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Abstract

In this paper, a geometrical investigation of the star sensor image is performed

under dynamic conditions where the angular velocity effects are non negligible.

It is shown that, when the spacecraft is rotating, the streaks left by the stars’

signal onto the star sensor detector belong to portions of conic sections which

features depend on the angles between the instantaneous rotation axis, the sen-

sor line of sight and the stars’ direction. The geometrical properties discussed

in the first part of the paper can be used to develop new numerical methods

for the evaluation of the angular velocity. Hence, the chord method is proposed

and discussed. This approach needs at least two stars in two successive images

and, despite its simplicity, is quite effective to get a preliminary estimation of

the spacecraft angular velocity in terms of direction and magnitude. The chord

method is firstly presented by means of simple examples using some reference

geometries, and then it is applied to real scenarios by using a high fidelity star

sensor simulator. To this aim, the pre-processing and processing of simulated

images are discussed, presenting some geometrical techniques allowing to cor-

rectly cluster the streaks. Results are presented and discussed, validating the

reported theoretical speculations.
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1. Introduction

Angular rate determination represents an essential task for the navigation

system of space platform [1]. Usually, the evaluation of the rate is demanded to

gyroscopes [2], but new mission concepts have been recently proposed relying

on different sensors. In [3], for instance, a magnetometer-only attitude and5

angular velocity filtering estimation is proposed. This paper will focus on the

determination of the angular velocity from star sensor measurements.

Star sensors already represent the best technology concerning attitude de-

termination [4], and their usage can be extended to rate determination. This

new paradigm can help the on-board navigation system and eventually lead to10

avoid using gyroscopes and simplify the overall satellite hardware architecture.

When the satellite experiences a non-negligible angular velocity, stars inside the

sensor field of view (FOV) leave a trace which is no more a circular spot but an

elongated streak. Even though the blurred star streaks can represent a prob-

lem to be considered for attitude determination, as reported for instance in [5],15

star streaks can be used to develop new algorithms for determining the angular

velocity. Preliminary studies date back to the 80s, as the one reported in [6],

where the open-loop performances of an attitude/attitude rate estimator based

on a Kalman filter are discussed. Other studies appeared in the early 2000s,

as in [7, 8] where an attitude rate dynamic estimator requiring the knowledge20

of the inertia tensor is proposed. In [9] the differential calculus and the rigid

motion equations are used to identify the rotation that best fits the observed

star trajectories in the sensor field of view. A finite-difference approach along

with the least square technique is proposed in [10], whereas in [11] the star

streak is studied as belonging to the circle on the celestial sphere. A simple25

linear Kalman filter approach is proposed in [12] for the estimation of incre-

mental angle and angular rate from successive observations of a star tracker,

without the use of star catalog or auxiliary sensors. Two different algorithms

are presented for the estimation of spacecraft body angular rates in the absence

of gyro rate data in [13]. In the first approach, body angular rates are estimated30
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with the spacecraft attitude using a dynamical model of the spacecraft. The

second approach makes use of a rapid update rate of star camera to estimate the

spacecraft body angular rates independent of spacecraft attitude. An algorithm

based on the Wahba problem and using a differentiation approach without a

spacecraft dynamics model is proposed in [14]. In recent years, some predom-35

inant techniques for the evaluation of the angular velocity from star sensors

have been proposed, such as techniques based on optical-flow of stars discussed

in [15, 16, 17, 18, 19, 20], techniques based on kalman-filtering approaches as

the ones proposed in [21, 22, 23, 24], or even a combination of the two previous

methods, as in [20].40

In this paper, it is shown that the streaks are portions of conic sections

when observed in the focal plane. Basing on some preliminary results and

analysis reported in [25, 26], it is demonstrated that the intersection point of

the rotation axis with the focal plane lies on the line passing through the conic

section foci and the geometrical center of the detector. A mathematical model45

to simulate the generation of the conic section is developed and it is used to

discuss theoretical investigations involving osculating circles near the vertex

points, properties of the conic sections, and relationships between the previous

two points and the angular velocity vector.

The discussed geometrical properties can be exploited to develop new meth-50

ods for the evaluation of the angular rate in dynamical conditions without need-

ing any attitude information. In the frame of this research, the angular velocity

estimation is performed by means of the chord method, which is based on the

computation of the normal to the streaks and their intersections. As a conse-

quence, at least two streaks are required, and the proposed methodology can be55

used until two streaks are simultaneously available.

A high-fidelity simulator, already used in [27, 28], is used to generate syn-

thetic images with the star streaks and all the fundamental noise sources due

to electronics and space environment. The software environment is able to sim-

ulate broken streaks as the angular velocity increases, due to the fact that the60

energy of the star is spread on a bigger amount of pixel with respect to what
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happens in the static case. Accordingly, specific algorithms for the clustering of

the streaks and the recognition of same streaks in consecutive images are pro-

posed. Preliminary results will be shown using this simulator, in order to prove

the opportunities offered by the proposed geometric method. To summarize,65

the contributions of this paper are the following:

• Geometrical investigation of the relationships between conic sections and

streaks left by stars’ signal in dynamics conditions.

• Development of the chord method for the evaluation of the angular velocity

direction.70

• Description of image processing techniques to perform the clustering op-

eration in dynamic conditions.

• Example application of the proposed method in a high fidelity star sensor

simulator and discussion of the results.

The paper is organized as follows. In Sec. 2 the geometrical analysis of star75

streaks in dynamic conditions is performed and new theorems concerning the

involved conics are developed. In Sec. 3 the algorithm for the determination

of the angular velocity is described. Hence, the chord method is presented for

the determination of the angular velocity direction. Sec. 4 is focused on the

processing of the image coming from a high-fidelity star sensor simulator. This80

processing is required in order to get the information needed by the proposed

chord method in real-case scenarios. Sec. 5 reports the numerical results with

reference to a preliminary test case. Finally, Sec. 6 gives conclusions and final

remarks.

A remark on notation: Through this paper, AB refers to the segment with85

endpoints A and B. AB, on the other hand, refers to the length of the segment

with endpoints A and B. The symbol ∼= is used to mean that two geometrical

quantities are congruent.
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2. Geometrical analysis of star streaks in dynamic conditions

With reference to Fig. 1, the unit vector u pointing to a generic star within90

the FOV is defined in the sensor’s reference frame S = {x̂S , ŷS , ˆz}S ⊂ R3, with

origin in the focal point, and it is evaluated according to the pinhole camera

model,

u =
1√

c2y + c2z + f2


f

−cy
−cz

 , (1)

where f is the focal length of the camera. The centroid position c = [cy, cz]
T

is
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Figure 1: Sensor and focal plane reference frames.

defined in the two-dimensional focal reference frame F = {ŷF , ẑF} ⊂ R2. The95

line of sight (LOS) corresponds to x̂S and is perpendicular to the focal plane.

The point reached by the unit vector u of the star tracker lies on a portion of

the celestial sphere, which is assumed to be the sphere with unit radius that

contains all the stars that can be seen by the star sensor. There are other more

sophisticated models different from the simple pinhole camera one, given in Eq.100

(1) [29], but their application is beyond the scope of this work.

While u is a unit vector pointing far from the detector toward the celestial
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Figure 2: 3D representation of the studied geometry.

sphere, the vector ũ defined in Fig. 1 points to the position of the star in the

detector starting from the focal point. This vector is evaluated as

ũ = − u

cos γ
(2)

where γ is the angle between u and the LOS and will be used in the following105

for the determination of the angular rate.

In Fig. 2 the relationship between the star trajectory and the angular ve-
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locity is depicted. The detector (which is not reported in the figure) lies inside

the circle identified by the intersection of the FOV cone with the focal plane.

With reference to Fig. 2, one can easily demonstrate the following results.110

Theorem 1. Let the angular velocity vector be constant, both in direction and

magnitude, during the acquisition time interval. Then, star streaks in the focal

plane belong to conic sections.

Proof. The proof is trivial. Indeed, when the angular velocity is constant in

direction and magnitude, the star (supposed to be at the extremity of the unit115

vector u ∈ S ⊂ R3) describes a trajectory belonging to a circle of the unitary

celestial sphere. Such circle is given by the intersection between the celestial

sphere and the cone spanned by the unit vector u while moving around ω̂. On

the other side of the focal point, the intersection between the cone and the image

plane define a conic which features depend upon the angle β. �120

It is noteworthy that the result of the previous theorem remains valid no

matter what the rotation around the line of sight is. This is why this further

degree of freedom is not mentioned in the theorem. Indeed, a rotation around

the LOS is directly related to a rotation of the conics in the focal plane.

Corollary. Under the hypothesis of Theorem 1, the foci line of the conic section125

contains the FOV center.

Proof. For the sake of simplicity (and without loss of generality), let the conic

be an ellipse. With reference to Fig. 2, the vertex points B′ and C ′ are the

projections of the points B and C belonging to the circle of the celestial sphere.

Among all the points belonging to this circle, B is the closest point to A and C130

is the farthest point from A. Hence, it can be seen quite easily that the points

A, B, and C belong to the same great circle. The projection of this great circle

onto the focal plane lies on the foci line. Hence, A′ (i.e., the projection of A

and the FOV center) belongs to the foci line. �

As a consequence of the previous points, the following remark holds.135
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Figure 3: Osculating circle, freely adapted from [30].

Remark. The star streak is always close to the vertex point B′. By definition,

the streak is symmetric with respect to the line joining B′ and the FOV center.

Theorem 2. With reference to Fig. 3, let P be a point on the conic, n the

length of the normal from P to the axis and p half the length of the latus rectum

(the latus rectum is the line segment through a focus perpendicular to the axis.)140

Then the radius of curvature at P , i.e. the radius of the osculating circle, is

n3/p2 and the curvature at P is p2/n3.

Proof. The proof can be found in [30]. �

Remark. As a special case, when P = B′, the normal coincides with the major

axis and n is not defined. However, limP→B′ n = p, and the radius of curvature145

there is p (see [30]).

Theorem 3. Given the eccentricity e of the conic, and the semi-aperture angle

α of the cone generating the conic, then the angle β between x̂S (i.e. the LOS)
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and ω̂ (i.e. the axis of the cone) is given as

β = sin−1 (e cosα) . (3)

Moreover, calling with I the point of intersection between the axis of the cone150

and the focal plane, and defined A′ as the FOV center (as in Fig. 2), the length

of the segment A′I is given as

A′I = f tanβ. (4)
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Figure 4: Drawing for the proof of Theorem 3.
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Proof. The proof of this theorem is limited to the case of the ellipse, and is

adapted from an on-line discussion [31] where some useful results were proved.

For the proof, let Fig. 4 be considered. The figure lies entirely in the plane155

containing the major axis a of the ellipse (denoted here as the segment B′C ′)

and the LOS of the detector, where the segment A′H is identified.

First, let the isosceles triangle 4B′C ′G be defined with base B′C ′ and base

angle α. Construct a circle about G with radius B′G. Let D be the intersection

of this circle with the line through the focus F perpendicular to the major160

axis B′C ′, choosing the intersection nearer to F . Then, construct the circle

around D with radius DF . Construct the segments C ′L and B′M tangent to

that same circle at L and M , respectively. Let H bet the intersection of the

extensions of the segments C ′L and B′M . Then H is the apex of the suitable

cone and HD is the axis. To see this, observe that ∠B′GC ′ = π − 2α. The165

same angle can be seen as the summation of the angles ∠C ′GD and ∠B′GD.

Since the angle subtended by an arc at the centre is twice the angle subtended

at the circumference, ∠C ′GD = 2γ and ∠B′GD = 2δ. Accordingly, ∠B′GC ′ =

2γ + 2δ. Therefore 2α + 2γ + 2δ = π, and since two angles of the triangle

4B′C ′H are 2γ and 2δ, the third angle is 2α.170

To prove Eq. (3), consider the right triangle 4DEG. The segment DE is

equal to the distance to the focus c = 0.5FF ′. The segments DG and B′G

are congruent since they both are radii of the circumference centered in G.

Moreover, B′G = a/ cosα. Finally, the segments DE and DG are related as

DE = DG sinβ ⇔ c =
a

cosα
sinβ (5)

Since e = c/a, Eq. (3) is proved by simply inverting Eq. (5). Finally, Eq. (4)175

is easily proved by looking at the right triangle 4GHI. �

Remark. In three dimensions, the sphere with radius DF centered at D is a

Dandelin sphere [32] for the intersection of the detector plane and the cone with

apex H, axis HD, and semi-aperture angle α.

Unfortunately, all the properties described so far have no direct application180
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for the angular velocity determination since the features of the conics (eccentric-

ity e and angle α) cannot be easily determined from the star streaks. Indeed,

streaks are usually too short to allow one to exactly determine the conic pa-

rameters and, subsequently, the angular velocity. Accordingly, based on the

properties described so far, a numerical approach, named chord method, is pro-185

posed and described in the following section.

3. Angular velocity determination

The determination of the angular velocity by means of images from a star

sensor requires any algorithm to have two successive positions of the stars within

the FOV. For instance, in [10], the position of the stars in two successive im-190

ages was required to evaluate first-order finite differences which were then used

to evaluate the angular velocity by means of the least square principle. This

method is based on an analytical formulation which differs quite a bit from the

proposed algorithm, which is based on geometrical investigations.

The identification of the angular velocity has been divided into three steps,195

each one describing a specific characteristic of the result. As it will be clear in

the following sections, these scheme allows one to divide into successive steps

the determination of the angular velocity basing on all the information provided

by the couple of images. The three steps are briefly summarized below:

1. Direction determination: In the frame of this paper, the term “direction”200

refers to the line in S where the angular velocity lies, as reported in Fig.

5a. The direction is denoted as ω̂ and, from the numerical point of view,

it is associated to a unit vector with positive component along x̂S (apart

from singular cases where this component is null).

2. Sign determination: With the sign information the precise orientation205

of the angular velocity is evaluated. Referring to Fig. 5b, the angular

velocity vector may lie in the identified direction in two different ways.

The sign properly identifies the right orientation of the vector in the given

direction as it is associated to a binary variable s which can assume values
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Figure 5: Direction (a) and sign (b) of the angular velocity.

1 (when the angular velocity points in the direction of x̂S) and −1 (when210

the angular velocity points in the direction of −x̂S).

3. Rate determination: The magnitude is a positive number, ω, related to the

length of the streak. This quantity is evaluated as a function of the velocity

of the stars measured in the focal plane from two successive images.

The evaluation of the angular velocity is given using the three aforementioned215

contributions, i.e. direction ω̂, sign s, and magnitude ω, and is finally given as

ω = sω ω̂. (6)

The angular velocity error provided by the chord method estimation is then

simply given as

δω = ω − ω(ref), (7)

where ω(ref) is the reference true angular velocity.

3.1. Direction determination with the chord method220

Even though the geometrical relationships reported in the previous sections

cannot be immediately used for the exact determination of the angular velocity

vector, they can be used to design a method for the approximated estimation

of the angular velocity direction.
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3.1.1. Circular case225

The most simple case is represented by the case ω = [ωx, 0, 0]T. Indeed, if

ω̂ is aligned with the LOS, the stars move along circles as represented in Fig. 6.

In this case, the osculating circle coincides with the star trajectory in the focal

plane and the length of the normal is equal to p which is indeed the distance

between the star and the rotation center I.230

Following the example in the figure, let two stars be detected in two suc-

cessive images (the method exploited to merge stars in successive images is

explained in Sec. 4.4). The centroids of the first and the second images can be

easily evaluated (see Sec. 4 for technical details) and the equation of the jth

chord passing through the jth couple of centroids is235

aC,jy + bC,jz + cC,j = 0. (8)

The coefficients aC,j , bC,j , and cC,j are given by

aC,j = cj,z(ti+1)− cj,z(ti),

bC,j = cj,y(ti)− cj,y(ti+1),

cC,j = cj,y(ti+1)cj,z(ti)− cj,y(ti)cj,z(ti+1).

(9)
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The coefficients of the normal to the chords passing through the midpoint M

can be directly evaluated from the previous equations. Indeed, the jth normal

is expressed as

aN,jy + bN,jz + cN,j = 0 (10)

and the coefficients are given as240

aN,j = bC,j ,

bN,j = −aC,j ,

cN,j = −aC,jMj,y − bC,jMj,z.

(11)

Considering the normal lines depicted in Fig. 6, the intersection point (x12, y12)

is evaluated as solution of the following system of linear equationsaN,1x12 + bN,1y12 + cN,1 = 0

aN,2x12 + bN,2y12 + cN,2 = 0

(12)

and is given by

x12 =
bN,1cN,2 − bN,2cN,1

aN,1bN,2 − aN,2bN,1
,

y12 =
aN,2cN,1 − aN,1cN,2

aN,1bN,2 − aN,2bN,1
.

(13)

Given Ns stars in the FOV, the number of intersections NI that can be evaluated

is equal to245

NI =
Ns!

2(Ns − 2)!
(14)

and is reported in Table 1 as a function of Ns.

The approximate position of I, denoted as Ĩ, can be found as the arithmetic

average between the NI intersections, i.e.

Ĩ =

∑Ns−1
i=1

∑Ns

j=i+1 [xij , yij ]
T

NI
(15)

The previous averaging operation can require a preliminary refinement of the

results in order to avoid considering wrong intersections. In this work, the250

inter-decile method has been used.
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Table 1: Number of measurements using the Chord Method.

Number of stars, Ns Number of intersections, NI

2 1

3 3

4 6

5 10

6 15

7 21

8 28

9 36

10 45

The performances of the proposed technique can be evaluated in an ideal

scenario without noises, creating some example conics where the normal can be

defined to calculate the intersection point.

A simplified example of the chord method is shown in Fig. 7, where 10255

chords from the same conics defined by an angle α equal to 7 degree. As can be

seen, the normal lines point to the rotation axis projection I. The geometrical

features reported in the result section, especially in Table 4, are considered.

Another example is shown in Fig. 8, where β = 0 deg but 10 different values

of α have been chosen. The normals have been taken from random points. As260

can be seen from Fig. 8b, the ideal intersection would be at the point [0, 0]T

and all the intersections are affected by very small errors due to numerical

approximations.

Once the point Ĩ is found, the angular velocity direction ω̂ is evaluate by

means of Eq. (1). In this simplified analysis no sign evaluation is needed, and265

the direction error is

δdir = cos−1(ω̂ · ω̂true). (16)

The value of the direction error for the circular case is below the machine accu-
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(a) (b)

Figure 7: 3D representation of the geometry with β = 0 deg and α = 7 deg (a) and 2D

projection on the (yF , zF ) plane.

(a) (b)

Figure 8: Geometry of the problem (a) and chord method result (b) when β = 0 deg.

racy for a double-precision estimation, and it is reported in Table 2 along with

the results for non-circular cases.
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3.1.2. Generic case270

When the conic is not a circle, the intersection between two normals is not

directed toward the rotation axis projection point I. A preliminary and pretty

qualitative analysis concerning sensors with small FOV, e.g. lower or equal to 20

degree, is the following. When conics are detected with small values of α, then

the radius of the osculating circle does not change too much from p moving away275

from the vertex. On the contrary, when α increases, the portion of conic which

is visible in the focal plane is close to the vertex (one can see this by looking at

Fig. 4). Also in this case, the radius of the osculating circle does not differ too

much from p since the osculating circle is evaluated close to the vertex. This

observation justify the application of the chord method in non-circular cases.280

Another property is related to the position of the osculating circle center as

a function of the angles α and β. Indeed, when α < β then the radius of the

osculating circle at the vertex of the conic (which is equal to p) is smaller than

the distance of I from the FOV center. On the contrary, when α > β, the radius

of the osculating circle is greater than the distance of I from the FOV center.285

An example of the former case is reported in Fig. 9 for β = 67.5 deg and α = 60

deg, whereas an example of the latter case si shown in Fig. 10 for β = 67.5 deg

and α = 75 deg,

When α = β the following theorem holds.

Theorem 4. Let the angles α and β in Fig. 4 be congruent. Then, B′I ∼= A′I290

and B′I and A′I are given by Eq. (4). Moreover, B′I = A′I = p.

Proof. This proof is limited to the case of the ellipse. In this case, the focal

length f can be expressed as a function of the semi-major axis a and the semi-

aperture angle of the cone α. Indeed, referring to Fig. 4, when α = β then

A′ ≡ B′ and the focal length can be expressed as295

f = 2a cot(2α). (17)

Using Eq. (4) with α = β, A′I is evaluated as

A′I = f tanα

17



(a) (b)

Figure 9: 3D representation of the geometry with β = 67.5 deg and α = 60 deg (a) and 2D

projection on the (yF , zF ) plane.

(a) (b)

Figure 10: 3D representation of the geometry with β = 67.5 deg and α = 75 deg (a) and 2D

projection on the (yF , zF ) plane.

= 2a cot(2α) tanα

= 2a
cos(2α)

sin(2α)

sinα

cosα
(18)

= 2a
cos2 α− sin2 α

2 sinα cosα

sinα

cosα
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= a
(
1− tan2 α

)
However, since α ∼= β, e can be expressed from Eq. (3) as

e = tanα. (19)

It is a known fact that p is related to a and e as

p = a
(
1− e2

)
. (20)

Hence, using the previous result, p is given by

p = a
(
1− tan2 α

)
, (21)

which coincides with the value of A′I. �300

Example of the direction determination with different values of β are shown

from Fig. 11 to Fig. 14. On the left of each figure, the conics are shown with

black lines, whereas the osculating circles are shown with dashed grey lines along

with their centers. It can be seen how the osculating circles centers are placed

both on the left and the right of the rotation center. The normal lines from305

random points of the conics are reported as well, whereas their intersection are

shown on the right of every figure. Even though it may seen that the error on

Ĩ becomes bigger and bigger when β grows toward 90 degree, the angle errors

are reported in Table 2.

In Table 2, the estimation Ĩw is also reported. This is a weighted estima-310

tion of I based on the consideration that, generally, better solutions are found

when the streaks are close to the FOV center (where it happens that α = β).

Accordingly, the weights wij can be introduced by defining

wij =

(
||M i||+ ||M j ||+ ε

2

)−1
, (22)

where ε = 1e − 16 is introduced to avoid numerical singularities and M was

defined in Fig. 6. From the definition, wij is quite low for streaks near the315

border and big for streaks close to the FOV center. Consequently, a weighted
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(a) (b)

Figure 11: Geometry of the problem (a) and chord method result (b) when β = 22.5 deg.

(a) (b)

Figure 12: Geometry of the problem (a) and chord method result (b) when β = 45 deg. The

dotted line represents the parabola.

(a) (b)

Figure 13: Geometry of the problem (a) and chord method result (b) when β = 67.5 deg.
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(a) (b)

Figure 14: Geometry of the problem (a) and chord method result (b) when β = 85 deg.

Table 2: Direction error for the simplified model. The number 2.220 · 10−16 is the machine

accuracy of the double-precision result estimation.

β (deg) δdir with Ĩ (deg) δdir with Ĩw (deg)

0 < 2.220 · 10−16 < 2.220 · 10−16

22.5 0.307 0.261

45 0.241 0.308

67.5 0.484 0.561

85 0.368 0.083

average can be introduced to evaluate Ĩ as

Ĩw =

∑Ns−1
i=1

∑Ns

j=i+1 wij [xij , yij ]
T∑Ns−1

i=1

∑Ns

j=i+1 wij

. (23)

However, looking at the results shown in Table 2, no clear evidence of per-

formance improvement using Ĩ is denoted, even though Monte Carlo analysis

(which is beyond the scope of this work) is needed to properly validate this320

conclusion.
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3.2. Sign determination via in-plane direction determination

As stated at the beginning of this section, any angular velocity determination

method needs two successive images. For the algorithm proposed in this paper,

two successive images are required to evaluate the direction of the stars related325

to their motion in the focal plane. To this aim, the centroid velocity evaluated

from consecutive clusters is given as a first order finite difference, i.e.

v =
∆c

∆t
=

c(ti+1)− c(ti)

ti+1 − ti
. (24)

Using the centroids coordinates and the definition Texp = ti+1 − ti, the average

cluster velocity is given as

vy =
cy(ti+1)− cy(ti)

Texp
, vz =

cz(ti+1)− cz(ti)

Texp
. (25)

Once vy and vz are evaluated, the sign value can be evaluated in a straight-330

forward manner. Indeed, the motion of the stars around ω̂ must happen in

order to be consistent with vy and vz. Accordingly, s = 1 when the direction is

consistent with vy and vz and s = −1 in the opposite case.

It is noteworthy that Eq. (25) must consider the distortion effects related

to the read-out mode of the detector. Indeed, when a rolling shutter detector is335

used, the formula must take into account that the stars are not detected in the

same time intervals and that these time intervals have different duration. The

interested reader can refer to [27] for further information.

3.3. Rate determination from the streaks length

In the most general case, the star moves in a generic direction due to the an-340

gular velocity ω(S) = [ω
(S)
x , ω

(S)
y , ω

(S)
z ]T. It is noteworthy that the component

ω
(S)
x is responsible for the curvature of the streaks. Remembering the definition

of the vector ũ provided in Eq. (2), and with reference to Fig. 1, the motion is

represented by a rotation of the star vector in S,

v = ω × ũ =


0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0



x

y

z

 , (26)
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which can be expressed in components as345

vx = −ωzy + ωyz

vy = +ωzx− ωxz

vz = −ωyx+ ωxy

(27)

Note that the measurements that can be provided by the star sensor are

only vy and vz, i.e. only the projection of the velocity in the focal plane. Let

decompose the angular velocity vector in accordance to Eq. (6), i.e.

ω = sω
[
ω̂(S)
x , ω̂(S)

y , ω̂(S)
z

]T
. (28)

Eq. (27) can be rewritten as

vx = sω (−ω̂zy + ω̂yz)

vy = sω (+ω̂zx− ω̂xz)

vz = sω (−ω̂yx+ ω̂xy)

(29)

Introducing the norm of the velocity in the image plane, v∗, evaluated as350

v∗ =
√
v2y + v2z , (30)

and given that s2 = 1, the angular velocity magnitude can be evaluated from

Eq. (29) as

ω =
v∗√

(+ω̂zx− ω̂xz)
2

+ (−ω̂yx+ ω̂xy)
2
, (31)

Eq. (31) can be applied for the evaluation of the rate by choosing [x, y, z]T as

the midpoint of the streak. The relative rate error is evaluated as

δrate = ω − ωtrue. (32)

Considering a constant angular velocity during the exposure time, this model355

is correct when ωx = 0. On the other hand, when ωx 6= 0, an estimation error is

committed since v∗ is evaluated basing on the measurable quantities vy and vz

which are calculated considering a linear motion (with constant speed) instead
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𝛼 

𝑅 sin𝛼 
𝑅 𝑉0 

Δ𝐿 
𝑅ሺ1 − cos𝛼ሻ 

Figure 15: Linear approximation of arcs on a circle.

of a circular motion (with constant speed). When ω(S) = [ω
(S)
x , 0, 0]T, the

tangential velocity v0 is related to the angular velocity as360

v0 = ωxR, (33)

where R is the distance of the star centroid from the FOV center and

ωx = α/T. (34)

The velocities vy and vz are evaluated using the linear approximation of the

circle, ∆L, depicted in Fig. 15 and given by

∆L2 = R2 (1− cosα)
2

+R2 sin2 α

= R2
(
sin2 α+ cos2 α− 2 cosα+ 1

)
= 2R2 (1− cosα) .

(35)

Consequently, the ratio between ∆L and T is given by

∆L

T
=
R

T

√
2
√

1− cosα (36)

It is noteworthy that the ratio between ∆L and T corresponds to v∗. Hence,365
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evaluating the time from Eq. (34), Eq. (36) can be cast as

v∗ = v0
√

2

√
1− cosα

α
= εv0, (37)

where ε is defined as an approximation scale factor. Anyway, considering a very

high value for ωx such as 20 deg/s and an exposure time T = 0.2 seconds, the

value of ε is 0.9998, which makes it reasonable to use v∗ for the evaluation of

the angular velocity rate in any dynamic condition. Moreover, it can be seen370

that when α → 0 then 1 − cosα → α2/2, so that ε → 1 as expected, since in

this singular case linear and circular motion tend to coincide.

4. Processing of the image

In the result section, the proposed algorithm is tested using the high fidelity

simulator described in details in [25, 26, 27, 28, 33]. This simulator considers375

all the physical and geometrical characteristics of the star sensor, along with

all the instrumental and environmental noises. To correctly deal with streaks

in dynamic conditions, a specific processing of the image is required. Indeed,

in dynamic conditions stars are detected as streaks, and dim stars are seen

as broken streaks as their energy is spread over a big amount of pixel. The380

following preprocessing and processing operations are introduced to collect all

the pixels belonging to the stars into properly defined clusters.

4.1. Preprocessing

The high-energy pixels belonging to the star signals must be distinguished

from the low-energy pixels where only noise is recorded. Accordingly, an im-385

age preprocessing selects the pixels whose signal-to-noise ratio (SNR) is greater

than a user-defined detection threshold and discards the other ones [34]. This

preliminary operation is referred to as segmentation and it is usually performed

using a run-length encoding algorithm [35].

The segmentation algorithm can be implemented using a static (global) or390

a dynamic (local) approach [36]. The SNR is evaluated considering the same
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background noise for the static approach and a specific background noise for

each pixel of the detector for the dynamic approach. A survey of different

techniques is reported in [37]. In this work, a zigzag local thresholding using

moving averages is used [38]. Hence, the only pixels that are considered for395

further investigations are those with values greater than the background level

(evaluated with moving average) plus a threshold τpre. It is noteworthy that

quantization errors can occur due to pixel discretization of the image.

The outputs of the preprocessing operation are the selected pixels’ coordi-

nates p = [py, pz]T and their energy E(p), obtained subtracting the background400

level to the entire signal intensity of the pixel.

4.2. Primitive clustering

Once the pre-processed image is computed, an algorithm is needed to recog-

nize all the neighboring pixels belonging to individual stars, and this operation

is referred to as clustering. Accordingly, the set of pixels belonging to the ith405

star is referred to as ith cluster and denoted with Ci. The generic pixel associ-

ated to the cluster Ci is denoted as p(Ci) = [p
(Ci)
y , p

(Ci)
z ]T. Usually, star sensors

carry out a simple algorithm denoted here as primitive clustering. However, this

typical function is not enough when dealing with fast objects, and the following

 
(a) Primitive clusters

 
(b) Noise

Figure 16: Example of two primitive clusters (a) and example of discarded single pixels (b).
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improved clustering has been introduced to cope with this issue.410

The evaluation of the primitive clusters is concerned with finding the pixels

which share at least one corner. The primitive clustering working principle is

shown in Fig. 16a, where two examples of primitive clusters are represented.

Single pixels shown in Fig. 16b are mostly related to noise or too faint stars or

RSOs and they are automatically discarded and not considered for the following415

analyses.

4.3. Improved clustering

Under dynamic conditions, stars can generate broken streaks, i.e. the pixels

belonging to the same star can distribute into several, small and distinct clusters.

Hence, a suitable technique has been developed in order to relate to the same star420

the different primitive clusters of the broken streak. The technique must avoid

wrong primitive clusters agglomeration coming from noise or wrong matching

between different objects. Clusters Ci and Cj can be merged if they satisfy the

conditions described in the following subsections.

4.3.1. Minimum distance filter425

The distance between clusters Ci and Cj must be lower than a user-defined

threshold εdist. It is noteworthy that the distance between clusters is referred

to as δmin and it is evaluated as minimum pixel-by-pixel distance using the

uniform norm, according to what is shown in Fig. 17. The minimum distance

condition is defined as430

δmin ≤ εdist. (38)

Fig. 17 shows this condition for two clusters imposing εdist = 3. In Fig. 17a the

satisfied condition is reported since δmin = 2, whereas in Fig. 17b the condition

is not satisfied as δmin = 4. If the minimum distance conditions is satisfied, the

clusters are considered for the following increasing length check.
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δmin 

(a) Condition satisfied

 

δmin 

(b) Condition not satisfied

Figure 17: Minimum distance condition

4.3.2. Increasing length filter435

Let li = [ly,i, lz,i] be the length vector of Ci collecting the horizontal and

vertical projections of the cluster defined as

ly,i = max p(Ci)
y −min p(Ci)

y + 1, lz,i = max p(Ci)
z −min p(Ci)

z + 1. (39)

To merge Ci and Cj , the resulting merged cluster Cij = Ci ∪ Cj must satisfy

three conditions related to li, lj and lij .

The first condition relates to those merged clusters that increase both the440

horizontal and vertical projections and is described by the variable L1 defined

as

L1 =


1 if ly,ij > max (ly,i, ly,j) and

lz,ij > max (lz,i, lz,j)

0 otherwise.

(40)

This condition can describe the clusters which have intermediate inclinations

between 0 and 90 degrees in the {yF , zF} plane. However, when the clusters

are quite horizontal or vertical, the flag L1 can be misleading since one of the445

two projections can remain stationary instead of increase. Accordingly, two

new complementary conditions are introduced and related to the flags L2 and
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(a) L1 = 1
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(b) L2 = 1
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(c) L3 = 1

 

(d) L1 = L2 = L3 = 0

Figure 18: Increasing length condition

L3 defined as

L2 =

1 if ly,ij > max (ly,i, ly,j) and ly,ij > lz,ij

0 otherwise,

(41)

L3 =

1 if lz,ij > max (lz,i, lz,j) and lz,ij > ly,ij

0 otherwise.

(42)

Fig. 18 reports a representation of the three conditions. In Fig. 18a the case450

with L1 = 1 is shown and the projections of the merged cluster are greater than

the ones of the primitive clusters. In Fig. 18b and Fig. 18c the horizontal and
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vertical case are shown respectively. Note that in these cases L1 = 0. Finally,

in Fig. 18d none of the three checks is satisfied. To proceed with the density

check, at least one of the three values L1, L2 and L3 must be equal to 1.455

4.3.3. Density filter

Clusters Ci and Cj can be merged if they satisfy some necessary conditions

related to their densities. For the cluster Ci, the density is defined as

di =
Ni

λi
(43)

where Ni is the number of pixels belonging to the ith cluster and

λi =

√
(ly,i cosαi)

2
+ (lz,i sinαi)

2
. (44)

In Eq. (44) αi denotes the angle given as460

αi = tan−1
(
lz,i − 1

ly,i − 1

)
. (45)

The quantity λi represents a virtual length which works fine for the definition

of the density without requiring a complicated computation. The density filter

performs two separate checks. First, the relative difference between the two

clusters’ density must be lower than a user defined threshold εdens,rel. The

relative density difference is defined as465

δd =
|di − dj |
dij

(46)

where di and dj are the densities of the single primitive clusters and dij is the

density of the merged cluster. The filter output is described by the variable D1

defined as

D1 =

1 if δd < εdens,rel

0 otherwise.

(47)

With reference to the example case reported in Fig. 19a the densities of

primitive and merged clusters are470

d1 = 1, d2 = 1, d12 ≈
5

5.63
≈ 0.8879,
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(a) D1 = 1
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(b) D1 = 0

Figure 19: Similar density condition with εd,rel = 0.5

leading to δd = 0 and D1 = 1, i.e. the first density check is satisfied. On the

contrary, for the case in Fig. 19b, the densities are

d1 =
8

3
≈ 2.6667, d2 = 1, d12 =

11√
65
≈ 1.6893,

and δd = 0.9866. Considering εdens,rel = 0.5, D1 = 0 for the case (b).

However, the previous check makes sense when applied to clusters with low

density values which are likely to be broken into different pieces. To consider475

this point, a second density check is introduced with a new variable D2 defined

as

D2 =

1 if max(di, dj) < εdens,abs

0 otherwise,

(48)

where εdens,abs is a user-defined threshold.

The density filter is successfully passed if D1 = D2 = 1.

4.3.4. Centroid computation480

After the application of the previous filters, some primitive clusters have

been merged and others are not. The clusters centroids of all the detected

and processed clusters can now be computed. The centroid ci = [cy,i, cz,i]
T is

the reference position of the ith cluster Ci and it is computed using the pixels
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coordinates p = [py, pz]T ∈ Ci throughout an energy-weighted average, i.e.485

ci =
1

ECi

∑
j|pj∈Ci

E(pj) · pj , (49)

where E(pj) is the signal intensity of the pixel pj and

ECi
=

∑
j|pj∈Ci

E(pj) (50)

is the total signal intensity of the ith cluster.

4.4. Cluster fusion

The cluster fusion is the operation required to compare two successive images

and merge those streaks or spots that are supposed to belong to the same star.490

The proposed algorithm is designed to work with successive images, i.e. it

cannot be applied if a non-negligible time interval separates the first and the

second image, and the required operations resemble the the ones described in

Sec. 4.2 and Sec. 4.3 for the clustering.

Consider two successive images with Nc,1 and Nc,2 detected clusters, respec-495

tively. Let the cluster Cj(ti) be considered in the first image associated to the

time instant ti, where 1 < j < Nc,1. This cluster will be compared with the

cluster Ck(ti+1) in the second image associated to the time instant ti+1, where

1 < k < Nc,2. The minimum distance filter is applied as described in Sec. 4.3.1.

The density filter is applied considering only the D1 parameter in Eq. (51). The500

same concept used for D1 is used to compare the length of Cj(ti) and Ck(ti+1),

i.e.

Lfus =

1 if δl < εlen,rel

0 otherwise

(51)

where

δl =
|lj − lk|
ljk

(52)

and εlen,rel is a user-defined parameter. It is noteworthy that the output from

the fusion does not contain not-merged clusters, i.e. clusters that do not ap-505

pear in both the successive images. The output of the fusion represents the

information required for the evaluation of the in-plane star velocity of Eq. (25).
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5. Numerical results and analysis

The result section is dedicated to the analysis of the results provided by

the chord method. Firstly, an analysis of the number of the stars depending510

on the angular rate is reported. Then, results with fixed angular velocities

are discussed and, finally, results with a variable angular velocity profile are

provided. The numerical values of the parameters required by the algorithm

are reported in Table 3. The main characteristics of the adopted high fidelity

image simulator are given in Table 4 and, finally, the noise sources taken into515

account are shown in Table 5 with their related properties. Note that 100 SEUs

per image have been added to test the robustness of the proposed clustering and

fusion algorithm. For all the reported simulations, the initial attitude is given

by the quaternion

qC→ECI
0 = [−0.485, −0.134, 0.833, −0.231]

T
(53)

which defines the mapping from the camera reference frame C to the Earth-520

centered inertial (ECI) reference frame. The errors of the angular velocity esti-

mation are provided by Eq. (7), Eq. (16), and Eq. (32).

5.1. Number of detected stars

The first analysis is related to the number of detected stars as a function of

the angular rate. The angular velocity direction is imposed as525

ω̂(ref) = [0.2673, −0.5345, 0.8018]T, (54)

Table 3: Parameters of the software.

Parameter Ref. Value

εdist Sec. 4.3.1 3 pixel

εdens,rel Sec. 4.3.3 0.5

εdens,abs Sec. 4.3.3 1.75 pixel−1

εlen,rel Sec. 4.4 0.5
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Table 4: Main characteristics of the image simulator.

Sensor characteristic Adopted value

Detector 1024 × 1024 Active Pixel Sensor (APS)

Field of View (FOV) 20 × 20 deg

Focal length f 52 mm

Exposure time Texp 0.2 s

Pixel dimensions 18 × 18 µm

Simulated stars magnitude MS MS ≤ 6.5

On-board catalog Hipparcos stars with MC ≤ 5.5

G0 7300000 e−/s

τpre 500 e−

df 2 pixel

Table 5: Main characteristics of noise sources.

Noise sources Adopted model

Dark current Normal distribution: 100 e− mean and 5 e− std [39].

Stray-light Uniform value of 6000 e− over the whole detector.

Shot noise Poisson probability distribution proportional to the square

root of the detected signal[40].

Read-out noise Normal distribution: 0 mean and 50 e− std [41].

SEUs Uniform flux of 100 SEUs per image [33].

whereas the norm of the angular velocity is imposed equal to 1, 2, 3, 4, 5 deg/s.

The simulation time is imposed equal to 100 seconds.

The number of stars detected by the simulator is shown in Fig. 20. It

is noteworthy that increasing the angular rate the number of detected stars

decreases. This is consistent with the fact that the stars spend less time over530

single pixels and the number of associated photoelectrons diminish as well as

the signal to noise ratio. Accordingly, dim stars with magnitude around 4 and 5
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Figure 20: Number of detected stars in the FOV with rates from 1 to 5 deg/s.

that are detected when ||ω|| = 1 deg/s are no more detected when ||ω|| is around

4 or 5 deg/s. This fact is quite important considering that it strongly affects the

precision of the chord method estimation. Indeed, when the number of detected535

stars is very low, the algorithm does not provide any measurement or gives very

bad results. It is also important to note that the number of detected stars can

change even with fixed rates. For instance, looking at the curve at 1 deg/s, the

number of stars at the beginning is approximately 40 and it is almost twice the

number of stars detected in the time interval between 60 and 80 seconds. This540

is due to the fact that stars in the sky are not uniformly distributed and varying

the pointing the number and the magnitude of the stars continuosly change.

5.2. Results with fixed angular velocity

These results have been obtained with the angular velocity profiles discussed

in the previous section and a simulation time equal to 100 seconds.. Direction545

and rate errors are reported in Fig. 21. Looking at the plots on the left of

Fig. 21, it can be seen that when ||ω|| is equal to 1 deg/s the direction errors

are quite always very small apart from 4 peaks where the error is more than 10

degree. Increasing the angular velocity the number of peaks become greater and

this is due to the fact that sometimes only few and dim streaks are available.550
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(a) 1 deg/s

(b) 2 deg/s

(c) 3 deg/s

(d) 4 deg/s

(e) 5 deg/s

Figure 21: Direction error (on the left) and rate error (on the right) of the chord method with

rates from 1 to 5 deg/s and fixed direction.
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(a) 1 deg/s

(b) 2 deg/s

(c) 3 deg/s

(d) 4 deg/s

(e) 5 deg/s

Figure 22: Angular velocity errors along the x component (on the left) and the y, z components

(on the right) of the chord method with rates from 1 to 5 deg/s and fixed direction.
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Eventually, the magnitude of the peaks increases with bigger angular rates, but

they are quite always below 90 degree. This is particularly important if one

want to use these measurements to reduce the angular velocity of a spacecraft.

Another interesting fact is that, starting from a rate equal to 3 deg/s, one can

note some time intervals where no measurement is provided because the chord555

method wasn’t able to run (less than 2 stars were available).

The rate determination behaves similarly to the direction error as far as

peaks and no-measurment intervals is concerned. However, looking at the plots

on the right of Fig. 21, it can be seen that maximum errors are always below 1

deg/s apart from very rare cases. It is noteworthy that such errors are obtained560

only when a very small number of stars are detected. When the number of stars

is reasonable high, the relative norm errors are quite reduced.

The errors of the angular velocity estimates divided by components is shown

in Fig. 22. Here one can appreciate that the bigger errors are obtained along

the line of sight, i.e. along the x axis, where some error peaks around 5 deg/s565

are reported. On the contrary, errors along y and z are of the same order of

magnitude and quite always below 0.5 deg/s. This is completely consistent

with the star tracker performances in attitude determination mode, where roll

errors are always bigger then yaw and pitch errors. Obviously, such errors

can be drastically reduced and uniformed using a multi-head architecture for570

compensation of the errors along the line of sight.

5.3. Results with variable velocity

This test case deals with an angular velocity which is given by

ω = (5− 4t/T )
d

‖d‖
deg/s, (55)

where the norm is linearly decreasing from 5 to 1 deg/s and

d = [0.8452 cos(0.01t), −0.5345, −0.4795 sin(0.005t)]
T
, (56)

imposing a user-defined sinusoidal law to the direction. The simulation time575

interval T is equal to 1000 seconds. This can represent a generic situation where
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Figure 23: Number of detected stars in the FOV with variable velocity.

(a) (b)

(c) (d)

Figure 24: Simulated angular velocity profile (a) and chord method errors for x (b), y (c),

and z (d) component.

a tumbling spacecraft is slowly controlled in order to reduce the initial angular

rate. The imposed profile is depicted in Fig. 24a. The number of stars during

the simulation time interval is shown in Fig. 23 and it is consistent with what

was already shown in Fig. 20. The error components of the angular velocity580

estimated by the chord method are shown in Fig. 24. As previously discussed,

39



the x component reported in Fig. 24b is characterized by bigger errors than the

y and z components. Indeed, the mean errors along the x, y, z axes are 0.0165

deg/s, 0.0475 deg/s, and -0.0182, respectively, whereas the standard deviations

are 1.445 deg/s, 0.152 deg/s, and 0.116 deg/s. However, the magnitude of the585

errors are still consistent with the implementation of on-board filters to get at

least a rough estimate of the angular velocity.

6. Conclusion

This paper presented some novel theoretical results related to the detected

motion of the stars within the FOV of a star sensor in dynamic conditions. It590

has been shown that, when the satellite is experiencing a non-negligible angular

velocity (in the paper it has been considered in the range 1-5 deg/s), the tra-

jectories of the stars in the focal plane belong to conic section which features

depend on the angles between the instantaneous rotation axis, the sensor line

of sight (LOS) and the star direction. The outlined properties can be used to595

develop new techniques for the determination of the angular velocity from star

sensor images. The proposed chord method represents a first attempt to use the

discovered geometrical features for determining an approximated estimation of

the angular velocity direction. The method is based on the computation of the

intersection points between lines normal to the streaks left by the stars on the600

detector. Preliminary results have been obtained using a simplified numerical

tool where the conics, the osculating circles and the normal lines have been eval-

uated without any source error. From these results, some generic characteristics

of the method have been obtained. Finally, a high-fidelity star sensor simulator

has been used to obtain the results of the chord method for a given angular ve-605

locity direction with the rate ranging from 1 to 5 deg/s. The numerical results

are in agreement with the expected theoretical ones and demonstrate that the

chord method can be used to get at least a first rough estimation of the angular

velocity up to 5 deg/s.
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