded in the machine and deep learning models, have recently appeared in the
literature. The first insight based on machine learning tools is offered in Deprez et
al. (2017), where regression trees algorithms are adopted to improve the estimation
of death rates from canonical models, such as the LC and the Renshaw-Haberman.
These findings are extended in Levantesi and Pizzorusso (2019) and Levantesi and
Nigri (2020) for predictive purposes. A Neural Network design for mortality analysis
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is initially scrutinized by Hainaut (2018), profitably aiming to extrapolate suitable
non-linearities in the observed force of mortality. A NN vision within the LC frame-
work is presented in Perla et al. (2021) and in Richman and Wüthrich (2019a). The
latter proposes a NN representation for the multi-population LC model, overcoming
parameters optimization problems and achieving reliable forecasting performances.
Following this wake, Perla et al. (2021) takes the moves showing the remarkable
accuracy achieved in a large-scale prediction of mortality. In particular, different
NN structures are tested, such as the LSTM and the convolutional NN, engaging
each of them to produce point forecasts of mortality rates simultaneously for many
countries.

Deep learning models, especially RNNs, are gaining confidence in many fore-
casting tasks, as well as in mortality. They are dynamic systems stemming from
the composition and superposition of non-linear functions, earning notable accuracy
gains in predictive issues. Wanting to exploit the latter feature, we aim to investigate
the suitability of deep NNs models within the LC framework to extrapolate the
future mortality realizations. Contextualizing suggestions expressed in Makridakis
et al. (2020), our approach pursues a model integrating deep learning techniques,
representing an appropriate compromise between the interpretation of the mortality
model and high accuracy in projections. Therefore, we freeze the LC age-period
mortality representation, forecasting the mortality profile employing a deep NN
model.

It is worth to recall that a proper forecasting model provides robust point predic-
tions, outlining the future mortality trend, as well as confidence ranges of variability.
Uncertainty measures associated with the expected values are necessary to sufficiently
inspect the phenomenon and, at the same time, to judge both the model adequacy
and the reliability of the results. As in actuarial assessments, uncertainty measures,
such as prediction intervals, are imperative. This is a compelling topic, since learning
models such as NNs furnish only point predictions. To this purposes, Khosravi et
al. (2011) provided an extensive methodological review of the main approaches for
calculating confidence and prediction intervals, concluding that no method beats
the other ones in each considered comparison metric. Anyhow, procedures based
on structural assumptions, such as the Delta method (Wild and Seber, 1989), the
Mean-Variance Estimation (Nix and Weigend, 1994) and the Bayesian approach
(MacKay, 1992), are relevant solutions but suffering computational troubles that
could be prohibitive. At the state of the art, the prevailing approach to forecast
prediction intervals for NNs is based on coherent sampling techniques, favouring the
estimation of a theoretical probability distribution through an empirical one, see for
instance Tibshirani (1996), Heskes (1997), Khosravi et al. (2011), Mazloumi et al.
(2011), Kasiviswanathan and Sudheer (2014), Khosravi et al. (2015) and Li et al.
(2018). In particular, bootstrap procedures seem to represent the more tempting
alternative since they do not require stringent sampling assumptions, allowing for ac-
curate plug-in estimates (Efron and Tibshirani, 1993). In fact, such an approach has
become a common practice to measure uncertainty in stochastic mortality models, as
emerged in Brouhns et al. (2005), Koissi et al. (2006), Li et al. (2009), D’Amato et al.
(2011, 2012a,b). However, to the best of our knowledge, machine and deep learning
literature in mortality forecasting lacks studies about uncertainty estimation.

The present work formalizes the integration of deep learning techniques in the
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LC model framework, in terms of both point estimates and prediction intervals
for future mortality rates. We use a RNN with LSTM architecture to forecast the
LC time-index. The resulting integrated model, namely LC-LSTM, and mortality
boundaries it provides, fills the gap between the deep learning integrated mortality
models and the uncertainty estimation, getting suitable ranges of variability. This
allows at reaching a step forward in mortality forecasting.

We test the proposed model in a numerical application considering three countries
worldwide, Australia, Japan, and Spain, for both genders scrutinizing two different
learning periods to deepen how they could affect the forecasting performances. Our
results are assessed considering both qualitative and quantitative criteria. The
former are well-established in Cairns et al. (2011) and concern: (a) the biological
reasonableness of mortality forecasts; (b) the plausibility of projected uncertainty at
different ages; (c) the predictions robustness w.r.t. the historical mortality trend.
The latter, like performance metrics, are used to assess the resulting mortality
forecasts with a backtesting approach. Our findings confirm the LC-LSTM ability
to produce plausible mortality projections, improving the LC predictive capacity, in
particular in the long-run. The proposed framework might represent a prominent
practice in the field of longevity forecasting, as for actuarial business tasks.

5.1 The LC-LSTM model

Let us consider the LC Poisson model proposed in Brouhns et al. (2002) as the
reference model describing the behaviour of the age-period mortality rates. For the
sake of clarity, we recall that, for ages x ∈ X = {0, 1, . . . , ω} and calendar years
t ∈ T = {t0, t1, . . . , tn}, the observed number of deaths, Dx,t, follows a Poisson
distribution:

Dx,t ∼ Poi(Ec
x,tmx,t), (5.1)

where Ec
x,t is the central exposure to the death risk and mx,t = E

(
Dx,t

Ec
x,t

)
is the

central death rate. The equation defining the LC model structure associated to the
assumption (2.13) (Currie (2017)) is:

lnmx,t = αx + βxkt, (5.2)

where αx and βx are age-dependent parameters illustrating the mortality age pattern
and kt is a time-index parameter representing the mortality behaviour over time. As
is well-known, parameters constraints must be satisfied to ensure model identification,
i.e.

∑tn
t=t0 kt = 0 and

∑ω
x=0 bx = 1.

Let κT = (kt−j)t∈T be the vector of the time lagged kt, being j ∈ N the time
lag. According to Eq.(3.19), we model the LC time-index as below:

kt = fLST M (κT ; W) + γt = ψ ◦
(
H

(P )
t ◦H(P −1)

t ◦ · · · ◦H(1)
t

)
(κT ; W) + γt. (5.3)

Integrating Eq.(5.3) within the LC structure in Eq.(5.2), the LSTM will act as
a predictor over the forecasting horizon T ′ = {tn + 1, tn + 2, . . . , tn + s}, and the
LC-LSTM model expression is:

lnmx,t = α̂x + β̂x (fLST M (κT ′ ; W) + γt) , ∀t ∈ T ′. (5.4)
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with α̂x and β̂x the estimates of age-dependent parameters.
The meaning of the proposed model integration is the following. As the mortality

dynamic over time stems from a continuous evolution of various social and demo-
graphic factors, a coherent mortality profile investigation suggests an autoregressive
approach to the time-index modelling. From a general perspective, the LC time-index
values should be interpreted as the realization of the following process:

kt = φ (κT ) + γt, ∀t ∈ T , (5.5)

where the unknown function φ : Rj → R maps the vector κT to kt over the time
horizon T , unless the noise component. Referring to the RNNs universal functional
approximation property (Schäfer and Zimmermann (2007)), the proposed model
integration allows to resemble the unknown map φ (κT ) through a RNN with LSTM
architecture, whose functional form is shaped according to the available time-index
history. As the RNN model approximates the map φ (κT ), it also defines the mean
of response variable conditioned to the explicative ones (Bishop (1995)), that is:

k̂t = f̂LST M

(
κT ; Ŵ

)
= E (kt|κT ) , (5.6)

where f̂LST M is the fitted function composition and Ŵ is the NN parameters
estimate. Such a relation highlights that the LSTM model captures the LC time-
index conditional expectation. Therefore, the LC-LSTM model provides the following
point predictions:

ln m̂x,t = E (lnmx,t) = α̂x + β̂xf̂LST M

(
κT ′ ; Ŵ

)
, ∀t ∈ T ′. (5.7)

However, point predictions do not describe the uncertainty arising from the estimates
of mortality rates. Therefore, a methodology for building prediction intervals are
necessary in order to provide a measure of prediction uncertainty.

5.2 Prediction intervals for the LC-LSTM model

Prediction intervals (henceforth PI) outline a probabilistic range suitable to in-
corporate various forecasting scenarios, then probing uncertainty on the future
mortality realizations. Stochastic mortality models forecast PIs, whose estimates
act as uncertainty measure linked to the expected future mortality, see for instance
Booth and Tickle (2008). Thus, in a proper forecasting process PIs are meaningful
in supporting both risk evaluations and the model estimates reliability.

Referring to NNs, PIs construction is a challenging task because of different
uncertainty sources impact on the learning process, then conditioning the NN
generalization performances. By a broad perspective, NNs models are exposed to a
learning uncertainty, depending both on the data and the NN functioning. Since the
data employed in the learning process are a realization of an underlying stochastic
process, a training data uncertainty looms. Indeed, varying input could involve in
distinct function compositions, generating a distribution for the output values. In
addition, a variability could arise due to the optimization procedures necessary to
learn NN parameters value from data. As the loss function could exhibit many local
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minima, the NN parameters take on different values entailing variability in estimates.
In this case a parameter uncertainty emerges. Nevertheless, also a model uncertainty
could occur for a possible structural model misspecification.

Addressing the measurement of uncertainty sources separately is a complex
problem, as they are closely connected and no information is available about the
input-output relation. However, PIs account for all uncertainty sources, embracing
the overall variability around NN point predictions. Therefore, we proceed to define
PIs for the LC-LSTM mortality rates in order to estimate the total uncertainty
produced by the model integration.

Recalling that age-dependent parameters are time invariant, the uncertainty in
death rates concerns the temporal dynamic described by Eq.(5.3). Thus, we focus
on the construction of time-index PI, exploiting the kt total variance, σ2

kt
. To this

end, the PI characterization is based on the following result.

Proposition. Let (kt)t∈T ′ the time-index series over the forecast horizon T ′. The
total variance associated to each time-index value is:

σ2
kt

= σ2
k̂t

+ σ2
γ + E

[
BIAS

(
k̂t

∣∣κT ′

)2
]

(5.8)

where BIAS
(
k̂t

∣∣κT ′

)
= E

(
φ (κT ′) − k̂t

∣∣κT ′

)
and σ2

k̂t
is the NN output variance.

Proof. Recalling Eq.(5.6), over the forecasting horizon is straightforward noting that

E (kt) = E
[
E
(
kt

∣∣κT ′
)]

= E
(
k̂t

)
.

We proceed to define the time-index variance by direct calculation:

σ2
kt

= E
[
(kt − E(kt))2

]
= E

[(
kt − E(kt) + k̂t − k̂t

)2
]

=

= E
[(
kt − k̂t

)2
]

+ E
[(
k̂t − E

(
k̂t

))2
]

+ 2E
[(
kt − k̂t

) (
k̂t − E(kt)

)] (5.9)

Assuming stochastic independence between
(
kt − k̂t

)
and

(
k̂t − E(kt)

)
, follows

that:

σ2
kt

= E
[(
kt − k̂t

)2
]

+ σ2
k̂t

(5.10)

The term E
[(
kt − k̂t

)2
]

identifies the mean squared error of prediction associated

to k̂t, whose expression can be developed as below:

E
[(
kt − k̂t

)2
]

= E
[
E
[(
kt − k̂t

)2
∣∣∣∣κT ′

]]
= E

[
E
[(
φ (κT ′) + γt − k̂t

)2
∣∣∣∣κT ′

]]
=

= E
[
E
[(
φ (κT ′) − k̂t

)2
∣∣∣∣κT ′

]]
+ E

[
E
[
γ2

t

∣∣∣∣κT ′

]]
=

= E
[
BIAS

(
k̂t

∣∣κT ′

)2
]

+ σ2
γ .

(5.11)
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Substituting Eq.(5.11) in Eq.(5.10), we have:

σ2
kt

= σ2
k̂t

+ σ2
γ + E

[
BIAS

(
k̂t

∣∣κT ′

)2
]
, (5.12)

completing the proof.

Following Eq.(5.8), uncertainty in the future mortality behaviour is linked to
the NN model. The NN ability to approximate data depends on the function
composition extent, which is intrinsically related to the learning process. Hence,
σ2

k̂t
includes fluctuations due to training data and learned weights, as well as from

model misspecification occurrences. In compliance to the bias-variance principle, an
expected bias component is present. In fact, both bias and variance contribute to
the NN prediction error and the NN model suitability is based on the reduction of
both. Finally, the variance σ2

γ constitutes an irreducible term of uncertainty, since it
refers to the random noise component.

5.2.1 Estimating σ2
k̂t

To derive the NN output variance, the conditioned time-index distribution, P
(
k̂t

∣∣κT ′

)
,

should be known. However, it is not available and we could either hypothesize some
distribution or extract it from the data grasped. Considering the latter, our approach
to estimate the time-index variance refers to the NN ensemble paradigm, based on
the jointly use of multiple NNs (Zhou et al. (2002)). Utilizing a bootstrap tech-
nique, multiple training data samples are generated in order to develop an empirical
distribution, P̂

(
k̂t

∣∣κT ′

)
, constitutes by different NN point predictions. The final

estimates are then obtained aggregating, by average, the various outputs. The latter
procedure, namely bootstrap aggregating or bagging (Breiman (1996)), produces
less unbiased estimation, favouring an adequate variance measurement. This means
that the expected bias in Eq.(5.8) is seen as a negligible component affecting the
time-index variance (Khosravi et al. (2015)).

The bagging scheme proposed in the present work is described in the following
steps:

Step 1. Using the available time-index series κT , we train the LSTM model to obtain
the point estimates in Eq.(5.6) over the forecast horizon T ′;

Step 2. We generate B ∈ N samples of κT through a proper bootstrap procedure. In
particular, we refer to the bootstrap strategy proposed in Koissi et al. (2006);

Step 3. For each bth sample, with b = 1, . . . , B, we re-optimize the weights of the
function composition defined in Step 1. In doing so, only the NN weights
will change given the new data and the created NNs ensemble will include
uncertainty for both training data and parameters;

Step 4. For each trained NN in Step 3, we predict the associate point estimate on
T ′, producing a bootstrap distribution consisting of B point predictions, i.e.:

P̂
(
k̂t

∣∣κT ′

)
=
(
k̂

(b)
t = f̂LST M

(
κ

(b)
T ,Ŵ(b)

)
, b = 1, . . . , B

)
; (5.13)



5.3 Performance metrics of forecasting 49

Step 5. From the bootstrap distribution P̂
(
k̂t

∣∣κT ′

)
, we find the estimates of interest

by aggregation. Hence, the bagged estimate of the variance σ2
k̂t

is:

σ̂2
k̂t

= 1
B − 1

B∑
b=1

(
f̂LST M

(
κ

(b)
T ,Ŵ(b)

)
− kt

)
, (5.14)

where kt = 1
B

∑B
b=1 f̂LST M

(
κ

(b)
T ,Ŵ(b)

)
is the bagged estimate for the condi-

tional expectation E
(
k̂t

∣∣κT ′

)
.

We emphasize that using an ensemble technique for estimating the NN output
variance, the expected bias component is irrelevant. Thus, the ensemble technique
could associate high uncertainty to the NN predictions, as the bias-variance trade-off
states. Howbeit, if the employed bootstrap technique fits the density estimation
problem and the trained NN model is robust, then the estimated variance does not
induce an explosive prediction intervals behaviour over time.

5.2.2 Estimating σ2
γ

Looking at Eq.(5.3), mortality dynamic incorporates an intrinsic randomness not
explained by the network. A NN appropriately trained catches the key input-output
data schemes, skimming noisy examples. Consequently, the NN model is suitable to
produce forecast avoiding overfitting occurrences. For our purposes, such noise is
analysed and predicted. Considering the training set interval T , we deal with the
series

(
kt − k̂t

)
t∈T

as a proxy of the unwrapped noise by NN. It helps to evaluate the
estimates σ̂2

γ as the time-index residual uncertainty over T , spreading the random
error over the forecast horizon T ′ through a random walk representation.

5.3 Performance metrics of forecasting

To quantitatively assess the LC-LSTM projections over the forecast horizon, we refer
to performance metrics both for point and interval forecasts. In the former case, the
Root Mean Squared Error (henceforth RMSE) is acknowledged as accuracy measure
both for the time-index and mortality rates, respectively:

RMSE(k) =

√√√√∑tn+s
t=tn+1

(
kt − k̂t

)2

s− 1 , RMSE(m) =

√∑tn+s
t=tn+1 (lnmx,t − ln m̂x,t)2

s− 1 .

(5.15)
To judge the PI quality and effectiveness, we jointly examine PI coverage probability
and PI width. In analytical terms, we consider two indicators namely the Prediction
Interval Coverage Probability (henceforth PICP) and the Mean Prediction Interval
Width (henceforth MPIW). The former inspects the PI coverage counting how many
values are wrapped in the probabilistic range, given a confidence level. In other
words, the PICP estimates the probability that the mortality rates values fall within
the PI provided by the mortality model. Let k̂L

t be the estimated time-index lower
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bound and be k̂U
t the estimated time-index upper bound. Then, the PICP for the kt

series is defined as follows:

PICP(k) = 1
s− 1

tn+s∑
t=tn+1

1{k̂t ∈ [k̂L
t ,k̂U

t ]}, (5.16)

where 1{·} is the indicator function such that 1{·} = 1 if k̂t ∈ [k̂L
t , k̂

U
t ], and 1{·} = 0

otherwise.
The MPIW indicates the PI mean width over forecasting horizon, that is:

MPIW(k) = 1
s− 1

tn+s∑
t=tn+1

k̂U
t − k̂L

t . (5.17)

We also calculate PICP and MPIW on the log-mortality rates by a given age
x. Let ln m̂L

x,t be the estimated mortality rates lower bound and be ln m̂U
x,t the

estimated mortality rates upper bound. Then, we specify the PICP and MPIW as
follows:

PICP(m) = 1
s− 1

tn+s∑
t=tn+1

1{ln m̂x,t ∈ [ln m̂L
x,t,ln m̂U

x,t]}, (5.18)

where 1{·} = 1 if ln m̂x,t ∈ [ln m̂L
x,t, ln m̂U

x,t], and 1{·} = 0 otherwise, and

MPIW(m) = 1
s− 1

tn+s∑
t=tn+1

ln m̂U
x,t − ln m̂L

x,t. (5.19)

A higher PICP value indicates PIs having a greater probability to cover the true
mortality realizations. High MPIW values are desirable in order to provide a suitable
uncertainty portrayal. An explosive demeanor in variability is reflected by greater
MPIW levels, jeopardizing the biological plausibility of mortality forecasts. The
latter qualitative criterion is valuable since it concerns the predicted uncertainty
levels consistency w.r.t. the historical volatility at different ages (Cairns et al.
(2011)).

5.4 Empirical investigation and results

In the following we illustrate the empirical analysis carried out to test our model
proposal. The results and considerations presented will also take into account the
forecasts getting from the LC Poisson model (Brouhns et al. (2002)) as a term of
comparison. The analysis has been achieved using the R software (version 3.6.3),
exploting the packages StMoMo (version 0.4.1), forecast (version 8.13), Keras (version
2.2.5) and Tensorflow (version 1.13.1).

5.4.1 Data

Our numerical experiment concerns three countries worldwide, Australia, Japan
and Spain, analyzed by gender. Data were downloaded from the Human Mortality
Database (HMD, www.mortality.org) and refer to the age range X = {0, 1, . . . , 99}.
We consider two calendar year sets, 1950-2018 and 1960-2018, to assess both accuracy
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and variability of the LC-LSTM outcomes with respect to the historical time chunks.
This allows us to verify the effect on the learning process of shortening the NN
training set, i.e. the network robustness to changes in the training set length.

5.4.2 Neural Network tuning, training and ensembling

To apply the LSTM model, firstly we fit the LC model in Eq.(5.2) to the observed
age-period mortality data, estimating the age-dependent parameters and the time-
index series (kt)t∈T . We pose j = 1 to define the one-step lagged time series, i.e.
κT = (kt−1)t∈T , imposing to the LSTM model to sift mortality data at annual paces,
that is kt = fLST M (kt−1; W) + γt according to Eq.(5.3).

To tune and train the NN model is necessary to split the time-index series into
distinct datasets. To this end, we exploit a hierarchical procedure. Setting T = 2000
as forecasting year for all the countries investigated, we define the training set and
the testing set as below:

TRAINING SET: T R = (kt|kt−1)t=t0,...,T

TESTING SET: T S = (kt|kt−1)t=T +1,...,tn
,

(5.20)

where t0 = {1950, 1960} and tn = 2018. In addition, to validate the model we
divide the training set into a sub-training set and in a validation set, considering the
splitting rule 80%−20%. Hence, denoting with T sub the last year in the sub-training
set, we have:

SUB-TRAINING SET: T Rsub = (kt|kt−1)t=t0,...,T sub

VALIDATION SET: VS = (kt|kt−1)t=T sub+1,...,T

(5.21)

We use the sets T Rsub and VS to tune the NN structure through a grid search
technique. Thus, a bounded discrete parametric space is a priori settled, whose
possible values are arbitrarily chosen acting as network hyper-parameters. Fixing a
hyper-parameters combination, the learning process begins minimizing the Mean
Squared Error loss function over the set T Rsub. We select as optimal NN structure
the one identified by the hyper-parameters combination returning the minimum
error on the validation set VS. In doing so, the function composition, f̂LST M , is
built according to the data. For each countries and both genders, the LSTM model
is characterized by p = 1 hidden layer, considering the ReLu function Glorot et
al. (2011) as feed-forward activation function, the tangent hyperbolic function as
recurrent activation function and the linear function as the output layer activation
function ψ. The number Np of hidden neurons varies depending on both countries
and genders. Finally, the best NN architecture is afterwards employed on the
training set, T R, to spawn point predictions over the testing set horizon. Therefore,
we compare the NN forecasts, k̂t, with the available time-index values in T S as
backtesting exercise.

The depicted learning process suggests the minimum learning period length
to produce robust predictions. Shortening the training dataset, our experiment
highlights that training periods beginning after 1960s generate predictions sensitive
to small variations in the data. Therefore, we need at least 40 observations to
adequately tune the network model.
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The tuned LSTM model acts as the reference model in Step 1. of the proposed
bagging scheme in Section 5.2.1. Following the bootstrap strategy proposed in
Koissi et al. (2006), we generate B = 1000 bootstrap samples of the training set
T R. Maintaining the tuned network function composition, f̂LST M , we estimates
its weights on the bth training set producing the related forecasts over testing set
horizon. Therefore, the bootstrap distribution P̂

(
k̂t

∣∣kt−1
)

is obtained, allowing for
the bagged variance calculation as in Eq.(5.14).

5.4.3 Results

In the following we provide the results of our numerical application, recalling the
performance metrics presented in Section 5.3. We firstly refer to RMSE to evaluate
the point forecasts accuracy, considering also the error of the LC projections as
benchmark. To appreciate the PIs quality by PICP and MPIW indicators, after
the bagging scheme we need to assess the noise variance in order to estimate PI
boundaries. We consider the sample variance of the series

(
kt − k̂t

)
t∈T R

as the noise
variance estimate over training set. To project the noise and its uncertainty over
testing set horizon, we inspect its possible random walk behavior. To this end, the
Augmented Dickey Fuller (ADF) test is implemented. In addition, we test normality
features of the noise realizations through statistical normality tests, such as the
Shapiro-Wilk, the D’Agostino-Pearson and the Jarque-Bera. For all the investigated
countries and both genders, the noise analysis confirms the ability of a random walk
representation with Gaussian innovations for the noise component (see Appendix
B). Therefore, the LC-LSTM time-index values are embedded within the following
PI, for a confidence level α:[

k̂L
t , k̂

U
t

]
=
[
k̂t − zα

2

√
σ̂2

k̂t
+ σ̂2

γ , k̂t + zα
2

√
σ̂2

k̂t
+ σ̂2

γ

]
(5.22)

where zα is the α-quantile of a Standard Normal distribution.
We then calculate the performance metrics for the LC-LSTM and the LC model.
Their values for the time-index appear in Table 5.1, comparing the LSTM perfor-
mances in the LC-LSTM, with the ARIMA ones in the LC model.

Table 5.1. kt performance metrics values for each training period. Forecasting years:
2001-2018.

Country Model
Training period 1950-2000 Training period 1960-2000

Male Female Male Female
RMSE PICP(k) MPIW(k) RMSE PICP(k) MPIW(k) RMSE PICP(k) MPIW(k) RMSE PICP(k) MPIW(k)

Australia
ARIMA 9.514 1 53.503 3.861 1 25.195 5.138 1 47.485 3.637 1 25.089
LSTM 4.280 1 32.865 3.790 1 39.478 1.970 1 28.143 2.659 1 37.433

Japan
ARIMA 3.743 1 21.503 10.084 0.556 20.767 4.647 1 17.392 9.790 0.500 12.409
LSTM 2.228 1 43.784 18.014 1 53.431 2.069 1 28.209 5.818 1 30.701

Spain
ARIMA 14.038 0.333 19.354 6.215 1 21.394 13.071 0.333 17.343 5.805 1 20.747
LSTM 8.625 1 35.424 7.471 1 60.373 9.983 0.778 23.340 4.357 1 28.141

For all the countries considered, the time-index series observed since the 1960s
exhibits a markable linear decline over time. In particular, mortality reductions
accelerated over the period 1950-1960, and an approximately constant rate of
degrowth characterizes the interval 1960-2000. Such a behavior has been driven by
a decline in infant mortality, as well as reductions in mortality at older ages after
WWII (see for instance Rau et al. (2008)).
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As a general statement about prediction accuracy, our analysis confirms the
ARIMA ability to represent linear evolution in mortality. On the other side, the
LSTM seems to be advisable for linear, noisy, or non-linear series. Scrutinizing the
uncertainty results, the LSTM offers always a greater probability coverage, in most
cases due to the PI width. Because the LSTM point predictions present low bias,
their variance tends to be increasing and to be higher than the ARIMA one.

The majority of cases promote the LSTM model’s usefulness in affording a
more actual mortality trend, as well as for uncertainty estimation. The most
virtuous example concerns the Australian males, presenting the lower RMSE on the
period 1960-2000. Considering the training period 1950-2000, the NN allows the
simultaneous presence of total coverage of the future kt realizations and a proper
PI width. This situation appears also when reducing the training set length, i.e.
considering the interval 1960-2000. A suitable mortality dynamic for the ARIMA
model is offered by Japanese females. In fact, their mortality behavior presents a
strong linear decrease over time, also when observed from 1950. In this circumstance,
the LSTM learns a too steep trend of mortality reductions, as opposed to ARIMA.
However, switching to the training period 1960-2000 the network performances
improve significantly. We observe a gain of 67.7% in RMSE terms, maintaining at
the same time both a total probability coverage and a coherent MPIW value. On
the other side, the ARIMA model does not favor a reliable uncertainty estimation in
both periods. Its coverage probability is around 50%, indicating that the predictive
model fails, on average, to anticipate half of the future realizations. An analogous
result holds for the Spanish males, whose time-index dynamic shows a noisier series
over both training periods. Indeed, the ARIMA coverage probability for Spanish
males remains stable around 33%.

We also depict the mortality profile for both genders considering ages 45, 65 and
85. To explore these results, we display the performance metrics in Table 5.2, as
well as the PIs graphs in Figure 5.1 and Figure 5.2.

We can highlight the estimated PIs for the LC-LSTM model both in terms
of point and interval estimates. Looking at the Japanese population, we endorse
the findings in Table 5.1 for ages 45 and 65. The LC-LSTM provides boundaries
properly shaped according to death rates, while the LC model presents the narrowest
ranges of variability lacking uncertainty information. For example, over the training
period 1960-2000 for the Japanese females aged 65, the PIs for the LC model show a
coverage probability around 33%, while the LC-LSTM provides PICP(m) = 1 with
a similar interval width. For age 85, where mortality reductions present slower linear
changes over time, also the LC fits the future mortality profile.

For the Spanish population, the LC-LCTM seems to be the befitting model
for predictive purposes. As reported in Table 5.1, for this country, as the training
period shifts, the MPIW value for kt identifies a significant reduction in the PI width
(−20.56% for males and −53.38% for females), although full probability coverage is
maintained. Such a reduction affects the uncertainty measurement in the LC-LSTM
model, albeit PI be ever wider than the LC model one. We stress how both the LC
and the LC-LSTM model fail to catch the non-linear mortality pattern characterizing
age 45 over the testing horizon. Starting from the 2000s, Spanish males aged 45
have experienced a notable acceleration in the rate of mortality reduction. Since we
pose T = 2000 as the forecasting year, the extrapolation approach underlying both
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the LC and the LC-LSTM induces misleading projections.

Figure 5.1. MALE PI (α = 5%). Forecasting period: 2001-2018. Training period: 1950-
2000 (left), 1960-2000 (right).

Finally, we appreciate the LC model performances in uncertainty estimation
for the Australian males. We highlight the LC model greatest probability coverage
and interval width. Nevertheless, the latter hints at some questions about the LC
model prediction suitability in the long-run. See, for instance, Figure 5.3 displaying
a 50-year prediction for the Australian males aged 65, for both training periods.
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Figure 5.2. FEMALE PI (α = 5%). Forecasting period: 2001-2018. Training period:
1950-2000 (left), 1960-2000 (right).
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Table 5.2. lnmx,t performance metrics values for each training period. Forecasting years:
2001-2018.

x = 45

Country Model
Training period 1950-2000 Training period 1960-2000

Male Female Male Female
RMSE(m) PICP(m) MPIW(m) RMSE(m) PICP(m) MPIW(m) RMSE(m) PICP(m) MPIW(m) RMSE(m) PICP(m) MPIW(m)

Australia
LC 0.227 1 0.534 0.091 0.944 0.267 0.175 1 0.478 0.084 0.944 0.265

LC-LSTM 0.110 0.944 0.295 0.142 0.944 0.407 0.116 0.944 0.280 0.097 1 0.394

Japan
LC 0.071 0.667 0.180 0.255 0 0.173 0.063 0.722 0.150 0.155 0.056 0.105

LC-LSTM 0.062 0.722 0.143 0.077 0.444 0.254 0.073 0.944 0.243 0.061 0.667 0.115

Spain
LC 0.200 0.333 0.153 0.104 0.611 0.179 0.228 0.333 0.136 0.067 0.722 0.174

LC-LSTM 0.161 0.556 0.276 0.502 0.944 0.489 0.205 0.278 0.215 0.073 0.944 0.259

x = 65

Country Model
Training period 1950-2000 Training period 1960-2000

Male Female Male Female
RMSE(m) PICP(m) MPIW(m) RMSE(m) PICP(m) MPIW(m) RMSE(m) PICP(m) MPIW(m) RMSE(m) PICP(m) MPIW(m)

Australia
LC 0.157 1 0.672 0.061 0.944 0.283 0.106 1 0.623 0.058 1 0.293

LC-LSTM 0.056 1 0.371 0.061 1 0.431 0.043 1 0.365 0.052 1 0.436

Japan
LC 0.054 1 0.177 0.160 0.444 0.178 0.063 0.833 0.161 0.151 0.333 0.128

LC-LSTM 0.035 0.944 0.141 0.077 1 0.262 0.029 1 0.261 0.028 1 0.141

Spain
LC 0.097 0.278 0.157 0.079 0.778 0.206 0.106 0.222 0.158 0.073 0.889 0.229

LC-LSTM 0.060 1 0.285 0.66 1 0.568 0.080 0.889 0.249 0.068 0.944 0.340

x = 85

Country Model
Training period 1950-2000 Training period 1960-2000

Male Female Male Female
RMSE(m) PICP(m) MPIW(m) RMSE(m) PICP(m) MPIW(m) RMSE(m) PICP(m) MPIW(m) RMSE(m) PICP(m) MPIW(m)

Australia
LC 0.053 0.944 0.344 0.032 1 0.191 0.039 0.944 0.319 0.033 1 0.194

LC-LSTM 0.056 0.944 0.190 0.033 1 0.292 0.049 0.944 0.187 0.026 1 0.289

Japan
LC 0.030 0.889 0.134 0.050 0.778 0.142 0.040 0.944 0.133 0.071 0.444 0.115

LC-LSTM 0.034 0.778 0.107 0.171 0.500 0.209 0.029 0.944 0.215 0.080 0.444 0.126

Spain
LC 0.082 0.333 0.113 0.059 0.611 0.122 0.086 0.278 0.116 0.057 0.833 0.150

LC-LSTM 0.052 1 0.204 0.447 1 0.335 0.066 0.944 0.183 0.048 1 0.223

Given the observed mortality up to the forecasting year, the LC model seems
to propose uncertainty levels not consistent with the historical mortality dynamics.
Looking at the training period 1960-2000, we observe an overall reduction in death
rates of about 61%. In the following 40 years of projection, the LC model estimates
a further reduction in death rates around 96%, in the case of the PI lower bound, or
a possible increase of 68%, considering the PI upper bound. For the training period
1950-2000, this evidence is strengthened. Referring to the LC-LSTM model, the
mortality estimates assume greater consistency with historical observations.

Figure 5.3. Australian Males. PI (α = 5%) for x = 65. Training period: 1950-2000 (left),
1960-2000 (right). Forecasting period: 2001-2050.
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In particular, the LC-LSTM produces a 40-year decrease in mortality between
82%, considering the PI lower bound, and 46% according to the PI upper bound.
Moreover, inspecting Figure 5.3 we stress how the learning period length impacts the
long-run network forecasts. As aforementioned, the two learning periods considered
show different accelerations in mortality decline. Fitting the LSTM model on the
interval 1960-2000, the network learns the fundamental linear decrease of mortality
such that a coherent PI shape is predicted over the forecasting horizon. As opposite,
the interval 1950-2000 points up a non-linear behavior due to the longevity accel-
erations in the period 1950-1960. In this case, the LSTM is able in extrapolating
a coherent mortality range with the historical observation, allowing for biological
plausibility but believing in a more marked increase in longevity. In light of this,
we do not question the robustness of the model, rather we emphasize its ability
to extrapolate the fundamental pattern from the observed data. The selection of
the historical sample on which to fit the mortality model depends on the aware
modeler expert judgment, given the population under investigation. As suggested
by Cairns et al. (2011), it is crucial to evaluate qualitative ex-ante criteria, such as
biological reasonableness, the plausibility of predicted levels of uncertainty and model
robustness. At the same time, ex-post quantitative criteria, such as performance
metrics in Section 5.3, are indispensable to address forecasts in a backtesting exercise
(see for instance Dowd et al. (2010)). Following both qualitative and quantitative
criteria, our analyses demonstrate how overall both models are biologically regular
in projecting mortality. The discriminating factor between the two models is the
plausibility of foreseen uncertainty levels, especially for long-term forecasts. Hence,
our model improves the prediction level of the LC model, as proven in most cases
by the performance indicators. Finally, we suggest the interval 1960-2000 as the
most proper training period for the LSTM calibration on mortality data. In fact,
it is plausible to believe that the reduction in mortality will continue to occur in a
fair linear way over time and at different ages, properly reflecting the demographic
trend observed since the 1960s.
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Chapter 6

Conclusion

The present research work considers the RNN model with LSTM architetcure as
model to improve mortality forecasting analysis. The studies executed confirm the
suitability of our proposal to predict human lifetime measures, contributing to the
mortality literature.

Looking at the investigations within Chapter 4, life expectancy and lifespan
disparity indicators are coherently anticipated, allowing demographic reasonableness.
Considering the nature of life expectancy, it is not a merely a time-trend index,
but rather a “latent factor”incorporating different unobserved latent variables. It
implicitly encompasses economic fluctuations, medical innovation and many other
variables that directly (or indirectly) influenced the mortality trend. In this frame-
work, our analysis proposes a new approach based on LSTM neural network to
forecast longevity indexes both independently and simultaneously at birth and age
65, catching either short and long term factors on mortality improvements. As
for the LSTM applied to life expectancy, we observe that without imposing model
restrictions, we can obtain predictions coherent with historical trends and biological
criteria. The univariate LSTM outperforms all the models analysed, especially for
life expectancy at age 65, where e.g., the BPLE shows some weaknesses as the linear
assumption.

The wide discussion in literature on the relationship between life expectancy and
lifespan disparity suggests that projections of life expectancy and lifespan disparity
may benefit from simultaneous forecasting. Accordingly, we introduce a bivariate
LSTM, which represents a novelty in the demographic panorama, by simultaneously
forecasting life expectancy and lifespan disparity in the RNN framework. Our
simultaneous model obtains higher levels of accuracy compared to the first-order
VAR model used as a benchmark for multivariate series forecasting. Our empirical
analysis, based on five countries, two fitting periods and both genders, shows that
the simultaneous forecasting of life expectancy and lifespan disparity is less adequate
than independent modelling. Nevertheless, our results lead to speculating that
only life expectancy at birth projections take advantage of simultaneous forecasting
with life disparity. Extrapolative models, e.g., the Lee-Carter model, may also
benefit from a parameter adjustment consistent not only with lifespan disparity as in
Rabbi and Mazzuco (2020) but with both observed life expectancy and life disparity.
We show that both independent and simultaneous forecasts of life expectancy and



60 6. Conclusion

lifespan disparity provide new insights for a comprehensive evaluation of the mortality
forecasts, representing a useful tool to capture irregular mortality trajectories. Our
findings support the decrease of lifespan disparity among developed countries, for
which the evolution of age-at-death distribution assumes more compressed tails over
time. Besides, our approach based on the long-short term enables to consider the
entire time series, without excluding short-term shocks from the analysis. Using
two different periods, we show that the LSTM provides robust forecasts to the
unexpected mortality changes. This aspect sounds coherent with the modus operandi
behind the LSTM architecture, where the neuron cell manages the time series noise,
combining the long and short-term past information.

Looking at Chapter 5, the conceptualization of the deep learning integration
allows to generalize the forecasting phase, achieving both accuracy in point predic-
tions and reasonable prediction intervals. Such a model improvement relies on the
LC age-period mortality representation, supporting the phenomenon interpretation.
Indeed, among researchers and practitioners, the LC framework is widely employed
as forecasting methodology, where the whole mortality surface is unfolded by two
age-specific parameters and one time index. Its functional form is straightforward
allowing a high degree of interpretability to mortality changes over time. Essentially,
forecasting is greatly simplified, deriving from the projection of the single time-index.
Furthermore, the LC is a probabilistic model, thereby allowing the derivation of
prediction intervals of mortality rather than single deterministic point forecasts.
These last points are crucial in a measure that LC gains the role of the benchmark
model. Our proposal allows, at the same time, to represent the mortality surface
through a canonical age-period model and to predict the future mortality realizations
extrapolating the temporal mortality dynamic from data. The resulting LC-LSTM
model poses a compromise between the interpretation of the mortality phenomenon
and high precision in anticipating its future realizations. Moreover, exploiting both
the NN ensemble paradigm and noise analysis, we are able to produce a mortality
density forecast. From our empirical investigation, we highlight the LC-LSTM ca-
pacity to produce forecasts both biologically consistent and plausible in uncertainty
levels w.r.t. the historical observations, also in the long-run. The latter feature is
crucial in actuarial assessments, especially in the evaluation of annuities products
or to appraise pension systems sustainability. Therefore, our proposal establishes
a reliable improvement of the LC model in terms of predictive prowess, posing an
innovative approach within mortality literature. The proposed framework might
represent a prominent practice in the field of longevity forecasting, also for actuarial
business tasks.

Finally, we stress that demographic and actuarial applications of NNs are quite
recent. In fact, the first insight was from Hainaut in 2018 (Hainaut (2018)). Therefore,
studies and extensions in the use of NNs in these fields are many, as are the types of
NNs structures available nowadays. Referring to the demographic field, an intelligent
use of NN models could materialize in mortality modelling by causes. In fact, through
NNs is possible to capture the relationships existing between life expectancy, or
death rates, with respect to the possible causes of death affecting different ages. This
investigation would also be useful for risk management analyses implemented by
pension funds and life insurers in general. Referring to the integration of extrapolative
stochastic mortality models, a useful study could concern the extension of the model
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integration concept to more structured mortality models than the LC, for example
with a cohort effect. However, we believe that firstly is necessary to satisfy a primary
need, that is to study the validation of deep learning models for business use by
practitioners. This issue is by no means trivial, as several problems could emerge. For
instance, a first problem concerns the observation of a fairly long historical period on
the insured mortality, otherwise the insurer would to refer to the mortality results for
the national population. In this sense, the NN could act not so much as a forecasting
model, but as a backcasting model, expanding the insurer’s mortality experience.
Furthermore, the validation of an actuarial mortality model for risk analysis purposes
requires the respect of various statistical properties, also empirically, first of all
the robustness with respect to the data from which to extrapolate future mortality.
Again, the uncertainty estimate must also be robust with respect to changes in
the data, since the calculation of a solvency capital requirement derives from this
estimate. Certainly, the road in the development of deep learning models to analyse
the mortality/longevity risk in insurance business processes is uphill, but, we repeat,
we are only at the beginning of an interesting line of research.
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Appendix A

Graphical visualization of life
expectancy and lifespan
disparity forecasts



64A. Graphical visualization of life expectancy and lifespan disparity forecasts

Figure A.1. Historical and forecasted values of e0,t by country and gender (females on the
left, males on the right).
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Figure A.2. Historical and forecasted values of e65,t by country and gender (females on
the left, males on the right).



66A. Graphical visualization of life expectancy and lifespan disparity forecasts

Figure A.3. Historical and forecasted values of e†
0,t by country and gender (females on the

left, males on the right).



67

Figure A.4. Historical and forecasted values of e†
65,t by country and gender (females on

the left, males on the right).
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Appendix B

Statistical tests to check the
noise randomness and normality
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Table B.1. Statistical tests for noise in the training set. Males.

Country Test Training period 1950-2000 Training period 1960-2000
Statistics value p-value Statistics value p-value

Australia

Shapiro-Wilk 0.96352 0.12489⋆⋆⋆ 0.98379 0.82539⋆⋆⋆

D’Agostino-Pearson 1.62692 0.44332⋆⋆⋆ 0.85534 0.65203⋆⋆⋆

Jarque-Bera 1.55177 0.46030⋆⋆⋆ 0.64381 0.72477⋆⋆⋆

ADF -3.05447 0.15132⋆⋆⋆ -2.58739 0.34294⋆⋆⋆

Japan

Shapiro-Wilk 0.96193 0.10710⋆⋆⋆ 0.97511 0.51356⋆⋆⋆

D’Agostino-Pearson 8.05556 0.01781⋆ 1.45996 0.48192⋆⋆⋆

Jarque-Bera 7.35771 0.02525⋆ 1.20406 0.54770⋆⋆⋆

ADF -3.49574 0.05128⋆⋆ -2.73088 0.28662⋆⋆⋆

Spain

Shapiro-Wilk 0.97654 0.41696⋆⋆⋆ 0.95790 0.14191⋆⋆⋆

D’Agostino-Pearson 1.83229 0.40006⋆⋆⋆ 2.82652 0.24335⋆⋆⋆

Jarque-Bera 1.05350 0.59052⋆⋆⋆ 2.31446 0.31436⋆⋆⋆

ADF -7.55942 0.01000 -4.11879 0.01516⋆

P-value significance level: > 0.01⋆, > 0.05⋆⋆, > 0.1⋆⋆⋆.

Table B.2. Statistical tests for noise in the training set. Females.

Country Test Training period 1950-2000 Training period 1960-2000
Statistics value p-value Statistics value p-value

Australia

Shapiro-Wilk 0.96907 0.21209⋆⋆⋆ 0.96724 0.29319⋆⋆⋆

D’Agostino-Pearson 2.52531 0.28290⋆⋆⋆ 0.78319 0.67598⋆⋆⋆

Jarque-Bera 1.78204 0.41024⋆⋆⋆ 0.60740 0.73808⋆⋆⋆

ADF -3.07190 0.14432⋆⋆⋆ -2.50033 0.37711⋆⋆⋆

Japan

Shapiro-Wilk 0.97452 0.34985⋆⋆⋆ 0.98888 0.95815⋆⋆⋆

D’Agostino-Pearson 3.12195 0.20993 ⋆⋆⋆ 0.79814 0.67094⋆⋆⋆

Jarque-Bera 2.09605 0.35063⋆⋆⋆ 0.62112 0.73303⋆⋆⋆

ADF -5.14239 0.01000 -3.89596 0.02383⋆

Spain

Shapiro-Wilk 0.93640 0.02619⋆ 0.97970 0.67844⋆⋆⋆

D’Agostino-Pearson 8.69754 0.01292⋆ 1.74855 0.41716⋆⋆⋆

Jarque-Bera 7.56206 0.02280⋆ 1.20753 0.54675⋆⋆⋆

ADF -5.80177 0.01000 -3.46488 0.06172⋆⋆⋆

P-value significance level: > 0.01⋆, > 0.05⋆⋆, > 0.1⋆⋆⋆.
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