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Abstract
We rework the Mori–Mukai classification of Fano 3-folds, by describing each of the
105 families via biregular models as zero loci of general global sections of homoge-
neous vector bundles over products of Grassmannians.
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1 Introduction

The classification of Fano 3-folds is one of the most influential results in birational
geometry. Out of the 105 families, 17 have Picard rank ρ = 1. They are usually called
prime. Their classification was completed first by Iskovskikh [20], using the birational
technique of the double projection from a line. The classification was reworked by
Mukai [30], using the biregular vector bundle method. Mukai was able to describe
most of the prime Fano varieties as complete intersections in certain homogeneous or
quasi-homogeneous varieties. The latter in turn can be embedded in Grassmannians
as zero loci of sections of homogeneous vector bundles.
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Mori and Mukai [29] classified as well the 88 remaining families of Fano 3-folds
with Picard rank ρ ≥ 2. However, the proof has little in common with the vector
bundle strategy, relying on the powerful birational Mori’s theory of extremal rays.

One of the aims of this paper is to rewrite the entire classification of 3-folds in a
biregular fashion, finding models for the non-prime Fano 3-folds which are akin to the
Mukai’s vector bundle ones. In particular, for each of the 105 Fano X wewill look for a
suitable embedding X ⊂ ∏

Gr(ki , ni ), such that X can be described as the zero locus
of a general global section of a homogeneous vector bundle F over

∏
Gr(ki , ni ).

In [9] Coates, Corti, Galkin, and Kasprzyk carried out a similar program. In partic-
ular, they were able to write down each of the 105 Fano 3-folds as zero loci of sections
of vector bundles over GIT quotients. In some cases, their key varieties are products of
Grassmannians, and we decided to adopt their models. However, in many cases, their
model of choice is a complete intersection in a toric variety, which was particularly
suitable for their purpose of computing the quantum periods, with the aim of using
ideas from mirror symmetry for further classification results.

Our motivating purpose is instead to attack the classification of Fano varieties
in higher dimension from a representation-theoretical angle. In [21] Küchle classified
Fano 4-folds of index 1 that can be obtained from completely reducible, homogeneous
vector bundles over a single Grassmannian Gr(k, n). The resulting 20 families are
therefore a sort of higher dimensional analogue of the Mukai models for 3-folds
obtained via the vector bundlemethod.One of themain advantages ofKüchle’smethod
is that it relies only on very simple combinatorial data as input, such as the weight of
the representation corresponding to the bundle involved. Moreover, this description
allows an efficient computation of the invariants of the Fano, such as the Hodge
numbers, for example using in combination the Koszul complex and Borel–Weil–Bott
Theoremon the ambient variety. Suchmethods can be easily automatised via computer
algebra, and extended to the case of products of Grassmannians

∏
Gr(ki , ni ), to say

the least. This is exactly what we did. This paper originated from the construction of
3-folds via these methods; in a series of subsequent projects, we plan to work on more
classification-type results, in dimension 4 and above.

As an initial benchmark for our strategy, we wanted to check how many of the 105
3-folds could be described using our methods. We found out that all 105 of them are.
Although we do not believe that the same will be true in dimension 4 and higher, we
hope to be able to find out many new and interesting examples of non-prime Fano
4-folds.

Main results

The results of the paper are partially summarised in the following theorem. In what
follows and throughout the whole paper, the notationZ (F) ⊂ G will denote the zero
locus of a general global section of the vector bundle F in the variety G.

Theorem 1.1 Let X be a general smooth Fano 3-fold. Then there exist an ambient
variety G = ∏

Gr(ki , ni ), product of (possibly weighted) Grassmannians, and a
homogeneous vector bundle F on G such that X = Z (F) ⊂ G.
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The only Fano varieties requiring weighted Grassmannians (actually, a unique
weighted projective space) in their description without any alternative description are
1–11, 2–1, and 10–1, the others involving only classical Grassmannians. The weighted
projective space in question is P(13, 2, 3). The Fano 1–11 is a section of O(6) on the
latter, 2–1 is a blow up of 1–11 and 10–1 is a linear section (multiplied with a P

1).
Notice that for the Fano 1–11 (which was present in this form inMukai’s classification
as well), −KX is not very ample. A few other weighted projective spaces appear, but
for all of them we provide alternative descriptions.

In the statement of Theorem 1.1, general means that a general Fano 3-fold X
in the corresponding family admits such a description. No hypothesis on the vector
bundle F is specified; our gold standard for a homogeneous vector bundle F is
to be completely reducible and globally generated. Bundles with these properties
are particularly suitable when facing classification problems. For 85 out of the 105
families, we managed to find a vector bundle of this form; for the remaining ones,
we used homogeneous bundles which are extensions of some other homogeneous
completely reducible ones, so that the description is slightly more complicated but
still well within our range of techniques. Out of these 20 families, for 5 of them the
vector bundle is particular: it is of the form F = F ′ ⊕G where G is a line bundle with
no global sections on the total space, but with sections onZ (F ′). This happens when
we need to blow up along a subvariety involving an exceptional divisor coming from
a previous blow up. We deal with this phenomenon in Caveat 4.4.

We partially collect these refinements in the following theorem.

Theorem 1.2 Let X be a Fano as in Theorem 1.1. Then

• For 102/105 families of Fano there exists a description without weighted factors
in G.

• For 85/105 families of Fano there exists a description such that the bundle F is
completely reducible.

The two theorems are proven in Sect. 4, which we devote to the construction of the
aforementioned families, except for those which are already known in the literature.
We collect all the models in Sect. 5; we include models for Del Pezzo surfaces as well.
All models are general in moduli.

We draw the reader’s attention to Sect. 2 as well. This is mainly a collection of
technical lemmas and results, and we believe that most of them are well-known to
experts. Nonetheless, some of them are of independent interest, as they provide a
dictionary between zero loci of sections of vector bundles and birational geometry.
They were quite useful for translating Mori–Mukai models into our descriptions, and
we believe that they can and will be useful for higher dimensional analyses. In this
line of thought, we also present a few results involving flag varieties, even if they play
only a small role in what follows.

Ourmodels

Mori–Mukai characterisation of the 88 non-prime 3-folds often involves intricate bira-
tional descriptions. The typical situation consists in blowing up a simpler 3-fold along
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a curve. Whenever the curve is a complete intersection in the base 3-fold, finding a
suitable model in a product of Grassmannians is almost algorithmic; when the curve
is not, then we perform a delicate analysis to understand how the curve can be cut
in the ambient Fano. Subsequently, Lemmas 2.8, 2.11 and Corollary 2.10 allow us to
describe the resulting 3-fold as a complete intersection in a suitable projective bundle.
We then need to describe the latter as a zero locus of some vector bundle over a product
of Grassmannians. In many cases, this is a straightforward procedure and the proof
takes few lines. However, some projective bundles turn out to be particularly tricky,
and we have to deal with them case-by-case.

For other Fano we need to blow up a variety along a subvariety of codimension at
least 3. To handle these cases, we collect and develop a few results which allow us to
characterise these blow ups in term of zero loci of sections.

We want to give here an introductory example of a Fano 3-fold whose description
is not immediate, yet admits a quite simple description in our model. We compare
the original Mori–Mukai approach and the Coates–Corti–Galkin–Kasprzyk one with
ours.

Let us consider the Fano of rank 2, number 16 in the Mori–Mukai list. Following
the notation which will be adopted in our paper, we will call it 2–16.

2–16, Mori–Mukai: Blow up of the complete intersection of two
quadrics in P

5 in a conic C . Notice that C
is not a complete intersection in the ambient
variety Q1 ∩ Q2 ⊂ P

5.
2–16, Coates–Corti–Galkin–Kasprzyk: Acodimension-2 complete intersectionZ (L

+ M, 2M) ⊂ F where F has weight data

s0 s1 s2 x x3 x4 x5
1 1 1 − 1 0 0 0 L
0 0 0 1 1 1 1 M

Equivalently, we can reformulate these data in terms
of rays and cones. A way to do that is provided, e.g.,
in [6], and yields

R = {(− 1,− 1,− 1,− 1,− 1), (0, 0, 0, 0, 1), (0, 0, 0, 1, 0),

(0, 0, 1, 0, 0), (0, 1, 0, 0, 0), (1, 0, 0, 0, 0), (1, 1, 1, 0, 0)},
C = {(1, 2, 3, 5, 6), (1, 2, 4, 5, 6), (0, 2, 3, 5, 6), (0, 1, 3, 4, 6), (0, 1, 2, 3, 5), (0, 2, 3, 4, 6),

(0, 2, 4, 5, 6), (0, 1, 3, 5, 6), (0, 1, 4, 5, 6), (0, 1, 2, 4, 5), (0, 1, 2, 3, 4), (1, 2, 3, 4, 6)}.

The Fano variety is then the complete intersection of
the two torus-invariant divisors (0, 0, 0, 0, 0, 2, 1)
and (0, 0, 0, 0, 0, 2, 2), where for every divisor the
i-th entry in the list corresponds to the coefficient of
the i th irreducible torus-invariant divisor.
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Finally, our description realises this Fano as the zero locus of a general section
of a globally generated homogeneous vector bundle over a (non-toric) product of
Grassmannians.

2–16, our description: The zero locus

Z (U∨
Gr(2,4)(1, 0) ⊕ O(0, 2)) ⊂ P

2 × Gr(2, 4),

where U is the rank 2 tautological subbundle.

Our construction methods often allow for multiple models. For instance, the above
Fano 2–16 can be realised as well as

Z (O(1, 0) ⊕ O(0, 2)) ⊂ Fl(1, 2, 4).

In order to preserve the compactness of this paper we usually decided to present
only one model for each Fano variety, with notable exceptions whenever we found an
alternative description too elegant not to include it, or whenever they were important
intermediate steps in the identification of the model. Our choice of model depends
on our personal taste. The criterion for an X = Z (F) ⊂ ∏

Gr(ki , ni ) was to pick
the model with either the smallest number of factors or with the rank of F as low
as possible. To mention an example in lower dimension, the Del Pezzo surface of
degree 5 can be equivalently described as Z (O(1, 0, 0, 0, 1) ⊕ O(0, 1, 0, 0, 1) ⊕
O(0, 0, 1, 0, 1) ⊕ O(0, 0, 0, 1, 1)) ⊂ (P1)4 × P

2 or as Z (O(1)⊕4) ⊂ Gr(2, 5). We
will prefer the latter description to the former.

Further directions

Asmentioned in the first part of the introduction, ourmethods are built with the explicit
intention of being applied in higher dimension. Over a single Grassmannian Gr(k, n)

homogeneous, completely reducible vector bundles can be written as direct sums of
�αQ ⊗ �βU , where �α (resp. �β ) denotes the Schur functor indexed by the non-
increasing sequence α (resp. β); a similar expression holds for flag varieties and their
products. This makes to some extent possible a methodical search for varieties which
are zero loci of sections of bundles of this form.

What we plan to do in a series of subsequent works is to classify all Fano in
dimension 4 that can be obtained in this way, comparing our results with the already
existing known classes of Fano 4-folds ( [1,11,22], to cite a few). We are confident
that many new and interesting examples can be found in this way, and the results of
this paper are for sure strong motivations. We are particularly interested in the case of
4-folds of index 1 with Picard rank as high as possible and which are not a product.
The champion at the moment is the Fano of Picard rank 9 constructed by Casagrande,
Codogni, and Fanelli in [8]; see, e.g., [7] for a survey of results on the topic.

Another case of interest are Fano varieties in higher dimension with special Hodge-
theoretical properties. In particular, Fano varieties in any dimension of K3 type (in the
sense of [14]) have recently been studied due to their possible links with hyperkähler
manifolds. Finally, we remark that zero loci are particular cases of degeneracy loci
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of morphisms between vector bundles. It is certainly possible to further extend the
above program to this framework, which has already been explored from many points
of view (see, e.g., [34]), or even to the so-called orbital degeneracy loci, a recently
introduced wider class of varieties [4,5].

Plan of the paper

Section 2 is where we establish our toolbox, and state or prove several lemmas, useful
to translate theMori–Mukai birational language into our biregular one, and vice versa.
Section 3 is devoted to explaining how we are able to compute the invariants for all
the models we present. Section 4 is the core of the paper. A detailed description of all
the families which are not provided in the literature is given. Section 5 contains the
tables and recap all the results in a schematic and handy fashion.

Notation and conventions

Throughout the whole paper, the notation Z (F) ⊂ X denotes the zero locus of a
general global section of the vector bundle F in the variety X . We will denote by Xd

a general hypersurface of degree d inside X .
If E is a rank r vector bundle over a variety X , we denote by PX (E) (or simply by

P(E) when no confusion can arise) the projective bundle π : Proj(Sym E∨) → X ;
we remark that we adopt the subspace notation, as in [13, Chapter 9]. If we
denote by OP(E)(1) (or simply O(1)) the relatively ample line bundle, this yields
H0(P(E),OP(E)(1)) ∼= H0(X , E∨). Moreover ωP(E)

∼= OP(E)(−r) ⊗ π∗(ωX ⊗
det(E∨)) and, for any line bundle L , the isomorphism P(E) ∼= P(E ⊗ L) induces
OP(E)(1) ⊗ L∨ = OP(E⊗L)(1).

For products of varieties X1 × X2, the expression F1 � F2 will denote the ten-
sor product between the pullbacks of Fi via the natural projections. For products of
Grassmannians Gr(k1, n1) × Gr(k2, n2), we will almost always adopt the short form
O(a, b) := O(a) � O(b); we will often omit the pullbacks when no confusion can
arise, so that, e.g., QGr(k1,n1)(1, 2) = QGr(k1,n1)(1) � OGr(k2,n2)(2).

ByFl(k1, . . . , kr , n)wewill denote the flag variety of subspacesVk1 ⊂ Vk2 ⊂ . . . ⊂
Vkr ⊂ C

n . We will denote by πi the projection to the i-th Grassmannian Gr(ki , n). Ui

andQi will denote the pullback of the tautological subbundle and quotient bundle via
πi , of rank ki , n − ki respectively. For short, we will write O(a, b) = π∗

1 (O(a)) ⊗
π∗
2 (O(b)). In the rare cases where a flag is involved in a product of varieties, the

different Picard groups will be separated by a semicolon, i.e.,O(a, b; c) = O(a, b)�
O(c) on Fl(k1, k2, n) × Gr(k′, n′).

Many data for Table 1 (and for the paper overall) are taken from [2]. They rely on
the tables from [10,12,19,24]. Many other alternative descriptions are taken from [9].
We include the relevant citation to the alternative description in the table whenever
appropriate. The notation X–Y for a Fano means a Fano of Picard rank X which is
the number Y in the Mori–Mukai list. Finally, Q3 denotes the 3-dimensional quadric
hypersurface (Fano 1–16) and V5 denotes the index 2, degree 5 linear section of
Gr(2, 5) (Fano 1–15).
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2 Identifications

Most of the Fano 3-folds with Picard rank ρ ≥ 2 arise as blow up of other Fano
3-folds with centre in distinguished subvarieties. Sometimes other standard birational
descriptions are involved. The purpose of this subsection is therefore to establish a
toolbox that allow us to translate the Mori–Mukai birational language into models
suitable for our type of descriptions. Most of the lemmas appearing in this section are
probably well-known to the experts: however for some of them we have not been able
to locate clear proofs in the literature.

The most basic result is the description of the blow up of a projective space in a
linear subspace. We will use the following lemma:

Lemma 2.1 Let Q be the tautological quotient bundle on Pn−r . We have

BlPr−1 P
n ∼= Z (QPn−r (0, 1)) ⊂ P

n−r × P
n .

Proof Let V be a n + 1-dimensional vector space such that Pn ∼= P(V ). By [13,
Proposition 9.11], BlPr−1 P

n is isomorphic to the projectivization of the vector bundle

E = OPn−r (−1) ⊕ (V ′ ⊗ OPn−r ),

where V ′ ⊂ V has dimension r and P
n−r is identified with P(V /V ′). The bundle E

fits into the short exact sequence

0 → E → (V /V ′ ⊕ V ′) ⊗ OPn−r → QPn−r → 0,

hence P(E) can be also expressed as the zero locus of Q � O(1) inside P
n−r ×

P(V /V ′ ⊕ V ′) ∼= P
n−r × P

n , as claimed. �
In the above lemma we used the fact that, as soon as we have a short exact sequence

on X of vector bundles 0 → E → F → G → 0, then P(E) can be obtained as the
zero locus of a section of t of π∗(G)⊗OP(F)(1) over π : P(F) → X . If H1(E) = 0,
then t can be chosen to be general; a particularly favourable situation will occur when
F ∼= O⊕r , so that P(E) embeds into X × P

r−1.
Lemma 2.1 can be generalised for the Grassmannians context.

Lemma 2.2 We have

BlGr(k−1,n−1) Gr(k, n) ∼= Z (Q � U∨) ⊂ Gr(k, n − 1) × Gr(k, n),

where the centre of the blow up Gr(k − 1, n − 1) is identified withZ (Q) ⊂ Gr(k, n).

Proof Let Vn, Vn−1 be complex vector spaces of dimension n, n − 1 respectively. A
section of Q � U∨ over Gr(k, Vn−1) × Gr(k, Vn) can be regarded as a section of
U∨ � U∨ over Gr(n − k − 1, V∨

n−1) ×Gr(k, Vn), and the corresponding zero loci are
canonically isomorphic.
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A section of the latter vector bundle is of the form

s = f1x1 + · · · + fn−1xn−1

for some fi ∈ Vn−1, xi ∈ V∨
n . Let us fix bases for V∨

n−1, Vn accordingly. Up to the
action of GLk , a point in Gr(k, Vn) is represented by a k × n matrix

A =
⎛

⎜
⎝

a1,1 · · · a1,n
...

...

ak,1 · · · ak,n

⎞

⎟
⎠

and a section xi ∈ V∨
n evaluates as xi (A) = (a1,i · · · ak,i )t . Analogously, a section

fi ∈ Vn evaluates on a point B ∈ Gr(n − k − 1, V∨
n−1), seen as a n − k − 1 × n − 1

matrix, as fi (B) = (b1,i · · · bn−k−1,i )
t .

The evaluation of a section fi xi on a point (A, B) is given by the k × n − k − 1
matrix xi (A) · ( fi (B))t . It is straightforward to check that

s(A, B) = 0 if and only if A ·
(

Bt

0 · · · 0
)

= 0.

Let Y be the zero locus of s. We want to study the fibres of the (restriction of
the) natural projection Y → Gr(k, Vn). This amounts to solving a linear system with
b1,1, b1,2, . . . , b1,n−1, b2,1, . . . , bn−k−1,n−1 as variables. With this choice of coordi-
nates, the matrix associated to the linear system is the (n−1)(n−k−1)×k(n−k−1)
matrix

⎛

⎜
⎜
⎜
⎝

Ã
Ã

. . .

Ã

⎞

⎟
⎟
⎟
⎠

, where A =
⎛

⎜
⎝ Ã

a1,n
...

ak,n

⎞

⎟
⎠ .

The fiber over a general point A, i.e., whenever Ã has maximal rank, is a single point
∈ Gr(n − k − 1, V∨

n−1), hence Y → Gr(k, Vn) is birational. The fiber over A is

positive-dimensional if and only if Ã has rank at most k − 1, i.e., if and only if

rank

(
A

0 · · · 0 1
)

< k + 1.

Up to choosing the last element of a basis of Vn , we may assume that a general section
ofQ over Gr(k, Vn) is xn , hence the locus in Gr(k, Vn)where the map is not birational
is preciselyZ (Q) ∼= Gr(k−1, n−1). Further degenerations would occur over points
A with Ã having rank at most k − 2, which is not possible for a point in Gr(k, Vn). �
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Geometrically, the proof of the previous lemma can be interpreted in terms of the
graph of the rational map Gr(k, Vn) Gr(k, Vn−1) induced by the projection
from the point x∨

n .
Sometimes it is convenient to interpret blow ups of projective spaces in linear

subspaces as projective bundles. The following remark is very useful in this context.

Remark 2.3 ([35]) The following identifications hold.

• Let n be an odd number. P
P
n+1
2

(T
P
n+1
2

) ∼= X(1,1) ⊂ P
n+1
2 × P

n+1
2 .

• BlPr−1 P
n ∼= PPn−r (O(−1) ⊕ O⊕r ).

For similar projective bundles we might not have a neat description as blow ups.
However these projective bundles appear frequently, especially in the toric cases. It is
then convenient to describe them as zero loci of vector bundles.

Lemma 2.4 On P
m × P

n, for any k, h ∈ N such that n = k(m + 1) + h we have

Z (QPm (0, 1)⊕k) ∼= P(O⊕k
Pm

(−1) ⊕ O⊕h+1
Pm

).

Proof It easily follows from the short exact sequence on Pm

0 → O(−1)⊕k ⊕ O⊕h+1 → O⊕n+1 → Q⊕k → 0,

which is obtained by adding k Euler sequences and the trivial sequence O⊕h+1 →
O⊕h+1. �

Finally, we tackle the case of flag varieties. Sometimes our models for some Fano
3-folds are easily identified as sections of very simple bundles (e.g., linear sections)
on flag varieties. It is important to be able to identify subvarieties of flag varieties with
appropriate subvarieties in the product of Grassmannians. As a first step we prove the
following lemma.

Lemma 2.5 Let Fl(k1, k2, n) be a two-step flag. We have the following identifications:

Z (Q2) ⊂ Fl(k1, k2, n) ∼= GrGr(k2−1,n−1)(k1,U ⊕ O);
Z (U∨

1 ) ⊂ Fl(k1, k2, n) ∼= GrGr(k1,n−1)(k2 − k1,Q(−1) ⊕ O(−1)),

where U (resp.,Q) denotes the tautological subbundle onGr(k2 −1, n−1) (resp., the
tautological quotient bundle on Gr(k1, n − 1)) and Gr(k, E) denotes the Grassmann
bundle and Q2 denotes the pullback of the quotient bundle on Gr(k2, n) to the flag
Fl(k1, k2, n).

Proof Recall that we can interpret the two-step flag Fl(k1, k2, n) as

Fl(k1, k2, n) ∼= GrGr(k2,n)(k1,U) ∼= GrGr(k1,n)(k2 − k1,Q(−1)).

The zero locus Z (Q) ⊂ Gr(k2, n) is isomorphic to Gr(k2 − 1, n − 1). Under this
isomorphism we have

U |Z (Q)
∼= U ⊕ O.
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Similarly the zero locusZ (U∨) ⊂ Gr(k1, n) is isomorphic to Gr(k1, n−1). Under
this isomorphism we have

Q(−1)|Z (U∨)
∼= Q(−1) ⊕ O(−1).

The result then follows. �
The above lemma has a particularly simple formulation on Fl(1, 2, n), which is worth
to make explicit for future references. Similar results can be obtained on Fl(1, k, n)

and Fl(k − 1, k, n) using an appropriate number of copies of Q2 and U∨
1 .

Corollary 2.6 On Fl(1, 2, n) one has

Z (Q2) ⊂ Fl(1, 2, n)) ∼= PPn−2(O(−1) ⊕ O);
Z (U∨

1 ) ⊂ Fl(1, 2, n)) ∼= PPn−2(Q(−1) ⊕ O(−1)).

Putting together the above results we get the following.

Corollary 2.7 One has the following isomorphisms:

BlPr−1 P
n ∼= Z (Q⊕r

2 ) ⊂ Fl(1, r + 1, n + 1) ∼= Z (QPn−r (0, 1)) ⊂ P
n−r × P

n .

In many occasions we will need to blow up along non-linear subvarieties. The fol-
lowing lemmagives an easy description that applies to the case of complete intersection
curves cut by divisors of the same (multi)degree.

Lemma 2.8 ([14], Lemma 2.2) Let X := X(d, 1) be a general hypersurface of bide-
gree (d, 1) in Z × P

1. Then X ∼= BlS Z , where S is the intersections of 2 divisors of
degree d on Z.

The lemma above will turn out to be handy in a number of circumstances. Although
it is stated here for Z prime, it admits an obvious generalisation when the Picard rank
of Z is greater than 1.

Lemma 2.8 admits a classical generalisation in higher codimension, known as the
Cayley trick (see [23, Thm 2.4], or [18, 3.7]), which in turn can be considered as a
generalisation of Orlov’s formula for the derived category of blow ups. The setup is the
following: assume that we have Y = Z (A) ⊂ S, where A is ample of rank r ≥ 2. We
have a natural isomorphism H0(S, A) ∼= H0(P(A∨),OP(A∨)(1)). The same section
defining Y defines a hypersurface X in P(A∨). The complete result is that the derived
category of X admits a semiorthogonal decomposition containing r − 1 copies of
Db(Y ). When the rank of A is exactly 2, this produces a generalisation of the above
Lemma 2.8.

Lemma 2.9 ([23], Lemma 3.2) Let S, X ,Y be as above, and let A be ample of rank
2. Then X ∼= BlY S.

How can we effectively use the Cayley trick in our case? Assume that we have
a bundle F = E ⊕ G on Fl(1, 2, n) with G = π∗

2 G̃ for a bundle G̃ on Gr(2, n).
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Take σ ⊕ μ ∈ H0(Fl(1, 2, n), E ⊕ G), which defines the chain of inclusions X :=
V (σ ⊕ μ) ⊂ Y := V (μ) ⊂ Fl(1, 2, n). The section μ induces a section (π2)∗(μ) ∈
H0(Gr(2, n), G̃). Let Ỹ := V ((π2)∗μ) ⊂ Gr(2, n); in particular, X can be regarded
as V (σ ) ⊂ PỸ (U |Ỹ ).

Suppose there is an identification ϕ : H0(Y , E |Y ) → H0(Ỹ ,U |Ỹ ⊗ L), where L
is a line bundle on Ỹ (note that for any E, L , P(E) ∼= P(E ⊗ L)). We are thus in the
following situation:

Fl(1, 2, n)

π2

⊃ Y := V (μ) ⊃ X := V (σ ⊕ μ)

Gr(2, n) ⊃ Ỹ := V ((π2)∗μ) ⊃ X̃ := V (ϕ(σ |Y ))

Then by Lemma 2.9 we have

X ∼= BlX̃ Ỹ .

The ampleness of U |Ỹ ⊗ L required in Lemma 2.9 is not necessary, as shown in [3,
Proposition 46]. We remark that σ |Y is general in H0(Y , E |Y ) if Hi (Fl,

∧i G∨ ⊗ E)

vanishes for any i > 0, which implies that H0(Fl, E) surjects onto H0(Y , E |Y ).
We do a recap in the following handy corollary. This is will be useful to deal with

the case of complete intersection curves of different degrees.

Corollary 2.10 Assume that we have a bundle F = E ⊕ G on Fl(1, 2, n), with G =
π∗
2 G̃ for a bundle G̃ on Gr(2, n) and X = Z (F) ⊂ Y = Z (G) ⊂ Fl(1, 2, n).

Denote by Ỹ the zero locus Ỹ = Z (G̃) ⊂ Gr(2, n). Assume that H0(Y , E |Y ) ∼=
H0(Ỹ ,U |Ỹ ⊗ L) for some line bundle L on Ỹ . Denote by X̃ = Z (U |Ỹ ⊗ L) ⊂ Ỹ .
Then X ∼= BlX̃ Ỹ .

There is a further generalisation of the Cayley trick, that applies to degeneracy loci
as well, which we recall for completeness.

Lemma 2.11 ([27], Lemma 2.1) Let ϕ : E → F be a morphism of vector bundles
of ranks r + 1, r respectively on a Cohen–Macaulay variety X. Denote by Dk(ϕ) the
k-th degeneracy locus of ϕ, i.e., the locus where the morphism has corank at least k.
Consider the projectivization π : P(E) → X, then ϕ gives a global section of the
vector bundle π∗F ⊗O(1). If codim Dk(ϕ) ≥ k + 1 for all k ≥ 1 then the zero locus
of ϕ on P(E) is isomorphic to the blow up of X along D1(ϕ).

In practice,wewill oftenneed tofind someprojective bundleP(O(−d1, . . . ,−dm)⊕
O⊕r ) as the zero locus of a suitable vector bundle over a product of Grassmannians.
The following remark will be very helpful for this sake; an instance of its application
will be Lemma 4.1.

Remark 2.12 Let L be a line bundle on X . For any k one can define Pk(L), the bundle
of k-principal parts of L , of rank

(k+dim X
k

)
. One has P0(L) = L; by [33, Exp II,

Appendix II 1.2.4.] there exist natural short exact sequences

0 → Symk(
X )(L) → Pk(L) → Pk−1(L) → 0. (1)
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If X ∼= P
n these bundles of principal parts are homogeneous, and in [32, Thm 1.1]

their splitting type is determined. The situation is particularly simplewhenwe consider
L = OPn (d)with d ≥ k: in this case one hasPk(OPn (d)) ∼= Symk Vn+1⊗OPn (d−k).
The sequence above for k = 1 coincides with the dualised twisted Euler sequence.

We finish this section with a classical remark on how to characterise double covers
as hypersurfaces in projective bundles. A detailed proof can be found for example in
[28, Lemma 1.2]. The formula below can be easily generalised to the case of k-cyclic
covers, using OP (k) instead.

Remark 2.13 Let X be a 2-fold cyclic covering of Y , ramified along a smooth divisor
D, and L a line bundle with L⊗2 = OY (D), which is assumed to be 2-divisible in
Pic(Y ). Then X can be identified with Z (OP (2)) in P := PY (O ⊕ L∨).

3 How to compute invariants

In this section we explain and show with a concrete example how we can compute the
invariants of a zero locus of a general section of a given homogeneous vector bundle
on a product of flag varieties.

As a matter of fact, such computations are not strictly necessary for the identifi-
cation of the models we found for the Fano 3-folds in the next section. However, we
want to stress out the importance of having such a tool for two reasons. On the one
hand, one could start producing in an automatised way many examples coming from
homogeneous vector bundles on products of flag varieties and later try to identify them
using the existing classifications. This was exactly the starting point of this project
and what made us able to characterise, along the process, many zero loci of sections
from a geometric point of view. Several results of Sect. 2 have been found by trying
to generalise the evidences coming from all the examples we had. On the other hand,
it goes without saying that these methods will certainly be very useful when a similar
search will be performed for varieties which have not yet been classified.

3.1 The invariants h0(−K) and (−K)3

These invariants can be computed via intersection theory. If X is a product of flag
varieties, then we know its graded intersection ring of algebraic cycle classes modulo
numerical equivalence.We know how to integrate, so that Hirzebruch–Riemann–Roch
Theorem yields a way to compute χ(E) for any vector bundle E with assigned Chern
classes.

The situation does not change much when we consider a subvariety Z (F) ⊂ X
given as the zero locus of a general section of some vector bundleF on X . If we know
the Chern classes of F , we can write down the graded intersection ring of Z (F), as
well as count points on 0-dimensional cycles.

In concrete examples, instead of doing computations by hand, it is of course con-
venient to use some computer algebra software. Our choice fell on [16], for which
an already developed package [17] implementing the methods we need is available.
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This allows us to compute (−KZ (F))
3, as the Chern classes of the canonical sheaf

of Z (F) are easy to express. As for h0(−KZ (F)), we certainly know how to com-
pute χ(−KZ (F)). But −K = K − 2K and −2K is ample, so the Kodaira Vanishing
Theorem implies hi>0(−KZ (F)) = 0.

3.2 Hodge numbers and tangent cohomology

Beside the aforementioned invariants, one of the most important data one would like
to know about a Fano variety is its Picard rank. More in general, it is rather important
to compute hi, j for a given variety. In our setting this is perfectly doable using clas-
sical tools as the Koszul complex and a bit of representation theory, even though the
computations may quickly become cumbersome if the involved vector bundles have
high rank or several summands.

We briefly recall the strategy. Let us suppose that Y = Z (F) ⊂ X . Assume that
rank(F) = r . For each j ∈ N, we have the j th exterior power of the conormal
sequence

0 → Sym j F∨|Y → (Sym j−1 F∨ ⊗ 
X )|Y
→ . . . → (Sym j−k F∨ ⊗ 
k

X )|Y → . . . → 

j
X |Y → 


j
Y → 0. (2)

As our goal is hi (
 j
Y ), we can compute the dimensions of the cohomology groups of

all the other terms in (2), split it into short exact sequences and use the induced long
exact sequences in cohomology to get the result.

Each term (Sym j−k F∨ ⊗ 
k
X )|Y is in turn resolved by an exact Koszul complex

0 →
r∧
F∨ ⊗ Sym j−k F∨ ⊗ 
k

X → . . .

→ F∨ ⊗ Sym j−k F∨ ⊗ 
k
X → Sym j−k F∨ ⊗ 
k

X ,

so that we are led to compute the cohomology groups of the terms above. If X is
a product of Grassmannians and F is completely reducible, then those terms are
completely reducible as well: a decomposition can be found via suitable plethysms.
The cohomology groups can be then obtained via the usual Borel–Weil–Bott Theorem.

Things get worse if X has some genuine flag variety as a factor, in which case 
X

is an extension of completely reducible vector bundles, or if F itself is an extension
thereof. In these cases, one needs to deal carefully with the exterior/symmetric power
of an extension (which is an extension itself) and the tensor product of extensions; in
the end, each term of the Koszul complex above is again an extension of completely
reducible vector bundles, whose cohomology groups can be easily computed and
arranged to get the result.

It may happen that several cohomology groups do not vanish, so that in the induced
long exact sequences in cohomology there are boundary homomorphisms whose rank
is a priori not known. This leads to some ambiguity in the final results, and can be
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partially solved by considering the additional relations involving hi, j such as the
symmetries in the Hodge diamond and the computation of χ(


j
Y ) as done above.

Additionally, suppose that we want to get some information on the automorphism
group and the space of deformations of Y . One way is to compute h0(TY ) and h1(TY )

via the normal sequence

0 → TY → TX |Y → F |Y → 0.

As before, one can compute the cohomology groups of the terms on the right via the
usual Koszul complex and get some information on hi (TY ).

A rather easy example of application of the whole routine is provided in Sect. 3.3.
It is evident that such computations cannot be done by hand for more complicated
examples, especially for a significant number of cases. A Macaulay2 [16] package
which was developed to implement and automatise the procedure just described will
be presented in [15].

3.3 A worked example

Let us showhow to concretely compute theHodgenumbers ofY := Z (U∨
Gr(2,4)(1, 0)⊕

O(0, 2)) ⊂ P
2 × Gr(2, 4) =: X , which we will prove to be a model for 2–16.

Our vector bundle F := U∨
Gr(2,4)(1, 0) ⊕O(0, 2) has rank 3. For j = 0, (2) simply

becomes OY → OY . The Koszul complex resolving OY is

0 → O(−2,−3) → UGr(2,4)(−1,−2) ⊕ O(−2,−1)

→ O(0,−2) ⊕ UGr(2,4)(−1, 0) → O;

the only non-zero cohomology group is H0(O) ∼= C, which gives h0,0 = 1 and
h0, j = 0 for j > 0.

For j = 1, (2) yields the usual conormal short exact sequence. The term on the left
is F∨|Y , which is resolved by a Koszul complex whose terms are

∧3 F∨ ⊗ F∨ = O(−2,−5) ⊕ UGr(2,4)(−3,−3)
∧2 F∨ ⊗ F∨ = UGr(2,4)(−1,−4) ⊕ Sym2 UGr(2,4)(−2,−2)

⊕O(−2,−3)⊕2 ⊕ UGr(2,4)(−3,−1)
F∨ ⊗ F∨ = O(0,−4) ⊕ UGr(2,4)(−1,−2)⊕2 ⊕ Sym2 UGr(2,4)(−2, 0) ⊕ O(−2,−1)
F∨ = O(0,−2) ⊕ UGr(2,4)(−1, 0);

the only non-zero cohomology group is h4(F∨ ⊗F∨) = 1, which yields h3(F∨|Y ) =
1.
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The middle term is 
X |Y , which is resolved by a Koszul complex whose terms are

∧3 F∨ ⊗ 
X = QGr(2,4) ⊗ UGr(2,4)(−2,−4) ⊕ QP2 (−4,−3)
∧2 F∨ ⊗ 
X = QGr(2,4) ⊗ (

Sym2 UGr(2,4)(−1,−3) ⊕ O(−1,−4) ⊕ UGr(2,4)(−2,−2)
) ⊕

⊕ QP2 (−4,−1) ⊕ UGr(2,4) ⊗ QP2 (−3,−2)
F∨ ⊗ 
X = QGr(2,4) ⊗ (UGr(2,4)(0,−3) ⊕ Sym2 UGr(2,4)(−1,−1) ⊕ O(−1,−2)

) ⊕
⊕ QP2 (−2,−2) ⊕ UGr(2,4) ⊗ QP2 (−3, 0)

X = QGr(2,4) ⊗ UGr(2,4)(0,−1) ⊕ QP2 (−2, 0);

the only non-zero cohomology groups are h3(F∨ ⊗
X ) = 1 and h1(
X ) = 2, which
yield h1(
X |Y ) = 2 and h2(
X |Y ) = 1.

The long exact sequence in cohomology induced by the conormal sequence then
gives h1,1 = 2 and h1,2 = 2, while the other h1, j are zero.

Similar computations can be performed to compute hi (TY ), by considering the
normal sequence. The middle term is TX |Y , which is resolved by a Koszul complex
whose terms are

∧3 F∨ ⊗ TX = QGr(2,4) ⊗ UGr(2,4)(−2,−2) ⊕ QP2 (−1,−3)
∧2 F∨ ⊗ TX = QGr(2,4) ⊗ (

Sym2 UGr(2,4)(−1,−1) ⊕ O(−1,−2) ⊕ UGr(2,4)(−2, 0)
) ⊕

⊕ QP2 ⊗ (UGr(2,4)(0,−2) ⊕ O(−1,−1)
)

F∨ ⊗ TX = QGr(2,4) ⊗ (UGr(2,4)(0,−1) ⊕ Sym2 UGr(2,4)(−1, 1) ⊕ O(−1, 0)
) ⊕

⊕ QP2 ⊗ (O(1,−2) ⊕ UGr(2,4)
)

TX = QGr(2,4) ⊗ UGr(2,4)(0, 1) ⊕ QP2 (1, 0);

the only non-zero cohomology groups are h1(F∨ ⊗TX ) = 1 and h0(TX ) = 23, which
yield h0(TX |Y ) = 24. Similarly, the term on the right is F |Y , which is resolved by a
Koszul complex whose terms are

∧3 F∨ ⊗ F = O(−2,−1) ⊕ UGr(2,4)(−1,−2)
∧2 F∨ ⊗ F = UGr(2,4)(−1, 0) ⊕ O(−2, 1) ⊕ Sym2 UGr(2,4)(0,−1)

⊕O(0,−2) ⊕ UGr(2,4)(−1, 0)
F∨ ⊗ F = O⊕2 ⊕ UGr(2,4)(−1, 2) ⊕ UGr(2,4)(1,−1) ⊕ Sym2 UGr(2,4)(0, 1)
F = O(0, 2) ⊕ UGr(2,4)(1, 1);

the only non-zero cohomology groups are h2(
∧2 F∨ ⊗ F) = 1, h0(F∨ ⊗ F) = 2,

and h0(F) = 32, which yield h0(F |Y ) = 31.
Thus, h1(TY ) − h0(TY ) = 31− 24 = 7, and indeed Fano 2–16 is known to have a

7-dimensional moduli space.

4 Fano 3-folds as zero loci of sections

In this section a model for each Fano 3-fold as the zero locus of a general section
of a vector bundle over a product of Grassmannians is given, provided that such a
description is not available in the literature. For each model we prove the identification
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with the corresponding Fano; all the examples have been checked to have the right
Hodge diamond and invariants as described in Sect. 3.

Fano 1–1

Mori-Mukai

Double cover of P3 with branch locus a divisor of degree 6.

Our description

Z (O(6)) ⊂ P(1, 1, 1, 1, 3).

Identification

The obvious description as weighted hypersurface is classical. We want to give how-
ever another description embedded in a product of non-weighted Grassmannians.

By Lemma 2.13, we can express our Fano as the zero locus of O(2) over
PP3(O(−3)⊕O). We thus need to express such projective bundle as the zero locus of
a section of a suitable vector bundle. To do that, we adopt a general strategy which will
be explained in more details for 1–12 or 2–2: we start from the short exact sequences
provided by Remark 2.12

0 → O(−3) → O(−2)⊕4 → Q(−2) → 0,

0 → O(−2)⊕4 → O(−1)⊕10 → Sym2 Q(−1) → 0,

0 → O(−1)⊕10 → O⊕20 → Sym3Q → 0.

(3)

We can arrange the first two using the snake lemma as in Lemmas 4.1 or 4.2: we get

0 → O(−3) → O(−1)⊕10 → � → 0

for a uniquely defined extension� ∈ Ext1(Sym2 Q(−1),Q(−2)). The latter sequence
can be again arranged with the third one in (3), to get

0 → O(−3) → O⊕20 → K → 0

for another uniquely defined extension K ∈ Ext1(Sym3Q,�). Adding O → O to
the above sequence, we get that our Fano can be expressed as

Z (K (0, 1) ⊕ O(0, 2)) ⊂ P
3 × P

20.
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Fano 1–12

Mori-Mukai

Double cover of P3 with branch locus a smooth quartic surface.

Our description

Z (O(4)) ⊂ P(1, 1, 1, 1, 2).

Identification

The obvious description as weighted hypersurface is classical. We want to give how-
ever a rather simple description as a subvariety in a product of projective spaces. We
notice that our Fano is, by Lemma 2.13, the zero locus ofO(2) on PP3(O(−2) ⊕O).

Lemma 4.1 The projective bundle PP3(O(−2)⊕O) can be obtained as the zero locus
of�(0, 1) over P3 ×P

10, being� ∈ Ext1(Sym2 Q,Q(−1)) a uniquely defined exten-
sion on P

3 fitting into sequence (5) below.

Proof Our goal is to writeOP3(−2) ⊕OP3 as a subbundle ofO⊕11
P3

. By Remark 2.12,

we have two (dual) canonical short exact sequences on P
3

0 → O(−2) → O(−1)⊕4 → Q(−1) → 0,

0 → O(−1)⊕4 → O⊕10 → Sym2 Q → 0.

These fit as the first row and middle column of the exact diagram on P
3 here below,

which can be completed by the snake lemma as

0 0 0

0 O(−2)

=

O(−1)⊕4 Q(−1) 0

0 O(−2) O⊕10 � 0

0 0 Sym2Q = Sym2 Q 0

0 0 0

(4)
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for a uniquely determined homogeneous vector bundle � of rank 9. The last column
describes � as a non-split extension

0 → QP3(−1) → � → Sym2QP3 → 0. (5)

The rank 9 bundle � is homogeneous, not completely reducible and globally gen-
erated, and its space of global sections coincides with H0(P3,Sym2 Q) ∼= Sym2 V4.
Adding the middle row of (4) to O → O, we get

0 → O(−2) ⊕ O → O⊕11 → � → 0,

whence the conclusion of the lemma. �

The previous lemma yields that a model for 1–12 is Z (�(0, 1) ⊕ O(0, 2)) ⊂
P
3 × P

10.

Fano 2–2

Mori-Mukai

Double cover of P1 × P
2 with branch locus a (2, 4) divisor.

Our description

Z (O(0, 0, 2)⊕ K (0, 0, 1)) ⊂ P
1 ×P

2 ×P
12, where K ∈ Ext2(O(1, 0)⊕6,QP2(−1,

−1)) fits into sequences (9).

Identification

By Lemma 2.13, our Fano variety is the zero locus ofO(2) over P(O(−1,−2) ⊕O),
the latter being a projective bundle on P

1 × P
2. We need to express such projective

bundle as the zero locus of a suitable vector bundle.

Lemma 4.2 The projective bundle P(O(−1,−2) ⊕ O) can be obtained as the zero
locus of K (0, 0, 1) over P1 ×P

2 ×P
12, being K ∈ Ext2(O(1, 0)⊕6,QP2(−1,−1)) a

uniquely defined extension on P1 × P
2 fitting into sequences (9) below.

Proof Our goal is to writeOP1×P2(−1,−2) ⊕OP1×P2 as a subbundle ofO⊕13
P1×P2

. By

Remark 2.12, we have two (dual) canonical short exact sequences on P
2

0 → O(−2) → O(−1)⊕3 → Q(−1) → 0,

0 → O(−1)⊕3 → O⊕6 → Sym2 Q → 0.
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These fit as the first row and middle column of the exact diagram on P
2 here below,

which can be completed by the snake lemma as

0 0 0

0 O(−2)

=

O(−1)⊕3 Q(−1) 0

0 O(−2) O⊕6 � 0

0 0 Sym2Q = Sym2Q 0

0 0 0

(6)

for a uniquely determined homogeneous vector bundle � of rank 5. The last column
describes � as a non-split extension

0 → QP2(−1) → � → Sym2QP2 → 0. (7)

We can pull back the middle row of (6) on P1 × P
2 and twist it by O(−1, 0). This

and the standard (pulled back) Euler sequence on P
1 can be inserted as the first row

and second column in the exact diagram below, which can be again completed by the
snake lemma as

0 0 0

0 O(−1,−2)

=

O(−1, 0)⊕6 �(−1, 0) 0

0 O(−1,−2) O⊕12 K 0

0 0 O(1, 0)⊕6 = O(1, 0)⊕6 0

0 0 0

(8)

for a uniquely determined homogeneous vector bundle K of rank 11. We can further
describe K as an element of Ext2(O(1, 0)⊕6,QP2(−1,−1)) obtained by combining
the short exact sequences
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0 → QP2(−1,−1) → �(−1, 0) → Sym2 QP2(−1, 0) → 0,

0 → �(−1, 0) → K → O(1, 0)⊕6 → 0.
(9)

The bundle K is homogeneous, not completely reducible and globally generated,
and its space of global sections coincides with H0(P1 × P

2,O(1, 0)⊕6). Adding the
middle row of (8) to O → O, we get

0 → O(−1,−2) ⊕ O → O⊕13 → K → 0,

whence the conclusion of the lemma. �
Byconstruction, the bundleO(2)onP(O(−1,−2)⊕O) is identifiedwithO(0, 0, 2)

over the zero locus of K on P
1 × P

2 × P
12, whence the conclusion.

Fano 2–3

Mori-Mukai

Blow up of 1–12 in an elliptic curve which is the intersection of two divisors from
| − 1

2K |.

Our description

Z (O(4, 0) ⊕ O(1, 1)) ⊂ P(1, 1, 1, 1, 2) × P
1.

Identification

The first bundle on P(1, 1, 1, 1, 2) gives 1–12. We can conclude by Lemma 2.8.
It is possible to provide a rather simple description involving only projective spaces.

To do this, recall that a model for 1–12 is Z (�(0, 1) ⊕ O(0, 2)) ⊂ P
3 × P

10. The
adjunction formula shows that the canonical divisor is the restriction ofO(−2, 0); by
Lemma 2.8, a model for 2–3 is therefore given by

Z (�(0, 1, 0) ⊕ O(0, 2, 0) ⊕ O(1, 0, 1)) ⊂ P
3 × P

10 × P
1.

Fano 2–5

Mori-Mukai

Blow up of 1–13 in a plane cubic.

Our description

Z (O(0, 3) ⊕ O(1, 1)) ⊂ P
1 × P

4.
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Identification

The first bundle on P4 gives 1–13. We conclude by Lemma 2.8.

Fano 2–8

Mori-Mukai

Double cover of 2–35 with branch locus an anticanonical divisor such that the inter-
section with the exceptional divisor is smooth.

Our description

Z (�(0, 0, 1) ⊕ O(0, 0, 2)) ⊂ P
2 × P

3 × P
12, being � ∈ Ext1(Q⊕3

P3
,QP2(0,−1)) a

uniquely defined extension on P2 × P
3 fitting into sequence (11) below.

Identification

As shown below, Y := 2–35 can be obtained as Z (QP2(0, 1)) ⊂ P
2 × P

3. By
Lemma 2.13, our Fano variety is the zero locus of O(2) on PY (O(−1,−1) ⊕ O).

As it turns out, the projective bundle PP2×P3(O(−1,−1) ⊕ O) can be obtained as
the zero locus of �(0, 0, 1) over P2 ×P

3 ×P
12, being � ∈ Ext1(Q⊕3

P3
,QP2(0,−1)) a

uniquely defined extension on P2 × P
3 fitting into sequence (11) below. To see it, we

can argue as in Lemmas 4.1 or 4.2: we combine the (pull back of the) two (possibly
twisted) Euler sequences

0 → O(−1,−1) → O(0,−1)⊕3 → QP2(0,−1) → 0,

0 → O(0,−1)⊕3 → O⊕12 → Q⊕3
P3

→ 0.

We get

0 → O(−1,−1) → O⊕12 → � → 0, (10)

0 → QP2(0,−1) → � → Q⊕3
P3

→ 0, (11)

where the rank 11 bundle � is homogeneous, not completely reducible and globally
generated, and its space of global sections coincides with H0(P3,Q⊕3) ∼= (V4)⊕3.
Adding O → O to (10) we get the desired description for PP2×P3(O(−1,−1) ⊕ O)

and the conclusion.

Fano 2–10

Mori-Mukai

Blow up of 1–14 in an elliptic curve which is an intersection of 2 hyperplanes.
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Our description

Z (O(2, 0) ⊕ O(1, 1)) ⊂ Gr(2, 4) × P
1.

Identification

See Lemma 2.8.

Fano 2–11

Mori-Mukai

Blow up of 1–13 in a line.

Our description

Z (QP2(0, 1) ⊕ O(1, 2)) ⊂ P
2 × P

4.

Identification

By Lemma 2.1, the zero locus of the first summand gives BlP1(P
4). Let P4 = P(V5)

with dual coordinates x0, . . . , x4 ∈ V∨
5 . Assume that P1 = P(V2) is given by the

vanishing of x2, . . . , x4. A general section in H0(P2×P
4,O(1, 2)) is identified with a

cubic in Sym3(V∨
5 )/Sym3(V∨

2 ), i.e., a cubicwithout terms in x30 , x
2
0 x1, x0x

2
1 , x

3
1 . Such

cubic contains P(V2), hence the claim. Notice that, using the equivalent Corollary 2.7,
we can describe 2–11 as well as the zero locus Z (Q⊕2

2 ⊕ O(2, 1)) ⊂ Fl(1, 3, 5).

Fano 2–15

Mori-Mukai

Blow up of P3 in the intersection of a quadric and a cubic where the quadric is smooth.

Our description

Z (QP3(0, 1) ⊕ O(2, 1)) ⊂ P
3 × P

4.

Identification

By Lemma 2.11, our Fano is the zero locus of O(1) ⊗ π∗O(2) over π : P(O(−1) ⊕
O) → P

3.
Adding O → O to the standard Euler sequence on P

3 we get

0 → O(−1) ⊕ O → O⊕5 → Q → 0,
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whence the result.
Another simple description of our Fano is

Z (Q2 ⊕ O(1, 2)) ⊂ Fl(1, 2, 5); (12)

the two descriptions are equivalent thanks to the correspondence between subva-
rieties of flags and of products of Grassmannians given by Lemmas 2.5, 2.1 and
Remark 2.3. From these one can immediately identify (Z (Q2) ⊂ Fl(1, 2, V5)) ∼=
PP(V5/v0)(O(−1) ⊕ (v0 ⊗ O)) ∼= BlP(v0) P(V5) as Z (QP3 � OP4(1)) ⊂ P(V5/v0) ×
P((V /v0) ⊕ v0). On the latter we have that O(1, 0) ∼= p∗OP3(1) and O(0, 1) ∼=
π∗OP4(1), where p is the projective bundle map and π the blow up map.

We want to provide a direct way to describe our Fano as (12), in order to show how
theCayley trick can be effectively used. First note that byCorollary 2.6 X = Z (Q2) ⊂
F := Fl(1, 2, 5) is identifiedwithPP3(O(−1)⊕O) ∼= PP3(O(−3)⊕O(−2)) = P(E),
with E := OP3(−3) ⊕ OP3(−2). To use Corollary 2.10 we want to show that

H0(X ,OX (1, 2)) ∼= H0(P(E),OP(E)(1)) ∼= H0(P3,OP3(2) ⊕ OP3(3)).

In order to compute H0(X ,OX (1, 2)) we use the Koszul complex for X ⊂ F twisted
by OF (1, 2). The only non-zero cohomology groups are

H0(F,
∧3Q∨

2 ⊗ OF (1, 2)) ∼= �2,2,2,1V5 ∼= C
40,

H0(F,
∧2 Q∨

2 ⊗ OF (1, 2)) ∼= �3,2,2,1V5 ∼= C
175

H0(F,Q∨
2 ⊗ OF (1, 2)) ∼= �3,3,2,1V5 ∼= C

280,

H0(F,OF (1, 2)) ∼= �3,3,3,1V5 ∼= C
175.

As in Lemma 2.5, U2|X = U1⊕O: this is therefore equivalent to split V5 = V4⊕Cv0,
and apply the above Schur functors to a such decomposed V5 to get SL(4) × C

∗
representations, with the C

∗ component being the trivial representation. As it turns
out,

�2,2,2,1(V4 ⊕ C) = �2,2,1V4 ⊕ �2,2,2V4 ⊕ �2,2,1,1V4 ⊕ �2,2,2,1V4,
�3,2,2,1(V4 ⊕ C) = �3,2,2,1V4 ⊕ �3,2,2V4 ⊕ �3,2,1,1V4 ⊕ �3,2,1V4

⊕�2,2,2,1V4 ⊕ �2,2,2V4 ⊕ �2,2,1,1V4 ⊕ �2,2,1V4,
�3,3,2,1(V4 ⊕ C) = �3,3,2,1V4 ⊕ �3,3,2V4 ⊕ �3,3,1,1V4 ⊕ �3,3,1V4 ⊕ �3,2,2,1V4

⊕�3,2,2V4 ⊕ �3,2,1,1V4 ⊕ �3,2,1V4,
�3,3,3,1(V4 ⊕ C) = �3,3,3,1V4 ⊕ �3,3,3V4 ⊕ �3,3,2,1V4 ⊕ �3,3,2V4

⊕�3,3,1,1V4 ⊕ �3,3,1V4.

Therefore, splitting the Koszul complex in short exact sequences, we get the natural
isomorphism (of vector spaces)

H0(X ,OX (1, 2)) ∼= �2,2,2V4 ⊕ �3,3,3V4 ∼= Sym2 V∨
4 ⊕ Sym3 V∨

4
∼= H0(P3,OP3(2) ⊕ OP3(3)),
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as claimed. It suffices to use Corollary 2.10 to show that X coincides with the Mori–
Mukai description as the blow up of P3 in the complete intersection of a quadric and
a cubic surfaces.

Fano 2–16

Mori-Mukai

Blow up of 1–14 in a conic.

Our description

Z (O(1, 0) ⊕ O(0, 2)) ⊂ Fl(1, 2, 4).

Identification

Let Y = Z (OF (0, 2)) ⊂ Fl(1, 2, 4) and Ỹ = Z (OG(2)) ⊂ Gr(2, 4). One directly
checks that

H0(Y ,OY (1, 0)) ∼= H0(Ỹ ,U∨|Ỹ ).

In fact, both spaces can be naturally identified with V∨
4 , as in 2–15. Then it suffices

to apply Corollary 2.10 to get that X = Z (OY (1, 0)) ⊂ Y ∼= BlZ (U∨|Ỹ ) Ỹ , where
we used that by duality on Gr(2, 4), U(1) ∼= U∨ ∼= (π2)∗OF (1, 0). We conclude
the proof by noting that Ỹ is a complete intersection of two quadrics in P

5, and
(Z (U∨|Ỹ ) ⊂ Ỹ ) = Z (U∨ ⊕ OG(2)) ⊂ Gr(2, 4) which is a plane conic.

We want to give an alternative description of this Fano in the product of two Grass-
mannians. For this, let us start by the Mori–Mukai description. Lemma 2.2 enables us
to describe BlP2 Gr(2, 4) in the product (P

2)∨ ×Gr(2, 4). We then need to cut with an
extra quadric intersecting the blown up P

2. As we are going to see in full details for
2–26, for this it suffices to take a section of O(0, 2). Summarising, we can describe
our 2–16 as

Z (U∨
Gr(2,4)(1, 0) ⊕ O(0, 2)) ⊂ P

2 × Gr(2, 4).

Fano 2–17

Mori-Mukai

Blow up of Q3 in an elliptic curve of degree 5.

Our description

Z (O(0, 1) ⊕ O(1, 1)) ⊂ Fl(1, 2, 4).
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Identification

A model for this 3-fold in Gr(2, 4) × P
3 can be found in [9]. As an exception to our

self-imposed rule, we want to give here an alternative description in a flag variety,
since we find it particularly nice. Let us show that our Fano can be written as

Z (O(1, 1) ⊕ O(0, 1)) ⊂ Fl(1, 2, 4).

As before, we check that

H0(Y ,OY (1, 1)) ∼= H0(Ỹ ,U∨
(1)|Ỹ ),

where we are using the same notation as above. These spaces are both 16-dimensional
and isomorphic as vector spaces to �2,1V∨

4 /V∨
4 , where we can interpret �2,1V4 as

the kernel of the natural contraction map � : V4 ⊗ ∧2 V∨
4 → V∨

4 . These spaces of
sections are not SL(V4)-representations: in fact Ỹ (and similarly for the section on the
flag) is not homogeneous for the whole group, but rather for SO(V3), and one could
write a more elegant expression for the spaces of section as in 2–15. To conclude we
apply Corollary 2.10: we have that X = Z (OY (1, 1)) ∼= Bl Z̃ Ỹ where Ỹ is a quadric
3-fold, and the centre of the blow up is Z̃ = Z (U∨(1) ⊕ O(1)) ⊂ Gr(2, 4), which
can be easily checked to be an elliptic curve of degree 5.

Fano 2–18

Mori-Mukai

Double cover of 2-34 with branch locus a divisor of degree (2, 2).

Our description

Z (�(0, 0, 1) ⊕ O(0, 0, 2)) ⊂ P
1 × P

2 × P
6, being � ∈ Ext1(Q⊕2

P2
,O(1,−1)) a

uniquely defined extension on P1 × P
2 fitting into sequence (14) below.

Identification

By Lemma 2.13, our Fano variety is the zero locus ofO(2) on PP1×P2(O(−1,−1) ⊕
O). As it turns out, the latter projective bundle can be obtained as the zero locus of
�(0, 0, 1) over P1 × P

2 × P
6, being � ∈ Ext1(Q⊕2

P2
,O(1,−1)) a uniquely defined

extension on P
1 × P

2 fitting into sequence (14) below. To see it, we can argue as in
Lemmas 4.1 or 4.2: we combine the (pull back of the) two (possibly twisted) Euler
sequences

0 → O(−1,−1) → O(0,−1)⊕2 → O(1,−1) → 0,

0 → O(0,−1)⊕2 → O⊕6 → Q⊕2
P2

→ 0.
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We get

0 → O(−1,−1) → O⊕6 → � → 0, (13)

0 → O(1,−1) → � → Q⊕2
P2

→ 0, (14)

where the rank 5 bundle � is homogeneous, not completely reducible and globally
generated, and its space of global sections coincides with H0(P2,Q⊕2) ∼= (V3)⊕2.
Adding O → O to (13) we get the desired description for PP1×P2(O(−1,−1) ⊕ O)

and the conclusion.

Fano 2–19

Mori-Mukai

Blow up of 1–14 in a line.

Our description

Z (QP3(0, 1) ⊕ O(1, 1)⊕2) ⊂ P
3 × P

5.

Identification

It suffices to apply Lemma 2.1 and argue as done for 2–11. The zero locus of the first
factor identifiesZ (QP3(0, 1)) with the blow up BlP1(P

5). Let P5 = P(V6) with dual
coordinates x0, . . . , x5 ∈ V∨

6 . Assume that P1 = P(V2) is given by the vanishing of
x2, . . . , x5. A general section in H0(P3×P

5,O(1, 1)2) is identified with two quadrics
in Sym2(V∨

6 )/Sym2(V∨
2 ), i.e., quadrics without terms in x20 , x

2
1 , x0x1. Such quadrics

have generically maximal rank, so their intersection is smooth and contains P(V2),
hence the claim. Notice that, using the equivalent Corollary 2.7, we can describe 2–19
as the zero locus of Z (Q⊕2

2 ⊕ O(1, 1)⊕2) ⊂ Fl(1, 3, 6) as well.

Fano 2–22

Mori-Mukai

Blow up of V5 in a conic.

Our description

Z (QGr(2,5)(1, 0) ⊕ O(0, 1)⊕3) ⊂ P
3 × Gr(2, 5).

Identification

In [9] this variety is described asZ (O(1, 0)⊕O(0, 1)⊕3) ⊂ Fl(1, 2, 5). This descrip-
tion is equivalent to the one given here simply applying Lemma 2.2 with k = 3 (where
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we identify Gr(3, 4) and Gr(3, 5) with P
3 and Gr(2, 5)). The three residual sections

of O(0, 1) cut both Gr(2, 5) (in V5) and Gr(2, 4) (in a conic).

Fano 2–23

Mori-Mukai

Blow up of Q3 in an intersection of a hyperplane and a quadric.

Our description

Z (Q2 ⊕ O(1, 1) ⊕ O(0, 2)) ⊂ Fl(1, 2, 6).

Identification

We apply Corollary 2.10. In the notation of the corollary, we denote by Y ⊂ Fl(1, 2, 6)
the zero locus ofQ2⊕O(0, 2).We identify Ỹ with a three dimensional quadricQ ⊂ P

4.
What we need to check is

H0(Y ,OY (1, 1)) ∼= H0(Q,OQ(1)) ⊕ H0(Q,OQ(2)).

To verify this, one can argue as for 2–15: one can compute the SL(V6)-
representations arising from the Koszul complex resolvingOY (1, 1). These represen-
tations, when seen as SL(V5)×C

∗-representations under the splitting V6 = V5⊕Cv0,
sum up to �1,1,1,1V5 ⊕ �2,2,2,2V5/C, which is clearly isomorphic to the right hand
side.

Therefore X ∼= Bl Z̃ Q, where Z̃ is given by the intersection of a quadratic and
linear forms in Q.

We provide the following alternative description for this Fano:

Z (QP4(0, 1) ⊕ O(2, 0) ⊕ O(1, 1)) ⊂ P
4 × P

5,

which can be shown to be equivalent to the previous one following the same lines of
2–15.

Fano 2–26

Mori-Mukai

Blow up of V5 in a curve of genus 0.

Our description

Z (Q2,4 � U∨
2,5 ⊕ O(1, 0) ⊕ O(0, 1)⊕2) ⊂ Gr(2, 4) × Gr(2, 5).
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Identification

By Lemma 2.2 we can identify Z (Q2,4 � U∨
2,5) ⊂ Gr(2, 4) × Gr(2, 5) as the blow

up BlP3 Gr(2, 5), where P
3 is identified with Z (Q) ⊂ Gr(2, 5) ∼= Gr(2, V5), given

by a vector w ∈ V∨
5 .

Without loss of generality, we can assume w = x0. We have a splitting V∨
5 =

x0 ⊕ W4 that induces a splitting
∧2 V∨

5 = ∧2 W4 ⊕ x0 ∧ W4. For simplicity, let us
fix a basis x0, . . . , x4 of V∨

5 and the corresponding dual basis e0, . . . , e4 of V5. The
above P3 is by definition described by the points in Gr(2, 5) of the form e0 ∧α, where
α ∈ 〈e1, . . . , e4〉.

By construction, any f ∈ ∧2 W4 = |O(1, 0)| does not contain any summand of the
form x0 ∧β, so that f (e0 ∧α) = 0. In other words, f ∈ Ann(P3), hence its zero locus
in BlP3 Gr(2, 5) contains the whole P

3 and does not cut it. The two extra sections of
O(0, 1) cut P3 in a codimension two linear subspace. Therefore our zero locus can be
seen as the blow up of Z (O⊕3

Gr(2,V5)
(1)) ⊂ Gr(2, V5) along P

1 ∼= Z (O⊕2
P3

(1)) ⊂ P
3.

Another description of this Fano is asZ (U∨
1 ⊕O(1, 0)⊕O(0, 1)⊕2) ⊂ Fl(2, 3, 5).

By Lemma 2.5 this can be easily identified with the alternative description of this Fano
given in [9].

Fano 2–28

Mori-Mukai

Blow up of P3 in a plane cubic.

Our description

Z (�(0, 1) ⊕ O(1, 1)) ⊂ P
3 × P

10, being � ∈ Ext1(Sym2Q,Q(−1)) a uniquely
defined extension on P3 fitting into sequence (5) above.

Identification

Our Fano variety is the blow up of P3 along the intersection of two divisors of degree
1 and 3. By Lemma 2.11, it corresponds to the zero locus of π∗OP3(1) ⊗ O(1) over
the projective bundle π : P(O(−2) ⊕ O) → P

3. We conclude by Lemma 4.1.

Fano 2–29

Mori-Mukai

Blow up of Q3 in a conic.

Our description

Z (O(0, 2) ⊕ O(1, 1)) ⊂ P
1 × P

4.
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Identification

See Lemma 2.8.

Fano 2–30

Mori-Mukai

Blow up of P3 in a conic.

Our description

Z (Q2 ⊕ O(1, 1)) ⊂ Fl(1, 2, 5).

Identification

We apply Corollary 2.10. Following the notation of the corollary, we denote by Y ⊂
Fl(1, 2, 5) the zero locus of Q2 and we identify Ỹ with a P3. What we need to check
is

H0(Y ,OY (1, 1)) ∼= H0(P3,OP3(1) ⊕ OP3(2)).

To verify this, one can argue as for 2–15 or 2–23: the representations arising from
the Koszul complex resolving OY (1, 1), when seen as SL(V4) × C

∗-representations,
sum up to �1,1,1V4 ⊕ �2,2,2V4, which is clearly isomorphic to the right hand side.

Notice that as an alternative description we can follow the same lines of 2–15 and
describe the Fano 2–30 as

Z (QP3(0, 1) ⊕ O(1, 1)) ⊂ P
3 × P

4.

Fano 2–31

Mori-Mukai

Blow up of Q3 in a line.

Our description

Z (U∨
Gr(2,4)(1, 0) ⊕ O(0, 1)) ⊂ P

2 × Gr(2, 4).

Identification

Wemay regardP2 asGr(2, 3), so that our Fano is given asZ (Q�U∨⊕O(0, 1)). Then
weargue as for 2–26.ByLemma2.2wecan identifyZ (Q�U∨) ⊂ Gr(2, 3)×Gr(2, 4)
as BlP2 Gr(2, 4), where P

2 is identified with Z (Q) ⊂ Gr(2, 4). As shown for 2–26,
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the remaining section of O(0, 1) cuts such P
2 in a codimension one linear subspace

and the ambient Gr(2, 4) in a three-dimensional quadric, hence the conclusion.

Fano 2–33

Mori-Mukai

Blow up of P3 in a line.

Our description

Z (O(1, 1)) ⊂ P
1 × P

3.

Identification

See Lemma 2.8.

Fano 2–35

Mori-Mukai

Blp P3 or PP2(O ⊕ O(−1)).

Our description

Z (QP2(0, 1)) ⊂ P
2 × P

3.

Identification

This is a straightforward application of Lemma 2.1. Notice that equivalently we could
describe 2–35 as Z (Q2) ⊂ Fl(1, 2, 4).

Fano 2–36

Mori-Mukai

PP2(O ⊕ O(−2)).

Our description

Z (�(0, 1)) ⊂ P
2 × P

6, being � ∈ Ext1(Sym2 Q,Q(−1)) a uniquely defined exten-
sion on P

2 fitting into sequence (16).
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Identification

We argue as in Lemma 4.1, with the appropriate changes. By Remark 2.12, we have
two (dual) canonical short exact sequences on P

2

0 → O(−2) → O(−1)⊕3 → Q(−1) → 0,

0 → O(−1)⊕3 → O⊕6 → Sym2Q → 0.

We combine them and get

0 → O(−2) → O⊕6 → � → 0, (15)

0 → Q(−1) → � → Sym2 Q → 0, (16)

where the rank 5 bundle� is homogeneous, not completely reducible and globally gen-
erated, and its space of global sections coincides with H0(P2,Sym2 QP2)

∼= Sym2 V3.
Adding O → O to (15) we get the desired description for P(O(−2) ⊕ O).

Fano 3–1

Mori-Mukai

Double cover of P1 × P
1 × P

1 with branch locus a divisor of degree (2, 2, 2).

Our description

Z (K (0, 0, 0, 1) ⊕ O(0, 0, 0, 2)) ⊂ P
1 × P

1 × P
1 × P

8, where the bundle K is a
uniquely defined extension in Ext2(O(0, 0, 1)⊕4,O(1,−1,−1)) on P

1 × P
1 × P

1

fitting into the chain of extensions (18) below.

Identification

By Lemma 2.13, our Fano variety is the zero locus of O(2) on the projective bundle
PP1×P1×P1(O(−1,−1,−1) ⊕ O). As it turns out, the latter projective bundle can
be obtained as the zero locus of K (0, 0, 0, 1) over P1 × P

1 × P
1 × P

8, being K ∈
Ext2(O(0, 0, 1)⊕4,O(1,−1,−1)) a uniquely defined extension onP1×P

1×P
1 fitting

into (18) below.
To see it, we can argue as in Lemmas 4.1 or 4.2: we combine the (pull back of the)

three (possibly twisted) Euler sequences

0 → O(−1,−1,−1) → O(0,−1,−1)⊕2 → O(1,−1,−1) → 0,

0 → O(0,−1,−1)⊕2 → O(0, 0,−1)⊕4 → O(0, 1,−1)⊕2 → 0,

0 → O(0, 0,−1)⊕4 → O⊕8 → O(0, 0, 1)⊕4 → 0.
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We get

→ O(−1,−1,−1) → O⊕8 → K → 0, (17)

where the rank 7 bundle K , fitting into the chain of extension (18), is homogeneous, not
completely reducible and globally generated, and its space of global sections coincides
with H0(P1 × P

1 × P
1,O(0, 0, 1)⊕4) ∼= (V2)⊕4.

0 → O(1,−1,−1) → � → O(0, 1,−1)⊕2 → 0,

0 → � → K → O(0, 0, 1)⊕4 → 0.
(18)

AddingO → O to (17) and from the previous considerationswe get the conclusion.

Fano 3–2

Mori-Mukai

A divisor from |O(2) ⊗ π∗O(0, 1)| on the projective bundle π : P(O(−1,−1) ⊕
O⊕2) → P

1 × P
1 such that X ∩ Y is irreducible, where X is the Fano itself and

Y ∈ |O(1)|.

Our description

Z (�(0, 0, 1) ⊕O(0, 1, 2)) ⊂ P
1 × P

1 × P
5, being � ∈ Ext1(O(0, 1)⊕2,O(1,−1))

a uniquely defined extension on P
1 × P

1 fitting into (20) below.

Identification

We need to find P(O(−1,−1) ⊕ O⊕2) over P1 × P
1. To do that, we argue as in

Lemma 4.1 or Lemma 4.2: we combine the two Euler exact sequences

0 → O(−1,−1) → O(0,−1)⊕2 → O(1,−1) → 0,

0 → O(0,−1)⊕2 → O⊕4 → O(0, 1)⊕2 → 0,

and get

0 → O(−1,−1) → O⊕4 → � → 0, (19)

0 → O(1,−1) → � → O(0, 1)⊕2 → 0. (20)

where the rank 3 bundle � is homogeneous, not completely reducible and globally
generated, and its space of global sections coincides with H0(P1 ×P

1,O(0, 1)⊕2) ∼=
V⊕2
2 . AddingO⊕2 → O⊕2 to (19) we get the desired description for P(O(−1,−1)⊕

O⊕2) and the conclusion.

123



Fano 3-folds from homogeneous vector bundles over…

Fano 3–4

Mori-Mukai

Blow up of 2–18 in a smooth fiber of the composition of the double cover projection
to P1 × P

2 with the projection to P2.

Our description

Z (�(0, 0, 1, 0) ⊕ O(0, 0, 2, 0) ⊕ O(0, 1, 0, 1)) ⊂ P
1 × P

2 × P
6 × P

1, where the
bundle � ∈ Ext1(Q⊕2

P2
,O(1,−1)) is a uniquely defined extension on P

1 × P
2 fitting

into sequence (14).

Identification

The first two bundles define Y ×P
1, being Y ⊂ P

1×P
2×P

6 the Fano 2–18. The curve
on Y we need to blow up is a complete intersection of two (0, 1, 0) divisors, which
cut in Y the preimage of a P

1-fiber of the projection P
1 × P

2 → P
2. We therefore

conclude by Lemma 2.8.

Fano 3–5

Mori-Mukai

Blow up of P1 × P
2 in a curve C of degree (5, 2) such that C ↪→ P

1 × P
2 → P

2 is
an embedding.

Our description

Z (�(0, 0, 1)⊕O(0, 1, 1)⊕2) ⊂ P
1 ×P

2 ×P
7, with � ∈ Ext1

P1×P2
(Q⊕2

P2
,O(1,−1))

fitting into (14).

Identification

By Lemmas 2.11 and 4.3 below, our Fano is the zero locus of π∗(O(0, 1)⊕2) ⊗O(1)
over the projective bundle π : P(O(−1,−1) ⊕ O⊕2) → P

1 × P
2. We thus need to

find the latter projective bundle as the zero locus of a suitable vector bundle.
A straightforward modification of the argument used for 2–18 provides the desired

description: adding O⊕2 → O⊕2 to (13) we get

0 → O(−1,−1) ⊕ O⊕2 → O⊕8 → � → 0,

where� fits into (14). The conclusion follows as soon as we have proved the following
lemma.
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Lemma 4.3 The ideal sheaf of a general rational curve C of bidegree (5, 2) in P1×P
2

admits a locally free resolution of the form

0 → O(−1,−4)⊕2 → O(0,−2) ⊕ O(−1,−3)⊕2 → IC → 0 (21)

and, conversely, a general 3 × 2 matrix as above yields a presentation for the ideal
sheaf of a general curve C.

Proof The aim is to show, on the one hand, that the above resolution is the simplest
(in terms of Betti numbers) such a curve is expected to have. On the other hand, if we
manage to show that a curve having that resolution exists, a semicontinuity argument
yields that a general curve shares the same behaviour.

The first task requires a bit of commutative algebra, which we specialise to our
setting P := P

1 × P
2. Let R := ⊕(a,b)∈Z2H0(P,O(a, b)) be the Cox ring of P. If IC

denotes the ideal of C , which can be seens as a finitely generated R-module, we have
a multigraded minimal free resolution

0 → Fr → . . . → F0 → IC → 0,

where the Fi are finitely generated free modules Fi = ⊕(a,b)∈Z2 R(−a,−b)⊕βi,(a,b) ,
being βi,(a,b) the so-called multigraded Betti numbers, which are independent of the
chosen resolution.

The so-called multigraded Hilbert series of IC is the formal Laurent series

HIC :=
∑

(a,b)∈Z2

dimC(IC )(a,b) · satb,

which is well-known to encode the Betti numbers βi,(a,b) in the following way: it
factors as

HIC =
∑

(a,b)∈Z2

(∑r
i=0(−1)iβi,(a,b)

) · satb
(1 − s)2(1 − t)3

.

By Riemann–Roch we can compute H0(C,OC (a, b)) for any (a, b) ∈ Z
2; if we

assume that C has maximal rank, i.e., that H0(P,OP(a, b)) → H0(C,OC (a, b))
has maximal rank for all (a, b) ∈ Z

2, then we explicitly have dimC(IC )(a,b) and HIC .
Straightforward computations then show that the numerator of HS/IC is t

2+2st3−2st4;
thus, the expected resolution of IC has the shape (21).

To conclude, it suffices to show the existence of a curve with the right genus and
degree having the desired resolution. This task can be rather difficult, depending on the
given invariants: onP1×P

2, different approaches can be adopted, such as liaison theory
or the construction of the Hartshorne–Rao module of the curve, see, e.g., [25,26]. Our
situation, however, is favourable, as the minors of a general matrix

O(−1,−4)⊕2 → O(0,−2) ⊕ O(−1,−3)⊕2
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generate the ideal of a smooth curve of maximal rank with the desired invariants. This
can be checked via any computer algebra software like [16]. �

Let F := �(0, 0, 1) ⊕ O(0, 1, 1)⊕2. If we consider the normal sequence for Y =
Z (F) inside P := P

1 × P
2 × P

7, a few cohomology computations via the Koszul
complex as described in Section 3 provide that h0(TP|Y ) = 74, h0(F |Y ) = 79 and the
higher cohomology groups vanish. In [12, Corollary 8.8] it is shown that the family of
Fano 3–5 has a unique member with infinite automorphism group. This means that a
general model Y admits a (79 − 74 = 5)-dimensional family of deformations, which
is the dimension of the moduli of Fano 3–5, hence Y is general in moduli.

Fano 3–6

Mori-Mukai

Blow up of P3 in the disjoint union of a line and an elliptic curve of degree 4.

Our description

Z (O(1, 0, 2) ⊕ O(0, 1, 1)) ⊂ P
1 × P

1 × P
3.

Identification

A quartic elliptic curve is a given by a complete intersections of two quadrics in P
3.

It then suffices to apply twice Lemma 2.8.

Fano 3–8

Mori-Mukai

Divisor from the linear system |(α ◦ π)∗(OP2(1)) � OP2(2)| on Blp P2 × P
2, where

π : Blp P2 × P
2 → Blp P2 is the first projection and α : Blp P2 → P

2 is the blow up
map.

Our description

Z (O(0, 1, 2) ⊕ O(1, 1, 0)) ⊂ P
1 × P

2 × P
2.

Identification

See Lemma 2.8.
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Fano 3–9

Mori-Mukai

Blow up of PP2(O ⊕ O(−2)) in a quartic curve on P
2.

Our description

Z (�(0, 1, 0) ⊕ QP6(0, 0, 1) ⊕ K (0, 0, 1)) ⊂ P
2 × P

6 × P
20, where the bundle

� ∈ Ext1(Sym2 Q,Q(−1)) is a uniquely defined extension onP2 fitting into sequence
(16) and K ∈ Ext3(Sym4Q,Q(−3)) is a uniquely defined extension on P2 fitting into
the chain of extensions (24).

Identification

We need to blow up 2–36 in a quartic curve C on the base P2. The first bundle defines
Y := 2–36 inside P2 × P

6; since C is the zero locus of a map

O(0,−1) ⊕ O(−4, 0) → O

on Y , by Lemma 2.11 our Fano will be the zero locus of O(1) over PY (O(0,−1) ⊕
O(−4, 0)).

For the first bundle O(0,−1), we have the standard (pulled back) Euler sequence

0 → O(0,−1) → O⊕7 → QP6 → 0; (22)

the second bundle O(−4, 0) requires a cumbersome though straightforward merging
of the following (dualised) short exact sequences on P

2 given by Remark 2.12:

0 → O(−4) → O(−3)⊕3 → Q(−3) → 0

0 → O(−3)⊕3 → O(−2)⊕6 → Sym2Q(−2) → 0

0 → O(−2)⊕6 → O(−1)⊕10 → Sym3Q(−1) → 0

0 → O(−1)⊕10 → O⊕15 → Sym4Q → 0.

Arranging them repeatedly as in Lemmas 4.1 or 4.2, we get to a uniquely defined
homogeneous rank 14 vector bundle K on P

2 which fits into

0 → O(−4) → O⊕15 → K → 0 (23)

and into the following chain of extensions

0 → Q(−3) → K1 → Sym2 Q(−2) → 0

0 → K1 → K2 → Sym3Q(−1) → 0

0 → K2 → K → Sym4Q → 0.

(24)

123



Fano 3-folds from homogeneous vector bundles over…

One can directly check using (23) and (24) that H0(K ) ∼= Sym4 V3 and H1(K ) ∼= V3.
The conclusion follows by considering the direct sum of (23) and (22).

Fano 3–10

Mori-Mukai

Blow up of Q3 in the disjoint union of 2 conics.

Our description

Z (O(1, 0, 1) ⊕ O(0, 1, 1) ⊕ O(0, 0, 2)) ⊂ P
1 × P

1 × P
4.

Identification

It suffices to apply twice Lemma 2.8.

Fano 3–11

Mori-Mukai

Blow up of 2–35 in an elliptic curve which is the intersection of two divisors from
| − 1

2K |.

Our description

Z (O(1, 1, 1) ⊕ QP2(0, 0, 1)) ⊂ P
1 × P

2 × P
3.

Identification

We recall first that 2–35 is the blowup ofP3 at a point, whichwe have already identified
asZ (QP2(0, 1)) ⊂ P

2×P
3. As such, its anticanonical class isO(2, 2) by adjunction.

It then suffices to apply Lemma 2.8.

Fano 3–12

Mori-Mukai

Blow up of P3 in the disjoint union of a line and a twisted cubic.

Our description

Z (O(0, 1, 1) ⊕ O(0, 1, 1) ⊕ O(1, 0, 1)) ⊂ P
1 × P

2 × P
3.
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Identification

The variety Z (O(1, 1) ⊕ O(1, 1)) ⊂ P
2 × P

3 is the Fano 3-fold 2–27, the blow up
of P3 in a twisted cubic. The result then follows by Lemma 2.8, with the two extra
(0, 1) divisors cutting a line in space which by construction is disjoint from the twisted
cubic. To make this explicit, take coordinates [z0, z1], [y0, y1, y2], [x0, . . . , x3]. The
divisor of degree (1, 0, 1) is therefore given by an expression of type

∑
zi fi (xi ). Say

for simplicity z0x0 + z1x3. The line L in P
3 which we are blowing up is therefore

given by x0 = x3 = 0. On the other hand the two divisors of degree (0, 1, 1) define
the twisted cubic as follows: they are given by the solutions of, e.g.,

(
x0 x1 x2
x1 x2 x3

)
⎛

⎝
y0
y1
y2

⎞

⎠ = 0.

In particular this locus is trivially identified with the blow up of P3 where the matrix

drops rank, that is rank

(
x0 x1 x2
x1 x2 x3

)

< 2. The latter are the equations of the twisted

cubic in P3, which we can easily check to be disjoint from the line L .

Fano 3–14

Mori-Mukai

Blow up of P3 in the disjoint union of a plane cubic curve and a point outside the
plane.

Our description

Z (�(0, 1, 0) ⊕ O(1, 1, 0) ⊕ QP2(1, 0, 0)) ⊂ P
3 × P

10 × P
2, where the bundle

� ∈ Ext1(Sym2 Q,Q(−1)) is a uniquely defined extension onP3 fitting into sequence
(5) above.

Identification

The first two bundles on P
3 × P

10 determine 2–28, i.e., the blow up of P3 in a plane
cubic curve. To blow it up in a point, we can apply Lemma 2.1 for the base P3, adding
a P2 factor and the corresponding bundle. The extra point will in general be outside
the plane.

Fano 3–15

Mori-Mukai

Blow up of Q3 in the disjoint union of a line and a conic.

123



Fano 3-folds from homogeneous vector bundles over…

Our description

Z (O(1, 0, 1) ⊕ O(0, 1, 1) ⊕ QP2(0, 0, 1)) ⊂ P
1 × P

2 × P
4.

Identification

By Lemma 2.1 the zero locus of the last two bundles on P
1 × P

2 × P
4 gives us

P
1 × BlP1 Q3. We still have to cut with a section of O(1, 0, 1). By Lemma 2.8 this

is the blow up of BlP1 Q3 in the locus cut by two linear sections, which is in general
disjoint from the P1. The result follows.

Fano 3–16

Mori-Mukai

Blow up of 2–35 in the proper transform of a twisted cubic containing the centre of
the blow up.

Our description

Z (O(0, 1, 1) ⊕ O(1, 0, 1) ⊕ Q
P
2
1
(0, 1, 0)) ⊂ P

2 × P
3 × P

2.

Identification

We first fix the system of coordinates P
2[y0...y2] × P

3[x0...x3] × P
2[w0...w2]. As a first

step we use Lemma 2.1 to identify QP2(0, 1) ⊂ P
2 × P

3 as 2–35, i.e., Blp P3. The
two remaining divisors are, on P

2 × P
3, of degree (0, 1) and (1, 0) and are both

trivially identified with linear forms on P
3, but with a distinction. Without loss of

generality, assume that p is the point [1, 0, 0, 0]. We have ( f ∈ |O(1, 0)|) ∈ Ann(p),
while (g ∈ |O(0, 1)|) gives a non-zero element of V∨

4 /Ann(p). In other words,
f = f (x1, x2, x3) does not contain the coordinate x0, while the converse holds for g.
Both the divisors were twisted by OP2(1), giving rise to two divisors of degree (1, 1)
on Blp P3 × P

2[w0...w2]. As in 3–12, these lead to the blow up of Blp P3 in a twisted

cubic, that (since f ∈ Ann(p)) passes through the point p ∈ P
3. The result follows.

Fano 3–18

Mori-Mukai

Blow up of P3 in the disjoint union of a line and a conic.

Our description

Z (Q2(0; 0, 0) ⊕ O(0; 1, 1) ⊕ O(1; 0, 1)) ⊂ P
1 × Fl(1, 2, 5).
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Identification

This Fano can be evidently identified with the blow up of 2–30 in a line disjoint from
the conic. Recall that we described 2–30 as (Z (Q2 ⊕ O(1, 1)) ⊂ Fl(1, 2, 5)) ∼=
Z (O(1)) ⊂ PP3(O(−1) ⊕ O). The result then follows from Lemma 2.8, since two
divisors of degree (0, 1) cut a line in the base P3.

We can write an alternative description for this Fano, based on the alternative
description already given for 2–30. Using Lemma 2.8 the Fano 3–18 will be

Z (O(1, 1, 0) ⊕ O(0, 1, 1) ⊕ QP3(0, 0, 1)) ⊂ P
1 × P

3 × P
4.

Fano 3–19

Mori-Mukai

Blow up of Q3 in two non-collinear points.

Our description

Z (QP2(0, 1) ⊕ O(0, 2)) ⊂ P
2 × P

4.

Identification

ByLemma2.1, the first divisor yields the blowup ofP4 along a line. The second divisor
is identified with a general quadric in P

4, hence it cuts out a quadric hypersurface in
P
4 blown up along two points. The general quadric does not contain the line, so the

blown up points are in general non-collinear.

Fano 3–20

Mori-Mukai

Blow up of Q3 in the disjoint union of two lines.

Our description

Z (O(1, 0, 1) ⊕ Q
P
2
1
(0, 1, 0) ⊕ Q

P
2
2
(0, 1, 0)) ⊂ P

2 × P
4 × P

2.

Identification

We remark that, by Lemma 2.1, another model for 2–31 (the blow up of Q3 in one
line) is given by Z (O(1, 1) ⊕ QP2(0, 1)) ⊂ P

2 × P
4. Our model for 3–20 is just

the iteration of the blow up process, where the second and the third bundles give the
blow up of P4 along two disjoint lines L1, L2 and the first bundle gives a quadric
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which contains both the lines. Notice that in fact a section
∑

k f1,k f2,k of the bundle
O(1, 0, 1) identifies a quadric in P

4 and fi,k ∈ Ann(Li ) for i = 1, 2 (see also the
arguments used for 2–19 and 3–16).

Fano 3–21

Mori-Mukai

Blow up of P1 × P
2 in a curve of degree (2, 1).

Our description

Z (O(0, 1, 1) ⊕ �(0, 0, 1)) ⊂ P
1 × P

2 × P
6, being � ∈ Ext1(Q⊕2

P2
,O(1,−1)) a

uniquely defined extension on P1 × P
2 fitting into sequence (14).

Identification

On P1×P
2, a general complete intersection of a (0, 1) and a (1, 2) divisors is a smooth

curve of degree (2, 1). In order to blow it up, we can use Lemma 2.11, according to
which our Fano will be the zero locus of O(1) ⊗ π∗(0, 1) over the projective bundle
π : P(O(−1,−1) ⊕ O) → P

1 × P
2.

The above projective bundle has already been found when dealing with 2–18: it is
the zero locus of �(0, 0, 1) over P1 × P

2 × P
6, with � fitting into (14).

Fano 3–22

Mori-Mukai

Blow up of P1 × P
2 in a conic on {x} × P

2, {x} ∈ P
1.

Our description

Z (O(1, 0, 1) ⊕ �(0, 0, 1)) ⊂ P
1 × P

2 × P
6, being � ∈ Ext1(Sym2Q,Q(−1)) a

uniquely defined extension on P2 fitting into sequence (16).

Identification

We need to blow up on P
1 × P

2 a complete intersection curve given by two divisors
of degree (1, 0) and (0, 2). To do that, we use Lemma 2.11: our Fano will then be the
zero locus of O(1) over the projective bundle P(O(−1, 0) ⊕ O(0,−2)).

To find the above projective bundle, we can add the standard (pulled back) Euler
sequence on P1 to (15) and get

0 → O(−1, 0) ⊕ O(0,−2) → O⊕8 → O(1, 0) ⊕ � → 0,
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being� a uniquely defined extension on P2 fitting into sequence (16). The conclusion
follows.

Fano 3–23

Mori-Mukai

Blow up of 2–35 in the proper transform of a conic containing the centre of the blow
up.

Our description

Z (QP2(0, 1, 0) ⊕ O(1, 0, 1) ⊕ QP3(0, 0, 1)) ⊂ P
2 × P

3 × P
4.

Identification

By Lemma 2.1 the first bundle (when seen on the first two factors) gives X := 2–35,
the blow up of P3 in one point p. We need to blow up X along the proper transform
of a conic Q containing p. Note that Q is cut out by a hyperplane and a quadric in
P
3 both containing p, so that Q is the degeneracy locus of a map OX (−1,−1) ⊕

OX (−1, 0) → OX (see, e.g., the arguments used for 2–19 and 3–16). Lemma 2.11
yields that our Fano will be the zero locus of O(1) ⊗ π∗(O(1, 0)) over the projective
bundle π : P(O(0,−1) ⊕ O) → P

2 × P
3.

Such projective bundle can be found in P2 ×P
3 ×P

4, as the sequence on P2 ×P
3

0 → O(0,−1) ⊕ O → O⊕5 → QP3 → 0

shows. The conclusion follows.

Fano 3–24

Mori-Mukai

The fiber product of 2–32 with Blp P2 over P2.

Our description

Z (O(1, 1, 0) ⊕ O(0, 1, 1)) ⊂ P
1 × P

2 × P
2.

Identification

See [9, §77].
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Fano 3–25

Mori-Mukai

PP1×P1(O(0,−1) ⊕ O(−1, 0)), or the blow up of P3 in two disjoint lines.

Our description

Z (O(0, 1)⊕2) ⊂ Fl(1, 2, 4).

Identification

We can identify Fl(1, 2, 4)withPGr(2,4)(U). Let Z := P
1×P

1. The two (0, 1) sections
give us PZ (U |Z ). By [31, Theorem 1.4] the restriction of U to Z coincides with the
direct sum of O(0,−1) ⊕ O(−1, 0). The result follows.

An alternative description isZ (O(1, 1, 0)⊕O(1, 0, 1)) ⊂ P
3×P

1×P
1, by simply

apply twice Lemma 2.8.

Fano 3–26

Mori-Mukai

Blow up of P3 in the disjoint union of a point and a line.

Our description

Z (O(1, 0, 1) ⊕ QP2(0, 0, 1)) ⊂ P
1 × P

2 × P
3.

Identification

The bundle QP2(0, 1) on P
2 × P

3 gives the Fano 2–35 by Lemma 2.1. Two extra
sections of O(0, 1) on this space cut a line that does not intersect the exceptional
divisor (equivalently, a line in P3 that does not pass through the blown up point). The
identification therefore follows by Lemma 2.8.

Fano 3–28

Mori-Mukai

P
1 × Blp P2.

Our description

Z (O(1, 0, 1)) ⊂ P
1 × P

1 × P
2.
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Identification

See Lemma 2.8.

Fano 3–29

Mori-Mukai

Blow up of 2–35 in a line on the exceptional divisor.

Our description

Z (QP2(1, 0, 0) ⊕ QP3(0, 0, 1) ⊕ �(0, 0, 1) ⊕ O(0,−1, 1)) ⊂ P
3 × P

2 × P
9, being

� ∈ Ext1(Sym2 Q,Q(−1)) a uniquely defined extension on P
2 fitting into sequence

(16).

Identification

By Lemma 2.1 the first bundle gives, on the first two factors, the blow up Y of P3 along
a point. We then need to blow up a line in the exceptional divisor. By [13, Corollary
9.12], the exceptional divisor is a (1,−1) divisor in Y ; in order to cut out a line on it,
we have to intersect it with the strict transform of a hyperplane in P3 passing through
the point, which is a (0, 1) divisor (see, e.g., the argument used for 3–16).

Summarising, we need to blow Y up along the intersection of the two aforemen-
tioned divisors. By Lemma 2.11, this yields that our Fano variety is the zero locus of
π∗O(0,−1) ⊗ O(1) over π : P(O(−1, 0) ⊕ O(0,−2)) → Y .

To express the above projective bundle, we can add the standard (pulled back) Euler
sequence on P3 to (15) and get

0 → O(−1, 0) ⊕ O(0,−2) → O⊕10 → QP3 ⊕ � → 0,

being� a uniquely defined extension on P2 fitting into sequence (16). The conclusion
follows.

Caveat 4.4 The above bundle O(0,−1, 1) has clearly no sections on P
3 × P

2 × P
9,

so our notation seems misleading. In fact, this bundle acquires a 4-dimensional space
of global sections once it is restricted to the zero locus of the previous ones, so that
the direct sum above should be taken with a pinch of salt.

This phenomenonnaturally occurswhenweneed to consider the exceptional divisor
of a blow up obtained via Lemma 2.1: as already remarked, if Y = BlPn−m−1 P

n =
Z (QPm (0, 1)) ⊂ P

m × P
n , then the exceptional divisor is a (−1, 1) divisor in Y .

Notice that OPn×Pm (−1, 1)|Y ∼= OY (−1, 1) indeed has global sections.
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Fano 3–30

Mori-Mukai

Blow up of 2–35 in the proper transform of a line containing the centre of the blow
up.

Our description

Z (O(1, 0, 1) ⊕ QP2(0, 1, 0)) ⊂ P
2 × P

3 × P
1.

Identification

By Lemma 2.1 the second bundle (when seen on the first two factors) gives a Fano X
which is 2–35, the blow up ofP3 in one point p.We need to blow up X along the proper
transform of a line containing p, which is the complete intersection of two divisors
of degree (1, 0) on P

2 × P
3 (see, e.g., the argument used for 3–16). We conclude by

Lemma 2.8.

Fano 3–31

Mori-Mukai

Blow up of the cone over a smooth quadric inP3 in the vertex, orPP1×P1(O(−1,−1)⊕
O).

Our description

of Z (Q2 ⊕ O(0, 2)) ⊂ Fl(1, 2, 5).

Identification

ByCorollary 2.7we have thatZ (Q2) ⊂ Fl(1, 2, 5) is isomorphic toPP3(O(−1)⊕O).
The extra quadric cuts only the base P3, and yields the identification.

We want to give an alternative description as

Z (QP3(0, 1) ⊕ O(2, 0)) ⊂ P
3 × P

4.

By Lemma 2.1,QP3(0, 1) gives the blow up of P4 at a point p0, with dual coordinate
x0. A section of O(2, 0) gives a quadric in the space Sym2(V∨

5 /〈x0〉). This gives the
equation of a cone over a smooth, degenerate quadric in P3[x1,...,x4]. The result follows.
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Fano 4–2

Mori-Mukai

Blow up of the cone over a smooth quadric in P
3 in the disjoint union of the vertex

and an elliptic curve on the quadric.

Our description

Z (QP3(0, 1, 0) ⊕ O(2, 0, 0) ⊕ O(0, 1, 1) ⊕ QP4(0, 0, 1)) ⊂ P
3 × P

4 × P
5.

Identification

We use the alternative description of 3–31. In fact to blow up the requested elliptic
curve it suffices to blow up Y := 3–31, in its intersection with a hyperplane not passing
through the vertex of the cone and a general quadric, i.e., in the intersection of a (0, 1)
and a (0, 2) divisors. Lemma 2.11 yields that our Fano variety is the zero locus of
π∗O(0, 1) ⊗ O(1) over π : P(O(0,−1) ⊕ O) → Y . Such projective bundle can be
obtained as the zero locus of the remaining bundle by considering the Euler sequence
on P4, which yields an embedding of O(0,−1) ⊕ O inside P(O⊕5 ⊕ O).

Fano 4–3

Mori-Mukai

Blow up of P1 × P
1 × P

1 in a curve of degree (1, 1, 2).

Our description

Z (O(1, 1, 0, 1) ⊕ O(0, 0, 1, 1)) ⊂ P
1 × P

1 × P
1 × P

2.

Identification

A complete intersection of divisors of degree (1, 1, 0), (1, 1, 1) is a curve of degree
(1, 1, 2) in P1 ×P

1 ×P
1. In order to blow it up, we use Lemma 2.11: our Fano is then

the zero locus ofO(1)⊗π∗O(1, 1, 0) over π : P(O(0, 0,−1)⊕O) → P
1×P

1×P
1.

From the standard Euler sequence on P1 we get

0 → O(0, 0,−1) ⊕ O → O⊕3 → O(0, 0, 1) → 0,

hence the conclusion.
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Fano 4–4

Mori-Mukai

Blow up of 3–19 in the proper transform of a conic through the points.

Our description

Z (QP2(0, 1, 0) ⊕ O(0, 2, 0) ⊕ O(1, 0, 1)) ⊂ P
2 × P

4 × P
1.

Identification

The first two bundles on P
2 × P

4 give the Fano 3–19. We then just need to use
Lemma 2.8, since two sections ofO(1, 0) cut the three dimensional quadric in a conic
passing through the two points (see also the argument used for 3–16).

Fano 4–5

Mori-Mukai

Blow up of P1 × P
2 in the disjoint union of a curve of degree (2, 1) and a curve of

degree (1, 0).

Our description

Z (O(0, 1, 1, 0) ⊕ �(0, 0, 1, 0) ⊕ O(0, 1, 0, 1)) ⊂ P
1 × P

2 × P
6 × P

1, where the
bundle � ∈ Ext1(Q⊕2

P2
,O(1,−1)) is a uniquely defined extension on P

1 × P
2 fitting

into sequence (14).

Identification

The first two bundles describe, on P1 ×P
2 ×P

6, the variety 3–21. We need to blow it
up along a curve of degree (1, 0), which is the complete intersection of two divisors
of degree (0, 1) on P

1 × P
2. The result follows from Lemma 2.8.

Fano 4–6

Mori-Mukai

Blow up of P3 in the disjoint union of 3 lines.

Our description

Z (O(1, 1, 0, 0) ⊕ O(1, 0, 1, 0) ⊕ O(1, 0, 0, 1)) ⊂ P
3 × P

1 × P
1 × P

1.
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Identification

It suffices to apply three times Lemma 2.8. By dimension reasons the three lines on
P
3 which are cut each times are disjoint.

Fano 4–7

Mori-Mukai

Blow up of 2–32 in the disjoint union of a curve of degree (0, 1) and a curve of degree
(1, 0).

Our description

Z (O(1, 0; 1, 0) ⊕ O(0, 1; 0, 1)) ⊂ Fl(1, 2, 3) × P
1 × P

1.

Identification

The flag variety F := Fl(1, 2, 3) can be identified with 2–32, that is a (1, 1) section
of P2 × (P2)∨. Notice that under this identification the generators of the Picard group
of the flag are the restriction of the canonical ones on P

2 × (P2)∨. In particular
H0(F,OF (1, 0)) ∼= V∨

3 and H0(F,OF (0, 1)) ∼= V3. The zero locus of two sections
ofOF (1, 0) is a (0, 1) curve, and the opposite holds forOF (0, 1). We then apply twice
Lemma 2.8 to conclude.

Of course thanks to the above identification and Lemma 2.8 this Fano can be
described as well as

Z (O(1, 1, 0, 0) ⊕ O(1, 0, 1, 0) ⊕ O(0, 1, 0, 1)) ⊂ P
2 × P

2 × P
1 × P

1.

Fano 4–8

Mori-Mukai

Blow up of 3–31 (i.e.,PP1×P1(O(−1,−1)⊕O)) in a (1, 1)-section of the baseP1×P
1,

or blow up of P1 × P
1 × P

1 in a curve of degree (0, 1, 1).

Our description

Z (Q2 ⊕ O(0, 2; 0) ⊕ O(1, 0; 1)) ⊂ Fl(1, 2, 5) × P
1.

Identification

We use the first description by Mori–Mukai, together with our description of 3–31.
Given this, it suffices to apply Lemma 2.8, since the zero locus of two extra copies
of OF (1, 0) on Z (Q2 ⊕ OF (0, 2)) ⊂ F := Fl(1, 2, 5) is such a curve. In fact
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Z := Z (Q2 ⊕ OF (0, 2) ⊕ OF (1, 0)) ⊂ F corresponds to the base P1 × P
1; on Z ,

both the restrictionsOF (1, 0)|Z ∼= OF (0, 1)|Z coincide withOP1×P1(1, 1), as can be
easily checked via a Chern classes computation.

Alternatively, we can use Lemma 2.8 to give another description of this Fano, given
the alternative one for 3–31. In particular 4–8 will be given as

Z (QP3(0, 1, 0) ⊕ O(2, 0, 0) ⊕ O(0, 1, 1)) ⊂ P
3 × P

4 × P
1.

Fano 4–9

Mori-Mukai

Blow up of 3–25 in an exceptional rational curve E of the blow up.

Our description

Z (QP2(0, 1, 0, 0) ⊕ O(1, 0, 1, 0) ⊕ O(0, 1, 0, 1)) ⊂ P
2 × P

3 × P
1 × P

1.

Identification

First we use that the bundle QP2(0, 1) ⊂ P
2 × P

3 gives the blow up Blp P3 by
Lemma 2.1. Lemma 2.8 yields that the other two bundles yield the blow up along
two other lines L, L ′ in P

3: L (corresponding to O(1, 0, 1, 0)) passing through p, L ′
avoiding it (see, e.g., the argument used for 3–16). Therefore we identify the above
variety with Bl� P

3, where � := L ∪ L ′ ∪ p, and p ∈ L . This is the same as
BlE (BlL∪L ′ P3). Since the exceptional divisor of the second blow up π2 is a P1-bundle
over the union of the two lines, (with E = π−1

2 (p)) the result follows.

Fano 4–10

Mori-Mukai

P
1 × Bl2 P2.

Our description

Z (O(0, 1, 1) ⊕ QP2(0, 0, 1)) ⊂ P
1 × P

2 × P
3.

Identification

Lemma 2.1 identifies the zero locus of a general section of the second bundle with
P
1 × Blp P3. A section of the remaining bundle gives a quadric in P

3 containing p
(see, e.g., the argument used for 2–19), which identifies our model with Blp(P1×P

1),
which is isomorphic to the blow up of P2 in two points. We remark that Lemma 2.8
provides another simple model, i.e., the zero locus of O(1, 0, 1, 0) ⊕ O(0, 1, 1, 0)
over P1 × P

1 × P
2 × P

1.
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Fano 4–11

Mori-Mukai

Blow up of 3–28 in {x} × E , x ∈ P
1 and E the (−1)-curve.

Our description

.Z (O(0, 1, 1, 0)⊕QP2(0, 0, 0, 1)⊕�(0, 0, 0, 1)⊕O(0, 0,−1, 1)) ⊂ P
1×P

2×P
1×

P
6, being � ∈ Ext1(O(0, 1)⊕2,O(1,−1)) a uniquely defined extension on P

1 × P
1

fitting into (20).

Identification

By Lemma 2.1 the first bundle defines, on P
1 × P

2 × P
1, the Fano 3–28. By [13,

Corollary 9.12], we need to blow up the intersection of a (1, 0, 0) and a (0, 1,−1)
divisors. Using Lemma 2.11, our Fano will be the zero locus ofO(1)⊗π∗O(0, 0,−1)
over the projective bundle π : P(O(−1, 0,−1) ⊗ O(0,−1, 0)) → P

1 × P
2 × P

1.
For O(−1, 0,−1) we can pull back sequence (19) and get

0 → O(−1, 0,−1) → O⊕4 → � → 0, (25)

where � fits into (20). Adding it with the standard Euler sequence on P
2, we get

0 → O(−1, 0,−1) ⊕ O(0,−1, 0) → O⊕7 → � ⊕ QP2 → 0,

which gives the conclusion.
We remark that the last bundle in the description should be taken with a caveat, as

it has no global sections on the ambient space, but acquires some when restricted to
the zero locus of the previous bundles. See Caveat 4.4.

Fano 4–12

Mori-Mukai

Blow up of 2–33 in the disjoint union of two exceptional lines of the blow up.

Our description

Z (O(1, 1, 0)⊕�(0, 0, 1)⊕O(−1, 1, 1)) ⊂ P
1×P

3×P
8, being� ∈ Ext1(Q⊕2

P3
,O(1,

−1)) a uniquely defined extension on P
1 × P

3 fitting into sequence (27) below.
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Identification

By Lemma 2.1 (or Lemma 2.8) the first bundle gives, on the first two factors, the blow
up Y of P3 along a line. We then need to blow up two disjoint lines in the exceptional
divisor. By [13, Corollary 9.12], the exceptional divisor is a (−1, 1) divisor in Y ; in
order to cut out two lines on it, we have to intersect it with the strict transform of a
general quadric hypersurface in P3, which is a (0, 2) divisor cutting the blown up line
in two points.

Summarising, we need to blow Y up along the intersection of the two aforemen-
tioned divisors. By Lemma 2.11, this yields that our Fano variety is the zero locus of
π∗O(−1, 1) ⊗O(1) over the projective bundle π : P(O(−1,−1) ⊕O) → P

1 × P
3.

To describe this projective bundle, we can argue as in Lemmas 4.1 or 4.2: we
combine the (pull back of the) two (possibly twisted) Euler sequences

0 → O(−1,−1) → O(0,−1)⊕2 → O(1,−1) → 0,

0 → O(0,−1)⊕2 → O⊕8 → Q⊕2
P3

→ 0.

We get

0 → O(−1,−1) → O⊕8 → � → 0, (26)

0 → O(1,−1) → � → Q⊕2
P3

→ 0, (27)

where the rank 7 bundle � is homogeneous, not completely reducible and globally
generated, and its space of global sections coincides with H0(P3,Q⊕2) ∼= (V4)⊕2.
AddingO → O to (26) we get that P(O(−1,−1)⊕O) is the zero locus of �(0, 0, 1)
in P1 × P

3 × P
8, whence the conclusion.

We remark that the last bundle in the description should be taken with a caveat, as
it has no global sections on the ambient space, but acquires some when restricted to
the zero locus of the previous bundles. See Caveat 4.4.

Fano 4–13

Mori-Mukai

Blow up of P1 × P
1 × P

1 in a curve of degree (1, 3, 1).

Our description

Z (�(0, 0, 0, 1) ⊕ O(1, 0, 1, 1)) ⊂ P
1 × P

1 × P
1 × P

4, being � ∈ Ext1(O(0, 1)⊕2,

O(1,−1)) a uniquely defined extension on P
1 × P

1 (the first two copies) fitting into
(20).
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Identification

The complete intersection between a (2, 1, 1) and a (1, 0, 1) divisors is a curve of
degree (1, 3, 1) in P1 ×P

1 ×P
1. In order to blow it up, we use Lemma 2.11: our Fano

Y will be the zero locus of O(1) ⊗ π∗O(1, 0, 1) over π : P(O(−1,−1, 0) ⊕ O) →
P
1 × P

1 × P
1. From (19) we get that this projective bundle is the zero locus of

�(0, 0, 0, 1) over P1 × P
1 × P

1 × P
4, where � is a bundle on P

1 × P
1 (the first two

copies) fitting into (20). The conclusion follows.
Analogously, we could have used the complete intersection of a (3, 1, 0) and a

(1, 0, 1)divisors,which is again a curveof degree (1, 3, 1).A similar argument requires
the projective bundle P(O(−2,−1, 0) ⊕ O(0, 0,−1)) and produces a model Y ′ in
P
1 × P

1 × P
1 × P

7. If we consider the normal sequence for Y = Z (F) ⊂ P :=
P
1×P

1×P
1×P

4, a fewcohomology computations via theKoszul complex as described
in Section 3 provide that h0(TP|Y ) = 33, h0(F |Y ) = 34 and the higher cohomology
groups vanish. In [12, Lemma 8.11] it is shown that the family of curves of degree
(1, 1, 3) on (P1)3 has dimension one (up to the action ofAut((P1)3)), and that for all but
one curve the automorphism group is finite. This means that a general model Y admits
a (34 − 33 = 1)-dimensional family of deformations, which is the dimension of the
moduli of Fano 4–13, hence Y is general in moduli. The corresponding computations
for Y ′ ⊂ P

1 × P
1 × P

1 × P
8 give, analogously, 73 − 72 = 1, so that the models Y ′

are also general in the moduli space of Fano 4–13.

Fano 5–1

Mori-Mukai

Blow up of 2–29 in the disjoint union of three exceptional lines of the blow up.

Our description

Z (O(1, 1, 0, 0)⊕�(0, 0, 1, 0)⊕O(−1, 1, 1, 0)⊕QP3(0, 0, 0, 1)⊕QP8(0, 0, 0, 1)) ⊂
P
1 × P

3 × P
8 × P

11, being � ∈ Ext1(Q⊕2
P3

,O(1,−1)) a uniquely defined extension

on P1 × P
3 fitting into sequence (27).

Identification

This Fano variety is the blow up of 4–12 along a rational curve, as per the alternative
description given in [29, Table 5]. If we consider the model for 4–12 in P1 × P

3 × P
8

(given by the zero locus of the first three bundles), we can check that the intersection
of a (0, 1, 0) divisor and a (0, 0, 1) divisor is indeed a rational curve C , and the corre-
sponding blow up Y can be checked to have the right Hodge diamond and invariants.
To ensure that Y is Fano (hence, it is 5–1) we can check that a fiber F of the exceptional
divisor has F .KY = −1, so that −KY is ample by [19, Thm 1.4.3].

As usual, we blow up C via Lemma 2.11: our Fano will be the zero locus
of O(1) over P(O(0,−1, 0) ⊕ O(0, 0,−1)). This projective bundle can be eas-
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ily described by considering the direct sum of the two Euler sequences, which
yields

0 → O(0,−1, 0) ⊕ O(0, 0,−1) → O⊕13 → QP3 ⊕ QP8 → 0.

The conclusion follows.

Fano 5–2

Mori-Mukai

Blow up of 3–25 in the disjoint union of two exceptional lines on the same irreducible
component.

Our description

Z (O(1, 1, 0, 0)⊕�(0, 0, 1, 0)⊕O(−1, 1, 1, 0)⊕O(0, 1, 0, 1)) ⊂ P
1×P

3×P
8×P

1,
being � ∈ Ext1(Q⊕2

P3
,O(1,−1)) a uniquely defined extension on P1 ×P

3 fitting into
sequence (27).

Identification

Recall that 4–12 is the blow up of P3 in a line and then in the disjoint union of two
exceptional lines of the blow up, and is given by the zero locus of the first three bundles.
To get 5–2 we need to blow it up along the strict transform of a line not intersecting
any of the other three. The previously found model for 4–12 was in P1 ×P

3 ×P
8, and

such a line is the complete intersection of two (0, 1, 0) divisors. Lemma 2.8 yields the
conclusion.

5 Tables

In this last section we collect in an exhaustive table all the models for Fano 3-folds
we exhibited in Sect. 4, together with the models already existing in the literature. In
Table 1,MM stands for theMori–Mukai numeration; the Picard rank ρ is the first num-
ber. In the column “Inv” an entry (a, b, c)means the invariants (h0(−K ), K 3, h2,1) of
the corresponding Fano. The column X refers to the ambient variety, whereasF is the
bundle whose zero locus produces the 3-fold. In some cases alternative descriptions
(marked by “alt.”) are given, whenever we find them equally interesting. In the column
“Notes” we put either the reference for the chosen model, when it was not provided
by us, or a further explanation of the bundles appearing in the previous column.

We include a second table, Table 2, for Del Pezzo surfaces, whose models can be
easily figured out from Table 1. Each family in the table (except 2–1) will correspond
to the blow up of P2 in 9− K 2 points in sufficiently general position. All models (for
3-folds and Del Pezzo surfaces) are general.
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Table 2 Del Pezzo surfaces
DP K 2 X F

1–1 9 P
2

2–1 8 P
1 × P

1

2–2 8 P
1 × P

2 O(1, 1)

3–1 7 P
1 × P

1 × P
2 O(1, 0, 1) ⊕ O(0, 1, 1)

4–1 6 P
2 × P

2 O(1, 1)⊕2

(P1)3 O(1, 1, 1)

5–1 5 Gr(2, 5) O(1)⊕4

6–1 4 P
4 O(2)⊕2

7–1 3 P
3 O(3)

8–1 2 P(13, 2) O(4)

P
1 × P

2 O(2, 2)

9–1 1 P(12, 2, 3) O(6)
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