SAPIENZA

UNTVERSITA DI ROMA

Motion Planning Techniques for Humanoid Robots

Sapienza Universita di Roma

Dottorato di Ricerca in Automatica, Bioingegneria e Ricerca Operativa —
XXXIII Ciclo

Candidate

Paolo Ferrari
ID number 1203661

Thesis Advisor
Prof. Giuseppe Oriolo



Thesis defended on July 13, 2021
in front of a Board of Examiners composed by:

Prof. Giuseppe Baselli (chairman)
Prof. Stefano Panzieri
Prof. Fabio Tardella

Motion Planning Techniques for Humanoid Robots
Ph.D. thesis. Sapienza — University of Rome

© 2021 Paolo Ferrari. All rights reserved

This thesis has been typeset by IATEX and the Sapthesis class.

Version: July 8, 2021

Author’s email: ferrari@diag.uniromal.it


mailto:ferrari@diag.uniroma1.it

iii

Abstract

Thanks to their human-like structure, humanoid robots have the potential for
accomplishing complex tasks requiring legged locomotion and/or dual-arm manipu-
lation in both structured and unstructured environments. To successfully fulfil such
tasks, appropriate humanoid motions must be generated. Planning these motions is
particularly challenging for humanoid robots because of their peculiar characteristics.
First, their high number of degrees of freedom makes planning computationally
expensive. Second, they can displace their base only through stepping or acyclic
multi-contact motions. Third, they must maintain balance at all times.

This thesis addresses the motion planning problem for humanoid robots in
various contexts. We start by considering the general problem of planning whole-
body motions for a humanoid robot that must execute a task implicitly requiring
locomotion in an environment populated by static obstacles. For this problem we
propose a complete framework that can incorporate tasks of different nature (i.e.,
navigation, reaching, manipulation and visual tasks) for planning both in case of
known and unknown environments.

One of the advantages of humanoids is the possibility of moving through complex
environments by stepping over or onto obstacles. To this end, we propose an
integrated method for planning and executing humanoid motions on uneven ground.
It is composed by two modules: an offline footstep planner and an online gait
generator. For the first module we propose two possible randomized strategies that
can efficiently compute feasible and optimal footstep plans, respectively.

In many practical applications, it might be allowed to abandon the task in favor
of collision avoidance. For cases in which the robot is assigned a soft task of this type,
we present an opportunistic strategy for planning motions that, differently from
other approaches, allow the robot to perform the assigned task for as long as possible,
and deviate from it only when strictly needed to avoid a collision. The method is
first discussed with regard to a generic free-flying robot, and later extended to the
case of humanoid robots.

More complex tasks that a humanoid robot can potentially fulfil require to
sequentially establish with the environment multiple contacts involving not only the
feet as in basic biped locomotion. For this problem we propose a multi-contact motion
planner that thanks to its randomized nature avoids any kind of precomputation or
heuristics design that are usually required with existing search-based techniques.

Finally, we consider the problem of safe coexistence between human and hu-
manoids. In this context, reactive planning capabilities are essential. We describe a
complete framework for the safe deployment of humanoid robots in environments
containing humans, where several safety behaviors are activated and deactivated
through a state machine according to information coming from the robot sensors.






Ringraziamenti

1l percorso che ha portato alla produzione di questa tesi € stato indubbiamente faticoso
e stressante ma mi ha concesso il privilegio di poter quotidianamente imparare ed
immaginare. Cio € stato possibile solo grazie a tutti coloro che in qualche modo a
questo percorso hanno partecipato e desidero percio ringraziarli.

Il mio primo ringraziamento va al Prof. Giuseppe Oriolo che mi ha guidato
in questi anni dandomi continuamente supporto e fiducia. Tutto cio che ho potuto
imparare dalla sua enorme competenza, inesauribile curiosita e gusto per un’estetica
sempre funzionale al risultato sara il bagaglio che mi portero sempre dietro.

Ringrazio il Prof. Leonardo Lanari per aver saputo incontrare il mio approccio
originariamente pit algoritmico e meno controllista. Se i miei orizzonti si sono
ampliati ¢ anche grazie a tutto cio che ho potuto apprendere lavorando con lui.

Grazie a tutti i membri del Laboratorio di Robotica del DIAG, miet colleghi
e amici; grazie a loro ho vissuto ogni giorno in un ambiente sereno e stimolante.
Ringrazio particolarmente tutti coloro che con me hanno collaborato: Marco Cognetti,
Nicola Scianca, Daniele De Simone, Massimo Cefalo e Michele Cipriano.

Ringrazio il gruppo di Humanoids €& Human Centered Mechatronics guidato dal
Prof. Nikolaos Tsagarakis presso 'Istituto Italiano di Tecnologia con il quale ho avuto
il grande piacere di collaborare durante l'ultimo anno. Un ringraziamento speciale
va a Enrico Mingo Hoffman, Luca Rossini e Francesco Ruscelli per la costante
disponibilita e la capacita di coordinarsi con me a distanza, sempre con passione e
determinazione.

Un enorme ringraziamento va a Brunella, ogni sfida sarebbe inaffrontabile senza
averla accanto; il suo amore ha costantemente supportato i miei sforzi e la sua
incondizionata pazienza mi ha sempre trasmesso sicurezza.

Grazie ai miei genitori, Antonio e Paola, per avermi insegnato che con il duro
lavoro si puo ottenere tutto. Grazie a Simone per essere sempre ’amabile fratello
che condivide con me l’inguaribile trasporto per la scienza.

Grazie infine ai miei amici di sempre, quelli che parlano il dialetto in cui ogni
mia nuova idea nasce.






Contents

(1 Introduction|

B 15 ol

(3

Whole-body motion planning|

[3.1 Core problem and approach| . . . . ... ... ... ..........

B.1.1 Humanoid motion modell . . . ... ... ... ... ... ..
[3.1.2  Task-oriented planning|. . . . . . . .. .. ... ... ...
[3.1.3  CoM movement primitives|. . . . . . . . . ... ... ... ..

[3.2  Basic whole-body planner| . . . . . ... ... . 00000
[3.2.1  Motion generation| . . . .. ... ... .. ... ... ... ..

[3.2.3  Planning experiments| . . . . . . ... ... ... ... ...

3.3 Anytime whole-body planning trameworkl . . . . ... ... ... ..

[3.3.2  Local motion plannerf . . . .. ... ... ... ... .....
[3.3.3  Deadlock management| . . . . . . ... ... ... .
[3.3.4  Planning experiments| . . . . . . .. ... ... ...
[3.4  Sensor-based whole-body planning framework| . . . . . . .. ... ..
B.41 TFramework overviewl . . . . . . . ... ... ... ... ...
[3.4.2 Mapping module|] . . . . .. ... o
[3.4.3  Planning module| . . . . . . ... 0000000
3.4.4 Execution modulel . . . . ... ... 0L

A

Motion planning on uneven ground|

4.1 Core problem and approach| . . . . . ... ... ... ... ... ...
4.2 Basic footstep planner| . . . . . .. ... oL oL

vii

11
12
13
14
15
18
19
20
21
25
25
27
31
31
35
36
36
37
39
39
43



viii Contents

4.4 Experiments|. . . . . . . . ... 61
4.5 Conclusionsl . . . . . . . . . 63
[ Motion planning in the presence of soft task constraints| 65
b1 Problem formulation] . . . . . . . ... ... ... ... ... ... 67
5.2 Overview of the opportunistic planner| . . . . . . ... ... ... .. 68
.3 Hard planner| . . . . ... ... ... o 70
.4 Soft planner| . . . . . ... o 72
B.4.1  Soft treeextensionl . . . . . . . . . . . ... 73

[5.5 Planning experiments| . . . .. ... ... . oL 74
b.6 Pxtension to humanoid robots. . . . . . .. ... ... oo 77
B.7 Conclusionsl . . . . . . . . . 79
|6 Multi-contact motion planning] 81
6.1 Background| . . . . . ... ... 82
6.2  Problem and approach| . . . .. ... ... ... ... 0000, 84
6.3 Multi-contact state planner| . . . . . . ... ... 0oL 85
[6.3.1  Multi-contact state generator| . . . . . . .. ... ... ... 87
[6.3.2  Transition configuration generator| . . . . . ... .. .. ... 88
6.3.3 Inverse Kinematics and Centroidal Statics solvers. . . . . . . 89

6.4 Whole-body planner| . . . . . ... ... oo 00000 90
6.5 Preliminary results| . . . . .. ... ... ... ... L. 90
6.6 Conclusionsl . . . . . . . . . . . 92
[T_Safe human-humanoid coexistencel 95
[7.1 Safety standards| . . . .. ... ... ... ... ..., 97
[7.2  Satety guidelines| . . . . . .. ... ... L oL 98
[7.3  Sensing assumptions| . . . . . . ... Lo 99
7.4 Overview of satety behaviors| . . . . . ... ... ... ... ..... 100
[(.4.1 Override behaviors| . . . . . . . . . . .. ... L. 100
[7.4.2  Temporary override behaviors|. . . . . . . .. ... ... ... 101
[(.4.3 Proactive behaviorsl . .. ... .. ... ... . ........ 102

[7.5 Behavior-based satety trameworkl . . . . ... ... ... ... .... 102
[(.b.1  Contextsl . ... ... . .. 103
[7.5.2  Satety areas and thresholds| . . . . . . ... .. ... .. ... 103
[(.0.3  Definitions of behaviorsl . . . . . ... ... ... ... .... 105

[r.6 State machinel . . . . . . .. ..o o 108
[t.7 _Control architecturel . . . . . . ... ... ... ... ... 110
[7.7.1 Camera motion generator| . . . . . .. .. .. ... ...... 111
[7.7.2  Hand(s) motion-force generator| . . . . . . ... ... ..... 111
[7.7.3  Gait generator| . . . . . .. ... .. L 112

[7.8 Implementation of behaviors|. . . . . . ... .. ... ... ... ... 113
(.81 halll . .. . . . . e 114
[7.8.2  self-protect| . . . . . . ... 114

8 % IS S 114

C8A cvadd . . . . . i 115

[7.8.5 add contact|. . . . . . . . . . . . .. ... 116




Contents ix

(8.6 scanand track . . . ... . . . .. ... .. ... . ... ... 116

[7.8.7  adapt_footsteps . . . . . . . ... 117

[7.8.8  scale_welocity-force . . . . . . . . ... Lo 119

1.9 Simulations . . . . . . . . . . . e 119
[7.10 Experiments|. . . . . . . . . .. 122
[(.11 Discussion| . . . . . . . o v o e e e e e 123
[7.11.1 Effect of safety on performancel . . . . . . . . ... ... ... 123

((.11.2 Limitations of the method|. . . . . . . . .. .. ... ... .. 124

[7.11.3 Adaptations|. . . . . . . . . .. ... 125

[7.11.4 Choice of parameters|. . . . . . . . . . . . . ... ... .... 126

[(.12 Conclusions| . . . . . . . . . o o 126

8 Conclusions| 129
|A Gait generation via IS-MPC| 131
|A.1 The flat ground case| . . . . . . . . . . ... Lo 131

[A.2 The uneven ground case| . . . . . . . .. .. ... L. 134







Chapter 1

Introduction

The long-term challenge for robotics is the development of systems that can assist,
or even substitute, humans in repetitive, tiring and dangerous activities.

Early robots have been introduced in industrial settings and consist in fixed-base
manipulators (see Fig. [1.1)). The simplest mechanical structure of these robots
consists of a single kinematic chain, i.e., a sequence of links interconnected by means
of joints. Each joint, providing the robot with a degree of freedom, acts as an
articulation. For this reason, robots with one or more kinematic chains are also
referred to as articulated robots.

Figure 1.1. Examples of manipulators: LWR by KUKA, and UR10 by Universal Robots.
Retrieved from https://www.coboticsworld.com/, and https://cobots.ie/| respec-
tively.

More complex structures are represented by mobile manipulators. They consist
of one or more manipulators mounted on a mobile base. The latter endows the robot
with locomotion capabilities, thanks to which its workspace becomes potentially
unlimited. When locomotion is constrained to the ground, the mobile base of the
robot can be wheeled or legged. Motion with respect to the ground is generated by
a set of, respectively, actuated wheels and kinematic chains acting as lower limbs.

As a direct consequence of their structure, wheeled robots (see Fig. are
particularly tailored to both industrial and service applications in structured envi-
ronments where the ground is completely flat. On the other hand, legged robots
are suitable for applications in both structured and unstructured environments. For
example, climbing and descending stairs in human environments (such as industries
and houses) or moving across rough terrains (such as outdoor and disaster scenarios)
is only possible for legged robots.


https://www.coboticsworld.com/
https://cobots.ie/

2 1. Introduction

Figure 1.2. Examples of mobile manipulators: PR2 by Willow Garage, and TIAGo by
PAL Robotics. Retrieved from https://robots.ieee.org/robots/pr2/, and https!
//pal-robotics.com/robots/tiago/, respectively.

A special category of legged robots is that of humanoid robots (see Fig. . The
structure of a humanoid robot is inspired by the human body and consists of two legs,
two arms, a torso and a head. Typically the end-effectors of the kinematic chains
composing legs and arms are similar to, respectively, human feet and hands. The
head is usually equipped with vision sensors. Thanks to their mechanical structure,
humanoids have the potential for effectively perform complex tasks, requiring both
legged locomotion and dual-arm manipulation. Moreover, their anthropomorphic
structure makes them more easily acceptable to humans, with whom we would like
them to coexist and collaborate.

Figure 1.3. Examples of humanoid robots: ASIMO by Honda, REEM-C by PAL
Robotics, and HRP-4 by Kawada Robotics. Retrieved from https://robots.ieee.org/
robots/asimo/, https://pal-robotics.com/robots/reem-c/, and https://robots,
ieee.org/robots/hrp4/, respectively.


https://robots.ieee.org/robots/pr2/
https://pal-robotics.com/robots/tiago/
https://pal-robotics.com/robots/tiago/
https://robots.ieee.org/robots/asimo/
https://robots.ieee.org/robots/asimo/
https://pal-robotics.com/robots/reem-c/
https://robots.ieee.org/robots/hrp4/
https://robots.ieee.org/robots/hrp4/

Whatever the specific application is, robots are expected to perform tasks in
real-world scenarios that generally contain static and dynamic obstacles. Such
tasks shall be simply specified by humans via high-level descriptions (e.g., ‘go to
that location’ or ‘grasp that object’) and then converted into low-level descriptions
that instruct the robot on how to move in order to fulfil the assigned task while
avoiding collisions with obstacles. The problem of producing such conversion is
known as motion planning [1]. Equipping a robot with a motion planning module is
clearly fundamental in order to endow it with full autonomy. Despite the constantly
increasing effort of the robotics community, articulated robots, and in particular
humanoids, are still far from being able to autonomously plan their motions for
fulfilling complex tasks in cluttered and possibly unknown environments.

This thesis addresses the motion planning problem for humanoid robots in various
contexts. The rest of this thesis is organized as follows.

e Chap. [2 provides a review of the literature related to motion planning for
humanoid robots.

o Chap. [ considers the problem of planning whole-body motions for a humanoid
robot that must execute a task in an environment cluttered by obstacles. We
first describe a unified method for planning offline in the presence of a variety
of tasks implicitly requiring locomotion, and then present two extensions
for planning online in case of, respectively, time limitations and unknown
environments that we introduced in [2, 3].

o Chap. [ describes an integrated method for planning and executing humanoid
motions on uneven ground. The approach we introduced in [4] is presented,
along with an extension that allows to generate motions of improved quality.

e Chap. [f] presents an opportunistic strategy for planning in the presence of soft
tasks, i.e., tasks that are allowed to be abandoned whenever strictly required
for avoiding collisions. We proposed the method in the journal paper [5] for
a free-flying robot. This chapter also proposes an extension to the case of
humanoid robots.

o Chap. [] considers the problem of planning multi-contact motions for a hu-
manoid robot that must execute a loco-manipulation task, i.e., a task that
requires to establish multiple contacts (involving both feet and hands) with
the environment. Preliminary results with regard to the stand up task are
shown.

o Chap. [7] describes a complete framework for the safe deployment of humanoid
robots in environments containing humans, where reactive planning capabilities
are needed. We proposed the described approach in the journal paper [6].

e Chap. [§ offers concluding remarks about the proposed methods and discusses
possible future work.






Chapter 2

Literature review

Motion planning is an active field of research since few decades. Contributions
continuously come from different disciplines, such as algorithm theory, automatic
control and computational geometry, making the related literature very wide and
sophisticated.

Extensive work has been done with reference to the simplest form of the motion
planning problem, i.e., the canonical problem [7], which we describe in the following.
Consider a robot that consists of a single rigid body (e.g., a mobile robot), or of
a kinematic chain whose base is either fixed (e.g., a manipulator) or mobile (e.g.,
a mobile manipulator), and moves in a 2D or 3D workspace populated by fixed
obstacles whose location and geometry is known. Moreover, assume that the robot is
free-flying in its configuration space, i.e., it is not subject to kinematic constraints of
any kind. Given a start configuration g, and a goal configuration g, the canonical
motion planning problem consists in finding a path in the configuration space that
drives the robot from g, to g, while avoiding collisions with workspace obstacles. In
the particular case in which the robot is a single body moving in 2D, the canonical
motion planning problem is also known as the piano movers’ problem [8].

A large number of approaches have been presented for solving the canonical
problem, and many of them have been appropriately modified for dealing with
extensions of the canonical problem resulting from the elimination of one of the
simplifying assumptions for planning, e.g., in the presence of moving obstacles, in
unknown environments, for robots subject to nonholonomic constraints, and so on.

Early works dealing with the canonical problem (see [9} [10]) used to represent
the connectivity of the free portion of the configuration space by a network of
collision-free paths. To this end, they require the preliminary computation of
the ‘images’ of the obstacles in the configuration space, which is in general an
expensive procedure. This issue was completely overcame with the introduction
of sampling-based motion planners, e.g., PRM (Probabilistic Roadmap) [11] and
RRT (Rapidly-exploring Random Tree) [12], that relies on the basic idea of finding
a finite set of collision-free configurations that adequately represent the connectivity
of the configuration space by iteratively selecting random samples from it. Both
PRM and RRT are probabilistically complete and particularly efficient in terms of
planning times. Moreover, RRT exhibits the remarkable ability of being directly
applicable to systems with differential constraints [I3], and has also been extended



6 2. Literature review

to an asymptotically optimal version, called RRT* [14].

All the discussed methods have been introduced in the context of offline planning,
i.e., a complete solution to the planning problem is computed before starting motion
execution, that is tailored for situations in which the geometry of the environment
in completely known in advance. When this assumption is removed, online planning
is clearly required, as the robot must discover the environment while moving. In
this context, a large number of methods have been proposed such as online versions
of RRT [I5] 16], 17] and the artificial potential fields method [I8]. The latter is a
heuristic approach that builds potential fields in the configuration space in such a
way the robot configuration is attracted by the goal and repelled by the obstacles;
at each configuration, the anti-gradient of the total potential (sum of attractive and
repulsive potential) indicates the best local direction of motion. Similar reactive
strategies are represented by the navigation functions [19], which provide artificial
potentials that have no local minima, and the dynamic window approach [20], which
computes, at each time instant, a finite set of local state-space trajectories respecting
the robot kinodynamic limits and selects for execution the one minimizing a certain
cost function that accounts for the distance from the goal and from the closest
obstacle. More recently, also techniques based on Model Predictive Control have
been introduced for generating collision-free motions, both for fixed-base [21] and
mobile manipulators [22] 23].

Although many of the techniques described above have been successfully applied
to both fixed and mobile manipulators in different contexts, their direct application
to humanoid robots is impossible. There are mainly three reasons for which motion
planning for humanoids is particularly challenging.

e The high number of degrees of freedom, due to the large set of joints that make
up the various kinematic chains, reflects in a high dimensional configuration
space. Clearly, the higher the dimension of the configuration space, the harder
the computation of a solution to the motion planning problem.

e A humanoid robot is not a free-flying system in its configuration space, but it
can displace its base only through stepping or acyclic multi-contact motions.
Such motions must be appropriately generated.

e During motion, the robot must maintain equilibrium, either static or dynamic,
at all time instants. This typically constrains the trajectory of the Center of
Mass (CoM) of the robot, thus reducing the portion of the configuration space
in which a solution to the motion planning problem can be found.

In order to make the planning problem tractable, many approaches that rely on
simplifying assumptions on either the environment or the robot geometry have been
proposed. A common approach consists in assuming, at least in a first planning
phase, that collisions may occur only at footstep level [24 25] 26]. Thus, the problem
reduces to finding a footstep plan, i.e., a sequence of isolated contacts with the
ground. See [27] for a survey on existing footstep planners. The dual approach
consists in using a simplified occupancy volume of the humanoid, e.g., a conservative
bounding box, to initially find a collision-free channel between the initial and goal
location. Examples of this approach can be found in [28), 29]. After this first



stage, either in case planning involves footsteps or simplified occupancy volumes,
locomotion is produced using a gait generation module which typically computes a
CoM trajectory of the humanoid that guarantees static or dynamic balance, i.e., the
ground projection of the CoM or the Zero Moment Point (ZMP, the point where
the horizontal component of the moment of the ground reaction forces becomes zero
[30]) remains at all times within the support polygon of the robot, respectively. We
omit explicit discussion of existing gait generators, as they are outside the scope
of this thesis. However, Appendix [A] contains a brief overview of the specific gait
generator used throughout this thesis.

Clearly, these approaches are only tailored to pure locomotion tasks, usually
also referred to as navigation or walk-to tasks, that require the robot to simply
move from one place to another of the workspace. In fact, such methods can not
plan motions that allow a humanoid to fulfil a more complex task that requires the
exploitation of the whole-body structure; for example, extending over a table to pick
up an object with one hand is not possible using these methods.

In general, regardless of the specific robotic platform (fixed-base manipulators,
mobile manipulators, humanoids, and so on), tasks are expressed in terms of a
certain set of coordinates. These may describe quantities related to manipulation
(end-effector position and/or orientation), navigation (position of a representative
point of the robot, e.g., the center of mass), or perception (placement of sensors in
the workspace or directly of features in sensing space, as in visual servoing). The
problem of generating collision-free robot motions in the presence of task constraints
is known as Task-Constrained Motion Planning (TCMP)H In the literature, there
exist two main classes of methods for solving the TCMP problem, i.e., optimization-
and sampling-based methods.

Optimization-based methods (see [3I] for a general review) cast the TCMP
problem in the framework of kinematic control, also called redundancy resolution,
with the possible inclusion of specific equality or inequality constraints related to
the assigned task [32]. The discrete optimization technique presented in [33] is able
to compute very accurate tracking; however, avoidance of workspace obstacles is not
considered. In any case, it should be kept in mind that, independently of the specific
version, kinematic control is a greedy strategy whose optimization capabilities are
inherently local; as a consequence, it can work occasionally but never guarantee
completeness (finding a solution whenever one exists).

Sampling-based methods for solving the TCMP problem consists in variants of the
basic PRM and RRT methods discussed above. Typically, they use a mechanism for
projecting configuration space samples on the submanifold where the task constraint
is satisfied; see [34] for a review and [35], 136} 37, 38| for specific techniques aimed at
manipulation planning. These methods generally provide probabilistic completeness,
but suffer from the limitation that configuration space samples are connected by local
paths lying outside the constrained manifold. To improve task tracking accuracy, it
is necessary to use a more dense sampling, typically leading to a dramatic increase of
the time needed to compute a plan. For complex problems, this approach can turn

n order for a TCMP problem to be well-posed, the robot must be redundant w.r.t. the assigned
task (i.e., the number of robot degrees of freedom is larger than that of task components), otherwise
at most only one collision-free motion exists that realizes the task; such motion can be found using,
e.g., standard pseudoinverse-based inverse kinematics, without the need of a motion planner.



8 2. Literature review

out to be very inefficient and impractical. Such issue was overcame in [39], which
introduced a sampling-based approach for solving the TCMP problem that avoids
the need for a projection mechanism thanks to a control-based motion generation
scheme; as a consequence, it becomes possible to guarantee continuous satisfaction
of the task constraint with arbitrary precision.

All the mentioned methods address the TCMP problem for fixed-base or wheeled
mobile manipulators. Their direct extension to the case of humanoid robots is
impossible, because of the peculiar characteristics of these systems discussed above.
Most existing approaches for solving TCMP problems for humanoids are devised for
the specific case of manipulation tasks expressed as a desired path or trajectory for
one of the hands. In [40], an RRT-connect [41] exploits a precomputed catalogue of
statically balanced configurations to grow a tree in the task-constrained configuration
space. Similar techniques are presented in [42], 43} [44]. These methods are designed
for tasks which do not require stepping, i.e., tasks that can be accomplished by the
humanoid while keeping both feet fixed on the ground and the projection of the CoM
inside the support polygon. Simultaneous locomotion and manipulation is achieved
in [45] using a two-stages approach: first, a collision-free path, that guarantees both
static equilibrium and task execution, is computed for a sliding-feet robot model
using a RRT-based algorithm; second, such path is converted into a dynamically
balanced motion using the preview controller proposed in [46]. A more recent
work [47] uses a somewhat dual approach that first finds a dynamically balanced
locomotion plan, and then computes a manipulation plan that is admissible w.r.t.
both the latter and the assigned task. The limitation of decoupled approaches is
that the plan obtained in the first stage might be invalidated in the second, requiring
some form of reshaping or even a new query to the first stage.

The most challenging tasks that, unlike wheeled robots, humanoids can potentially
fulfil require motions involving multiple contacts between links of the robot (e.g.,
feet, hands, knees) and the environment. In general, these contacts are not coplanar,
i.e., the contact points do not necessarily lie on a common plane. Typical examples of
these tasks are climbing a ladder or crawling under a table. Generation of this type
of motions is generally referred to as multi-contact motion planning. A recent review
on the topic is presented in [48]. Similarly to the case of pure biped locomotion,
the multi-contact motion planning problem is usually decoupled in two phases. In
the first phase a discrete sequence of contact combinations is computed either via
graph [49] or best-first search [50, 5I]. In the second phase a continuous whole-body
motion that guarantees balance throughout the above sequence is found. Being
the contacts non-coplanar, the simple (both static and dynamic) balance condition
involving the concept of support polygon for the case of biped locomotion is clearly
not applicable; thus, more expressive models, such as the centroidal dynamics model
[52], are used in the second phase.

Most of the techniques for planning the motions of a humanoid robot discussed
so far are clearly suited for the case of static or moderately changing environments.
In highly dynamic (and possibly unknown) environments, offline approaches can
not be used and online approaches that are available for fixed-base and wheeled
mobile manipulators do not directly apply to humanoids. In the presence of dynamic
obstacles, such as moving humans, it is essential that the reaction time, i.e., the time
between the detection of a danger and the execution of an appropriate action, is



as small as possible; thus, real-time planning capabilities are required for the robot
safe operation is such contexts. Existing methods deal with such motion planning
problem by employing vision-based rapid replanning of footstep placement [53| [54],
incorporating collision avoidance constraints in MPC schemes [55, 56], or making
use of closed-form expressions to quickly generate evasion maneuvers in case of
immediate danger [57]. Closely related problems are push recovery and emergency
stop (e.g., see [58, 59]) which also involve stepping and balance.






11

Chapter 3

Whole-body motion planning

Humanoid robots have the potential for fulfilling different kind of tasks in environ-
ments cluttered by obstacles, ranging from simple navigation (e.g., go to a desired
location) to more complex tasks involving end-effectors or sensors (e.g., open a door
or visually track a moving target).

As already discussed in Chap. [2| the problem of generating appropriate motions
for achieving these tasks is known as TCMP problem and existing approaches either
do not consider tasks requiring locomotion (e.g., [40} 42 [43]) or rely on some sort
of separation between locomotion and task execution (e.g., [45 47]), thus failing to
exploit the rich humanoid motion capabilities.

A completely different approach has been introduced in [60]. It consists of a ran-
domized planner that builds a solution by concatenating whole-body motions. Each
whole-body motion realizes a CoM movement primitive selected from a precomputed
set and simultaneously accomplishes a portion of the task. The CoM primitives are
representative of typical humanoid actions such as walking (static and dynamic),
and can in principle include more sophisticated movements (e.g., jumping, crouching,
etc). With this approach, locomotion and task execution are not separated during
the planning stage, and walking emerges naturally from the solution.

All the mentioned approaches are offline techniques. In general, online planning
capabilities are required mainly in two situations. The first is when the complexity
of the environment is such that the computation of a complete solution requires
high planning times, forcing the robot to wait before being allowed to start motion
execution. The second is when the environment is not known in advance, making the
computation of a complete solution even impossible. To achieve online performance,
regardless of the a priori knowledge of the environment, the problem is usually
reduced to repeatedly finding partial footstep sequences (e.g., see [25]).

In the specific case of unknown environment, some methods rely on the idea of
monitoring the workspace with off-board, fixed sensors to provide a footstep planner
with the positions of the humanoid and obstacles (e.g., [53], 61]). Off-board sensing
requires an appropriate setting that is difficult, or even impossible, in unstructured
environments. Thus, on-board sensing is clearly preferable. This is exploited, for
example, for detecting planar surfaces that define safe regions where the robot can
step onto (as in [62], where binocular stereo-vision is used), or by representing the
environment through a heightmap (using data provided by, e.g., a monocular on-



12 3. Whole-body motion planning

board camera as in [63], or a pivoting laser scanner mounted on the humanoid torso
as in [64] [65]). Planning only at footsteps level implicitly assumes that collisions
can occur only at robot soles, which is not the case for most real-world scenarios.

Only few methods have been proposed that consider the 3D structure of the
unknown environment, for example, modeling it via a 3D occupancy grid. However,
during the planning stage, collisions are often checked using, e.g., bounding boxes
[66], ground projections of the 3D map and circular robot models [54], or inverse
heightmaps precomputed for each possible robot action [67]. In general, these
approaches prevent the robot from passing through a narrow passage or below a low
obstacle.

In this chapter we present a complete method for planning whole-body motions
for humanoid robots that must execute tasks implicitly requiring stepping in environ-
ments cluttered by obstacles. In particular, building on the CoM primitives-based
technique introduced in [60], we propose:

e a unified offline planner for the case of known environment in the presence of
different kinds of tasks (essentially an extension of the method in [60]), namely
navigation, reaching, manipulation and visual tasks;

e an anytime planning framework for the case of time limitations, i.e., when
the robot must start moving after a given time budget that, in general, is not
sufficient for computing a complete solution;

e a sensor-based planning framework for the case of unknown environment, i.e.,
when the robot must plan its motions according to incrementally acquired
information.

The use of CoM movement primitives allows to exploit the whole-body structure of
the humanoid. Moreover, both in the case of known and unknown environment, our
method takes into account the 3D structure of both the robot and the workspace.
As a result, the generated whole-body motions are guaranteed to be collision-free,
balanced and task-oriented, without the need of any form of reshaping, differently
from other existing approaches.

This chapter is organized as follows. In Sect. we formally describe the
motion planning problem, the considered tasks and the concept of CoM movement
primitives. Sects. describe the proposed offline planner and its extension to
the anytime and sensor-based frameworks, together with simulation results obtained
with the NAO humanoid. Sect. provides some concluding remarks.

3.1 Core problem and approach

In this section, we first introduce a suitable motion model for a humanoid robot (Sect.
. Then, in Sect. we formally describe the general problem of planning
whole-body motions for a humanoid robot that must execute a certain task in an
environment containing obstacles, and discuss the nature of the considered tasks.
The planning strategy at the core of the framework presented in this chapter relies
on the concept of CoM movement primitives which represent elementary humanoid
motions (e.g., stepping, crouching, jumping, and so on). Sect. provides a
detailed presentation of such concept.



3.1 Core problem and approach 13

3.1.1 Humanoid motion model

The configuration of a humanoid robot is fully described by the n-vector of its joint
angles and the pose (position and orientation) of a reference frame attached to one of
its links. In view of the use of CoM movement primitives, a convenient choice within
our planning framework, as initially introduced in [60], consists in attaching such
frame to the CoM and assuming it oriented as the torS(ﬂ A generic configuration of
the humanoid is then defined as
q= ( dcoM ) ’
ant

where qco\v € SE(3) is the pose of the CoM reference frame and g;,; € Cjut is the
n-vector of the joint angles. For illustration, we will express the orientation of a
given reference frame as a unit norm quaternion, although other choices are also
possible. Then, a generic pose of a certain frame will be specified by a 7-vector,
where the upper 3- and lower 4-subvectors describe, respectively, the position and
orientation. Note that, 6 of these 7 components are independent. With this choice,
the humanoid configuration space C is SE(3) X Cjut and its dimension is n + 6.

As anticipated, within our planning framework, the CoM movements are gener-
ated by patching CoM subtrajectories that are extracted from a catalogue of CoM
movement primitives, that is supposed to be precomputed and available to the
planner. Each primitive has a given duration, specifies a reference trajectory for the
CoM, and possibly also for other points of the humanoid (e.g., the swing foot for a
stepping motion). Once a primitive has been selected, the robot joint motion will
be chosen so as to execute it while satisfying other requirements.

This planning approach is reflected in the following motion model

quM(t) = qléoM@A(qléoM)uléoM(t) (31)
Ane(t) = vjne(?);

that describes the motion of the robot in the time interval [tg,t; + T}] according to
a certain CoM movement primitive of duration 7j. In egs. (3.1H3.2):

o gfa1 = goom(tr) is the pose of the CoM frame at t.

. u’éOM(t) is the pose displacement of the CoM frame at ¢ relative to the pose
at t, as specified by the primitive.

k
o Algty) = R(gcov) Osxa is the transformation matrix between the CoM
¢ O4x3  Taxa

frame at t; and the world frame, with R(q’éOM) the rotation matrix that
rotates the position components of uf, ,(t) into the world frame.

e @ is an operator that composes two poses. Given two poses q¢,; and q%OM,
it returns a pose q¢,; where the upper 3- and the lower 4-subvectors are
obtained through, respectively, the sum of the two upper 3-subvectors and the
quaternion product of the two lower 4-subvectors of q¢,,; and qgoM.

!The use of the torso orientation is due to the fact that the CoM, being a point, does not provide
any information regarding the orientation.



14 3. Whole-body motion planning

o Vjne(t) is the n-vector of joint velocity commands.

The motion model in (3.1H3.2)) is hybrid. In fact, eq. (3.1 is algebraic, as it
describes the CoM motion realizing the primitive adopted in the time interval

[tk, tr + Tx|, while eq. is differential, as it describes the evolution of the joint
variables which change instantaneously to realize the CoM motion and other tasks.
Clearly, the CoM motion and the joint velocities are not independent in egs. ,
because in the whole time interval [ty, t; + Tj], Vjnt(t) must be compatible with the
chosen primitive.

3.1.2 Task-oriented planning

The motion planning problem considered in this chapter consists to find an appropri-
ate whole-body motion of the humanoid over a time interval [tini, t6,] that realizes an
assigned task in an environment populated by static obstacles, while respecting the
robot kinematic limits, guaranteeing equilibrium at all time instants, and avoiding
collisions. In Sects. [3.23.3] we will assume that the geometry of the environment is
known in advance, while we will remove this assumption in Sect.

Tasks may be of different nature, depending on the specific application, and in
general can involve both end-effectors and sensors. We will consider that the robot
can be assigned one of the four different tasks described in the following.

T1 Navigation task. The robot must bring the midpoint between the feet inside
a desired circular region centered at a given point y3;, and having radius r};.
This task simply requires the robot to move from one place of the environment
to another.

T2 Reaching task. The robot must bring a specified hand to a desired set-point
Y5 For example, such set-point may represent the position of an object that
must be grasped.

T3 Manipulation task. The robot must execute a desired trajectory y3,(t), t €
[tini, tan], with a specified hand. For example, such trajectory may encode a
cutting or welding operation in an industrial application, or a simple door
opening in a service application.

T4 Visual task. The robot must track with a head-mounted camera a 3D point P
that moves along a known trajectory yp(t), t € [tini, tan]. For example, point
P may be representative of an object whose motion has to be monitored by
the robot.

Note that, each of these tasks directly or indirectly constrain the motion of a
frame attached to a specific point of the robot. Collect in a vector y the coordinates
of such frame that are of interest for the assigned task. In particular, y will contain
the position of the midpoint between the feet (for T1), the position and/or orientation
of the chosen hand (for T2-T3), or the pose of the camera (for T4). Coordinates y
are related to configuration coordinates q by a forward kinematic map y = k(q).

Consider that the robot is assigned one of the tasks in the above list. We
emphasize that, in general, all these tasks implicitly require locomotion as they can



3.1 Core problem and approach 15

not be completed without stepping. A solution to the planning problem consists of
a configuration space trajectory q(t), t € [tini, tan], that satisfies the following four
requirements:

R1 Collisions with workspace obstacles and self-collisions are avoided.

R2 Position and velocity limits on the robot joints, respectively in the form
Gmin < Tint(t) < Gmax and Vmin < Vjne(t) < Vmax are satisfied.

R3 The robot is in equilibrium, either static or dynamic, at all time instants.
R4 The assigned task is realized.

Note that, in case the robot is assigned T3 or T4, the final time instant tg,
is automatically determined by the given trajectory y},(t) or yh(t), respectively.
Otherwise, tg, will be a byproduct of the planner.

In the following, we will call feasible the motions that satisfy requirements R1-R3.
For a configuration space trajectory q(t), t € [tini, tfin], fulfilment of requirement R4
must be evaluated with respect to the assigned task. A navigation task (T1) is realized
if the desired region is reached at a finite time instant gy, i.e., ||[y(tan) — Y|l < 73
Similarly, a reaching task (T2) is realized if the desired set-point is reached at a
finite time instant tg,, i.e., Y(tan) = Y. A manipulation task (T3) is realized if
the desired trajectory is exactly executed at all time instants, i.e., y(t) = yj,(t),
Yt € [tini, tan]. For visual tasks we adopt an Image-Based Visual Servoing (IBVS)
formulation, i.e., in order to track the point P, the robot must keep always the
point feature associated to point P at the center of the image plane. Such condition
implicitly requires that the moving point P is occlusion-free at each time instant,
i.e., the line joining the origin of the camera frame and P does not pass through any
obstacle. At a generic time instant ¢, let f(t) = (fu, fo)? be the point feature in the
image plane, with f, = A% and f, = /\%, where (X,Y, Z) are the coordinates of
point P at yp(t) in the camera frame, whose pose is y(t), and A is the focal length
of the camera. Then, a visual task (T4) is realized if f(¢) = 0 and the line joining
the origin of the camera frame and P does not intersect any obstacle, Vt € [tini, tfin]-

For sake of illustration, for manipulation and visual tasks, we assumed that the
robot starts from an initial configuration q;,; such that the task is realized at the
initial time instant, i.e., Y(tini) = Y3, (tini) and f(tini) = 0, respectively. In general,
R4 can be relaxed so as to require the convergence to the assigned manipulation or
visual task, i.e., limy_,o0(y(t) — y3,(t)) = 0 and limy_,~ f(t) = 0, respectively.

3.1.3 CoM movement primitives

CoM movement primitives are representative of elementary humanoid motions, such
as static and dynamic steps, crouching, jumping, and so on (see Fig. . A CoM
movement primitive, applied from a certain configuration q;, = q(tx), describes the
history u’éOM(t) of the pose displacement of the CoM frame relative to the pose
at tj for each time instant ¢ in the interval [ty, t; + Tk] having a fixed duration T.
For compactness, in the following u’éOM will denote such history and indicate the
corresponding primitive.



16 3. Whole-body motion planning

§ ( ( {

( ‘] oy (

ALY g B ﬁ\v
‘~(~,-."

Figure 3.1. Examples of CoM movement primitives: stepping, jumping, and squatting.
Courtesy of [60].

With our planning strategy, CoM movement primitives are selected from a
precomputed catalogue U that usually includes stepping and non-stepping primitives.
A typical U is composed as followsﬂ

U = {U8\ UUE N UUS\ Ufree CoM} (3.3)
where each subset is defined as follows:

. U*CgoM includes stepping primitives extracted from a static walking gait in
which the ground projection of the CoM is contained in the humanoid support
polygon at all time instants. This subset typically includes a forward step
(uphy), a backward step (ufly,), left (ully,) and right (ugly,) steps.

. Ué)oM includes stepping primitives extracted from a dynamic walking gait in
which the ZMP is contained in the humanoid support polygon at all time
instants. This subset, which is more complex than UgoM, includes starting,
cruise, and stopping steps for various directions of motion. For example, for the
forward direction, we have the three steps up. 5o uDF’CmiSe nd ul’ Smp.

) PS Ucom CoM CoM

. UCCOM is composed by two different subsets of crouching primitives. The first
subset includes two non-stepping primitives for, respectively, standing up
(u&Yy) and crouching down (u&l);) by vertically moving the CoM while main-
taining both feet fixed on the ground. The second subset includes stepping
primitives extracted from a crouched walking gait in which the ZMP is con-
tained in the humanoid support polygon at all time instants, and the CoM
height is lower than that specified by primitives in Ué)OM. Similarly to UgOM,
such subset includes starting, cruise and stopping steps for various directions
of motion. For example, for the forward direction, we have the three steps

CF,start CF,cruise CF,stop
Ucom » UCoM d Ucom -

e free_ CoM is a non-stepping primitive with which the CoM of the humanoid is
completely free to move as long as both feet remain fixed on the ground. It is
a stretchable primitive, in the sense that its duration can be chosen arbitrarily.

2The proposed framework can work with any precomputed catalogue of primitives; clearly, the
richer the catalogue, the larger the set of tasks for which the planner will be able to compute a
whole-body motion.



3.1 Core problem and approach 17

The three different kinds of stepping primitives (i.e., starting, cruise, and stopping
steps) included in the subsets Ué)OM and UgOM reflect the three possible phases of a
ZMP-based gait. In fact, while during a cruise step the humanoid always maintains
dynamic equilibrium, starting and stopping steps permit the humanoid to switch
from static to dynamic equilibrium and viceversa, allowing to initiate and terminate
a ZMP-based gait, respectively. In addition, starting and stopping steps in UgoM
permit the humanoid to switch from the upright to the crouched posture (involving
an appropriate vertical motion of the CoM) and viceversa, allowing to initiate and
terminate a crouched gait, respectively. As for the free CoM primitive, its inclusion
in U is particularly important because it allows to build a sequence of movements of
arbitrary total duration. This is essential for fulfilling tasks, e.g., a manipulation
task specified by a trajectory, whose total duration ¢y — ¢; is explicitly assigned,
using CoM movement primitives whose individual durations are otherwise fixed.

At a given configuration gy, the selection of a specific CoM movement primitive
from the catalogue U provides

o a duration T} for the movement and a resulting time interval [tx, txy1], with
t+1 = U + Tk

« a reference trajectory y¢ y for the pose of the CoM frame in [ty, t;41] for all
primitives except free_Col;

o a reference trajectory yg,, for the pose of the swing foot in [ty, tk+1]ﬂ

We emphasize that a certain CoM primitive does not specify a whole-body motion
(i.e., the motion of all the humanoid joints for the entire primitive duration), which
can instead be freely chosen by the planner among the infinite that are compatible
with the primitive. As a consequence, repetition of the same primitive in different
parts of the planning solution will correspond in general to different whole-body
motions, depending on the local task history and obstacle placement.

All the stepping primitives described above can be generated, i.e., for each
of them the duration and the CoM and swing foot reference trajectories can be
precomputed, using suitable (static or dynamic) Walking Pattern Generators. In
particular, for the primitives extracted from ZMP-based gaits, e.g., the stepping
primitives included in UgOM and UgOM, we used the MPC-based gait generator
introduced in [68] (see also Appendix . Note that, any step, regardless of the
particular type (static, dynamic or crouched), can be performed by swinging either
the left or right foot. For this reason, the catalogue U includes both versions for
each stepping primitive. In the following discussion, for sake of illustration, we will
not explicitly distinguish the two cases and assume that the identity of the swing
foot alternates between the two feet.

At a given configuration g, the set of selectable CoM primitives consists of a
subset of U that depends on q itself, and in particular on which CoM primitive
has produced q. For example, no static step can be selected after a dynamic
cruise step; only another cruise step or a stopping step are admissible. Similarly,
the only dynamic step that can follow a static step is a starting step; and so on.

3For non-stepping primitives (e.g., free_ CoM, uSYy;, u&hy) such reference trajectory is simply
Yowe(t) = Ylyg(tr) for all ¢ € [tx, tx41], and the identity of the swing foot can be freely chosen.



18 3. Whole-body motion planning

Figure 3.2. The direct graph representing the admissibility of CoM movement primitives.
Here, for sake of illustration, only stepping primitives in the forward direction are
shown and the free_ CoM primitive is omitted. The latter is admissible at any statically
balanced configuration, i.e., any configuration that has not been produced by a starting
or cruise step (either dynamic or crouched).

The admissibility of CoM movement primitives at a given configuration q can be
represented as a direct graph, as shown in Fig. In this graph each vertex
represents a particular CoM primitive included in U, while an edge going from a
vertex v to a vertex v’ indicates that the primitive represented by v’ can be selected
from a configuration g that has been produced using the primitive represented by v.

3.2 Basic whole-body planner

In this section, we address the basic instance of the motion planning problem
described in Sect. [3.1.2} a humanoid robot is assigned one of the tasks T1-T4 in
an environment whose geometry is known in advance. A solution for this problem
consists of a configuration space trajectory q(t), t € [tini, tan], that satisfies the
requirements R1-R4.

With our approach, such trajectory is identified by a concatenation of CoM
movement primitives that are translated into collision-free whole-body motions which
realize such movements while complying with the assigned task.

Sect. describes the tool used to generate such motions, while Sect.
illustrates the planning strategy. Sect. presents simulations obtained for a
variety of tasks.



3.2 Basic whole-body planner 19

3.2.1 Motion generation

The proposed planner works in an iterative fashion by repeated calls to a motion
generator. Given a starting configuration g;, with an associated time instant t,
and a particular CoM movement primitive u’éoM, with duration T}, selected from
catalogue U, the motion generator computes a feasible whole-body motion g(t),
t € [tg,thit1 = tgp + Tx), which realizes the reference trajectories y¢ , and Yiwg
specified by u’éOM, as well as the portion of the assigned task contained in the same
time interval.

To this end, our motion generation scheme computes first the motion of the CoM
frame by plugging the current primitive u’éOM in , and then the joint trajectory
by integrating the joint velocities produced by the following priority-based
kinematic control law [31]:

Vit = JL G5 + Pr(JaP) (s — JadLgh) + Pra v (3.4)

Here, y;, = (Y&ous y;[Wg)T is the primary locomotion task specified by uléoMﬁ Jy its
Jacobian and Py, = I—J TLJ L; Y4 is the secondary task arising from the assigned one,
J 4 its Jacobian and Py 4 =Py, — (JAPL)Y(JAPL). In general, Y =v; + Krer
and ¥y = v’ + Kaey, with e, = y; —y; and eq = y¥, — y,; y} and y’ are
the reference values of y; and y 4, respectively. K and K 4 are positive definite
gain matrices. Note that, with the adopted priority-based approach, the assigned
task will be executed as much as possible without perturbing the execution of the
locomotion task. The choice of assigning the highest priority to the locomotion task
is due to its fundamental role in guaranteeing the humanoid equilibrium.

Depending on the assigned task, y 4 will take values in an appropriate space and
will assume a specific form. In case of navigation task (T1), the secondary task
Yy 4 is null, as only pure locomotion need to be generated, and reduces to

O = J 17 + Proo. (3.5)

In case of reaching task (T2), the latter is activated only if the robot CoM at g, is
inside a spherical region centered at the desired set-point y}, and having a given
radius rﬂ If T2 is inactive, reduces again to . Otherwise, in ,
Ya =Y, Yy = yi and ¢’ = 0. Similarly, in case of manipulation task (T3), in
, Ya =Y, Yy =Y, and ¥ = ¥j,. In case of visual task (T4), using the IBVS
approach, y4 = f in . The rate of variation of f depends on the camera linear
and angular velocities § = Jvjnt, with J the Jacobian of y w.r.t. gjy, as (see [70]
for details)

f=J5H—vp) (3.6)

“Note that, the locomotion task reduces to y; = Yowg if the current primitive is free_ CoM.

5This approach avoids the generation of unnatural motions of the humanoid. In fact, by
considering the reaching task always active, the robot will try to extend its arm towards the
set-point, especially when the initial error is large. This is also likely to push some joints close to
their limit, thus making motion generation more difficult. Generation of smoother reaching motions
is out of the scope of this chapter, although this can be easily accounted in the proposed framework
by involving the strategy that we proposed in [69].



20 3. Whole-body motion planning

where J; = J¢(f,Z) is the interaction matrix [7I]. Expressing (3.6]) in terms of
joint velocities

f=JpJvp — Jrip

yields that in , Yy =Jsyp and J4 = J¢J. Furthermore, y7 = 0 to drive the
feature to the center of the image plane.

The choice of the null-space vector vg in (3.453.5)) is arbitrary. A possible choice
consists in setting

Vo = Urand (37)

where v;,14 is a bounded-norm randomly generated n-vector. This option allows to
further explore the space of possible solutions, exploiting the humanoid kinematic
redundancy. Another option consists in setting

vo = —nVaq,, H(gn) (3.8)

where 7 is a positive stepsize and H(qy,) is a cost function that may be chosen, for
example, so as to maximize the available joint range.

Configurations generated via integration of are continuously checked for
collisions (requirement R1), and for position and velocity joint limits (requirement
R2). In view of the use of CoM movement primitives, equilibrium (requirement
R3) is guaranteed by construction except for the free CoM primitive, for which
static equilibrium is explicitly checked. In case of visual task (T4), occlusion of the
moving point P is checked as well. If a violation occurs, the current execution of the
motion generator is interrupted, and a failure is returned to the planner. Otherwise,
integration proceeds up to txy1. In this case, a feasible whole-body motion that
complies with the assigned task over [tg,tx+1] is obtained, and can be returned to
the planner.

3.2.2 Planner overview

The proposed planner, whose pseudocode is given in Algorithm [I] uses a RRT-like
strategy to build a tree T in configuration space. In 7, a vertex v = (g, ucom)
consists of a configuration g of the humanoid associated to a certain time instant ¢,
and a CoM primitive wcon through which it has been generated; an edge represents
a feasible (in the sense of requirements R1-R3 of Sect. whole-body motion
joining two adjacent vertexes. Each edge realizes a certain CoM movement primitive
of the catalogue U, and (for T3-T4) a portion of the assigned task. At the beginning,
T is rooted at vertex vip; containing the robot initial configuration g;,;.

The generic iteration of the planner starts by randomly sampling a point p,,,q
in the workspace (for T1-T2), on the trajectory y3, (for T3), or on the trajectory
yp (for T4). Then, the planner assigns to each vertex v in 7 a probability that is
inversely proportional to an appropriately defined distance between the contained
configuration q and p,,,4- To compute the distance between a configuration g and
a point p, the planner makes use of a metric y(gq,p) that is specifically defined
according to the assigned task. In particular, v(q,p) is defined as the distance
between the ground projection of p and that of the robot CoM position at g (for
T1-T3), or as the distance between p and the camera principal axis when the robot



3.2 Basic whole-body planner 21

Algorithm 1: Basic Whole-Body Planner
Vini ¢ (Gini, 0);
AddVertex (T, vini);
1+ 0;
repeat
Drana RandomSample();
Unear < NearestVertex(T, Prand);
ucom RandomPrimitive(U, vpear);
TromGnow —MotionGenerator(q, ea,, WCoM);
if @roarlnow 7 0 then
Unew < (qnew7 uCoM);
Add(T, GrearGnews Unew);
141+ 1;
until SolutionFound() or i = iyax;

© 00 NS AW N e

=
= o

= e
[SUI ]

is in q (for T4). The probability distribution resulting from this procedure is used
to randomly choose a vertex vpear of T for a tree expansion attempt.

Once Vnear = (Qpears Uteny), With associated time instant ¢, has been identified,
a CoM movement primitive wcon, with duration Ty, is randomly selected from the
currently admissible subset of U; as explained in Sect. this subset depends on
Qrear and, in particular, on the primitive ugy; through which it has been generated.

At this point, the motion generator (see Sect. is called in order to compute
a whole-body motion q,.,,q,.., that realizes the reference CoM and swing foot
trajectories specified by ucom, and complies with the assigned task. If motion
generation is successful, the planner constructs a new vertex tnew = (@pews WCoM),
where @, is the final configuration of ., @pew, With associated time instant ¢+ 7.
The new vertex vpew is added to the tree, together with the edge §, o0 Tnew-

Planning terminates when q,., completes the assigned task or a maximum
number of iterations ¢max is reached. In order for g, to complete the assigned task,
it must be such that the midpoint between the feet is inside the desired region, i.e.,
|k(gnew) — YnIl < 73 (for T1), the chosen hand reached the desired set-point, i.e.,
k(quew) = Y5 (for T2), its associated time instant coincides with tg, (for T3—T4)ﬂ
In positive case, the sequence of edges joining viy; t0 vVpew constitutes the whole-body
motion g(t), t € [tini, tan], representing the solution to the planning problem.

3.2.3 Planning experiments

We implemented the proposed planner as a C++ plugin for the V-REP simulator,
and tested it with the NAO robot, a 58 cm tall humanoid robot with 23 degrees of
freedom by SoftBank Robotics. All simulations have been performed on an Intel
Core i7 running at 2.7 GHz. We consider four scenarios (see Fig. in which the
robot is assigned a different task (T1-T4). The planner is provided with a catalogue
of primitives U defined as in , and imax is set to 1000.

In cases of tasks T3-T4, when the time instant associated to Qe coincides with tgn, by
construction, the sequence of edges joining vini t0 vnew constitutes a configuration space trajectory
along which the assigned task is continuously satisfied, from tini to tan. Such trajectory will then
represent a solution for the planning problem.



22 3. Whole-body motion planning

Figure 3.3. The four considered scenarios.

In the first scenario (Fig. upper left), the robot is assigned a navigation
task (T1): it must bring the midpoint between the feet inside the yellow circular
region, whose radius is set to r3 = 0.15 m. In order to complete the task, the robot
must pass through a low passage in the wall separating its initial location and the
destination. The solution shown in Fig. [3.4] leads the robot towards the wall by
some forward dynamic steps (snapshot 2), and then switches to a slightly crouched
gait (snapshot 3). Once the robot clears the low passage, erect posture is recovered
(snapshot 4) and the destination is reached using again some forward dynamic steps
(snapshots 5 and 6).

In the second scenario (Fig. upper right), the robot is assigned a reaching
task (T2): it must grasp the red ball located on a low table. With the solution shown
in Fig. the robot begins by taking some diagonal dynamic steps (snapshots 2
and 3) to avoid collisions with a table and a chair. Then, it moves towards the red
ball by forward dynamic steps (snapshot 4). Once the robot is sufficiently close to
the ball, it first executes a crouching movement (snapshot 5), and finally reaches the
ball using the free CoM primitive (snapshot 6).

In the third scenario (Fig. bottom left), the robot is assigned a manipulation
task (T3): it must open a drawer and grasp an object (a ball) located inside it.
Such particular task is specified through a desired trajectory for the right hand
of the robot, having a total duration of 13 s, consisting in three subtrajectories
describing the elementary actions of reaching the knob, opening the drawer, and



3.2 Basic whole-body planner 23

Figure 3.4. Scenario 1: snapshots from a solution.

Figure 3.5. Scenario 2: snapshots from a solution.

grasping the object, respectivelyﬂ A possible solution computed by the proposed
planner for this scenario is shown in Fig. 3.6 At the beginning, the robot takes few
dynamic steps towards the drawer, and then stops stepping to reach the knob using
the free CoM primitive (snapshot 2). Then, the robot performs some backward
dynamic steps (snapshot 3), before completing the opening subtrajectory using again
the free CoM primitive (snapshot 4). The last portion of the task is completed
performing two forward steps and the free CoM primitive (snapshots 5 and 6), while
correctly avoiding collisions with the drawer.

In the fourth scenario (Fig. bottom right), the robot is assigned a visual
task (T4): it must track the red ball rigidly attached on a moving quadrotor. The
trajectory of the target is known and has duration 18 s. Such trajectory brings the
target behind a wall that occludes the target to the robot at its initial location; then,
in order to fulfil the task, the robot must perform an appropriate sequence of steps.
With the solution shown in Fig. the robot takes some diagonal dynamic steps
in the left direction, while keeping the ball at the center of the image plane. Once
the robot reaches a location from where the last portion of the target trajectory is
no more occluded by the wall, it performs a stopping step (snapshot 5) and tracks
the target until the end using the free CoM primitive (snapshot 6).

Since the planner is randomized, to evaluate its performance we have performed
a set of 10 simulations on each scenario. Table [3.1] collects some average performance
data for each scenario. In particular, the table indicates the number of vertexes
in the tree produced by the planner, the time needed to compute a solution, and

"In general, such trajectory may be the output of a task planner.



24 3. Whole-body motion planning

Figure 3.6. Scenario 3: snapshots from a solution.

Figure 3.7. Scenario 4: snapshots from a solution.

the duration of the computed whole-body motion. Note that, when considering
manipulation or visual tasks, the planner generates smaller trees, i.e., containing
fewer vertexes, w.r.t. the cases in which navigation or reaching tasks are considered.
This is due to the fact that, for tasks T3-T4, the configurations generated by the
motion generator (see Sect. belong to the task-constrained configuration space,
i.e., the submanifold of C containing all the configurations that satisfy the task at a
particular sample. Such additional requirement severely restricts the configuration
space region where a solution can be found. A detailed analysis of the effect of
including a task-constraint in the planning stage will be given in Sect. [5.1]
Although the presented motion planner proved to be able in computing sensible
solutions for a variety of tasks in a reasonable time, we should acknowledge that,
especially in larger environments or in the presence of more complex tasks, the
computational complexity of the method might increase, ultimately forcing the robot

scenario tree size planning motion
(# vertexes) | time (s) | duration (s)
1 98 34.39 23.18
2 93 24.55 22.75
3 36 25.19 13
4 50 26.64 13

Table 3.1. Planner performance data



3.3 Anytime whole-body planning framework 25

to wait for a planning solution before starting the motion. We address this situation
in the next section.

3.3 Anytime whole-body planning framework

In this section, we address the motion planning problem described in Sect. [3.1.2under
the additional constraint of limited time for planning. In particular, a humanoid
robot is assigned a reaching task (T2) in a known environment, and must start
moving after a given time budget AT p, i.e., it is allowed to plan an initial (partial)
solution within AT p.

A solution for this problem consists of a configuration space trajectory q(t),
t € [tini, tan), that satisfies the requirements R1-R4, constituted by a succession of
on-line planned partial solutions.

Sect. [3-3.1] describes the proposed scheme to solve the given problem. At the
core of such scheme there is a fast planner, presented in Sect. consisting in
an adaptation of the basic planner described in the previous section. Sect. [3.33]
discusses how the proposed scheme can easily handle deadlock situations. Simulation
results are discussed in Sect. [3.3.4]

3.3.1 Framework overview

To address the described problem, we propose a framework that works in an anytime
fashion by performing planning and execution intervals in parallel: a previously
planned whole-body motion is executed while simultaneously planning a new one
for the subsequent execution interval.

The objective of the generic planning interval is to produce a whole-body mo-
tion that starts at the configuration that the robot will reach at the end of the
simultaneously running execution interval. Such motion must be planned before
the termination of the latter, in such a way to guarantee the continuity of robot
motion, avoiding the need to stop for planning future motions. Thus, the duration
of the simultaneously executed whole-body motion limits the time budget within
which the future motion can be computed, reflecting in a limited workspace region
for planning. Henceforth we will refer to such region as planning zone.

Figure 3.8. An example of planning zone used in our anytime planning framework.



26 3. Whole-body motion planning

At the generic planning interval, let g be the final configuration of the simulta-
neously executed whole-body motion, and denote by P(g) the planning zone, whose
location and geometry depend on the configuration q. To illustrate the proposed
method, we will assume that the planning zone consists of a sphere of a given radius
r (as depicted in Fig. centered at the CoM position pc,; of the humanoid at
the configuration g. In our framework, a planning interval consists in an invocation
of a specifically designed Local Motion Planner (LMP), described in the next section,
that is in charge of producing, within the corresponding time budget, a whole-body
motion that starts at q, and is feasible within P(q). Hereafter, we will refer to the
whole-body motion produced during a certain planning interval as local plan, as its
feasibility (in the sense of requirements R1-R3 described in Sect. is guaranteed
only within a fixed planning zone.

The anytime planning/replanning scheme at the core of our framework is shown
in Algorithm [2] It starts by invoking the LMP that is in charge of producing, within
a predefined time budget AT p, the first local plan qo(t), t € [tg = tini + ATp, t; =
to + AT g ), with ATg o its duration, that starts at the initial robot configuration
Qini, and is guaranteed to be feasible in the first planning zone Py = P(g;y;)-

Once such plan is computed, an iterative phase is entered. In this phase, each
iteration consists of a concurrent run of an execution and planning interval. In
particular, at the i-th generic iteration, our anytime framework simultaneously:

« executes the current local plan q;_(t), t € [ti—1,t; = ti-1 + ATg 1], with
ATg ;1 its duration, computed at the (i — 1)-th planning interval;

o plans the next local plan g;(t), t € [ti,tit1 = t; + ATg,;], with ATg; its
duration, to be realized in the (i + 1)-th execution interval.

In order to plan the next local plan, the LMP is invoked. It is provided with the final
configuration g; = q;_;(t;) of the current local plan, the planning zone P; = P(g;),
and the time budget ATp; = AT g ;1. This invocation of the LMP, that will last
at most AT p;, produces a local plan that starts at the final configuration g; = q(t;)
of the current local plan, and is feasible within the planning zone P;.

Note the following points.

o The duration ATf; of the local plan computed at the generic i-th iteration is
not assigned, as it is autonomously determined by the LMP.

e While the i-th execution and planning intervals will start at the same time
instant, their duration may be in general different. In fact, while the duration
of the i-th execution interval will be exactly ATg;_; as determined by the
duration of the local plan found at the (i — 1)-th planning interval, the i-th
(simultaneously running) planning interval will terminate as soon as the next
local plan is found by the LMP, that may happen before the provided time
budget ATp; runs out.

This iterative procedure terminates when the LMP computes a local plan such
that the desired set-point is eventually reached, i.e., k(q;) = yi with k(g;) the
end-effector position at the final configuration g; of the next local plan. In this case,
the latter represents the last whole-body motion to be executed.



3.3 Anytime whole-body planning framework 27

Algorithm 2: Anytime Planning/Replanning Scheme

qo(t), t € [to, t1] < LMP(q;,;, Po, ATp);
q; < q(t1);

1+ 1;

while k(g;)#y}, do

ATp; < ATg;_1;

simultaneously do:

e Execute(q;_,(t), t € [ti—1,t]);

® q;(t), t € [ti,tiy1] < LMP(q;, Pi, ATp;);
9 11+ 1;

10 q; < q(ty);

11 end

12 Execute(q;_1(t), t € [ti—1,:]);

<3< NI VI

® =

3.3.2 Local motion planner

In this section, we present the local motion planner (LMP) that is invoked at each
planning interval with the aim of computing a next local plan.

LMP consists in an adaptation of the basic planner presented in Sect. that
is suitable for on-line applications. In order to reduce the computational complexity
of the construction of tree 7, LMP postpones the joint motion generation, and the
related collision checksﬁ until they are strictly needed.

The proposed LMP (see Procedure works in two sequential stages. The
first stage, called lazy stage, quickly creates a new tree T populated by vertexes
containing partial configurations g = (gcon, #)7 where the sub-vector of joint angles
Qjn is unspecified, as well as the whole-body motions joining adjacent vertexes. The
sub-vector g in each vertex is obtained exploiting the concept of CoM movement
primitive: the pose displacement of the CoM frame, given its starting pose and a
certain primitive, is directly provided by the primitive itself. Consequently, collision
checks are not performed along edges, but only at vertex level using a simplified
occupancy volume for the robot. The second stage, called validation stage, generates
feasible whole-body motions, along which collision checks are performed using
the actual occupancy volume for the robot, only for selected branches of 7 that
potentially allow to find a local plan.

The two stages are described in details in the following subsections. The time
budget AT p is split into two intervals, AT%; and AT%, dedicated to the lazy and
validation stages, respectively. When the time budget AT% assigned to the lazy
stage runs out, expansion of the tree is stopped. Instead, if the time budget AT%
assigned to the validation stage runs out before it returns a local plan, a failure is
returnedﬂ For sake of illustration, in the following, we will omit explicit discussion
of the interruption mechanism.

8Collision check represents the most expensive operation in sampling-based planning [72} [73)]

9In case LMP returns a failure, a local plan for the next execution interval does not exist.
Although we do not explicitly consider this case in the presented framework, a possible solution
consists in allowing the humanoid to perform a safe stopping motion (for example using the technique
described in Sect. [7.8.3)), and then to invoke again LMP with a sufficiently large time budget.



28 3. Whole-body motion planning

Procedure 1: LMP(q, P, ATp)

1 (AT%, ATY) « SplitTimeBudget(AT p);

2 T « LazyStage(q, P, ATS);

3 q(t),t € [t,t + ATg] + ValidationStage(T, P, AT});
4 return q(t),t € [t,t + ATg];

Lazy stage

The lazy stage, whose pseudocode is given in Procedure [2| roots the tree T at
v = (@, ucom), where g is the final configuration on the current plan, and wcey is
the CoM primitive through which it has been generated[T_UL

At the generic iteration, similarly to the basic planner, a random sample point
Prand 1S picked in the workspace. Then, its nearest vertex vnear = ((gicay, 0)7, udsd))
is selected using the distance metric (for T2) described in Sect. from the
allowed set of vertexes V4 (described in detail below). Once vpe,r is identified, a
CoM primitive uconm is randomly chosen from the admissible subset of U at vneaﬂ

Let t be the time instant associated to the partial configuration (g2, #)7, and

T}, be the duration of the chosen primitive wcom. The reference pose ggoy, of the

CoM frame at g1 = tg + T}, attained by applying ucom from gy, is computed
using . Then, the generated partial configuration (g%, )7 is checked for
collisions with workspace obstacles (requirement R1) within the planning zone P
using a simplified occupancy volume S(ggiy,) for the robot.

In general, different choices for such simplified occupancy volume are possible.

The simplest option consists in choosing S(ggoy;) as a cylindrical volume having

centroid at the position components of g¢iy;. Another option consists in checking
collisions only at footstep level by considering the volume occupied by the (alter-
nating) support foot at txy1. The reference pose q%fM of the support foot at t541
can be computed, analogously to , using its pose at ¢ (this information may be
stored within vertex vnear at the time of its creation) and the reference swing foot
trajectory specified by wcom.

If the volume S(g2y,) is collision-free, a new vertex vnew = ((g22%;, 0)7, wcom)
is constructed and added to 7 as a child of vpear. Then, a last operation is performed
before starting a new iteration. It consists in updating the subset V4 of vertexes of
T that are allowed to be selected for expansion attempts. In particular, V4 contains
all the vertexes in 7 except those whose associated partial configuration (gegy, @)7
is such that one of the following two conditions is satisfied:

(7) the simplified occupancy volume S(gcqy) is not completely contained in the
planning zone P;

(73) the robot CoM is inside a spherical region centered at the desired set-point
Yp, and having a given radius 7}, where the reaching task can be activated

(see Sect. [3.2.1)).

10This information can be retrieved from the tree created at the previous invocation of LMP.
1n this stage, selection of free CoM is not allowed as it does not provide any reference displace-
ment for the CoM frame.




3.3 Anytime whole-body planning framework 29

Procedure 2: LazyStage(q, P, AT%)

U4 ((_17 aCoM);

AddVertex(T, 0);

Va + {v};

while TimeAvailable(AT5) do

Prana <RandomSample();

Unear < NearestVertex(Va, Prana);

ucoMm RandomPrimitive(U, vpear);

g X < ComputeCoMDisplacement(ggeay, wcom);

if CollisionFree(S(ggoy;)) then
Unew < ((ql(]j‘f)vﬁ/[u (Z))Tv UCOM);
AddVertex(T, Unears Unew);
Update(Va, Unew);

© 00 N O oAk W N

o e
N = O

end
return 7;

=
[

Accordingly, vpeyw is added to V4 if it does not satisfy neither (7) or (i7). By allowing
the selection of vertexes only in V4, at the end of the lazy stage, each branch of T
will contain, by construction, at most only one vertex satisfying (i) or (i7), and such
vertex (if any) will be the last (i.e., the leaf) along the branch. Roughly speaking, a
branch whose ending vertex satisfies (i) or (i¢) potentially provides a local plan that
leads the robot to, respectively, approach the boundary of the current planning zone
(so as to continue task-oriented exploration of the workspace), or suffieciently close
to the desired set-point (so as to eventually complete the assigned task).

Validation stage

At the end of the lazy stage, a subset of the branches in T provide a set of candidate
local plans. In particular, a branch of T provides a candidate local plan if its ending
vertex 0 satisfies one of the conditions (7)-(iz) described above. If ¢ satisfies (i), the
candidate local plan consists of the portion of the branch leading from the root v
to the parent of ©. On the other hand, if ¢ satisfies (i7), the candidate local plan
consists of the entire branch leading from the root v to 0.

The first operation of the validation stage, whose pseudocode is given in Procedure
consists in selecting the best candidate local plan among those resulting from 7.
With the aim of further approaching the desired set-point, and possibly completing
the task, the best candidate local plan is chosen as the one whose ending vertex
contains the closest configuration to the desired set-point y7 in terms of the distance
metric. Let 7* = {vg = v,v1,...,vK} be the selected candidate local plan, composed
by K + 1 vertexes. A validation attempt, that consists in generating a feasible
whole-body motion between each pair of consecutive vertexes in 7*, starts. At
the k-th iteration, the primitive u’éOM that produced the partial configuration
(qIéOM, M7 during the lazy stage is extracted from vy, and the (full) configuration
qj_; is extracted from its parent vi_;. Then, the motion generator introduced
in Sect. is invoked for computing a whole-body motion g;,_;q;, that realizes
the reference CoM and swing foot trajectories specified by u’éoM, and satisfies
requirements R1-R3. To this purpose, during motion generation, collision checking



30 3. Whole-body motion planning

Procedure 3: ValidationStage(7, P, ATY%)
while TimeAvailable(AT}) do

1
2 m* < BestCandidatePlan(7);
3 if 7* = () then
4 ‘ return 0;
5 k « 0;
6 repeat
7 k+—k+1;
8 5,195, <MotionGenerator(q,_1, U \);
9 if §,_1q; # 0 then
10 AddEdge(T,q,_14%);
11 UpdateVertex(T, vk, q;);
12 if k = K then
13 q(t),t € [t, tx] < RetrieveMotion (v, vx );
14 return q(t),t € [t,tx];
15 until g,_q;, = 0;
16 RemoveSubtree(T, vy);
17 end

18 return 0;

is performed on each produced configuration g using the actual occupancy volume
R(q) for the robot. If motion generation is successful, the edge q,_;q; is added in
the tree T to join vertexes vg_1 and vy, and vertex v in 7 is updated with the full
configuration q; = (q’éOM7 qu)T resulting at the end of the generated whole-body
motion. Otherwise, a feasible whole-body motion joining vertex vy to its parent
does not exist, and the subtree of T rooted at vy (that at this point represents a
disconnected component) is removed; the best candidate local plan 7* resulting from
the updated tree T is selected, and a new validation attempt starts.

When a feasible whole-body motion between each pair of consecutive vertexes in
7* has been generated, the sequence of edges joining v to vk in 7 constitutes the
configuration space trajectory q(t), t € [t,tx], that is returned by the LMP as the
produced local plan.

For sake of illustration, in Procedure [3] we omitted to explicitly show two simple
operations aimed at, respectively, reusing portions of the tree already generated in
previous (failed) validation attempts, and producing a final local plan that completes
the assigned task.

The first operation takes place at the beginning of the generic k-th iteration of a
validation attempt. It consists in checking if vertex v, contains a full configuration
where also the sub-vector of joint angles is specified. In this case, a feasible whole-
body motion between v, and its parent has already been generated by a previous
validation attempt (of a different candidate local plan), and the procedure can
directly skip to consider the next vertex vg,i in 7*.

The second operation takes place after the chosen candidate local plan has been
entirely validated. In case its ending vertex vg satisfies condition (i7), an additional
invocation of the motion generator is performed with the aim of computing a final
whole-body motion g qg, that, using the free_CoM primitive, allows to reach the
desired set-point y%. If such motion generation succeeds, the concatenation of the



3.3 Anytime whole-body planning framework 31

sequence of edges joining v to vx in T, and gxqg,, constitutes the configuration
space trajectory q(t), t € [t,tan], that is returned by the LMP as the final local
plan. Otherwise, similarly to other cases of motion generation failures, the procedure
starts a new validation attempt.

3.3.3 Deadlock management

Until now, we have considered that, at the generic LMP invocation, the planning
zone has always a fixed geometry (e.g., a sphere of a given radius), while its location
is determined by the last configuration that the humanoid will reach at the end of
the simultaneously executed local plan. Such strategy provides LMP only with local
information about the environment. In principle, consecutive invocations of LMP
might generate movements that enforce the robot to repeatedly navigate among
same regions of the workspace, leading to full-fledged deadlock situations. Such
problem can be easily eliminated by allowing LMP to keep memory of previously
considered planning zones. To this purpose, at the i-th invocation, LMP appropriately
instantiates the planning zone P; as the union of the current local one P; and all
the previously considered, i.e.,

Pi = Ui_P;. (3.9)

An illustration of this strategy is provided in Fig. [3.9

Depending on the chosen strategy for defining the planning zone, two versions of
LMP - namely, without and with memory - can be obtained. In Sect. we will
show a comparison of these two versions in a deadlock-prone scenario.

3.3.4 Planning experiments

In this section, we present simulations obtained in V-REP with our C++ implemen-
tation of the proposed anytime planning framework. The video available at the link
https://youtu.be/ECdDM-us0-k| shows the working principle of the approach and
clips of part of the simulations presented in the following.

We consider three different scenarios of increasing complexity. In all of them,
NAO is assigned a reaching task consisting in grasping with the right hand a ball

Figure 3.9. LMP with memory: at the i-the invocation, the planning zone P; (whose
boundary is shown in red) is the union of the current local one P; (blue area), centered
at the CoM position piy; (green dot) specified by the final configuration g, on the
current plan, and all the previously considered.


https://youtu.be/ECdDM-usO-k

32 3. Whole-body motion planning

Figure 3.10. Scenario 1: the robot correctly navigate a corridor including two narrow
passages using LMP without memory.

placed on a table that is outside its initial workspace. The set of CoM primitives is
defined as U = {free CoMUUZ \}.

At any LMP invocation, the provided time budget AT p is split between the lazy
and validation stages as

ATL = ATY,
ATY = ATp— ATE,

where A_Té = 3.5s. The initial time budget AT p is set to 5 s. Furthermore, the lazy
stage checks collisions using a simplified occupancy volume consisting in a cylindrical
bounding box having radius and height equal to 0.16 and 0.56, respectively.

In the first scenario (see Fig, in order to complete the task, the robot must
navigate a corridor in which two walls create two consecutive narrow passages. For
this simple scenario, we used the version without memory of LMP, i.e., at each
invocation the planning zone consists of a sphere having radius 1.25 m centered at
the CoM position of the robot at the final configuration of the current local plan.
At the beginning, a local plan allowing the robot to manage the first passage is
produced. During its execution (snapshots 2 and 3), the next local plan is computed;
this allows to correctly manage the second passage as well (snapshots 4 and 5), while
simultaneously computing the final local plan through which the robot can complete
the task (snapshot 6). For this scenario, the basic framework that we presented in
Sect. in order to find a solution, requires almost two minutes; during this time
the robot must wait, and will be allowed to start moving only once a solution is
found. The presented anytime framework eliminates such problem, and the robot
starts moving after the initial time budget AT p.

The second scenario (see Fig. contains three walls that create a dead-
end. Such situation allows to exhibit the benefit of keeping memory of previously
considered planning zones. To this end, we compare the two versions of LMP
(without and with memory). For the version without memory, the planning zone
is defined as in the previous scenario, while for the version with memory, at each



3.3 Anytime whole-body planning framework

Figure 3.11. Scenario 2: the robot gets trapped in the dead-end using LMP without
memory.

Figure 3.12. Scenario 2: the robot exits the dead-end and correctly completes the task
using LMP with memory.

invocation, LMP instantiate the planning zone as in (3.9)). Note that, in any case,
the dead-end is not entirely contained in the initial planning zone (see Fig. left).
Using the version without memory (see Fig. , the robot moves towards the
red ball until it reaches the proximity of the corner formed by two walls (snapshot



34 3. Whole-body motion planning

Figure 3.13. Scenario 3: the robot moves from one room to another and completes the
task using LMP with memory.

2); at this point LMP, in order to avoid collisions with the walls, generates a local
plan leading the robot to turn left (snapshot 3). Then, backward movements are
generated (snapshot 4), since they represent the local plan allowing the robot to
approach the goal as much as possible. Such movements bring the robot in already
visited zones of the workspace, from which LMP generates again forward movements
(snapshot 5) to approach the boundary of the current planning zone. This loop
continues, trapping the robot within the dead-end, and precluding it to fulfill the
task. The version with memory results effective (see Fig. [3.12)). As before, the
robot starts by moving towards the ball until it reaches the proximity of the wall
obstructing the passage (snapshot 2), and then turns left. Once the dead-end is
included in the planning zone, LMP produces a local plan that leads the robot
outside the closed region (snapshots 3 and 4). It is important to emphasize that this
behavior results automatically from the candidate local plan chosen by the validation
stage. Sequences of dynamic steps are then generated (snapshot 5), allowing the
robot to approach the goal and finally complete the task (snapshot 6).

In the third scenario (see Fig. , in order to complete the task, the robot must
move from one room to another, while avoiding collisions with different obstacles
(e.g., walls, chairs, tables). Using the version with memory of LMP, even in this
cluttered scenario, the proposed anytime planning framework proved to be effective
in generating feasible whole-body motions.

Table collects some performance data observed in each scenarid'? The three
planning experiments required three, eight and five planning intervals (i.e., LMP

12For the second scenario, we include only data observed using the version with memory of LMP,
as the version without memory revealed unsuccessful.



3.4 Sensor-based whole-body planning framework 35

. . time # candidate motion
seenatio | budget (s) | local plans | duration (s)
0 5 3 29.1
1 1 29.1 10 274
2 27.4 31 22.6
0 5 41 26.9
1 26.9 3 28.8
2 28.8 9 20.7
5 3 20.7 2 75.0
4 75.0 17 21.0
) 21.0 18 31.5
6 31.5 17 26.4
7 26.4 12 28.3
0 5 7 27.0
1 27.0 3 26.4
3 2 26.4 9 32.7
3 32.7 14 26.4
4 26.4 11 19.8

Table 3.2. Planner performance data.

invocations), respectively. For each invocation, the table reports: the assigned time
budget, the number of candidate plans resulting at the end of the lazy stage, and
the duration of the generated local plan.

3.4 Sensor-based whole-body planning framework

In this section, we address the motion planning problem described in Sect.
removing the assumption of known environment.

In particular, a humanoid robot is assigned a reaching task (T2) in an unknown
environment. We assume that the robot is equipped with a head-mounted depth
camera through which it can continuously acquire information about its surroundings
while moving. Furthermore, we assume that the robot can perfectly localize itself
with respect to a fixed inertial frame using an external module[ﬂ

A solution for this problem consists of a configuration space trajectory q(t),
t € [tini, tan), that satisfies the requirements R1-R4, constituted by a succession of
partial solutions that are planned on-line based on the available information about
the environment.

Sect. proposes a sensor-based scheme to address the given problem, while
Sects. [3.4.2] [3.4.3] [3.4.4] describe in detail the involved modules. Sect. presents
simulations showing the effectiveness of the proposed approach for generating feasible
whole-body motions allowing the humanoid to fulfil a reaching task in an unknown
environment.

3Removing such assumption is part of our future work.



36 3. Whole-body motion planning

3.4.1 Framework overview

To address the described problem, we propose a framework constituted by three
cooperating modules, namely the mapping, planning, and execution modules, that
are in charge of, respectively, incrementally build an environment map M, computing
feasible whole-body motions g(t), and sending commands to the humanoid actuators.
At the beginning, the mapping module generates a 3D map M (t;,i) according
to information that the robot can acquire at its initial configuration gq;,;. Then,
an initial plan, i.e., a whole-body motion q(t) that is feasible within M (tn;), is
computed by the planning module. Once such initial plan is computed, the robot
starts performing it, according to the commands sent by the execution module.
Hereafter, we refer to the time instant in which the robot starts moving as tg.
Then, the three modules start to run in parallel:

e The mapping module continuously updates the environment map M according
to the newly acquired information.

o The execution module realizes the planned whole-body motion q(t), with
t € [to,t] and t its final time instant. Henceforth, we will refer to such
previously planned whole-body motion as the current plan. At the generic
time instant t., the robot, under the action of the execution module, will be
in the configuration q(t.) specified by the current plan. Consequently, the
current plan will be composed by two portions: the already executed part in
the time interval [tg, t.], and the remaining part that defines the future motion

of the robot in the time interval (¢, t].

e The planning module repeatedly extends the current plan. To this end, it
works iteratively. At each iteration, the produced extension of the current plan
consists in a whole-body motion that starts at its final configuration g = q(t),
and is feasible according to the currently available information contained in the
map M. To extend the current plan before the robot completes the previously
planned motion, each iteration of the planning module must complete within
the remaining time on the current plan at most.

In the following we describe separately the three modules.

3.4.2 Mapping module

The mapping module is in charge of continuously integrating information gathered
by the depth camera into the environment map M. To take full advantage of the
humanoid capabilities in scenarios containing complex shaped obstacles, we maintain
the map M in the form of a 3D occupancy grid, which models both free and occupied
space, and, at the same time, implicitly models unknown space, just by missing
information.

In our framework, the map M is kept as a volumetric octree-based map, called
OctoMap, whose characteristics perfectly match the needs described above. This rep-
resentation compactly models free and occupied areas by voxels, each one containing



3.4 Sensor-based whole-body planning framework 37

an occupancy probability that can be dynamically updatedE
At the initial time instant tin;, the map M (¢n;) is

M(tini) = R(qini) U Mo(tini) (3.10)

where R(q;,;) represents the free volume that the robot body occupies (computed
on the basis of proprioceptive sensors), and My(ini) is the initial knowledge at the
configuration gqy,;, that may consist of a limited exogenous knowledge of the starting
location, further enlarged by collecting information through, e.g., a pan-tilt motion
performed on the spot.

The map is then updated while the robot moves in the unknown environment.
At each reading, the camera provides a depth image in which each pixel contains the
distance between the 3D point in the Cartesian space to which the pixel refers to, and
the camera image plane. Such depth image indicates a beam of rays originating in
the camera origin and ending at the observed Cartesian points. Given the coordinate
zy of the camera far clipping plane on the principal axis, if the depth of a certain
pixel is less than z;, the endpoint of the corresponding ray is on the surface of an
obstacle. In this case, the voxel corresponding to the endpoint is updated in M as
occupied, and all the other voxels along the ray are updated as free; otherwise, all
the voxels along the whole ray are updated as free.

3.4.3 Planning module

The planning module generates the whole-body motions that the robot performs
through the execution module. As already mentioned, this module firstly generates
an initial plan within the initial environment map, and then enters an iterative phase
where extensions of the current plan are computed within updated versions of the
map provided by the mapping module described in Sect.

To this end, the planning module works by repeatedly calling a local motion
planner (LMP) that consists in an adaptation, for the case of unknown environment,
of that presented in Sect. The only difference is that, in the case of unknown
environment, the LMP is provided with an environment map (in the form discussed
in Sect. that replaces the planning zone used in Sect. Each invocation of
the LMP is in charge of producing a whole-body motion, henceforth referred to as a
local plan, that starts at the final configuration q of the current plan q(t), t € [to, ],
provides an extension of it for further exploration aimed at completing the task, and
is feasible within the currently available map. Such local plan must be computed
before the time instant ¢, in such a way the current plan can be extended before
the robot reaches its final configuration q. This guarantees that the robot moves
continuously, without the need to stop for planning its future motions. Thus, each
invocation of the LMP is allowed to run for a certain time budget that is limited by
the remaining time on the current plan.

The pseudocode of the planning module is given in Algorithm [3] It starts by
invoking LMP that is in charge of producing, within a predefined time budget AT p,
the first local plan q(t), t € [to = tini + ATp,t1 = to + AT gy, with ATgyq its

More details about this powerful mapping framework can be found in [74], while the software is
available as an open-source C++ library at http://octomap.github.iol


http://octomap.github.io

38 3. Whole-body motion planning

Algorithm 3: Planning Module

q(t)v te [t07t1] <;I-‘N[P(qini’ EP? Mini);
SleepFor(apATE o);

q; < q(t1);

1+ 1;

while £(g,) %y}, do

ATp; < ComputeTimeBudget(t., t;) ;
Mp’i — M(tc);

q;(t), t € [t;, t;11] < LMP(g,, ATp;, Mp,);
q(t), t € [to, ti+1] < Concatenate(q(t), g, (t));
141+ 1;

q; < q(t:);

end

© 00 N O AW N

=
= o

fury
N

duration, that starts at the initial robot configuration g;,;, and is guaranteed to be
feasible in the initial map M(tiyi). Once such plan is computed, the robot starts
executing it and the planning module waits for a portion apAT g o of its duration
before entering the iterative phase. The rationale beyond this choice is to avoid an
immediate replanning on the same map used to compute the initial plan. In fact,
since at this point the robot is not moved yet, the mapping module has not gathered
new information about the environment, and replanning would not provide any plan
extension.

At the i-th iteration, the planning module invokes LMP for computing an exten-
sion of the current plan g(t), t € [to,t;]. Let t. be the time instant at the beginning
of the ¢-th iteration of the planning module; at the corresponding invocation, LMP
is provided with:

o The final configuration q; = q(¢;) of the current plan.

 The planning map Mp;, that coincides with the currently available map M(t.).
The planning map Mp; is then fixed during the i-th replanning, while the
map M is continuously updated by the mapping module.

o The time budget ATp;, that is computed as a portion of the remaining time
on the current plan
ATp; = ap(ti —t.) (3.11)

where ap € (0,1) is a design parameter. Note that, the larger (smaller) ap,
the less (more) frequent the replanning, the more (less) enlarged the planning
map Mp; w.r.t. the previous one Mp;_;. Choosing a large ap potentially
allows to find longer local plans. On the other hand, a small ap reflects in a
more reactive behavior.

This invocation of LMP, that will last at most AT p;, produces a local plan g,(t), t €
[ti,tiv1 = ti + AT'g;], with ATg; its duration, that starts at the final configuration
q; = q(t;) of the current plan q(t), t € [to,t;], and is feasible within the map
Mp;. Note that the duration ATEg; of the computed local plan is not assigned,
as it is autonomously determined by LMP. The current plan is then extended by
concatenating the computed local plan to it.



3.4 Sensor-based whole-body planning framework 39

This iterative procedure terminates when LMP computes a local plan such that
the desired set-point is eventually reached, i.e., k(q;) =y} with k(g;) the end-effector
position at the last configuration g; of the extended plan. In this case, the planning
module stops and the execution module continues until the humanoid completes the
task.

3.4.4 Execution module

This module is in charge of sending the joint commands to the robot low level
controllers. At each time instant, such commands are all taken from the current plan
q(t), t € [to,t], except for the robot yaw neck joint that is used to directly control
the pan angle of the depth camera, rigidly attached to the head. With the aim of
favoring the mapping module in enlarging the environment map in the area where
the extension of the current plan has to be computed through the planning module,
the yaw neck joint velocity ¢, is computed on-line so as to make the robot looking
in the direction of the location that it will reach at the end of the current plan.

At the generic time instant, the robot yaw neck joint velocity ¢, is computed

using a simple proportional control
. d
dy = Ky(dy — ay) (3.12)

where q§,l and gy are, respectively, the desired and current yaw joint positions. Given
the final configuration g = g(t) on the current plan, and the configuration g specified
for the current time instant, qg‘,l is defined as the angle between the robot sagittal
axis at g (that can be readily identified through the subvector gcgy\p), and the line
joining the origins of the CoM frames at g and q. K, is a positive scalar gain.
Note that, when the current plan is extended, its final configuration g changes, and

consequently also qf,l .

3.4.5 Planning experiments

In this section, we present simulations obtained in V-REP with our C++ imple-
mentation of the proposed sensor-based planning framework. We consider three
different scenarios of increasing complexity. In all of them, NAO is assigned a
reaching task consisting in grasping with the right hand a ball placed on a table
that is outside its initial workspace. The robot is equipped with a Kinect camera
that provides 320x240 depth images. To maintain the 3D environment map, we
use an Octomap with a resolution of 5 cm. The set of CoM primitives is defined as
U = {free CoMUUZ \;}.

At any LMP invocation, the provided time budget AT p is split between the lazy
and validation stages as

ATE = apupATe,
ATY = ATp— ATE,

where agpp is set to 0.6. The parameter ap in (3.11) is set to 0.5. Furthermore,
The lazy stage checks collisions at footsteps level using the occupancy volume of the
robot feet.



40 3. Whole-body motion planning

Figure 3.14. Scenario 1: the robot completes the task after navigating a cluttered
environment.

At the beginning, the map M(i,i) consists of an initial knowledge provided in
advance within a cylindrical area of radius 0.5 m and height 1.2 m centered at pié‘éM,
and further knowledge acquired through an initial pan-tilt motion, whose duration
is 18 s. After this phase, the planning module starts to compute an initial local plan
within this map through the first invocation of LMP, with a predefined time budget
of ATp =15 s.

In the first scenario (see Fig. , different kinds of obstacles (chairs, tables
and sofas) obstruct the path between the robot at its initial configuration, at which
only portions of few obstacles can be seen, and the destination. Once the initial
local plan is available, the robot starts to perform it through the execution module,
while the planning module computes future motions. At each invocation of LMP,
previously unknown obstacles are taken into account, and collisions are correctly
avoided. The mapping-planning-execution cycle is repeated until the robot grasps
the red ball (last snapshot). The overall robot motion (constituted by a sequence of
dynamic steps and concluded by the free CoM primitive to finally grasp the ball)
results fluid, without the need for the robot to stop in any case. This proves the
on-line performances of the proposed framework. Furthermore, we emphasize the
capability of our LMP in managing narrow passages. In fact, taking into account
the 3D structure of both the environment and the robot, LMP is able to produce
motions allowing the robot to correctly navigate the strict free space between the
sofa and the chair (third snapshot). Note that, due to the complex shape of the
chair, approaches that involve bounding boxes (e.g., [66]) or 2D projections of swept
volumes (e.g., [67]) to check collisions would fail to find feasible motions in this case.

In the second scenario (see Fig. , a wall totally occludes the red ball to the
robot at its initial configuration. While executing the first local plan, the robot



3.4 Sensor-based whole-body planning framework 41

Figure 3.15. Scenario 2: the robot reaches the red ball after turning the wall that initially
occluded it.

moves towards the frontier of the initial map. While turning the wall (third and
fourth snapshots), the mapping module enlarges the map with newly discovered
information, and the planning module accordingly generates task-oriented motions.
Note that, in this case the mapping module effectively exploits the ability of the
robot to look in the direction of the current plan end, taking full advantage of the
strategy described in Sect. Again, the overall motion of the robot results fluid.

In the third scenario (see Fig. , we show the capability of the proposed
framework of recovering from dead-ends. At its initial configuration (first snapshot),
the robot cannot see the wall obstructing the straight path to the destination, as it
is outside the initial field of view of the camera. Among all the candidate local plans
bringing towards unexplored areas, LMP chooses, and validates, the one that allows
the robot to approach as much as possible the destination. This local plan leads
the robot to proceed ahead the wall, entering a dead-end (second snapshot), that
is incrementally discovered through the mapping module while walking. Once the
dead-end is included in the new map, LMP generates an extension of the current plan
that allows the robot to exit the closed space and proceed towards the free boundary
of the map (third and fourth snapshots). We emphasize that such effective behaviour
is the result of the LMP intrinsic bias towards unexplored areas, which is due to the
strategy used for selecting the best candidate local plan among those resulting at
the end of the lazy stage (see Sect. [3.3.2). Once the robot is outside the dead-end,
it proceeds towards the destination, appropriately planning its motions according to
continuously acquired information. Also in this case, the task is completed using
the free CoM primitive.

Fig. [3:17] shows the final environment maps in the three different scenarios.
Table [3.3] collects some performance data of the planning module in each scenario.



42 3. Whole-body motion planning

Figure 3.16. Scenario 3: the robot explores (and recovers from) a dead-end before
completing the task.

Figure 3.17. The final environment maps in the three scenarios.

The three planning experiments required four, five, and ten invocations of LMP,
respectively For each invocation, the table reports: the assigned time budget resulting
from (3.11)), the number of candidate plans resulting at the end of the lazy stage,
and the duration of the generated extension of the current plan. Note that, in the
third scenario, in two cases LMP returned no extension of the current plan. This
means that, among the candidate local plans produced by the lazy stage, the best
one consists in a branch of the tree such that only the configuration in the root
vertex is inside the current map. This automatically postpones the extension of the
current plan to the subsequent LMP invocation, which will work with a new time
budget on a new map that has been updated during the robot motion.

We encourage the reader to watch the video available at the link https://youtu.
be/6oL12msrnlc|to better appreciate the effectiveness of the generated motions.



https://youtu.be/6oLl2msrnIc
https://youtu.be/6oLl2msrnIc

3.5 Conclusions 43

. . time # candidate motion
seenatio | budget (s) | local plans | duration (s)

0 15 19 52.45

1 1 13.11 29 17.65
2 15.38 ) 11.65
3 13.52 55 27.5
0 15 7 51.4
1 12.44 30 12.85

2 2 12.64 35 13.15
3 12.90 24 5.35
4 9.12 29 17.6
0 15 4 47.05
1 11.76 ) 49.75
2 30.76 3 0
3 13.39 13 34.15

3 4 24.76 2 0
) 12.38 67 26.05
6 19.22 95 15.25
7 17.23 7 17.05
8 17.14 89 13.75
9 15.45 4 5.6

Table 3.3. Planner performance data.

3.5 Conclusions

In this chapter we proposed a complete method for planning whole-body motions
of a humanoid robot that must execute a task that implicitly requires stepping
in an environment populated by obstacles. For this problem we presented three
planning schemes for, respectively, planning offline a complete solution, planning
online in known environment in the presence of time limitations, and planning online
in unknown environment exploiting incrementally acquired information. The overall
method relies on the concept of CoM movement primitives that are representative
of elementary humanoid actions. With this strategy, humanoid whole-body motions
are generated directly in the configuration space by concatenating single whole-body
motions, each one realizing a certain primitive selected from a precomputed catalogue
and, simultaneously, a portion of the assigned task. Thanks to this strategy, the
whole-body structure of the humanoid and the 3D nature of the environment (either
it is known or unknown) are fully exploited, allowing the generation of solutions
that, by construction, guarantees balance and collision avoidance. We have shown
via simulations that the offline version is able to generate solutions for a variety of
tasks (i.e., navigation, reaching, manipulation and visual tasks), and that the online
versions (both anytime and sensor-based) can generate sensible motions in cluttered
environments for fulfilling a reaching task. Application of the online versions to the
other kinds of tasks is part of our future work.



44 3. Whole-body motion planning

A limitation of the strategy based on CoM movement primitives at the core
of our method is the difficulty in handling scenarios with stairs. In principle,
primitives for climbing and descending stairs may be included in the precomputed
catalogue; however, such primitives should account for the infinite possible values
of the height of the stairs, that in general is arbitrary and possibly not a priori
known. Since including primitives for any kind of stair is clearly impracticable, a
possible solution consists in using ‘deformable’ primitives, whose reference CoM and
swing foot trajectories can be modified according to the planning needs. In general,
in the case of navigation tasks, these difficulties can be overcome by adopting a
two-stages approach in which footstep placement and CoM movement are planner
in two sequential phases. Chap. [ will explicitly consider this case.

Another limitation of the proposed method is that it assumes that the environment
is static also when motions are planned online, i.e., in the anytime and sensor-based
versions. In fact, at each planning stage, the aim is only to extend the current
plan, without allowing any modification of the latter. This is clearly an issue in
environments containing dynamic obstacles, such as humans, that moves along
unpredictable trajectories. Such context will be addressed in Chap. [7]

Future work will address: (i) the implementation of the proposed method on the
real humanoid; (ii) the extension to the case of tasks requiring mobile manipulation
of heavy objects; (iii) the replacement of the mapping module in the sensor-based
framework with a full-fledged SLAM module; (iv) the inclusion of a second-order
motion generation scheme as in [75] to take into account also torque bounds; (v)
the reformulation of the strategy for generating the head motion (Sect. to
explicitly maximize the information gain.



45

Chapter 4

Motion planning on uneven
ground

One of the advantages of humanoids is the possibility of moving through complex
environments, e.g., by stepping over or onto obstacles. However, while there are a
large number of locomotion planning techniques for flat ground, walking on uneven
surfaces poses additional challenges which make it largely an open field of research.

To deal with the complexity of such problem, an effective strategy consists in
planning in two sequential stages the discrete sequence of isolated contacts with
the ground, i.e., the footstep sequence, and the continuous CoM trajectory which is
compatible with it and guarantees balance. As discussed in Chap. [2] this strategy
prevents the inclusion of tasks in addition to the basic requirements such as avoiding
collisions and keeping balance. On the other hand, it allows to effectively address
navigation, also called walk-to, tasks in the case of uneven ground, which are instead
difficult to tackle using the whole-body planning framework described in the previous

chapter (see Sect. [4.5)).

One possible approach to plan footsteps (on flat or uneven ground) is based
on continuous optimization techniques, which do not restrict steps to a finite set
[76]. However, these methods require an expensive pre-computation phase aimed
at finding a convex approximation of the free configuration space. An efficient
alternative is to consider a finite set of possible foot displacements, so that the
solution will consist of a particular sequence of such elements. To search among
all possible sequences, both deterministic and randomized approaches have been
proposed. Examples of the first kind are A*-based techniques [25], [77, [78], whose
performance strongly depends on the chosen heuristic, which is often difficult to
design. Moreover, node expansion in these techniques can be very expensive in the
presence of several constraints to be verified (e.g., collision avoidance, kinematic
reachability, and so on). Randomized approaches include [79] where, to ensure goal-
directedness, all possible node expansions must be evaluated at each iteration, at the
expense of efficiency. To overcome such a problem, an approximate swept volume is
precomputed in [26] for each possible foot displacement, thus speeding up collision
checking for footsteps and swinging trajectories. This approach, however, cannot be
extended to the case of variable height steps because of the infinite possibilities for
the foot displacement along the vertical direction.



46 4. Motion planning on uneven ground

Whatever the footstep planning method is, the humanoid CoM trajectory must
be generated in such a way to be compatible with the planned footsteps and to
maintain (preferably) dynamic balance. To this purpose, many methods have been
proposed in which the complexity of the humanoid dynamics is reduced by using
simplified models. On flat ground, many researchers adopt a simplified model known
as the Linear Inverted Pendulum (LIP) [80], in which the robot is considered a single
point-mass pivoting on a foot and moving at constant height above the ground. The
linearity of this model has been exploited to design preview controllers [46] and
MPC schemes [8I]. When the robot moves on uneven ground one must remove
the constant height hypothesis, leading to a nonlinear inverted pendulum model.
The nonlinear problem was addressed, for example, in [82], 83]. However, keeping
the linearity of the system is still an attractive option in view of the simplicity of
the associated controllers and, ultimately, the possibility of an efficient real-time
implementation. One way to do this consists in assuming a predefined vertical
trajectory of the CoM, so that the robot can be described by a time-varying LIP,
as done in [84], 85]. Another, less restrictive possibility [86] is to maintain the
time-invariant LIP structure by constraining the CoM vertical motion to satisfy a
certain differential equation. Related approaches [87, [88] lead to a 3D model with
LIP dynamics on all three axes.

In this chapter we propose an integrated architecture for planning and executing
humanoid motions to fulfil a walk-to task on uneven ground. It works in two stages:
an off-line footstep planning module computes an appropriate sequence of footsteps,
and an on-line gait generation module generates a variable-height CoM trajectory
realizing them. We propose two versions of the footstep planner, both based on
an efficient randomized strategy which, differently from existing approaches, does
not involve any kind of pre-processing of the environment and allows to enforce
various feasibility requirements directly in the planning phase. The first version
allows to find a footstep sequence that is feasible with respect to the robot kinematic
limits, while the second also accounts for the quality of such sequence. We show
that the latter can incorporate different performance criteria and asymptotically
find optimal solutions. Two humanoid platforms are used to show the effectiveness
of the proposed method, i.e., HRP-4 in simulation and NAO in experiments.

This chapter is organized as follows. In Sect. we formally define the problem
of interest and describe the proposed architecture. Sects. and present the
two versions of the footstep planner, together with the obtained simulation results
in different scenarios. Experimental results are presented in Sect. [£.4] Concluding
remarks are reported in Sect.

4.1 Core problem and approach

The situation of interest in this chapter is shown in Fig. A humanoid robot is
assigned a walk-to locomotion task to a desired goal region G in a world of stairs, a
specific kind of uneven ground composed by horizontal patches located at different
heights. Depending on its elevation with respect to the neighboring areas, a patch
may be accessible for the humanoid to climb on from an appropriate direction, or
else represent an obstacle to be avoided. Some low-height patches may be shaped



4.1 Core problem and approach 47

Figure 4.1. An instance of the considered problem. To reach the goal region G (in yellow),
the humanoid must go over the black bar obstacle, climb and descend the staircase, and
avoid the black box.

Pcom direct | _ q
kinematics|

Y

[ —

{f’} _lintrinsically| _ Péou A7
M f ~ | stable MPC . I D)
z ootstep kinematic (&
planner control \
Pl _ ve
i L8 X

Figure 4.2. Block scheme of the proposed approach.

in such a way that the humanoid may decide to go over (rather then stepping on)
them; for example, this is the case of the long bar obstacle in Fig.

A natural choice for representing the considered kind of ground is a 2.5D grid
map of equally-sized cells, also called elevation map [89]. We will denote this map
by M, and assume that it is known in advance so that whenever needed it can
be queried as z = M, (z,y), to provide the height of the ground at the cell having
coordinates (z,y).

To solve the given problem, we propose an integrated motion planner/controller
whose block scheme is shown in Fig. Denote by f = (xt,ys, ¢, 0)” the generic
pose of a certain foot, with zf, yf, and zf representing its position and 6; its
orientatio Let £ and £ be the pose of, respectively, the left and right foot at
the initial configuration of the robot. For simplicity, in the following we assume that
the robot, during locomotion, performs steps alternating left and right support foot,
and that it starts walking by swinging the left foot.

In the proposed scheme, an off-line footstep planner is in charge of finding first
a footstep plan consisting in an appropriate sequence of footsteps Sy = { ft =

g2 — i f") leading to the desired location, i.e., f* € G, together with a
sequence of associated swing foot trajectories S, = {péwg, pgwg, cee pg‘;g}. In the

1To represent the foot orientation we only use the yaw angle, as roll and pitch are always zero
thanks to the piecewise-horizontal ground assumption.



48 4. Motion planning on uneven ground

sequence Sy, the generic element f7 is the pose of the j-th footstep, while in the
sequence S, the generic element pgwg is the trajectory leading the foot from f’ to
712, Note that the number n of footsteps in the sequence S + is not pre-assigned,
as it will be a byproduct of the planner.

The footstep plan must be feasible (in a sense formally defined in the following)
w.r.t. the characteristics of both the environment and the robot. In Sect. we
present a method for computing feasible footstep plans. In addition to feasibility,
the quality of the footstep plan is important as well. To this purpose, in Sect.
we present an extension of the method that is able to (asymptotically) find optimal
footstep plans w.r.t. a desired criterion.

Once the footstep plan has been generated, the footstep sequence Sy is passed
to an on-line gait generation block based on an intrinsically stable MPC, which
computes a variable-height CoM trajectory p¢,,; compatible with the sequence. In
particular, this module uses the technique introduced in [90] (see also Appendix |A.2)).
It uses a 3D LIP-like model where the CoM height can vary under the appropriate
differential constraint, thus retaining a linear structure for the problem; moreover,
it relies on the inclusion of an explicit stability constraint in the MPC formulation
to ensure that the resulting variable-height CoM trajectory is bounded w.r.t. the
ZMP. The swing foot trajectory p, at any instant is defined by the appropriate
subtrajectory pl, of sequence S,.

Finally, the reference trajectories p¢,,\; and pg,, are sent to a standard pseudoinverse-
based kinematic controller to compute joint commands ¢ for the robot. Propriocep-
tive feedback is used for both MPC and kinematic control.

4.2 Basic footstep planner

The basic capability the footstep planner must exhibit is that of generating feasible
plans. Sect. formally defines the requirements that the footstep plan must
satisfy in order to be considered feasible, while Sect. proposes a randomized
algorithm for computing a feasible footstep plan. Sect. presents simulations
obtained with the proposed approach.

4.2.1 Problem formulation

As anticipated in Sect. the basic footstep planning problem consists in finding a
sequence of footsteps Sy = {fl, ..., "} leading to the desired location, i.e., f" € G,
together with a sequence of associated swing foot trajectories S, = {p;wg, . ,p;“;g ,
that are feasible, i.e., each element f7 and pl

lwg In the sequences Sy and ), satisfy
the following requirements:

R1 The height variation w.r.t. the previous footstep is within a maximum range,
ie., | — z§_1| < AZmax.

R2 The footstep is fully in contact within a single horizontal patch, i.e., each cell
of M belonging to or overlapping with the footprint has the same height z{.

R3 Apart from the ground contact at the start and at the end, the swing foot

trajectory pl, is collision-free.



4.2 Basic footstep planner 49

4.2.2 Planner overview

To find a feasible (in the sense of the requirements R1-R3) footstep plan which
leads the robot to the goal region G, we propose a RRT-based algorithm which does
not require any kind of pre-processing of the environment and allows to embed a
feasibility check directly in the expansion mechanism.

Our footstep planner, whose pseudocode is given in Algorithm [ iteratively
builds a tree 7 in the search space. A vertex v = (fgp, Fswg) specifies the poses fq,
and fg, of the two feet during a double support phase; in all steps originating from
v, the support foot will remain at fg,, while the swinging foot will move from fgy,-
An edge exists between two vertexes when there exists a collision-free trajectory
of the swing foot connecting the two. At the beginning, the algorithm roots 7 at
Vini = (8, £ which describes the initial double support configuration.

The generic iteration of the algorithm starts by selecting a sample point p...q
on the ground. We allow the planner to randomly choose between exploration and
exploitation, to bias the growth of the tree towards, respectively, unexplored regions
and the goal. In the first case, p,,,q is generated by randomly choosing its x,y
coordinates and retrieving the corresponding z coordinate from M. In the second
case, Pranq is sampled from the goal region G.

Then, the vertex vpear of 7 that is closest to p,,,q is selected for an expansion
attempt. The following metric is used for evaluating the distance between a certain
vertex v and a point p € IR>:

7(U7p) = d(m7p) + O‘|9p‘-

Here, d(m, p) is the Euclidean distance of the midpoint m between the feet (at the
poses fq,, and f, specified in v) from p; ), is the angle between the robot sagittal
axis (defined as the axis passing through m with orientation equal to the average of
the orientations of the two footsteps) and the line joining m to p; « is a positive
scalar.

Algorithm 4: Basic Footstep Planner

1 Vi ¢ ( ié“, iLm)§

2 AddVertex(T, 0, vin;);

3 i+ 0

4 repeat

5 11+ 1;

6 Prand < SamplePoint();

7 Unear < NearestVertex(7T, Prana);

8 feana < GenerateCandidateFootstep(fan');
9 if Feasible(f ,,q) then

10 pind « GenerateSwingingTrajectory(five > fcand);
11 if piand £ () then

12 Unew < (fcand? f?sgr)a

13 AddVertex('T, Unear, 'Unew);

14 end

15 end

16 until SolutionFound() or i = i,,44;




50 4. Motion planning on uneven ground

Figure 4.3. The catalogue U of primitives specifies the possible planar poses (in blue) of
the candidate footstep £<*"¢ with respect to the pose Jaup of the current support foot
(in green). Here we have considered the case of a swinging right foot; the catalogue
for a swinging left foot is specular. Once a primitive is chosen, the z coordinate of the

candidate footstep will be retrieved from the elevation map M.

near and near

Once vpear has been identified, the foot poses fsup swg Are extracted from

it. A candidate footstep £ is generated by randomly selecting a final pose of the

swinging foot from a given catalogue U of primitives, which is defined with respect
to faup (see Fig. . The z coordinate of £ is retrieved from the elevation map

2

At this point, the candidate footstep is checked for feasibility with respect to
requirements R1-R2. If the outcome is positive, the algorithm verifies whether a
collision-free trajectory pgﬁv‘éd exists that brings the swinging foot from fggs' to feand
(requirement R3). This is done through the iterative procedure given in Procedure
[ that uses a parametrized trajectory which, once the endpoints are selected, can
be deformedﬂ by changing the maximum height h along the trajectory. Starting
from a lower bound hpi,, the algorithm iteratively checks increasing values for h
up to an upper bound hpax. If a collision-free trajectory is found, a new vertex
Vnew = (f9, Faup ) is added to the tree, connected to its parent vpear by pgﬁvréd.
Note that in vyey the roles of the feet have been swapped: in future steps originating

from vpew, the support foot will stay at £°*¢ while the swinging foot will move from

near
sup

Planning terminates when vy, completes the walk-to task (i.e., the corresponding
midpoint m belongs to G) or a maximum number of iterations has been reached.
In the first case, the path joining the root to vheyw is extracted from the tree, and
the footstep sequence Sy is reconstructed with the associated sequence of swing foot
trajectories S,.

2As a deformable trajectory we used a polynomial, but other choices (e.g., B-splines and Bezier
curves) are also possible.



4.2 Basic footstep planner 51

Procedure 4: GenerateSwingingTrajectory(f;, fi)

1 h+ hmin?
2 while h < h,,.« do

3 pnd « BuildTrajectory(f;, £, h);

a if CollisionFree(pgs‘Vréd) then
5 ‘ return pgsvréd;

6 end

7 h < h+ Ah;

8 end

9 return ();

4.2.3 Simulations

In this section, we present simulation results obtained by testing our C++ implemen-
tation of the proposed framework in the V-REP environment with the HRP4 robot,
a 1.5 m tall humanoid with 34 degrees of freedom by Kawada Robotics EL We invite
the reader to watch the video available at the link https://youtu.be/mKVBwlxsXLM,
which shows the working principle of the presented footstep planner along with some
simulation results.

Simulations have been performed in three different scenarios. In all of them the
robot has to reach a circular goal region. The radius of such region has been set to
0.5 m in the first two scenarios and to 1.0 m in the third one. Since the footstep
planner is randomized, to evaluate its performance we have performed a set of 20
simulations on each scenario.

All simulations have been performed on an Intel Core i7 running at 2.7 GHz,
using the same parameters settings. In particular, in the footstep planning module
we have set = 1, Azpax = 0.08 m, hmin = 0.02, Apax = 0.12 and Ah = 0.02.
According to the HRP4 kinematic characteristics, the catalogue U of primitives has
been chosen as U = {(x,y,6) € {—0.1,0,0.1,0.2,0.3} x {0.2,0.3} x {0, %}} in case
of right support (the catalogue for the case of left support is specular). For the gait
generation module (see Appendix , we used w = 3.6 s~!, the step duration is
Ty = 0.8 s of which 0.5 s of single support and 0.3 s of double support, and the
vertical size of the ZMP constraint is set to d% = 0.03 m. Finally, the elevation map
M., has a resolution of 0.02 m.

Fig. [£:4) shows the three scenarios; for each of them, one of the footstep planner

3The results presented in this section have been obtained with an optimized version of the C++
implementation through which the results that we originally presented in [4] were obtained.

Figure 4.4. The three considered scenarios. For each of them a possible solution of the
basic footstep planner is shown.


https://youtu.be/mKVBwlxsXLM

52 4. Motion planning on uneven ground

Figure 4.5. Scenario 1: the robot reaches the goal region going over the black linear
obstacle, climbing and descending the staircase, and avoiding the black box.

Figure 4.6. Scenario 2: the robot reaches the goal region moving through the ditch, which
can only be accessed from the left and exited from the right.

S —— -

Figure 4.7. Scenario 3: the robot reaches the goal region after climbing and descending
the staircase.

solutions is displayed.

In the first scenario, the robot and the goal are placed at opposite sides of the
environment. The goal can be reached by walking a mostly straight path, but
footsteps need to be placed appropriately to satisfy all the requirements. Fig.



4.2 Basic footstep planner 53

shows one of the solutions found by our method. The robot starts walking forward
and reaches the proximity of the bar obstacle, which does not provide a large enough
surface to step on. Then, the robot goes over it by taking a longer step, with a
swing foot trajectory sufficiently high to avoid collisions. After that, the staircase is
ascended and descended. Finally, the robot avoids the black box and reaches the
goal region.

The second scenario is traversed by a ditch which can only be entered from the
left and exited from the right, because the platform in the middle of it is too low
to be accessed directly. One solution produced by our method is shown in Fig.
The robot moves appropriately among the different levels, first going down in the
ditch and then up towards the goal.

The third scenario is larger than the first two and the robot, in order to reach the
goal may either ascend and descend a staircase or walk on a flat ground delimited by
two low walls. In view of its probabilistic nature, the proposed footstep planner is
free to randomly choose between the two options. A possible solution of our method
is shown in Fig. Here, the planner arbitrarily chose a footstep plan leading the
robot to the goal region by ascending and descending the staircase.

We emphasize that the resulting motions are produced thanks to the effective
combination of the footstep planning module with the MPC-based gait generation
module. Table reports some data obtained by averaging the planning results of
the 20 simulations on each scenario. The table indicates the number of vertexes in
the tree produced by the planner, the time needed to compute a footstep plan, the
length of the plan in terms of number of footsteps, the overall height variation of the
swing foot along the plan, and the minimum clearance. The last three parameters
will be discussed in detail in Sect. and considered directly in the planning
stage in Sect.

It is clear that the first and the third scenarios are significantly easier than the
second to solve. The reason is that in both the first and third scenarios there exists
a straight path to the goal, while in the second the robot must take an S-shaped
path in order to guarantee satisfaction of requirement R1. The descending steps
in the second scenario also require the robot to perform the difficult maneuver of
rotating in place in a small space. Although, the solution is found in a reasonably
short time even in the second scenario.

An analysis of the presented solutions, together with the data provided in
Table reveals that the generated motions are suboptimal in terms of efficiency,
particularly in the second simulation, where the presence of unnecessary steps is
evident. Such lack of quality of the generated plans is due to the randomized nature

scenario tree size planning | plan len. height minimum
(# vertexes) | time (s) | (# steps) | var. (m) | clearance (m)
1 763.40 1.564 24.45 0.480 0.388
2 1641.40 3.692 44.60 0.480 -
3 555.95 0.712 32.80 0.264 0.493

Table 4.1. Basic footstep planner performance data.



54 4. Motion planning on uneven ground

of the proposed footstep planner. In fact, it can arbitrarily produce footstep plans
with the constraint of respecting requirements R1-R3, without explicitly accounting
for their optimality.

4.3 Optimal footstep planner

The footstep planner proposed in Sect. [4.2] proved capable to compute feasible plans.
However, as discussed in Sect. the quality of the produced plans can not be
guaranteed, as it is not explicitly accounted in the planning strategy. Clearly, to
evaluate the quality of a plan, a desired criterion needs to be be specified. Sect. [£.3.]]
formally defines the optimality of a plan w.r.t. a desired criterion, and describes
some possible criteria of interest. Sect. [£.3.2] proposes an extension of the method
presented in Sect. for asymptotically computing optimal footstep plans. Sect.
[4:2.3] presents simulations obtained with the proposed approach, and a comparison
of the results with those obtained with the basic planner.

4.3.1 Problem formulation

Consider a generic sequence of footsteps Sy = { fi...,f"} and a sequence of
associated swing foot trajectories S, = {pslwg, oy Pl 21, Denote by e(f7, f772) the
cost associated to the step leading the foot from f7 to f772 through the swing foot
trajectory pgwg. Such step cost is assigned according to the chosen criterion for
evaluating the quality of a plan and, in general, is function of f7, f7+2 and/or pgwg.
Let cs(f™) be the cost function evaluating the overall cost for reaching the final
footstep f" through the sequences Sy and Sp.

The optimal footstep planning problem consists in finding a sequence of footsteps

= {f',..., f"} leading to the desired location, i.e., f* € G, together With
a sequence of associated swing foot trajectories S, = {pgwg, . ,pSWQ} that,
addition to satisfy the feasibility requirements R1-R3 described in Sect. @
optimal w.r.t. a desired criterion, i.e., the sequences Sy and S, minimize the cost
function cs(f").

Given the sequences Sy and S, depending on the nature of the chosen criterion
for evaluating the plan quality, the step costs ¢( . fi +2) can be cumulative or not
along Sy and §,,. Consider a specific footstep f¥ with k <n,inS +. In the case of
cumulative costs, the cost cs( f*) for reaching f* coincides with the sum of the step
costs along the subsequences of Sy and S, ending at i

es(f*) = i (7, £972). (4.1)

In the case of non-cumulative costs, the cost cs(f*) for reaching f* is determined
by the highest (worst) step cost along the subsequences of Sy and S, ending at Vi

cs(ff) = max c(f7, f72). (4.2)

je{l,....k—2}

The cost ¢s(f™) of a footstep plan ending at f™ € G can be computed applying (4.1)
or (4.2) depending on the chosen criterion.



4.3 Optimal footstep planner 55

Given a generic footstep f, and sequences Sy and S, the cost of reaching f via
a specific footstep f* € S ¢ is

cs(£*, £) = es(£5) + (", f) (4.3)

if the step costs are cumulative,
cs(F*, f) = max{cs(£*),c(f*. £)} (4.9)
otherwise. Here, c¢s(f*) is computed using (4.1) and (4.2) in (4.3) and (4.4),

respectively.

In the following, we describe three possible criteria for evaluating the plan quality
that can be involved in our formulation, highlighting the corresponding step costs
and the resulting cost function.

Cl1 Minimization of the number of steps: every step has identical cost, indepen-
dently from its characteristics (e.g., length or height)

c(f7, 71 = 1. (4.5)

Step costs in (4.5)) are clearly cumulative, hence cost function cs(f") takes

the form in (4.1)).

C2 Minimization of the height variation: the cost of a step is equal to the vertical
displacement between the foot position at the begin and at the end of the step

(7, f772) =[] — A1) (4.6)

As in the previous case, step costs in (4.6)) are cumulative and cost function
cs(f™) takes the form in (4.1).

C3 Mazimization of the minimum clearance: the cost of a step is equal to the
inverse of the clearance at the end of the step

C(fj7 fj+2) = a(fljurg)

with o f772) the clearance at footstep f772.

(4.7)

Let O be the set of points located on patches with which any kind of contact
is forbidden. Such patches act as full-fledged obstacles that must be avoided.
We assume that the set O is provided. Then, the clearance at footstep f is
defined as

a(f) = pin, |ps P,
where p; and p, are the planar positions (z- and y- coordinates) of, respectively,
the footstep f and its closest point p, in O.

Differently from criteria C1-C2, the maximization of the minimum clearance
does not involve cumulative costs. In fact, step costs in can be used in
to obtain the corresponding cost function cs(f™). Note that, under the
above formulation, the problem of finding a plan that maximizes the minimum
clearance is treated as finding a plan that minimizes (analogously to cases
C1-C2) the maximum (from (4.2))) inverse clearance (from (4.7])).



56 4. Motion planning on uneven ground

4.3.2 Planner overview

To address the problem described in the previous section, we propose an extension
of the method presented in Sect. that is able to asymptotically find footstep
plans that are optimal w.r.t. a desired criterion, i.e., the algorithm asymptotically
converges to the optimal solution as the number of iterations increases.

The proposed planner, whose pseudocode is given in Algorithm [5] relies on a
RRT*-like strategy. It works similarly to the basic planner, with the difference that
it involves two additional operations in order to minimize the cost of the footstep
plan. The first is performed before adding the new vertex vpeyw to the tree, and is in
charge of selecting its best parent vertex among the potential ones. The second is
performed after the insertion of v,ey in the tree, and is in charge of modifying the
connections between vertexes in T in order to reduce the associated costs.

Once a candidate footstep f..,q and a swing foot trajectory pid satisfying

SW,

requirements R1-R3 are generated, the algorithm retrieves from tree 7 %he set Vin
of vertexes from which footstep f.,,q can potentially be reached. In particular, each
vertex vy, = ( fsup, fgwg) € Vin_is such that the identity of the support foot is equal
to that at vyear (the vertex from which the expansion attempt originated), and f.,,.q
is kinematically reachable from vy, i.e., Af i < " Feand < AFmax, Where P o

expresses f.,nq W.I.t. fh and bounds Af ., = (Aacmm,Aymin,Azmm,Aﬁmin)T,

sup
Af ok = (AZmaxs AYpas, AZmax, AGmaX)T are chosen according to the robot kine-
matic limits. Here, Azpin = —Azmax to comply with requirement R1. Note that

the primitives in the catalogue U are chosen within such bounds as well.
With the aim of selecting the vertex in VI that permit to reach £ with

near
the lowest cost, the iterative procedure shown in Procedure [5|is invoked. At each

Algorithm 5: Optimal Footstep Planner

1 Vi + ( i}gia iLni)§

2 AddVertex(T, 0, vini);

3 1< 0;

4 repeat

5 141+ 1;

6 DPrand — SamplePoint();

7 Unear — NearestVertex(T, Prand);

8 Feana < GenerateCandidateFootstep(fio’);

9 if Feasible(f ,,q) then

10 pand « GenerateSwingingTrajectory(fing > feand);
11 if P(s:i%d # () then

12 yin_« NearestVertexesIn(7T, £"9);

13 Umin < ChooseParent(VI%, | Unear, feand)i
14 Unew € (.fca,nd’ f:f:llll)l)’

15 AddVertex(T, Umin; Unew);

16 Vgut, < NearestVertexesOut(T, ficy);
17 ReWire(Vrﬂ’g&r, Unew);

18 end

19 end

20 until i = i,44;




4.3 Optimal footstep planner 57

Procedure 5: ChooseParent(Vi, ., Unears fcand)

VUmin €< Vnears
Cmin COStVia(Uneara fcand);
foreach v, € VI do
pl. < GenerateSwingingTrajectory(f :'wg» feana);
e B
if pl,, # 0 then
cp + CostVia(vn, feand);
if ¢p, < cmin then
Umin < Uh;
Cmin < Ch;
end
end

© 00 N O oA W N

= e
= O

end
return vyiy;

=
w N

Procedure 6: ReWire(VoU! | ey )

near’

1 foreach v, € V°% do

near

2 pgwg < GenerateSwingingTrajectory(f iy, gup);

3 if pi,, # 0 and CostVia(vyew, fgup) < Cost(fsup) then
4 ‘ ReConnect(vnew, Un);

5 end

6 end

7 return;

iteration, the procedure extracts a different vertex v, = ( fgup, fgwg) from Vi

and verifies whether a collision-free trajectory pgwg exists that brings the swinging

foot from fgwg to feandIf a collision-free trajectory is found, requirements R1-R3

are satisﬁe and the cost for reaching f_,.q4 via fgwg is computed using or
depending on whether the step costs are cumulative or not. The vertex vpin
that yields the minimum cost for reaching f.,,q is returned to the planner as the
parent of the new vertex, together with the associated swing foot trajectory pgvlvig
(not explicitly displayed in Procedure . Then, a new vertex vgeyw = (F09, fg;g‘) is
added to the tree, connected to its parent vmin by Pgyg-

Then, the algorithm retrieves from tree 7 the set VI of vertexes containing

footsteps which can potentially be reached from fgi7. In particular, each vertex
vp, = ( fgup, fgwg) € VU is such that the identity of the support foot is opposite to
that at vpew, and f?up is kinematically reachable from vpeyw, i.e., Af i < "V fgup <
Af ax, Where "V fgup expresses gup w.rt. foop -

At this point, the rewiring procedure given in Procedure [f] is invoked. At each
iteration, the procedure extracts a different vertex vy, = ( gup, ?Wg) from VU, and

verifies whether a collision-free trajectory p?wg exists that brings the swinging foot

from fooe

we 1O fgup. If a collision-free trajectory is found, requirements R1-R3 are

4In fact, R1 is automatically satisfied as Azmin = —AZmax in the bounds of the admissible region
used for retrieving Vis.:, R2 is checked at the time of f_,, 4 creation, and R3 is explicitly checked
during the swing foot trajectory generation.



58 4. Motion planning on uneven ground

satisfied. Then, the cost for reaching f7  via f2°V is computed using 1} or 1}

sup SWg
h

In case such cost is less than the current cost of reaching f{  (via the current parent

sup
of vp,), vy, is set as a child of vpey, and the pose of the swing foot fswg is accordingly
updated to fgi.

Planning terminates when a maximum number of iterations has been reached.
The branch of T leading to G (if any) with minimum cost is then extracted from
the tree, and the footstep sequence Sy is reconstructed with the associated sequence
of swing foot trajectories S,. Clearly, the larger the maximum number of iterations,

the better the obtained footstep plan.

4.3.3 Simulations

In this section, we present simulation results obtained in the V-REP environ-
ment with the HRP4 humanoid robot, considering the same scenarios and param-
eters setting of Sect. [4.2.3] In addition, the bounds Af ;, and Af .. are set
to (—0.1,0.2, —0.08,0)” and (0.3,0.3,0.08,§)T in case of right support, and to
(—0.1,-0.3,—0.08, —g)T and (0.3,-0.2,0.08,0)7 in the case of left support. The set
O contains all points (z,y, z) such that (z,y) indicate a particular cell of M., and
z = M (z,y) exceeds a threshold of 0.4 m. Thus, in the first scenario, O contains
all the points located on the black box overlapping with the goal region. In the
second scenario, O is instead empty. Finally, in the third scenario, O contains all
the points on the two black walls.

To evaluate the performance of the optimal footstep planner, we tested it in each
scenario for the three different cost criteria (C1-C3) described in Sect. [1.3.1] For
each combination of scenario and cost criterion, we performed 20 simulations setting
imax = 5000. Table reports data obtained by averaging the planning results,
analogously to Table d.I] A comparison of the two tables clearly shows that the
optimal planner outperforms the basic planner in terms of the plan quality according
to the chosen cost criterion.

In the first scenario (see Fig. for examples of the planner solutions depending

scenario | cost tree size planning | plan len. height minimum
(# vertexes) | time (s) | (# steps) | var. (m) | clearance (m)

C1 1986.00 9.743 21.15 0.480 0.438

1 C2 1958.25 9.498 26.25 0.480 0.385
C3 1978.90 9.572 25.25 0.480 0.505
C1 2075.00 11.709 37.60 0.480 -

2 C2 2125.00 11.333 45.80 0.480 -
C3 - - - - -
C1 4102.40 14.464 29.60 0.312 0.750

3 C2 4098.30 14.493 44.90 0.096 0.396
C3 4131.35 14.072 41.10 0.336 1.068

Table 4.2. Optimal footstep planner performance data in the three scenarios, varying the
cost criterion.



4.3 Optimal footstep planner 59

Figure 4.8. Scenario 1: possible solutions of the optimal footstep planner varying the cost
criterion, i.e., minimizing the number of steps (left), minimizing the height variation
(center), and maximizing the minimum clearance (right).

Figure 4.9. Scenario 2: possible solutions of the optimal footstep planner varying the cost
criterion, i.e., minimizing the number of steps (left), and minimizing the height variation

(right).

Figure 4.10. Scenario 3: possible solutions of the optimal footstep planner varying the cost
criterion, i.e., minimizing the number of steps (left), minimizing the height variation
(center), and maximizing the minimum clearance (right).

on the chosen cost criterion), when using C1 as the cost criterion, the number of
footsteps along the plan decreases, with a consequent elimination of unnecessary
steps. No improvement on the height variation is instead observed when using C2.
This is due to the fact that the various patches constituting the environment must
all be navigated in order for the robot to reach the goal region. The minimum
clearance is slightly increased using C3. For example, in the solution shown in Fig.
[4:8 the robot enters the goal region from the opposite side to that where the black
box is located, thus maximizing the distance from the latter.

Similar observations apply for the second scenario (see Fig. when using C1
and C2. The minimum clearance (C3) is not considered in this scenario as all the
patches composing the environment are accessible, as none of them act as obstacle.

In the third scenario, the effect of the different choice of the cost criterion in the
optimal footstep planner is more evident (see Fig. . Using C1, the computed
plans are short and lead the robot to walk straight from its initial location to the
goal region, ascending and descending the staircase (Fig. . Using C2, the
planner tends to produce plans that lead the robot to walk through the flat portion
of the environment delimited by the two low walls (Fig. 4.12). Finally, using C3,
the planner produces plans that lead the robot to walk far from the low walls which



60 4. Motion planning on uneven ground

Figure 4.11. Scenario 3: minimizing the number of steps. The robot walks straight to the
goal region, climbing and descending the staircase.

S o

Figure 4.12. Scenario 3: minimizing the height variation. The robot reaches the goal
region moving on the flat portion of the environment.

Figure 4.13. Scenario 3: maximizing the minimum clearance. The robot reaches the goal
region walking far from the low black walls.

act as obstacles (Fig. |4.13)); in most cases this requires to ascend and descend the
staircase.

As expected, the improvement of plan quality comes at the expense of higher
computational times. This is due to two facts. First, the optimal footstep planner



4.4 Experiments 61

itors | cost tree size planning | plan len. height minimum
(# vertexes) | time (s) | (# steps) | var. (m) | clearance (m)
C1 853.45 2.108 31.40 0.264 0.482
1000 | C2 856.95 2.109 33.20 0.264 0.664
C3 867.60 2.125 31.70 0.288 0.563
C1 2595.50 7.634 31.00 0.240 0.488
3000 | C2 2575.05 7.439 38.25 0.120 0.423
C3 2564.15 7.380 35.75 0.216 0.676
C1 4102.40 14.464 29.60 0.312 0.750
5000 | C2 4098.30 14.493 44.90 0.096 0.396
C3 4131.35 14.072 41.10 0.336 1.068

Table 4.3. Optimal footstep planner performance data in the third scenario, varying the
cost criterion and the number of iterations.

always performs i,,,x iterations, while the basic footstep planner terminates as
soon as a solution is found (that in our simulations always happened before iyax
is reached). Second, the two additional procedures for selecting the best parent of
a new vertex and for the rewiring the tree introduce a considerable computational
overhead.

In order to observe the asymptotic behavior of the proposed planner, we tested
it in the third scenario varying the number of iterations (imax = 1000, 3000, 5000).
Performance data collected in Table clearly show that the algorithm improves
the quality of the footstep plan, according to the chosen criterion, as the number of
iterations increases.

4.4 Experiments

In this section, we present two experiments obtained testing the proposed framework
on the NAO humanoid robot. In this case, rather than providing a performance
assessment of the footstep planner (already presented via simulation results), we
showcase the effectiveness of the proposed planning and control architecture on a
real humanoid. To this purpose, the footstep planning module consists in the basic
algorithm presented in Sect.

In both experiments the robot has to reach a circular goal region of radius 0.1 m.
The footstep planning module runs on an external computer which is equipped
with an Intel Core i5 running at 2.7 GHz. We set a = 1, Azpax = 0.045 m,
hmin = 0.02, hpax = 0.07 and Ah = 0.01. According to the NAO kinematic
characteristics, the catalogue U of primitives has been chosen as U = {(x,y,0) €
{-0.06,0,0.06,0.08,0.10} x {0.11,0.12} x {0, {5} } in the case of right support (the
catalogue for the case of left support is specular). Once planned, the sequences of
footsteps and associated swing foot trajectories are sent to the robot via an ethernet
cable through TCP. The gait generation module is implemented inside the B-Human
RoboCup SPL team framework [91], and runs in real-time (at a control frequency of
100 Hz) on the NAO on-board CPU. We used w = 6.68 s~!, the step duration is



62 4. Motion planning on uneven ground

Figure 4.14. Experiment 1: the robot reaches the goal region avoiding collision with the
central rectangular patch.

— Left
— Right
Goal

Figure 4.15. Experiment 1: the provided elevation map and the solution of the basic
footstep planner.

Ty = 0.48 s of which 0.3 s of single support and 0.18 s of double support, and the
vertical size of the ZMP constraint is set to d% = 0.05 m.

In the first experiment, shown in Fig. the goal region is centered at the red
ball position. The elevation map M, has been manually generated with a resolution
of 0.02 m. The environment contains a rectangular patch having height 0.02 m at
the center of a flat ground. Climbing on such central patch would require NAO to
perform a large step leading the swing foot fully in contact with it (requirement R2).
Due to its physical limitations, NAO can not perform such large steps. Then, the
patch located at the center of the environment acts as a full-fledged obstacle for the
robot. Fig. shows the provided elevation map and the sequence of 31 footsteps
that the planner generated in 0.070 s, building a tree of 488 vertexes. According to
this sequence, under the action of the on-line gait generation module, NAO correctly
reached the goal region avoiding collisions with the central patch.

In the second experiment, shown in Fig. the goal region is located on top
of a stair, that the robot must climb in order to complete the task. Differently from
the previous case, the shape of such stair does not require large steps in order to be
climbed. In this case, rather than directly providing the elevation map, we equipped
the robot with a head-mounted Asus Xtion PRO Live camera through which it is



4.5 Conclusions 63

Figure 4.16. Experiment 2: the robot reaches the goal region climbing the stair.

— Left
—— Right
Goal

0.2 1
S

" 06
0.4

04— oz
y [m] 06 ~ 0 x [m]

Figure 4.17. Experiment 2: the generated elevation map and the solution of the basic
footstep planner.

allowed to acquire information about its surrounding before computing the footstep
plan. Depth images collected by the camera are sent via a USB cable to a mapping
module that runs on the same external computer running the footstep planning
module. Such mapping module uses the framework proposed in [92] to generate
an elevation map M, with a resolution of 0.01 m. Fig. shows the generated
elevation map and the sequence of 10 footsteps that the planner generated in 0.331
s, building a tree of 454 vertexes. According to this sequence, under the action of
the on-line gait generation module, NAO correctly climbed the stair and reached
the goal region.

4.5 Conclusions

We presented an integrated architecture for planning and executing suitable walking
motions for a humanoid robot that has to fulfil a walk-to task on uneven ground.
This is obtained by combining an offline footstep planning module with an online gait
generation module. The first module produces an appropriate sequence of footsteps
leading to the goal region, while the second generates in real-time a suitable variable
height CoM trajectory that is compatible with the planned footsteps and guaranteed
to be bounded with respect to the ZMP evolution.



64 4. Motion planning on uneven ground

For the footstep planning module we have proposed two versions, both employing
a randomized strategy. The first version proved to be able of generating feasible
footstep plans in a short amount of time. The second version demonstrated its
capability to compute, with some computational overhead, footstep plans of improved
quality, accounting for different kinds of performance criteria.

The overall architecture, tested via simulations in V-REP with the HRP4 hu-
manoid and via experiments with the NAO humanoid, revealed to be flexible, as it
can embed constraints and can be applied to different environments without needing
any pre-processing or heuristics definition.

This work can be extended along several directions. The main extension we are
currently considering concerns the case of unknown environment for which we are
developing a concurrent architecture (analogously to that proposed in Sect.
where planning, execution and SLAM take place simultaneously. In particular, the
planning module will consist of a time-limited version of the proposed planners.

Other future work may address the case of environments with multiple floors
and rough terrain where the assumption of piecewise-horizontal ground must be
removed.



65

Chapter 5

Motion planning in the
presence of soft task constraints

Robots are invariably required to execute tasks in a workspace that is populated by
obstacles. If the robot is kinematically redundant with respect to a given task, it
can perform it and simultaneously meet other basic requirements such as avoidance
of collisions, joint limits, and so on.

As already discussed, tasks are expressed in terms of a certain set of coordinates,
called task coordinates, which describe quantities related to, e.g., manipulation,
navigation or perception. Often, the task is assigned as a desired path or trajectory
for the task coordinates (as in the case of manipulation and visual tasks discussed
in Sect. [3.1), resulting in an equality (hard) constraint. However, in industrial and
service applications there are many situations where the task is better expressed by
an inequality (soft) constraint; for example, this constraint may represent the fact
that the desired path assigned to the task coordinates comes with a certain error
tolerance. Fig. shows an example of such scenario.

For the problem of generating collision-free robot motions in the presence of hard
task constraints (TCMP) different methods have been proposed, either optimization-
or sampling-based methods (see Chap. .

The first class of methods never guarantee completeness, while the second presents
the drawback that task tracking is not enforced during the motion between adjacent
samples, with the exception of the approach presented in [39], which relies on a motion
generation scheme that guarantees continuous satisfaction of the task constraint.
Building on this basic technique, a method for repeatable motion planning over cyclic
tasks [93] and another for planning dynamically feasible motions in the presence of
moving obstacles [94] have been proposed. All these planners are designed for the
case of hard constraints.

Most motion planners for the case of soft task constraints rely on some sort
of relaxation of the equality constraint represented by the assigned task path or
trajectory [95], [96]. In [97, O8], planning is performed over an approximation of the
constrained configuration space.

All the above methods attempt to satisfy only the soft task constraint throughout
the motion. We argue, however, that it would be interesting (and presumably
practical) to develop an opportunistic planner which is capable of satisfying the hard



66 5. Motion planning in the presence of soft task constraints

Figure 5.1. In the problem of interest, the robot is assigned a soft task specified by a
desired path (red line) and a tolerance (green volume).

constraint whenever possible and of exploiting the available tolerance only when
needed. In particular, deviations from the given task path should only take place
in the presence of obstructions in the constrained configuration space, such as a
narrow or closed passage. Narrow passages are a well-known problematic issue for
sampling-based planners; among the most successful methods to handle them, one
may mention Gaussian sampling [99] and the bridge test [100]; see [I0T), 102] for
reviews on the topic. Very few works look at narrow passages in a task-constrained
setting; one example is [103].

In this chapter we present a motion planner for the case of soft task constraints
that is, for the first time, opportunistic in the sense defined above. To this end, it
consists of the following components:

e a hard planner for generating collision-free motions that realize exactly the
desired task path, essentially an adaptation of the control-based randomized
method for TCMP in [39];

e a heuristic criterion to detect obstructions to the hard planner due to nar-
row/closed passages in the constrained configuration space;

« a soft planner for generating collision free-motions that are compliant with the
soft task and allow to bypass the obstructions detected by the hard planner;

e another heuristic criterion to estimate when the obstructions to hard planning
have been removed.

We present the method and the obtained results for the case of free-flying robots,
i.e., robots that are not subject to nonholonomic constraints, and then discuss a
possible extension to the case of humanoid robots.

This chapter is organized as follows. Sect. [5.1] provides a precise formulation
of the considered planning problem. An overview of the proposed opportunistic
planner is given in Sect. [5.2] while the hard and soft subplanners are described in
Sects. and respectively. Several planning experiments for the PR2 mobile
manipulator are shown in Sect. [5.5] Sect. [5.6] describes the planner extension to
humanoids. Finally, in Sect. we discuss some possible future developments.



5.1 Problem formulation 67

5.1 Problem formulation

Consider a robot whose configuration g takes values in a n,-dimensional configuration
space C. The robot moves in a workspace W C IR? containing fixed obstacles. Denote
by O C W and R(q) C W, respectively, the volume occupied by the obstacles and
by the robot at configuration q, and by Cgee the free configuration space.

Assume that the robot is free-flying (i.e., its configuration can move arbitrarily
in C), so that its kinematic model consists of simple integrators. In order to plan
paths, we use a geometric version [94] of such model, expressed as ¢ = ¥, where
() = d()/ds denotes the derivative w.r.t. the path parameter s. This equation entails
that the tangent vectors to any path g(s) in C can be chosen arbitrarily by specifying
the (geometric) inputs v.

The task is described in coordinates y, taking values in an n,-dimensional task
space ). Coordinates y and g are related by the forward kinematic map y = k(q),
which at the tangent vector level becomes y' = J(q)q’, where J(q) = dk/dq is
the task Jacobian. We will assume that n, > n,, i.e., the robot is kinematically
redundant for the assigned task.

In the situation of interest, shown in Fig. the robot is assigned a soft task
defined by

o the desired task path y,(s), with the path parameter s taking values in [0, 1]
without loss of generality;

o the tolerance Ay(s), s € [0, 1], a positive n;-vector that represents for each
component the maximum admissible deviation of y from y, at s.

The robot is allowed to exploit the tolerance whenever realizing the desired task
exactly is difficult or impossible, due to the presence of narrow or closed passages
in C. The motion planner must be able to identify such situations automatically in
order to act accordingly.

Let e(q,s) = y4(s) — k(q(s)) be the task error associated to configuration g at
s. In the following, we say that a configuration q is compliant with the soft task ifff]

le(q, s)| < Ay(s), for some s € [0, 1]. (5.1)

A configuration q is compliant with the hard task if e(q,s) = 0 for some s € [0, 1]
(i.e., if it realizes one sample of the desired task path).

Soft-Task-Constrained Motion Planning is the problem of finding a configuration-
space path q(s), s € [0, 1], such that for all s:

o g(s) is compliant with the soft task (deviations from the desired path are
within the tolerance).

o R(q(s)) N O =0 (collisions are avoided);

o self-collisions, singularities and joint limits are also avoided.

I This inequality and similar ones in this chapter are meant componentwise.



68 5. Motion planning in the presence of soft task constraints

Although this is not made explicit in the above formulation, we would obviously like
the solution to comply with the hard task as much as possible. Also, we assume
that the initial configuration g;,; is assigned, with k(g;,;) = y4(0), while the final
configuration gg, = q(1) will result from planning.

Configurations that are compliant with the hard task make up a (n, — ny)-
dimensional submanifold of C, denoted by Charq, which naturally decomposes as a
foliation. In fact, it is Chara = Useo,11£(5), with the generic leaf defined as

L(s)={qeC:e(q,s) =0}

The subset Cqof; of configurations that are compliant with the soft task is instead
ng-dimensional. By letting

S(s) ={qeC:le(q,s)] < Ay(s)}

we can write Csoft = Uge[o,1)5(s). However, this is not a foliation because the S
subsets are not disjoint: a configuration will in general belong to multiple subsets S.
Clearly, we have Charq C Csore and L(s) C S(s), for all s € [0, 1].

5.2 Overview of the opportunistic planner

The proposed planner builds a tree T in Cgof N Ciree, With configurations as vertexes
and collision-free subpaths as edges. To this end, we make use of N 4+ 1 samples
of the desired task path y,(s), corresponding to the equispaced sequence {sy =
0,51,...,8N—1,SNy = 1}. Henceforth, we use the shorthand notation £; = £(s;) and
Si =S (51)

T is grown by two (sub)planners that alternate depending on the context: the
Hard Planner (HP) and the Soft Planner (SP). The basic difference between them
is that HP works in Cparq and SP in Cgof, i.€., subpaths generated by the first are
compliant with the hard task, whereas those generated by the second are compliant
with the soft task. Correspondingly, a vertex of 7 generated by HP will belong to a
single £;, whereas a vertex generated by SP may belong to one or more §;, with
i=1,...,N.

The pseudocode of the proposed planner is given in Algorithm [6] Construction
of T starts by rooting it at the initial q;,;. At the generic iteration, let h (h =

Algorithm 6: Opportunistic Planner

AddVertex(T, qipn);
h < 0;
repeat
h < HP(T, h);
if h < N then

| h« SP(T, h);
7 untilh =0 or h = N;
8 if h = N then

9 Tinilsn < RetrievePath(T);
10 return q;;qs,;
11 return (;

[ B N I




5.2 Overview of the opportunistic planner 69

desired task path

Sh
task . Sk.1
space 0
configuration\
space

subpaths in Cp,4 Sp L,
subpaths in C,g

Figure 5.2. The tree T built by the opportunistic planner (solid blue/green). The portion
of T up to L (solid blue) has been generated by HP and is contained in Cparq. The
red arrows originating at vertexes on Lj indicate a number of failed extension attempts,
after which SP has been invoked to extend 7T in Ceop. To this end, SP identifies the
first task sample s, where the obstruction has disappeared, and grows an auxiliary tree
Tsott (dashed green) towards Si. When Tgos has reached Sy, the subpath from £ to
Sk (solid green) is added as an edge to T. At this point, control goes back to HP, and
extension of 7 in Chapq is resumed (solid blue).

0,..., N —1) be the frontier indez, i.e., the index of the largest sample of s for which
there exists a vertex g in T on Ly, or Sj,.

First, HP is invoked in the attempt to extend 7 as much as possible in Cparq.
When HP stops, it returns an updated value of h. If h < N, it means that HP has
heuristically identified an obstruction to extending T from L} through subpaths in
Chard; this may indicate that the extension is simply difficult, due to the presence
of a narrow passage in Cparq N Crree, O actually impossible, as it happens when an
obstacle occupies a portion of the desired task path. At this point, SP is invoked to
allow extension of 7 from L in Cep, the rationale being that this may overcome
the obstruction. When SP stops, it also returns an updated current value of h,
now representing the index associated to the value of s where extension by HP is
considered viable again; HP is invoked, and the procedure is repeated (see Fig. [5.2)).
SP returns h = () if it does not succeed in extending 7 from L. The inner loop (lines
3-7 of Algorithm 1) continues until h = N or h = (). In the first case, a configuration
g5, exists in T such that qg, € Ly or gg, € Sy (depending on whether it has been
generated by HP or SP), and a path @;,;q5, can be extracted from 7. In the second
case, the planner returns a failure.

A remark is in order here about the choice of N, i.e., the number of subsets £;
(or §;) used by our planner. While NV has no impact on the accuracy with which the
desired task path is realized, it is true that larger values of NV allow a finer generation



70 5. Motion planning in the presence of soft task constraints

of subpaths in 7, ultimately increasing the possibility of navigating the robot among
obstacles. However, the size of the tree will grow accordingly, for vertexes will have
to be placed on a larger number of subsets £; (by HP) or S; (by SP). The value of
N must therefore represent a reasonable trade-off between maneuvrability of the
robot and complexity of planning.

In the following sections, we describe in detail the structure of both the HP and
SP planners.

5.3 Hard planner

HP is essentially an adaptation of the control-based planner proposed in [39], with
the addition of a heuristic-based mechanism for detecting obstructions to further
tree extension in Chapq. The pseudocode of HP is given in Algorithm [7]

At each iteration, a random configuration g,,,q is generated in Cparq. The tree
T is then searched for the closest vertex g, q,, t0 @ranq; call s; the path parameter
value associated to the leaf £; where q,,, lies. At this point, a subpath starting
from q,,, and leading to a new configuration q,.,, € £;41 is produced by numerical
integration of ¢’ = ® from s; to s;41 under the following motion generation scheme:

o= J(q) (¥ + Ke(q)) + (I - J'(q)J (q))w, (5.2)

where JT is the pseudoinverse of the task Jacobian J, K is a positive definite gain
matrix, I — J'J is the orthogonal projection matrix in the null space of J, and
w is a ng-dimensional vector that represents a residual geometric input (it can be
chosen arbitrarily without affecting task execution). To allow effective exploration
of the planning space, w is randomly generated with bounded norm. Subpaths
generated from Cparq via are guaranteed to remain in Cp,.q; whereas they
converge exponentially to Charq if gy, is outside it.

Once it has been generated, the subpath @, G, is validated, i.e., it is checked
for collision with obstacles, self-collisions, singularitieﬂ and violation of joint limits.
If none of the above occurs, the subpath is valid and we add gy, and @pearTrew O
T as, respectively, a new vertex and edge. If q,.,, belongs to a leaf on which there
are no other vertexes (i.e., if g,y € Ln+1), the frontier index h is increased. If the
subpath is not valid, the failure counter mg,j associated to @, is increased.

The above extension procedure is iterated until the frontier index h reaches IV,
or an obstruction is detected to further extension of 7. As explained in the previous
section, the latter may be due to a narrow or even closed passage in Chard N Ceree- 10
identify such situations, a heuristic criterion is used. In particular, HP will assume
that an obstruction exists if both the following conditions are satisfied (see Fig.[5.3)):

e the number my., of vertexes on the frontier leaf £; has reached a threshold

max indicating that £y has been sufficiently explored;

value mg sy,

2We have chosen to discard singular configurations in HP for two reasons. First, most singularities
of redundant robots are avoidable, in the sense that the desired task path can be executed by a
different joint space motion. The second reason is that, while it is true that a singularity-robust
pseudoinverse would allow to go through unavoidable singularities, this would produce an error with
respect to the desired path; by discarding singularities, we entrust SP to intervene and produce
such deviation if necessary to solve the problem.



5.3 Hard planner 71

Algorithm 7: HP(T, h)

1 repeat

2 Grana < RandomConfig(Chara);

3 Qrear < NearestVertex(T, g a0q);

4 (qnew7 qnearqnew) FE}(terl(1(,7—(’ qnear);

5 if Valid(q,car@now) then

6 Add(T’ Gnear9new> qnew);

7 if g o € Lh41 then

8 ‘ h < h+1;

9 else

10 ‘ mfail(qnear) A mfaﬂ(qnear) +1;

11 until (Mgon >mpey and mei(q;) >mei™, for all ;€ Ly,) or h = N;
12 return h;

Lpt1

Figure 5.3. The proposed heuristic criterion detects an obstruction if (1) the number
Mieron Of vertexes on the frontier leaf has reached a threshold m@a¥, and (2) the number
mfaﬂ(qj) of failed extension attempts from each such vertex q; has reached a threshold

Meai] -

o for each vertex g; on Lj, the number of failed expansions mg.;(q;) from gq;
has reached a threshold value mgi*, implying that a sufficient number of
extensions have been attempted from the vertex (and therefore kinematic

redundancy has been fully exploited).

Upon detecting an obstruction, HP returns control to the main planner with h
as frontier index.



72 5. Motion planning in the presence of soft task constraints

5.4 Soft planner

SP, whose pseudocode is given in Algorithm [§] is invoked when HP detects an
obstruction to further extension of 7 in Cparq from L. SP first identifies the index
k (k=h+1,...,N) associated to the first task sample s; where the obstruction
disappears, and then grows an auxiliary tree Tgop in Ceofp to connect Ly, to Si. Once
a connecting subpath has been found, it is extracted from 7g.s and added as an
edge to T. At this point, HP resumes planning in Cpapq (Fig. .

Similarly to HP for detecting obstructions, also SP uses a heuristic criterion to
identify k. In particular, a fixed number of inverse kinematics solutions is generated
in Lp41. If the number mgee of collision-free configurations among them is larger

than a given threshold mj.., then £ = h + 1; otherwise, the procedure is repeated

(S
for L;49, and so forth. If A reaches IV, it means that SP will operate until task
termination as planning in Cparq can never be resumed.

Once k has been identified, SP starts to grow an auxiliary tree Tgor in Ceoft,
whose root is chosen at a random vertex g, of T lying on £;,. At each iteration, a
random configuration q,,,q is generated in Cpee and its closest vertex g o,y in Tsoft
is found. Then, the SP extension procedure (described in detail below) is invoked
to produce a subpath @, .G, Which is valid and complies with the soft task for
increasing values of s. If successful, @ ear@new a0d @y are added to Tsop as an
edge and a vertex, respectively. This procedure is iterated until one of the following

conditions is met:

* Qpew € Sk, i€, Qo 1s compliant with the soft task at si. In this case, the

Algorithm 8: SP(T, h)

k < h;

repeat
k+k+1;
GeneratelKSolutions(msgo, Lk);
Meree < CountCollisionFreeSolutions();

until meee > m?rlég or k= N;

q;, < RandomVertex(T, Ly);

AddVertex(Tsoft, qp,);

i<+ 0;

repeat

Qranq ¢ RandomConfig(Cree);

Grear — NearestVertex(Tsofts 9rand);

(@news Tnearnew) < ExtendSoft(qyears @rand, k);

if g0, # 0 then

‘ Add(’];Oftv GncarTnews qncw);

141+ 1;

until q,.., € Sk Or i = imax;

if g, 0w € Sk then

G10new < RetrievePath(Tsoft );

Add(T, 4, %new> new);

return k;

return ();

© W0 N O Gk W N =

I O N e e e o e
H O © 0 N O bk W N = O

N
N




5.4 Soft planner 73

subpath @}, . is extracted from Tgop and added to T together with q,.,, as,
respectively, a new edge and a new vertex.

e A maximum number i, of extension attempts is exceeded. In this case, a
failure is reported.

5.4.1 Soft tree extension

The SP extension procedure, whose pseudocode is given in Procedure [7] generates
a subpath @ Tnew 11 Csofe through a sequence of configurations that are valid
and compliant with the soft task for increasing values of s. To this end, it uses a
fine discretization of the [sp, sx| interval with a step ds, producing the equispaced
sequence {sp,Sp + 08,...,8, + M - ds = si}, with M = (s — sp,)/ds. Every new
configuration generated during extension will be associated to a unique value of s
within the above sequence.

Extension begins by taking a step of length n from gq,,,, towards a random
configuration q.,,q; let g.., be the generated configuration and sq,r the associated
parameter sample, i.e., the smallest value in the subsequence {spear + 95, ..., si} for
which q.,,, is compliant with the soft task:

Seurr = MIN S € {Spear + 08, ..., Sk} Qeyrr € S(5), (5.3)

where spear is the parameter sample associated to qcq,-

Then, an iterative procedure starts aimed at generating a subpath in Cgog from
gy towards S. At the generic iteration, a task error is computed for the current
configuration q.,,, giving a small increase ds to the associated path parameter value

Scurr-

e(qcurr’ Scurr + 65) = yd(scurr + 55) - k(qcurr)‘ (54)
Then, a descent direction for the task error in configuration space is computed as

JT(qCurr)e(qcurrv Scurr + 53)

d= —
HJT(qcurr)e(qcurra Scurr (58)

, (5.5)

Procedure 7: ExtendSoft(q,ear, @rand, k)
1 Gcurr «— Grear + HW,
COmpU_te Scurr "
repeat
COInpute e(qcurra Scurr + (55) "
compute d (5.5);
Qewrr < Qeurr T 77d,
COmPUte Scurr ‘)
until Seyrr = S OF Seurr = 0 OF !Vahd(qcurr);
if Scurr — Sk then
‘ return [q...,, TnoarTourc);
return [q.,,,.parent, g, ... qo.r-parent);

© 00 N O A WN

=
(=]

=
[




74 5. Motion planning in the presence of soft task constraints

where J7 (g, ) is the transpose of the task Jacobian. The current configuration is
then updated by taking a step of length 7 in the direction d, and the cycle continues.
The cycle is interrupted in the following cases:

1. the current configuration q.,,, belongs to S, i.e., Scurr = Sk;
2. @y is not compliant with the soft task;

3. gy 1s Dot valid.

In case 1, a subpath starting from g;, and leading to a configuration in Sy has
been found, and is returned to SP together with the configuration itself. In cases
2-3, the subpath generated so far cannot be further extended without violating the
validity requirements and the compliance with the soft task; therefore, only the
portion of the subpath leading to the parent configuration of g, is returned to SP.

5.5 Planning experiments

We have implemented the proposed opportunistic planner in the V-REP simulation
environment on an Intel Core i7-8700K CPU running at 3.7 GHz. The chosen robotic
platform is the PR2 mobile manipulator, which consists of an omnidirectional base,
a liftable torso, and two arms with 8 DOFs each.

We present planning experiments obtained in four different scenarios. The task
is always assigned in terms of the position of the robot right end-effector, while
the left arm is kept frozen. Hence, the robot configuration g consists of the planar
position and orientation of the base, the torso height, and the joint coordinates of
the right arm, for a total of n, = 12 generalized coordinates.

The same parameters are used in all scenarios:

e the samples of the desired task path are N + 1 = 11;

o K =10- I343 in the motion generation ([5.2)), which is integrated with Euler
method and a stepsize of 0.002;

« HP detects the presence of a planning obstruction by setting mio> = mgi* = 5,

while SP identifies its absence using mg, = 100 and m?rlég = 20;

e SP extension works with n = 0.01 and ds = 0.02.

The tolerance is specified in the local frameff] of the desired task path, as this is
the most simple and intuitive option for the user. Accordingly, compliance with the
soft task at a certain configuration is evaluated using by expressing the task
error in that frame.

For each scenario, we report some snapshots from a solution (Figs. as
well as the evolution of the task error along that solution (Fig. . To better
appreciate the quality of the generated motions, we invite the reader to watch the
video available at the link https://youtu.be/Z8Z9sJ-BWkU, which shows animated
clips of the solutions.


https://youtu.be/Z8Z9sJ-BWkU

5.5 Planning experiments 75

Figure 5.4. Planning scenario 1: snapshots from a solution. The desired and actual task
paths are shown in red and blue, respectively. The robot leaves the desired path only
when strictly necessary to avoid the pillar.

o e —_ —_—
S SaiE e =S Samtiy AR 2o I
™ e Ty ¥ ‘J lh 7(‘ )
LR . E 1) # =
VNV V__ew V == V. oW Vam
s=00 v o [s=0:24 R w| s=0'5 I

Figure 5.5. Planning scenario 2: snapshots from a solution. The task tolerance is exploited
in correspondence of the two portions of the desired path that are obstructed by pillars.

-
zPs In ’;,.: da _ ’I'
A e ,
30 L& éﬁ’

| == = &

Ls=0 _ ls=065  [s=08

Figure 5.6. Planning scenario 3: snapshots from a solution. The robot carries an object
from a location to another above the table, leaving the desired end-effector path only
when strictly necessary to avoid collisions between its torso and the table.

Figure 5.7. Planning scenario 4: snapshots from a solution. Although the environment
is quite cluttered, the robot succeeds in carrying the object along the desired path,
momentarily deviating from it only in order to avoid the cabinet.

In the first scenario (Fig. , the desired task path for the end-effector is a
line passing through a pillar. The tolerance is specified as Ay = (0.07,0.2,0.1) m
(corresponding to the green volume in Fig. . In the first part of the motion, HP
is able to execute the desired task path (snapshots 1 and 2). In the vicinity of the
pillar, HP detects an obstruction and SP is invoked; this leads to an end-effector
path that deviates (snapshot 3) from the desired one for s € [0.3,0.5], still remaining
inside the available tolerance (Fig. . As soon as SP considers the obstruction to
have disappeared, HP takes back control and the robot returns on the desired path
(snapshot 5).

The second scenario (Fig. is aimed at confirming that the opportunistic
planner is able to leave and return to the desired task path multiple times. To

3In our implementation, such frame has the origin at y,(s) and the 2- and y-axes oriented,
respectively, as y};(s) = (z, vy, 2) and (yy, —x, 0); the z-axis is consequently defined. With this
choice, the z-axis is always tangent to y,(s) and oriented along the direction induced on y,(s) by s.



76 5. Motion planning in the presence of soft task constraints

05 planning experiment 1
04
03[
T
0lE-s=-=-=-=--=-=--C-C-----z-z-z-sz-z-sz-z=srz-z==co«zo

E_OI?ZZZZZZZZ::::::::::::::

B R
031
041 ‘ €z €y 62‘

05 —

051 planning experiment 2
04 r
R
021
0.1

-0.1
-0.2
-0.3
-0.4
-0.5

0.5
0.4
0.3
0.2
0.1

-0.1
-0.2
-0.3
-0.4
-0.5

0.5
0.4
0.3
0.2
0.1

-0.1
0.2
0.3
0.4
0.5 ' ' ' ' ' '

Figure 5.8. Evolution of the task error e in the four planning experiments. The dashed
lines indicate the tolerance for each component.



5.6 Extension to humanoid robots 77

scenario planning HP SP vertexes | collision
time (s) | invocations | invocations | in T checks
3 6.23 2 1 37 9065
4 13.64 2 1 43 17047

Table 5.1. Planner performance data.

this end, the robot end-effector is assigned a sinusoidal path that passes through
two pillars, with the tolerance defined as Ay = (0.07,0.3,0.1) m. Snapshots 2 and
4 show that the robot correctly exploits the tolerance twice, for s € [0.1,0.3] and
s €[0.7,0.9], while the desired path is realized everywhere else (see also Fig. [5.8).

In the third scenario (Fig. the robot must execute a simple pick and place
task, i.e., moving a ball from an initial to a final position on the table. In such
a situation, the user may specify a very simple (and time-efficient) tentative task
path, defined as the line segment joining the two locations above the pick and
place positions. This path may be abandoned if necessary, but for safety reasons
it is desirable that the object always remains above (but not in contact with) the
table during the motion. Such requirements translate to a tolerance specified as
Ay = (0.07,0.3,0.1) m. The results show that the desired path is perfectly executed
at the start and at the end, with the robot retracting its end-effector for s € [0.4, 0.8]
(snapshots 2-4) to avoid collision between its torso and the table. As indicated by
Fig. the task error is always within the tolerance region.

The final scenario (Fig. also deals with a pick and place task, with the
robot now required to move the ball from a shelf to a desired location on a
bookcase. The task is specified through a curved desired path and a tolerance
Ay = (0.05,0.25,0.1) m. An early portion of the desired path goes through a
cabinet, while the second part requires the robot to navigate a very cluttered region.
As in previous scenarios, the desired path is initially realized (snapshot 1) and, under
the action of SP, briefly abandoned for s € [0.1,0.4] in order to avoid the cabinet
(snapshots 2 and 3). Once such obstruction has been removed, HP takes back control
and brings back the robot to the desired path, staying on it until the end in spite of
the very limited workspace clearance.

Table reports some performance data averaged over 20 runs of the oppor-
tunistic planner in each scenario.

5.6 Extension to humanoid robots

In this section we present a possible extension of the described opportunistic planning
strategy to the case of humanoid robots. Consider that the humanoid is assigned a
soft task described in coordinates y that express the position and/or orientation of
one of the hands. The complexity of the problem, in this case, is clearly higher than
that of the case of a free-flying robot considered in Sect. In fact, as discussed
in Chap. humanoids can displace their base only by stepping, hence suitable
whole-body motions must be generated in order to complete the task.



78 5. Motion planning in the presence of soft task constraints

To construct the tree T, the proposed approach relies on the concept of CoM
movement primitives introduced in Chap. [3] In particular, a vertex in 7 contains a
configuration with an associated time instant and, in addition, the CoM primitive
through which it has been generated. An edge between two vertexes is a whole-body
motion that realizes a CoM movement selected from a set of primitives U and
simultaneously accomplishes a portion of the task, i.e., it is compliant with the hard
or soft task, depending on whether it has been generated via HP or SP, respectively.

While the structure of the main planner shown in Algorithm [6] remains identical,
appropriate adaptations must be devised for the extension mechanisms of both HP
and SP, which correspond to lines 4 and 13 of Algorithms [7] and [§] respectively.

In HP, once the configuration gq,,, is identified, its associated path parameter
value s; and time instant ¢; are retrieved. At this point, a CoM movement primitive
ucoMm is randomly selected from U among those that are admissible at g,,,. Let
T; be the duration of wcey. Then, the motion generator described in Sect.
is invoked with the aim of generating a whole-body motion @, ., Gnew it the time
interval [¢;,; + Tj], which realizes the reference trajectories y¢ \; and Yewg SPecified
by wcom, and is compliant with the hard task in the interval [s;, sj+1]. To this end,
a continuous time history for the path parameter s(t) : [¢;, ¢ + ;] — [sj, sj4+1] can
be arbitrarily assigned, with the constraints that s(¢;) = s; and s(t; + 7}) = sj4+1.
For example, the simplest option consists in choosing a linear time history as

t—1
s(t) = sj + Tl(sjﬂ — 55)- (5.6)

The motion generator proceeds by integrating the joint velocities produced by ,
where Yy, =y, ¥y =Yg, YUy = Y4 and the null-space vector vg is chosen as in .

The extension procedure of SP (see Procedure |8) generates a sequence of whole-
body motions, each one realizing a certain CoM primitive. To this purpose, it
proceeds iteratively. At each iteration, a CoM movement primitive ucon is randomly
selected from U among those that are admissible at gy, i.e., the configuration
generated at the previous iteratiorﬁ Let ¢; and T; be, respectively, the time instant
associated to g, and the duration of ucom. Then, the motion generator is invoked
with the aim of generating a whole-body motion @y ey Geyrr, In the time interval
[t1,t;+T7], which realizes the reference trajectories y¢ ) and Yswg SPecified by ucom,
and is compliant with the soft task for increasing values of s. To this end, the
motion generator proceeds by integrating the joint velocities produced by ,
appropriately setting the null-space vector vg.

At the generic integration step, let q.,,, be the last generated configuration and
Scurr its associated path parameter value computed as in , the null-space vector
vg is computed as

vy =1 Qrand — 9curr (57)
quand - qcurrH
during the first invocation of the motion generator, or as

vo =nd (5.8)

with d computed as in (5.5)), otherwise. The aim is to drive the motion generation
towards the random configuration q,,,q (5.7), or in the descent direction of the task

1At the first iteration Qprey coincides with g,



5.7 Conclusions 79

Procedure 8: PrimitiveBasedExtendSoft(q,ears @rands £)

9eurr < Gnears
repeat
Aprev <~ deurrs
ucoMm < RandomPrimitive(U, qprev)§
Gprovenn: < MotionGenerator(qp,ey, wcoM);
compute Scyrr ;
until scyrr = Sk OF Scurr = 0 or Valid(@p oy Genrr);
if scurr = sk then
| return [
return |

© 0 N O A W N

qcurr’ qnearqcurr] ;

=
(=]

Qprevs Tnoardprev);

error in the configuration space , without perturbing the exact execution of the
primary locomotion task. The cycle is interrupted in one of the three cases described
in Sect. Accordingly, the sequence of generated whole-body motions that are
valid and compliant with the soft task is returned to SP.

Some remarks are in order here about two possible limitations of the proposed
approach.

e The parameter N must be carefully chosen in such a way to guarantee that
each portion of the desired task path between two consecutive samples has
a length compatible with the CoM primitives included in the catalogue U.
Given a certain primitive, if this length is too large or too small w.r.t. the
CoM displacement, the motion generation is more prone to failure, because
some joints (especially of the involved arm) will be close to the their limits.

e The complex structure of humanoid robots makes inverse kinematics compu-
tations expensive. This may dramatically increase the planning time of the
proposed approach, that needs to generate a fixed number of inverse kinematics
solutions every time SP is invoked (line 4 of Algorithm . To tackle this
problem, efficient inverse kinematics solvers should be employed.

5.7 Conclusions

We have considered the problem of planning collision-free motions for redundant
robots in the presence of soft task constraints, specified by a desired path in task
space with an associated tolerance. The objective was to devise a planner that can
realize the desired path for as long as possible, exploiting the tolerance only when
strictly needed to avoid a collision.

Our opportunistic approach alternates two subplanners: the first (HP) plans a
robot motion that satisfies the hard constraint, until it detects an obstruction based
on a heuristic criterion; when this happens, it invokes the second planner (SP), which
is only required to satisfy the soft constraint and may therefore be able to bypass
the obstruction, giving back control to HP as soon as possible. We implemented the
method in V-REP for the PR2 mobile manipulator, presenting successful planning
experiments in several scenarios. We have also discussed a possible extension to the



80 5. Motion planning in the presence of soft task constraints

case of humanoid robots. Implementing and testing the proposed extension is part
of our future work.

Our approach can also be further developed along several lines, such as (7)
devising an automatic procedure for tuning the planner parameters, in particular
N; (i) extending the method to generic nonholonomic robots; (%) taking into
account moving obstacles; (iv) generating solutions that are optimal w.r.t. a given
performance criterion.



81

Chapter 6

Multi-contact motion planning

Thanks to their versatile whole-body structure, humanoid robots have the potential
for achieving complex tasks that require to sequentially establish multiple contacts
with the environment. Differently from tasks that can be achieved through biped
locomotion, such as those considered in Chaps. [3| and [4], the tasks considered in this
chapter require the simultaneous interaction between different bodies of the robot
(not only the feet) and the environment. For example, climbing a staircase using a
handrail to keep balance requires to establish contacts with both feet and one hand.

As anticipated in Chap. [2] the problem of generating appropriate motions for
achieving this kind of tasks is known as multi-contact motion planning problem. To
deal with the problem complexity, most existing approaches adopt the contact-before-
motion paradigm: first, a sequence of contact combinations (called stances) is planned,
and then a whole-body motion that realizes such sequence, while guaranteeing balance
and collision avoidance, is computed.

The first sub-problem is particularly challenging due to the acyclic nature of
the sequence of contact combinations, differently from the case of biped locomotion
in which the identity of the foot in contact with the ground regularly alternates
between the right and left foot. Early approaches, such as [49], deal with such
complexity by first creating a stance-adjacency graph based on a set of predesigned
possible contacts between robot and environment points, and then searches the
graph to find an appropriate sequence of stances. Other methods (e.g, [50, 51]) avoid
the specification of predesigned potential contact points, thus allowing contacts
anywhere in the environment. These methods first find (via standard RRT or PRM)
a guide path for a free-floating robot model that does not collide with obstacles, but
keeps the limbs sufficiently close to them. Then, the sequence of stances is computed
using a best-first search that exploits the guide path to generate configurations
in contact with the environment. A more recent work [104] improves the search
efficiency by precomputing a feasible set of configurations for each kinematic chain
of the robot. Approaches based on graph or best-first search require the specification
of heuristics that drive the search. Such heuristics are generally task and/or scenario
dependent, and thus need to be carefully designed according to the considered
situation. Moreover, precomputation of potential stances and feasible configurations
of limbs are typically very expensive procedures.

In this chapter we propose a method for planning multi-contact motions for a



82 6. Multi-contact motion planning

humanoid robot. The presented method adopts the contact-before-motion paradigm,
as in the discussed previous works. The main contribution of this chapter consists
in a novel randomized strategy for planning the sequence of stances, which does
not require the specification of predesigned potential contacts between robot and
environment points, the design of heuristics, or any kind of precomputation.

The work presented in this chapter was made (and is currently in progress) in
collaboration with the Humanoids & Human Centered Mechatronics (HHCM) group
of the Istituto Italiano di Tecnologia (IIT).

This chapter is organized as follows. Sect. introduces some basic notions and
assumptions used throughout the chapter. Sect. [6.2] formally describes the motion
planning problem and gives an overview of the proposed approach. The strategy
proposed for generating the sequence of stances is described in Sect. while the
generation of whole-body motions throughout such sequence is discussed in Sect.
Sect. presents preliminary results obtained applying the proposed planner
to the stand up task of the COMAN+ humanoid. Conclusions and future work are
discussed in Sect. [6.61

6.1 Background

The configuration of a humanoid robot is fully described by

dm
q =
(ant>

where gp, € SE(3) is the pose of a reference frame attached to a certain linkE| of the
robot w.r.t. the inertial world frame and gj, is the n-vector of joint angles. Then,
the configuration space C is (6 + n)-dimensional.

Throughout this chapter, it is assumed that a given subset of h robot points,
henceforth referred to as end-effectors, is allowed to establish non-coplanar, fixed,
point contacts with the environment, i.e., the position of an end-effector in contact
with a certain point of the environment is fully constrained, differently from other
kinds of contact modes (e.g., sliding or rolling contacts). We will indicate such subset
as H = {ei1, ..., ep}, where each element e; is a robot point identifier. As an example,
consider the case of a humanoid robot: H may include only (a representative point of)
the feet (h = 2), the feet and the hands (h = 4), and possibly additional links (e.g.,
the knees), depending on the task that the robot is required to perform. Position
coordinates of a specific end-effector e; are related to configuration coordinates
by a forward kinematic map p,; = k(e;,q), which at differential level becomes
Pe; = Jidn, where J; = J(e;, q) is the Jacobian matrix of p,; w.r.t. q.

A contact is described by a triple ¢ = (e, p., f.), where e is the end-effector in
contact, p, is the point of the environment where the contact is established, and
f. € IR? is the contact force exerted at p. by the environment on e. A stance
is a set 0 = {c1,...,cx} of k < h contacts. A stance o uniquely defines a set
A={e1,...,ex} CH of active end-effectors, a set P. = {p.1,--.,Pc )} of contact

Note that this is a more general option w.r.t. that adopted in Chap. [3| where such frame, in
view of the use of CoM primitives, was attached to the CoM.



6.1 Background 83

positions, and a vector F, = (fgl, cees fCTk)T e R? of contact forces (and vice
versa).

A pair (o, q) consisting of a stance o and a feasible configuration q defines a
multi-contact state. For a configuration q to be feasible at a stance o, it must
realize all the contact positions specified by o, i.e., k(e;, q) = p; for all ¢; € o, and
guarantee static balanceﬂ

A common choice (see [49]) to evaluate static balance of a humanoid, avoiding
the computation of the torques exerted at the joints, is to consider the robot being
constituted by a single rigid body (or equivalently that it has no torque limits).
Under this assumption, static balance at a multi-contact state (o, q) is guaranteed if
(7) the contact forces compensate the gravitational forces and (i7) all the contacts
remain fixed.

Condition (4) is expressed by the Centroidal Statics model

mg+ G(q)F. =0 (6.1)

where m is the total mass of the robot, g = (gX,0% )T € R® with g, the gravity
acceleration, and matrix G(q) € IR®3* has the form

Glq) = < foxs " Taxs > (6.2)

S(pCOM - Pc,l) R S(pcoM - Pc,k)

with S a skew-symmetric matrix, and pcy; the CoM position at g. Model can
be obtained by considering the Centroidal Dynamics model ([52]) under quasi-static
conditions, i.e., g = g = 0.

Condition (i7) is satisfied as long as, for each contact ¢; € o, the contact force
f.; lies inside the Coulomb friction cone F(f.;, ¢ i, pi) directed by the unit normal
nc; at point p.;, i.e.,

JeiMei> f and ||f<t:z||2 < ui(Feimei) (6.3)

where f >0, f(t:’i is the tangential component of f.;, and p; is the static friction
coefficient at p.;. In the following we will shortly indicate such condition as
fc,i € f(fc,i? Nci, :ul)

Given a stance o, all configurations that are feasible at o make up a set F, that
is a submanifol of C. Two stances o and ¢’ are adjacent if:

e o and ¢’ differs from a single contact, i.e., ¢’ can be reached by either removing
(0 D ') or adding a contact (o C ¢’) from o;

o FoNFy #0, ie., there exists (at least) one configuration q, called transition
configuration, that belongs to both F, and F,,. In particular, if 0 C o’
(0 D d’), q is a transition configuration if it realizes all the contact positions
specified by ¢’ (o) and satisfies the static balance conditions using the contacts
in o (o).

2For challenging tasks, such as the stand up task considered in Sect. it is reasonable to allow
the robot to perform only static motions.



84 6. Multi-contact motion planning

6.2 Problem and approach

In the situation of interest, a humanoid robot is assigned a multi-contact loco-
manipulation task, i.e., it must move within the environment by establishing multiple
non-coplanar contacts with it. Examples of these tasks include crawling under low
obstacles, climbing/descending stairs using a handrail, and standing up exploiting
the environment as support.

We assume that the environment is known and static, such that its geometry can
be provided as a point cloud P, and that it is composed by smooth surfaces, such
that the unit normal n pointing from the environment to the robot can be readily
computed at any point p € P whenever needed.

In our formulation, the task is specified as a desired final stance o5, that the
robot must reach starting from its multi-contact state (oini, g;,;) at the initial time
instant ty,;. To complete the assigned task, the robot is required to perform a
sequence of whole-body motions throughout a sequence of stances. Both sequences
must be autonomously decided by the robot.

The motion planning problem consists in finding a configuration space trajectory
q(t), t € [tini,tan), that leads to the desired final stance ogy, ie., gg, = q(tan)
realizes all the contact positions specified by oy, and satisfies the following three
requirements:

R1 A part from contacts between the end-effectors and the environment, collisions
and self-collisions are avoided.

R2 Bounds on the joint (1) positions, (2) velocities and (3) accelerations are
respected.

R3 The robot maintains static balance at all time instants.

To solve the described problem, we propose a strategy consisting in two sequential
(sub)planners: the multi-contact state planner and the whole-body planner.

The first planner computes a sequence of N + 1 multi-contact states leading to
the desired final stance gy,

S = {<007q0>7 <017q1>7‘ < <0'N717qN—1>7 <UN7qN>}

where (00,q0) = (Tini, @i} and (On,qn) = (0fin, ggn )’} Moreover, consecutive
multi-contact states (0;-1,q;_,) and (0;,q;) in S, i =1,..., N, are such that o;_1
and o; are adjacent.

The second planner computes the subtrajectories g, (t), t € [t;—1,t;], appropriately
assigning their timing laws, between configurations g;_; and g; in consecutive multi-
contact states of S. The concatenation of subtrajectories g,(t), i = 1,..., N, provides
the overall trajectory q(t), t € [tini, tan], in C.

In the following we separately discuss the two planners.

3Note that, in our formulation, tgn, dqn, and N are not assigned and will be automatically
determined by the planner.



6.3 Multi-contact state planner 85

6.3 Multi-contact state planner

This section presents a randomized method for planning the sequence of multi-contact
states S which leads to the desired final stance og,. Each element (o;,¢q;) in S,
1=1,..., N, is such that requirements R1, R2.1, R3 are satisfied, and the stance o;
is adjacent to the stance o;_1 contained in the previous element.

The proposed multi-contact state planner, whose pseudocode is given in Algo-
rithm [6] uses a RRT-like strategy to iteratively construct a tree 7 in the search
space. In this tree, a vertex v = (o, q) consists of a multi-contact state satisfying
R1, R2.1, R3. An edge between two vertexes v and v’ indicates that stances o and
o' are adjacent. At the beginning, the tree T is rooted at vertex vini = (Tini, @ini)-

The generic iteration of the algorithm starts by selecting an end-effector e,,,q and
a point p,,,q. The algorithm is allowed to randomly choose between exploration and
exploitation, to bias the growth of the tree towards unexplored regions of the search
space and the goal, respectively. In the first case, e;anq and p,,,q are randomly
chosen from the set H and the workspace, respectively. In the second case, a contact
Crand 1S randomly selected from oy, and epang and p,,,q are retrieved from it.

Then, the algorithm assigns to each vertex v in T a probability that is inversely
proportional to the Euclidean distance ||p,,,q — E(erand; @) between end-effector
erand at g (the configuration specified by v) and p,,,q- The resulting probability
distribution is used to randomly choose a vertex vnear = (Tnear; @near) Of T for a tree
expansion attempt.

Once vnear has been selected, the algorithm decides whether to attempt an
expansion of T from vpear by removing or adding a contact with e.ang. This choice is
determined by the presence/absence of e;,nq in the set Apear of active end-effectors at
Onear- According to the decision taken, a candidate set Acang of active end-effectors
is generated, and a candidate position p,,q for the added contact (if any) is chosen.
More precisely:

o If eranq is active at opear (€rand € Anear); Acand is generated by removing e;ang
from Apcar (Acand = Anear \ {€rand}), and pg,,q is left unspecified.

o If e;ang is not active at opear (€rand ¢ Anear), Acand is generated by adding eyang
to Apear (Acand = AL U {erand}), and p.,,q is chosen within the reachable
workspace W of the end-effector e;anq at configuration q,,,. In particular, W
is defined as the set of points of the point cloud P that lie inside a sphere of
radius r centered at the position of e;anq at qneaﬂ and P,,q is chosen as the
point in W that is closest to p,,.q-

At this point, the algorithm builds a candidate set PS4 = {Pe1s- s Pe}, With
k = |Acandl, of contact positions associated to the end-effectors specified in Acang.
In particular, the generic contact position p.; € PCCandl associated to the end-effector
e; € Acand chosen as

Dc; =

)

Pcand> if e; = erand
k(ei, qpear), Otherwise.

“More sophisticated methods for approximating the reachable workspace (e.g., [105] [106]) can
be involved without affecting the overall planning strategy.



86 6. Multi-contact motion planning

Algorithm 9: Multi-Contact State Planner

1 Vini < (Cini, Qini)s
2 AddVertex(T, vini);

3 14 0;

4 repeat

5 erand < PickRandomEndEffector(H);

6 Prang < PickRandomPoint(IR?);

7 Unear < FindNearestVertex(T, erand, Prand);

8 if erand € Anear then

9 Acand — -Anear \ {erand}§

10 Peand < (Z);

11 else

12 -Acand — Anear U {erand};

13 W < ComputeReachableWorkspace(q,ear, €rand);

14 Peand < PickRandomPoint(W, pandg);

15 end

16 Peand « BuildContactPositions(Acands Gpears Peands €rand);
17 (Tnews Quew) < MultiContactStateGenerator(Acang, PS*19);
18 if (Chew, Quew) # (0,0) then

19 Qiran < TransitionConfigurationGenerator(opear, Tnew);
20 if @, # 0 then

21 Unew < <Unew7 qnew>;

22 AddVertex(T, Unew, Vnear);

23 end

24 end

25 141+ 1;

26 until o,y = 0an OF @ = iyax;

27 if opew = 0gn then

28 S < RetrieveSolution(7);

29 return S;
30 end

31 return 0;

With the aim of producing a new multi-contact state (opew, @pew) - realizing the
candidate contact positions PCCamd for the end-effectors in Acang, and satisfying R1,
R2.1, R3 - the multi-contact state generator (described in Sect is invoked. If it
succeeds, adjacency of opew With respect to opear must be verified. To this end, the
algorithm invokes the transition configuration generator (described in Sect.
to check whether there exists a configuration gq.,,, that belongs to both feasible sets
Freat and FrY at opear and opew, respectively. If the test is passed, a new vertex
Unew = (Tnew, @pew) 1S added to the tree 7 as a child of vyeay-

Planning terminates when the desired final stance is reached, i.e., opew = Tfn,
or a maximum number iy, of iterations has been executed. In the first case, the
branch joining the root vertex viy; to vnew represents the sequence S; then, it is
extracted from 7 and provided to the whole-body planner. In the second case, the
planner returns a failure.



6.3 Multi-contact state planner 87

6.3.1 Multi-contact state generator

The multi-contact state generator, whose pseudocode is given in Procedure[J] receives
in input a candidate set Acang = {e1, ..., er} of k active end-effectors, together with
their reference contact positions P4 = {Pc1s- -+ Pci}- It is in charge of generating
a multi-contact state (Tpew, @pew) that realizes the reference contact positions P14
for the end-effectors in Acang, and satisfies requirements R1, R2.1, R3.

The first step consists in generating a candidate configuration q.,,q that realizes
the reference contact positions PCCandl for the end-effectors in Ac.ng, and satisfies
requirements R1-R2.1. To this end, it repeatedly invokes the Inverse Kinematics (IK)
solver (described in Sect. [6.3.3)). As it will be clear in the following, the IK solver
is non-deterministic, hence different invocations have in general different outcomes.
Such loop is left when the IK solver finds a solution or a predefined time budget
ATk runs out. In the last case, a failure is returned to the multi-contact state
planner, which resumes control.

If goanq is successfully generated, let p&id be the CoM position at gg,,q. The
Centroidal Statics (CS) solver (described in Sect. is invoked. It computes the
contact forces Fend — ( Zl, e fzk)T, with f.,; the contact force at p. ;, and the
CoM position p¢e);, as close as possible to pccaéll\‘}l, which guarantee satisfaction of
requirement R3.

At this point, the procedure attempts to generate a new configuration q,,.,, that
- in addition to realize the reference contact positions PS¢ for the end-effectors
in A% and satisfy requirements R1-R2.1 - achieves the CoM position Dlioy as
well. To this purpose, a loop similar to that described above is performed. Note
that, this time, the generated configuration q,., (if any) is statically balanced by

construction, thus requirement R3 is satisfied as well.

Procedure 9: MultiContactStateGenerator (Aeang, P&*)

C

1tk < 0

2 repeat

3 | Geana — IKSolver(Acana, PS9);

4 tik < UpdateTime();

5 until g4 # 0 or tix > ATik;

6 if g ,,q # 0 then

7 [Feand, paey,] + CSSolver(Pcand, peand )y,
8 tik < 0;

9 repeat

10 Qnew — IKSolver(Acand, P, plew );
11 tik < UpdateTime();

12 until g, # 0 or tix > ATik;

13 | if g, # () then

14 Onew < BuildStance(Acanq, P, Fend):;
15 return (Ghew, Quew);

16 end

17 end

18 return ({0, 0);

In case generation of a statically balanced g, succeed, the corresponding stance



88 6. Multi-contact motion planning

Onew 18 constructed as opew = {cfV,..., "}, where ¢fV = (ei, P, fci), With
each element appropriately retrieved from Aeanq, P, and Fgand, respectively.
The resulting multi-contact state (Onew; @new) 1S returned to the multi-contact state
planner. Instead, if generation of a statically balanced gq,.,, failed, a failure is

returned to the multi-contact state planner.

6.3.2 Transition configuration generator

The transition configuration generator, whose pseudocode is given in Procedure
receives in input two stances opear and opew. It is in charge of generating a
configuration g, that satisfies requirements R1-R2.1-R3, and is feasible at both
Onear aNd Tpey-

The first step consists in retrieving the set A of active end-effectors, together
with their corresponding contact positions P, from the stance composed by more
contacts; positions P! of the contacts that are active at the stance composed by less
contacts are retrieved as well.

The transition configuration generator proceeds analogously to the multi-contact
state generator, with the only difference that configurations are generated (via the IK
solver) so as to realize the contact positions P, for the end-effectors in A, while static
balance (considered via the CS solver) is obtained by involving only the contacts at
the positions P!/. As before, depending on whether g,,,, is successfully generated or
not, the procedure returns, respectively, .., Or a failure to the multi-contact state
planner.

Procedure 10: TransitionConfigurationGenerator(opnear; Tnew)

1 if opear C Opew then

2 | A Anew; Pe <= P2V Pl P2,
3 else

4 ‘ A%Anear;Pc%PCnear;Pc/<_Pcnew;
5 end

6 tix < 0;

7 repeat

8 Qeang < IKSolver(A, F.);

9 tik < UpdateTime();

10 until g4 # 0 or tix > ATik;

11 if g ,,q # 0 then

12 | [FE, pan] e CSSolver(PL, pid):
13 tik < 0;

14 repeat

15 Qiran < IKSolver(A, P., p&2y);
16 tik < UpdateTime();

17 until g, # 0 or tix > ATik;

18 return q...;

19 end

20 return (;




6.3 Multi-contact state planner 89

6.3.3 Inverse Kinematics and Centroidal Statics solvers

The IK solver receives in input a set A = {e1,...,ex} of k end-effectors, a set
P. = {Pc1,---sDci} of associated reference positions, and (possibly) a reference
CoM position poyy- It aims at finding a configuration g that achieves as much
as possible the reference positions for the end-effectors and the CoM (if any),
and satisfies requirements R1-R2.1. To this end, the IK solver randomly picks a
configuration q,,,q from C and, starting from it, proceeds iteratively by integrating
the joint velocities produced by solving the following unconstrained QP problem

k
. . 2 . 2
mmz ||Jiant - KeiHQ WK T ||JCoMant - KeCoMH2 wiK (6.4)
int =1 T 7 Co
Here, e;, i =1,...,k, and ecom are the tracking errors; K is a positive definite gain

matrix; wggM is set to zero if pc\ is unspecified. Integration stops when the value
of the cost function becomes smaller than a predefined threshold or a maximum
number of iterations is reached. In the first case, the last generated configuration g
is checked for requirements R1-R2.1. If the test is passed, q is returned. In all the
other cases, a failure is reportedlﬂ

The CS solver, that consists in an adaptation of the method proposed in
[107], receives in input a set Pe = {P. ..., P4} Of k reference contact posi-
tions and a reference CoM position pcyp- In output, it provides the contact forces
F.=( Z:l, e fz:k)T and the CoM position po,\; which guarantee that the robot
maintains static balance. To this end, the following NLP problem is solved

. — 2 2
min IPcort = Peomllzwgs, + 1 Fellzues
II)COM7 c °

subject to mg + G(pcop)Fe = 0,
fei € F(feirnci i) fori=1,... k.

(6.5)

The cost function in includes a first term which attempts to bring the CoM
position pc\ as close as possible to the reference position pcgy, and a second
term for regularization purposes. The constraints enforce the conditions (i) and
(i) of Sect. respectively, to guarantee static balance. Note that, in the first
constraint we have explicitly shown the dependence of matrix G(q) on the decision
variable pcgy; only (that determines the nonlinearity of the constraint), as the
contact positions specified by P. yield in skew-symmetric matrices of the form
S(Pcom — Pe;)- Finally, in the second constraint, f in serves as a design
parameter.

5Note that, according to , end-effectors not included in A can assume arbitrary positions.
This might potentially lead to the generation of unnatural configurations. To avoid this fact, a
suitable option (that we used in our implementation) consists in adding in a third term that
attempts to keep the h — k end-effectors not included in A as close as possible to their positions
attained at configuration q,,, from which the invocation of the IK solver originated. For sake of
clarity, we omit explicit discussion of such term, which will be similar to the first in , but with
lower weights.



90 6. Multi-contact motion planning

6.4 Whole-body planner

The whole-body planner is in charge of computing the timed subtrajectories g;(t),
t € [ti—1,t;], between configurations q;_; and q; contained in consecutive multi-
contact states in the sequence S found by the multi-contact state planner. The
overall trajectory q(t), t € [tini,tn], representing the solution for the planning
problem will be the concatenation of these subtrajectories.

Given two consecutive multi-contact states (o;—1,q;_,) and (04, q;) in S, the
configuration space trajectory to be computed must start at g;_; € Foi-1, and end
at q; € Fo, passing through a transition configuration ¢i** € F,,;_1 N F,;. Such
transition configuration may be stored in the tree produced by the multi-contact
state planner in the same vertex containing g, at the time of its creation, and
appropriately retrieved together with the sequence S (for sake of illustration, we
avoid explicit discussion of this operation).

In order to find such trajectory we adopt an adaptation of the approach proposed
in [I08] which works in two phases that we briefly recall in the following (the reader
is referred to the original paper for further details).

In the first phase the aim is to find a discrete sequence S; of configurations
leading from g,_; to g;, and passing through a transition configuration ¢{™. To
this end, a simple RRT-based planner is invoked two times in order to produce,
respectively, the portion of S, joining g;_; to gi**!', and ¢!**! to q,. At each iteration,
the planner uses a projection mechanism (see [34] for details) to bring the generated
configuration in the appropriate submanifold of C, i.e., 5 ;—1 and F,; for the first
and second portion of Sy, respectively. By construction, all configurations in S,
satisfy requirements R1, R2.1, R3.

In the second phase, a time-optimal trajectory satisfying the additional require-
ments R2.2-R2.3 (respect of joint velocities and acceleration limits) is computed
through an optimization-based interpolation using polynomial splines.

6.5 Preliminary results

In this section, we present preliminary results that we obtained applying the multi-
contact state planner proposed in Sect. The chosen robotic platform is the
COMAN+ humanoid robot built at Istituto Italiano di Tecnologia. COMAN+ has
28 degrees of freedom, weights 70 kg and is 1.7 m tall. Moreover, COMAN+ is
torque-controlled.

For the IK and CS solvers described in Sect. we have used, respectively, the
whole-body inverse kinematics framework named CartesI/O [109], and the framework
presented in [107] which is based on IFOPT, an Eigen-based C++ interface to the
Non-linear Programming solver IPOPT [110].

In the considered scenario (see first snapshot in Fig. , the robot is initially in
a quadrupedal configuration, with both feet and hands in contact with the ground.
A wall is located nearby the robot, in front of it. The task assigned to the robot
consists in standing up from its initial posture. In particular, the task is defined as
reaching a final stance specifying desired contact positions for both feet and hands,
respectively, on the ground and on the wall. To fulfil the task, the robot can exploit



6.5 Preliminary results 91

contacts with any point of the environment using both feet and hands. Then, the
set H contains four end-effectors. In particular, COMAN+ has two rectangular, flat
feet and two spherical hands. We placed a local reference frame on each of these
end-effectors. For each foot, the local frame has origin at the center of the sole and
is oriented so that the xy plane is parallel to the sole. For each hand, the local frame
has origin at a point designed as tip (this can be chosen arbitrarily on the sphere)
and is oriented so that the xy plane is tangent to the sphere. To increase the chances
of the IK solver to find collision-free configurations, we have included in an
additional term that aims at keeping the z-axis of each active end-effector frame
parallel to the normal at the contact point. Note that, differently from the spherical
hands which can establish full-fledged point contacts, the feet actually establish
surface contacts. In the presented preliminary results, they are approximated to
point contacts. The explicit inclusion of surface contacts in the multi-contact state
planner is part of our future work (see Sect. .

The point cloud P modeling both the ground and the wall has been generated
with a resolution of 0.1 m. We set the radiuses of the feet and hands workspaces
to 0.3 m and 0.6 m, respectively. The time budget ATk used to search for an
inverse kinematics solution in the multi-contact state and transition configuration
generators is set to 3 s. The CS solver uses an identical static friction coefficient
p = 0.5 at all point of the environment, and a force threshold f of 15 and 65 N for
contacts involving hands and feet, respectively.

Since the proposed multi-contact state planner is randomized, to assess its
performance we ran it ten times on the considered scenario. The produced sequence

Figure 6.1. Stand up task: snapshots from a solution.



92 6. Multi-contact motion planning

of multi-contact states contains on average 23 elements. The average number of
needed iterations, number of vertexes in the final tree and time required to find a
solution are, respectively, 537, 152 and 271 s. Fig. shows some snapshots from a
typical solution: the robot correctly exploits the environment as support to fulfil the
assigned stand up task.

6.6 Conclusions

We presented a randomized strategy for planning humanoid multi-contact motions.
Our strategy consists in two sequential planners. The first generates a sequence of
multi-contact states leading to the desired final stance, while the second computes
a configuration space trajectory realizing such sequence. We showed preliminary
results regarding the application of the proposed planner to the stand up task of the
COMAN+ humanoid.

For the first planner, i.e., the multi-contact state planner, we have proposed a
novel approach that thanks to its randomized strategy does not require to predesign
potential contacts between robot and environment points, to specify task-oriented
heuristics, or precomputations (e.g., of stance-adjacency graphs or feasible configu-
rations of the various kinematic chains). We believe that this is an advantage over
existing approaches.

The results are promising and open up to multiple further developments. Our
current work focuses on the two following aspects.

o Extension of the proposed planning strategy to the case (of more practical
interest) of surface contacts, i.e., when a surface of a robot link is in contact
with a surface of the environment (e.g., a foot on the ground). A surface
contact fully constrain the pose (position and orientation) of the involved
end-effector, and can be modelled using a set of at least three point contacts
located on the vertexes of the surface. Accordingly, the CS solver described in
Sect. must consider, for each surface contact, the corresponding contact
point set. Furthermore, each vertex in the tree must maintain, for each surface
contact, the resultant contact wrench that can be readily computed from the
forces (at the corresponding contact point set) computed by (6.5]).

o Integration of the proposed planning strategy in a complete multi-contact
planning and control architecture that will allow the experimental validation
on the real humanoid. The complementary multi-contact controller, which is
in charge of realizing the motions computed by the proposed multi-contact
planner, must compute the torque commands for the COMAN+ actuators. It
shall combine a contact forces distribution module ([ITI]) with an impedence
controller. The first is in charge of realizing the reference contact forces (that
are planned by our planner simultaneously to the configuration space trajectory
and can be directly retrieved from the stances in the generated multi-contact
state sequence) at best, while providing reactive balance capabilities. The
second is responsible for tracking the reference joint positions and velocities
resulting from the planned configuration space trajectory. Proprioceptive
feedback must be used for both control objectives.



6.6 Conclusions 93

Other future work will address the improvement of the efficiency of the multi-
contact state planner. A possibility that we want to explore is to implement
a bi-directional version of the planner, where two trees rooted, respectively, at
the initial and final stance are grown until they share a common stance. Another
possibility consists in designing a unique IK-and-CS solver that can produce in a single
stage a configuration satisfying requirements R1-R2.1-R3. Finally, incorporating
performance criteria in the planning stage, as done in Chap. [ for the footstep
planning problem, is another interesting direction that we want to investigate.






95

Chapter 7

Safe human-humanoid
coexistence

The most recent paradigms for adopting robotic technologies in applications empha-
size the role of collaboration between robots and humans. Since collaboration implies
sharing a common environment, safety concerns immediately become relevant. In in-
dustrial contexts, these have been addressed through the introduction of lightweight,
compliant manipulators [I12] and the development of new techniques for safe coex-
istence and interaction with humans [113]. Clearly, similar issues arise in service
applications; for example, [I114] give a survey of human-aware robot navigation
and [I15] provide a review of recent research on safety for domestic robots.

One of the most essential safety layers in a robot is related to the avoidance of
obstacles, static or dynamic, which can be implemented using an appropriate motion
planning strategy (see Chap. . Recently, researchers have started looking at this
issue in the context of safe human-robot coexistence and interaction [I16, 117, [118].
These methods, however, are almost invariably devoted to fixed-base manipulators
or wheeled robots.

On the other hand, there exists a growing interest in the use of humanoids for
assembly operations where access by fixed-base manipulators or wheeled robots is
impossible. For example, a recent EU H2020 research project targeted the adoption
of humanoids in aeronautic manufacturing [I19]. Indeed, there is a widespread view
that humanoids represent a rather natural choice of platform in environments that
are specially designed to accommodate humans. Whether one agrees or not, there is
no doubt that the challenging problem of safe deployment of humanoid robots needs
be addressed.

The design of safety layers for humanoids must account for their unique char-
acteristics: in particular, the fact that they can displace their base only through
steps and that balance must be maintained at all times during motion [I120]. One
of the first works showing a humanoid (ASIMO) safely navigating an environment
populated by dynamic obstacles via vision-based replanning was due to [53]. More
recent results range from reactive Model Predictive Control techniques [55] 56] to
full-fledged whole-body motion planners like that presented in Chap. [3

Another important body of research related to the reliability of humanoids
originated from the 2015 DARPA Robotics Challenge, in which research teams



96 7. Safe human-humanoid coexistence

competed to effectively control humanoids in environments designed to emulate
a real-world disaster scenario [121, [122]. Many planning and control techniques
developed in this context by the participating teams proved to be effective [123],
providing strong inspiration for achieving robust operation of humanoids.

All the above works, to which many more could be added [124], focus however
on a single issue which is considered relevant for reliable operation, such as robust
locomotion or collision avoidance. Furthermore, humans are generally absent in the
considered scenario (as in the case of the whole-body planning framework presented
in Chap. , and tasks are often executed in supervised autonomy with the aid of
specifically designed user interfaces (as it happens in the DARPA Challenge [125]).
In the literature, there is no general study that looks at the safety problem from a
global viewpoint in order to design a holistic framework for achieving safe operation
of humanoids.

In this chapter we propose a complete framework for the safe deployment of
humanoid robots in environments that may contain humans. Proceeding from some
general guidelines, we propose several safety behaviors, classified in three categories:

e override behaviors, which stop the execution of the current task to account for
the presence of an immediate danger, leading to a state from which normal
operation can only be resumed after human intervention;

e temporary override behaviors, that take control of the robot for the limited
amount of time necessary to address safety concerns, after which task execution
can be automatically resumed;

e proactive behaviors, which are aimed at increasing the overall level of safety
by an adaptation or enhancement of the robot activity, without interrupting
the current task.

Activation and deactivation of these behaviors is triggered by information coming
from the robot sensors and is handled by a state machine. To allow this, the state
of the robot is identified by the current context (essentially, the task the robot is
executing) and all active behaviors.

We also discuss the implementation of our safety framework in a reference control
architecture, showing in particular that all behaviors related to locomotion can be
efficiently realized in an MPC setting. Two humanoid platforms are used to show
the performance of the proposed method, i.e., HRP-4 in simulation and NAO in
experiments.

This chapter is organized as follows. Sect. [7.1] briefly reviews the existing
safety standards for robots, while Sect formulates some general guidelines
for safe deployment of humanoids. In Sect. [7.3] we enunciate the robot sensing
capabilities assumed by our framework. An overview of the proposed safety behaviors
is given in Sect. [7.4] while Sect. [7.5] provides a detailed description of each behavior.
Sect. presents the state machine that orchestrates activation and deactivation
of the behaviors. A reference control architecture is outlined in Sect. [7.7], and the
implementation of the proposed behaviors within such architecture is discussed in
Sect. [7.8] Simulation and experimental results are presented in Sects. [7.9) and [7.10]
respectively. Sect. presents additional results and discusses limitations and



7.1 Safety standards 97

possible extensions of the proposed method. Sect. offers some concluding
remarks.

7.1 Safety standards

Standards codify a set of practices that inform the design and operation of tech-
nologies. A product does not necessarily have to follow international standards as,
unlike laws and regulations, these are not mandatory. However, they often provide
a guarantee of compliance with regulations which otherwise can be quite hard to
accommodate. It is therefore advantageous whenever possible to follow an existing
standard, as this simplifies the design process.

The main international standards are published by either IEC or ISO committees.
The first body focuses on standards related to electronics, while the second covers
the remaining areas. Standards are divided in three categories.

e Type A standards provide basic rules and guidelines for machine safety (e.g.,
ISO 12100 “Basic Concepts, Design Principles" and ISO 14121 “Principles of
Risk Assessment").

e Type B standards are further divided into two subtypes: B1 covers aspects such
as safety distances or ergonomic principles (e.g., ISO 13857 “Safety Distances").
B2 describes rules concerning protective equipment for different applications
(e.g., IEC 13850 “Emergency Stop").

e Type C standards refer to specific kinds of machines or areas of application,
such as robots, and describe practical requirements and precautionary measures
relating to all significant risks (e.g., see ISO 10218 “Robots and Robotic Devices
- Safety Requirements for Industrial Robots"). Type C standards refer to Type
A and B standards for generalities but may deviate from them when needed
by the application.

The fundamental standard for industrial robot safety is ISO 10218, which high-
lights three particular aspects.

First, the standard suggests that means must be provided for the control and/or
the release of hazardous energy stored in the robot. Examples of energy storage
sources are batteries, springs and gravity.

The second aspect concerns safety stops. All robotic systems should have both
a protective and an emergency stop function. Protective stops are used for risk
reduction and can be activacted and deactivated automatically. Emergency stops
are used in dangerous situations and require manual intervention.

Finally, ISO 10218 defines conditions for safe human-robot collaborative operation,
identifying in particular four modes:

o Safety-rated monitored stop. The robot must stop whenever a human enters
the shared workspace. This method does not allow collaborative work but only
coexistence in the workspace. The robot may resume automatic operation
when the human leaves.



98 7. Safe human-humanoid coexistence

e Hand guiding. The human can move the robot by physically interacting with
it, e.g, to allow simplified path/point teaching. When provided, hand guiding
equipment (such as a joystick) shall be located close to the end-effector. This
mode must provide an emergency stop, an enabling device and safety-rated
monitored speed limit.

e Speed and separation monitoring. The robot progressively reduces its speed
as the human approaches. Failure to maintain the desired relative speed or
separation distance will trigger a protective stop.

e Power and force limiting. In this mode, humans and robots can safely interact
with little or no additional safety components because the robot force/power
are bounded by design or control. Safe bounds are determined following ISO
10218-2 and ISO/TS 15066.

Almost all the above mentioned standards are specifically devised for industrial
fixed-base manipulators, with only few exceptions addressing the case of wheeled
mobile robots. No existing standard explicitly considers humanoid robots, whose
peculiar nature must be properly taken into account.

7.2 Safety guidelines

With an eye to the standards discussed in the previous section, we provide here
a qualitative description of the guidelines that inspired the design of our safety
behaviors. In particular, we argue that the following recommendations should be
followed for safe operation of a humanoid robot.

o Watch what you’re doing. The robot should watch its main area of operation.
When performing a manipulation task, it will therefore look at its hand(s)
and/or at the object to be manipulated. When performing a locomotion task,
it should direct its gaze towards the area where it is about to step.

e Be on the lookout. If the robot is idle, then it should scan the surroundings to
identify possible sources of danger. In particular, if a moving object (e.g., a
human) is detected, the robot should keep an eye on it.

o Fvade if you can. When a moving object approaches, the humanoid robot
should perform an evasive action, if this can be done safely.

e Halt if you must. In a situation of clear and present danger, the robot should
terminate any activity and stop as soon as possible.

e Beware of obstacles. In the vicinity of unexpected objects, robot velocities
and forces should be modified, scaled down or even zeroed in order to reduce
potential damage in the case of a collision.

e Look for support. When locomotion is expected to be challenging (e.g., on
stairs), the robot should try to establish additional contact with the environ-
ment (e.g., with a handrail). The possibility of improving balance by adding



7.3 Sensing assumptions 99

contacts should also be considered whenever a non-negligible risk of falling is
detected.

e Protect yourself. In the imminence of a potentially damaging event, such as
an unavoidable fall, the robot should act so as to minimize damage to itself
and/or the environment.

Some of these guidelines will directly result into one or more safety behaviors
(Sects. and that are activated to improve the level of safety when necessary.
Other guidelines must also be taken into account at the basic planning/control stage.
For example, watch what you’re doing generates a behavior aimed at increasing
the level of safety (scan) but also calls for visual-servoed manipulation/locomotion
strategies during normal operation; the look for support guideline is reflected in a
safety behavior (add_ contact) but has also consequences at the planning stage (e.g.,
generation of stair climbing motions must include handrail grasping and releasing).

7.3 Sensing assumptions

We now specify which information must be made available by the robot sensory
system (or by external sensing devices) to implement the proposed safety framework.
We shall not discuss in any detail the perception processes that provide such
information.

Throughout this chapter, it is assumed that at any time instant the humanoid
robot has a certain level of awareness about its own state and the surrounding
environment, defined as follows:

e The robot knows whether there are unezpected objects (i.e., objects that are
not present in the available map of the environment) within a perception area
‘P, whose extension depends on the specific sensory system, and in particular
can measure the position (e.g., range and bearing) of the nearest point on each

Figure 7.1. The humanoid robot can identify unexpected objects within a perception area
P and measure the minimum distance d,, to the closest of them. Also shown are the
various safety areas (with the associated thresholds) defined in Sect. m



100 7. Safe human-humanoid coexistence

such object. As a consequence, it can compute the distance dyo to the closest
unexpected object in P (see Fig. . If there is no unexpected object in P,
dyo 18 set to co. Techniques for identifying unexpected objects are typically
based on a comparison between the predicted and the actual scene; for example,
[126] consider change detection in images.

e The robot is able to establish whether the closest unexpected object in P is
moving or stationary (e.g., a human walking vs. some misplaced furniture). In
practice, this can be done by looking at significant variations of dy, [127] once
the effect of the robot’s own motion has been removed. The fy,, flag is used
to specify whether the unexpected object is moving or not.

e The robot can detect unexpected contacts with the environment, indicated by
the fuc flag. Depending on the contact detection method, other information
may be available, such as the location of the contact point on the robot body
or the interaction force [12§].

e The robot knows the current risk of fall, represented by 7y. For example,
Ttal can be estimated from the position of the Zero Moment Point based on
inertial measurements [129].

e The robot knows the location of contact surfaces that can be reached without
stepping from its current posture. Contact surfaces are surfaces (or points)
of the environment with which the robot may safely establish a contact for
additional support [130]. The existence of reachable contact surfaces is encoded
in the f. flag.

e The robot knows lpagtery, its current battery level.

7.4 Overview of safety behaviors

This section provides a general description of the behaviors adopted by the humanoid
robot to increase the level of safety for itself and the environment, which may
include humans. In particular, three categories of safety behaviors are introduced,
i.e., override, temporary override and proactive. We explain the idea behind each
behavior and the situation in which it will be activated. A formal description, with
detailed triggering conditions for each case, will be given in the next section.

7.4.1 Override behaviors

Override behaviors stop the execution of the current task and lead to a state from
which normal operation can only be resumed after human intervention. They are
intended as a way to react to unexpected and dangerous situations from which it
would not be safe (or even possible) to resume the task automatically. We define
two override behaviors:

e halt: In many situations, robot operation becomes critical: for example, when
the battery level lpaitery is too low, or when the distance d,, to an unexpected
moving obstacle goes below a certain threshold. In these cases, the stop if



7.4 Overview of safety behaviors 101

you must guideline indicates that the robot should immediately abort any
task. The halt behavior is an emergency stop procedure which interrupts any
operation as quickly as possible. However, one should keep in mind that a
humanoid robot, especially during locomotion, must stop in such a way to
maintain balance.

o self-protect: While it is obviously desirable to avoid falling altogether, there
are several reasons which might lead to a loss of balance, for example a
hardware/software fault, or an unexpected collision. To properly handle this
event, one can design a self-protect behavior to be activated during falls, as
suggested by the protect yourself guideline. In practice, when the robot detects
an unrecoverable loss of balance, it must immediately adopt measures aimed
at minimizing damage to itself and the environment.

7.4.2 Temporary override behaviors

Some events which cause safety concerns require the robot to stop task execution for
a limited amount of time. As soon as these concerns have been properly handled, task
execution can resume automatically. In particular, this is the case of the following
behaviors:

e stop: This behavior is activated when external circumstances suggest to stop
walking as a precaution, in application of the beware of obstacles guideline.
This is for example the case of an unexpected object moving in the vicinity of
the robot; in this situation, locomotion is interrupted and only resumed if the
object leaves the area. The stop behavior is also used for transitioning from
normal operation to other safety behaviors (e.g., to track) and vice versa (e.g.,
from evade). Note that stop differs from halt because it is more graceful and
does not require human intervention to restart the robot.

e cvade: Following the evade if you can guideline, if an unexpected moving
object tends to approach the robot, this performs an evasive maneuver to avoid
collision. At the end of the maneuver, the robot can resume normal operation
as soon as the object does not constitute a threat anymore.

e add_contact: This behavior, which descends from the look for support guideline,
allows the robot to establish new contacts for additional support whenever it
is standing and the risk of fall is estimated to be non-negligible. In fact, we
consider intrinsically risky trying to establish a new contact while the robot
is walking. Besides, if the robot is ascending or descending stairs, additional
contact with a handrail should have already been taken into account at the
planning stage.

e track: If an unexpected moving object has been detected in its vicinity, the
robot keeps its gaze directed at it, as suggested by the be on the lookout
guideline. Note that this behavior can only be activated when the robot is idle
or performing an observation task (see Sect. : in any other case, averting
the gaze from the current task can be dangerous (watch what you’re doing



102 7. Safe human-humanoid coexistence

guideline). In particular, if the robot is walking, it will need to stop before
starting to track the object.

7.4.3 Proactive behaviors

Proactive behaviors are actions intended to increase the overall safety level by calling
for an adaptation or enhancement of the current robot activity. They include:

e scan: During manipulation or locomotion, the robot keeps its gaze directed
at the main area of operation, as suggested by the watch what you’re doing
guideline. If the robot is idle, then it scans its surroundings, in application of
the be on the lookout guideline.

e adapt_footsteps: During locomotion, the robot is in general controlled via
high-level directives, such as tracking a reference velocity, or reaching a specific
location in the workspace. The adapt footsteps behavior, inspired to the
beware of obstacles guideline, allows the robot to locally modify its footstep
plan to avoid collision with stationary unexpected objects in its path.

e scale_velocity-force: If a nearby unexpected object is detected during manip-
ulation, the robot must decrease all velocities and forces associated to the
current manipulation task to reduce the risk of collision or the associated
damages, as indicated by the beware of obstacles guideline.

7.5 Behavior-based safety framework

The activation and deactivation of the various safety behaviors is triggered by the
information coming from the sensory system as described in Sect. and depends
on the current context (see Fig. [7.2).

In this section, we define the possible contexts and discuss the various safety areas
used for behavior activation. Then, we describe each behavior in detail. Transitions
to, from and among safety behaviors are actually controlled by a state machine, in
which states are defined as a context followed by one or more active behaviors. The
structure of the state machine will be discussed in Sect. [7.6

scale_velocity-force

Idle
Locomotion
context Manipulation
Observation
Error
d ——> override halt
fuo sensory self-protect
mo . K stop
fue information safet)l temporary | evade
re . override add_contact
;au behaviors track
JCS
scan
Ipattery ——> proactive {adapt_footsteps

Figure 7.2. The activation of safety behaviors depends on the current context and is
triggered by sensory information.



7.5 Behavior-based safety framework 103

7.5.1 Contexts

The robot contemtéﬂ characterize what the robot is doing at a certain time instant.
We identify five robot contexts:

e Jdle. The humanoid is standing in double support at a fixed position and not
performing any particular task.

e Locomotion. The humanoid is moving in the environment by taking steps.
This includes walking, multi-contact locomotion and ascending/descending
stairs.

o Manipulation. The humanoid is standing and executing a manipulation task
that does not require any stepping.

e Observation. The humanoid is standing and executing a high-level observation
task (e.g., find an object on a table). No locomotion or manipulation task is
simultaneously being executed.

e FError. The robot is on hold until restarted by human intervention.

The first four contexts are associated to normal opemtz'mﬂ (i.e., no safety behavior
is active, except for scan) but also to operation under temporary override or proactive
safety behaviors. Erroris the only emergency context, to which the robot is released
from override behaviors (halt, self-protect); from this context, normal operation
cannot be resumed automatically.

7.5.2 Safety areas and thresholds

All safety behaviors are triggered by a certain measured quantity becoming larger
or smaller than some given threshold. The most relevant of these quantities is the
distance d,, between the robot and the closest unexpected object, for which we
specify five thresholds, i.e., in decreasing order: dtrack qevade gadapt ' gscale - ghalt = Ag
shown in Fig these thresholds on d,, implicitly define five (partially overlapping)
annular areas’| around the robot:

o Strack defined by dM!* < dy, < d¥2°k. If the robot is not performing any loco-
motion or manipulation task (context Idle or Observation) and an unexpected
moving object enters Sk the robot will start tracking it visually. If the
robot is walking (context Locomotion), it will have to stop before starting to
track the object (walking without watching the stepping area would be unsafe).

!The definition of contexts could also take into account the various environments: for example,
Locomotion on flat ground could be different from Locomotion on stairs, e.g., in terms of acceptable
risk of fall.

2Note that an Idle context can be included in a mission plan as an intentional pause, e.g., at the
transition between different phases or for debugging purposes.

3The definition of areas around the robot is also suggested by prozemics, the study of the use
of space in social interaction [I3I]. Its goal is to describe and characterize the distances between
humans in different social contexts, and the way these are established and perceived. In robotics,
proxemics can serve as a basis to model robot behavior in interaction with humans [132], which is
especially relevant with humanoid robots as they are designed to allow for natural and comfortable
interactions.



104 7. Safe human-humanoid coexistence

o Sev2de defined by dM*t < d, < d°¥d°. If the robot is not performing any task
(context Idle) and an unexpected moving object enters S€¥4¢, the robot will
execute an evasion maneuver.

o S2dapt " defined by d"! < d,, < d*#Pt. If a walking robot (context Locomotion)
detects an unexpected stationary object in S242Pt it will adapt the footstep
plan to avoid collisions.

o S5 defined by dPt < d,, < d*@°. If the robot is performing a manipulation
task (context Manipulation) and an unexpected moving object is detected in
S5ale the robot will reduce all velocities and forces associated to the current
manipulation task.

o Shalt defined by dy, < d"!*. This is the innermost safety area. If any
unexpected object is detected in SP*, the robot will terminate all operations,
irrespective of the current context.

As for the estimated risk of fall, as soon as rg,); becomes significant (rlow <
Trall < rhigh), the robot will establish a new contact for additional support, provided
that a suitable surface is available (f.s = TRUE). If a fall is considered inevitable
(rgar > 7181, the robot will take measures aimed at minimizing damages.

Finally, operations are terminated also when the battery level lattery is too low
(lbattery < llow)‘

Fig. [7.3 summarizes the activation of behaviors as a function of the values of
dyo, Ttanl and lbattery~

The reader may have noticed that the safety behaviors related to collision
avoidance (such as stop, evade, halt) discussed so far are only driven by the distance
between the robot and the unexpected object, and do not take into account their
relative velocity. This choice was made for the following reasons:

i track s
if fno = TRUE { evade <= Stop =
= scale_velocity-force - '
e haft e : : e SCaN e e
duo } { } } é } >
0 :d halt d scale :d adapt d evade d track
if fino = FALSE {{ iwr adapt_footsteps -
BR— add_contact - e Self_protect -+
! if f., = TRUE ,
Tl  } 1 G fos ) t >
0 r low r high
" halt ‘
lbattel‘y! t >
0 llow

Figure 7.3. The different thresholds used for quantities duo (top), rean (center) and lpagtery
(bottom), each with its associated behaviors. Consider that the actual activation of a
behavior depends on the current context (not shown here). The only situation which
does not appear in this representation is the triggering of halt due to an unexpected
contact (fy. = TRUE).



7.5 Behavior-based safety framework 105

e Velocity information may not be available, or in any case it may be computa-
tionally more costly to obtain. Indeed, in Sect. [7-3] we have assumed that the
sensory system only provides distance measurements.

o If an unexpected obstacle enters a safety area (e.g., ST24€)  its relative velocity
w.r.t. the robot is certainly directed towards the half-plane containing the
robot (and tangent to the area). Therefore, our choice corresponds to a conser-
vative viewpoint in which any such relative velocity is considered dangerous,
independently from its specific orientation and magnitude.

o Working out an extension of the method for the case in which relative velocity
is measured and used by the collision avoidance behaviors is relatively easy,

see Sect. [ 1.3

7.5.3 Definitions of behaviors

The formal definition of each safety behavior requires the specification of:

e one or more conterts from which the behavior can be activated;

e a trigger, indicating which particular event or piece of information will cause
the behavior to activate, along with specific actions that occur upon triggering,
such as deactivating other behaviors;

e the action, i.e., which activities are associated to the behavior;

e a release, which is an event or piece of information that causes the behavior to
deactivate, again including specific actions that occur upon deactivation.

In the following, we define override, temporary override and proactive behaviors
in this order.

halt

e Context: Idle, Locomotion, Manipulation, Observation.

o Trigger: dy, < d"™* (T1) OR fuc = TRUE (T2) OR lpattery < I (T3),

Triggering permanently deactivates any active behavior and inhibits all others
from activating, except for self-protect in case of a fall.

e Action: Depends on the context and the trigger:

— If the context is Idle and the trigger is T1 or T3, the robot will augment
its support polygon and/or assume a low-impact configuration (e.g., by
folding its arms).

— If the context is Idle and the trigger is T2, the robot will decrease joint
stiffness on the kinematic chain where the contact has occurred, provided
that the latter is on the upper body. Otherwise, the robot will simply
maintain its current posture.



106 7. Safe human-humanoid coexistence

— If the context is Locomotion, Manipulation or Observation the robot will
abort the task and stop any motion as soon as possible, regardless of the
trigger.

e Release: When the action is completed.
Upon release, context is changed to Error.

self-protect

e Context: Idle, Locomotion, Manipulation, Observation.

e Trigger: rey > rhish,

Triggering permanently deactivates any active behavior and inhibits all others
from activating.

e Action: The robot will abort the task and act so as to minimize the potential
damage to itself and/or the environment. To this end, several aspects must
be considered, including (i) how to fall, i.e., which internal posture to assume
before impact to preserve robot integrity (7i) where to fall, i.e., how to choose
the landing surfaces so as to avoid fragile objects.

o Release: When the action is completed.

Upon release, context is changed to Error.

stop

e Context: Locomotion.
e Trigger: d®?d¢ < d,,, < d'2°k AND f,,, = TRUE.

e Action: The robot will stop walking, ending in a double support configuration.
This is done before starting to track (and possibly later evade) an unexpected
moving object; or at the end of an evasion maneuver.

e Release: When the action is completed.

Upon release, context is changed to Idle.

evade

o Context: Idle

o Trigger: d"!" < dy, < d®*° AND fy,, = TRUE.
Triggering changes context to Locomotion.

e Action: The robot will execute a reactive evasion maneuver so as to increase
the distance to the unexpected moving object.

e Release: When dy, > devade.
Upon release, stop is activated in order to interrupt the evasion maneuver.



7.5 Behavior-based safety framework 107

add__contact

track

scan

Context: Idle, Manipulation, Observation.

Trigger: r°V < rgy < rMeh AND f,, = TRUE.

Upon triggering, context is changed to Idle if it was Manipulation or Obser-
vation. Moreover, track is deactivated if active, and evade is inhibited from
activation.

Action: The robot will interrupt the task (if the context was Manipulation
or Observation), and select and establish contact with an additional support
point on the available surfaces.

Release: When the action is completed.

Context: Idle, Observation.

Trigger: d"! < d,, < d"®* AND fu, = TRUE.
Triggering deactivates scan and changes the context to Idle if it was Observation.

Action: The robot will interrupt any observation task (if the context was

Observation) and direct its gaze at the closest unexpected object moving in
Strack_

Release: When d,, > dtack,
Upon release, scan is activated.

Context: Idle, Manipulation, Locomotion.
Trigger: Active by default unless track is active.

Action: Depends on the context:

— If the context is Idle, the robot will scan the surrounding environment.
— If the context is Locomotion, the robot will scan the path ahead.

— If the context is Manipulation, the robot will scan the area of operation.

Release: Never.

adapt_footsteps

Context: Locomotion.

Trigger: d™! < d,, < d29®P* AND f,,, = FALSE.



108

7. Safe human-humanoid coexistence

e Action: The robot will modify the current footstep plan as needed to avoid

the closest unexpected object standing in the scene.

e Release: When dy, > d?d2pt,

scale__velocity-force

e Context: Manipulation.
e Trigger: dhalt « g < gscale AND fmo = TRUE.

e Action: Robot velocities and/or forces associated to the current task will be

reduced.

e Release: When d,,, > d@le.

Note the following points.

Override behaviors force the robot to abort any task and deactivate/inhibit
all other kinds of behavior.

Under temporary override behaviors, any task is interrupted for a limited
period of time.

Among temporary override behaviors, add__contact deactivates other behaviors
that would cause a conflict of context (evade) or steal an essential sensory
resource (track); for the same latter reason, track deactivates scan, and scan
cannot be activated when the context is Observation.

When temporary override behaviors are released, the context will always
be Idle with the scan behavior active. It is important to note that in this
condition control goes back to normal operation: the robot is ready to resume
any task that was interrupted, under prompting by the supervisory module
that activates and sequences tasks.

Finally, proactive behaviors do not interrupt active tasks.

7.6 State machine

In the proposed framework, activation and deactivation of safety behaviors are
handled by a state machine. In particular, the state of the robot is uniquely
identified by the current context and all active behaviors, and denoted as Con-
text/behavior _1/behavior 2/..., with behaviors listed in the order of activation.

The complete list of the states is the following:

o Idle/scan

o Idle/track



7.6 State machine 109

o Idle/scan/add__contact

o Idle/halt

o Idle/self-protect

o Locomotion/scan

o Locomotion/scan/adapt_ footsteps

o Locomotion/scan/stop

o Locomotion/track/evade

o Locomotion/track/evade/adapt_footsteps
o Locomotion/track/stop

o Locomotion/halt

o Locomotion/self-protect

o Manipulation/scan

o Manipulation/scan/scale__velocity-force
o Manipulation/halt

o Manipulation/self-protect

o Observation/

o Observation/halt

o Observation/self-protect

o Error/

Fig. [7.4] gives a complete representation of the state machine. Transition from
one state to another is instantaneous and corresponds to activation or deactivation
of some behavior. For example, the transition from Locomotion/scan to Locomo-
tion/scan/adapt_ footsteps corresponds to the activation of the proactive behavior
adapt_ footsteps: the robot was walking and scanning the stepping area when an
unexpected stationary object was detected in S#4#Pt| 5o that it became necessary to
adapt the footstep plan. Similarly, the transition from Locomotion/track/evade to
Locomotion/track/stop corresponds to the deactivation of the temporary override
behavior evade, which automatically triggers stop: the robot was performing an
evasion maneuver which became unnecessary when the moving unexpected obstacle
left Sevade 5o that motion was stopped. Note that track is still active in the final
state after the transition because the object will still be in Stk after leaving S¢vade
(see Fig. [7.1).

The only normal operation states are Idle/scan, Locomotion/scan, Manipula-
tion/scan and Observation/, in which no safety behavior is active apart from the



110 7. Safe human-humanoid coexistence

Observation states

activation/deactivation
of behaviors

=) override
—— temporary override S ’
——> proactive

Manipulation states

/
L/scan

( L/scan/adapt_footsteps j

L/scan/stop }<::

L/track/evade %

(L/track/evade/adapt_footstepsj

'
'
'
'
'
'
'
'
'
'
'
'
\

[ M/scan/scale_velocity-force j

’

:e:‘\ L/track/stop ]<>: |

\v4 \v4

[ M/halt ):b(M/self—prateclj

Figure 7.4. A representation of the state machine governing the transitions among the
proposed safety behaviors. For compactness, contexts within states are denoted only by
their initial (I, M, L, O or E). A transition originating from the boundary of a dashed
box (e.g., the box of Idle states) indicates that the transition may originate from any
state in the box. Normal operation states (i.e., states where no safety behavior is active
apart from the default behavior scan) are shown in gray.

default proactive behavior scan. In these states, control is entirely committed to the
realization of the desired task.
Finally, examination of Fig. confirms that:

e override behaviors lead to the Error/ state;

e temporary override behaviors ultimately lead to the Idle/scan state, that is a
normal operation state from which the original task can be resumed;

e proactive behaviors (apart from scan) simply disappear in the end, leading
back to the state from which they were activated.

7.7 Control architecture

The implementation of the safety behaviors, which will be discussed in some detail
in the next section, will obviously depend on the specific control architecture of the
robot. In view of this, we describe here a possible structure which will be used in
the rest of the chapter for illustration.

Fig. shows a general overviewﬁ of the control architecture. Note that safety

4The control architecture of humanoids invariably includes a stabilization module, not present in
Fig. [75] whose role is to guarantee balancing of the robot in all situations. This low-level module is
not discussed since here it bears no relevance to our safety framework.



7.7 Control architecture 111

observation task

camera camera motion [ |

motion generator

scan

track

t

manipulation task (scaled)
hand(s) hand(s) motion-force hand(s)

~—> motion-force ®__ motion-force
add_contact generator \
scale_velocity-force

joint
®_ commands
self-protect

|043U0D DlBWIBUI

gait generator

| tion task
locomotion tas| CoM motion

4\ footstep gait
stop planner 18-MPC feet motion L]
evade
halt L*Eldaptjootsteps

Figure 7.5. The considered control architecture. The safety behaviors blocks appear as
either signal generators or modifiers.

i

behaviors blocks appear in this scheme as either reference signal generators (scan,
track, add__contact, stop, evade, halt, self-protect) or signal modifiers (scale_velocity-
force, adapt__footsteps). Note the particular placement of the self-protect behavior,
which will take control of the robot directly at the joint level. Activation and
deactivation of the behaviors is handled in the background by the state machine
described in the previous section.

In the rest of this section, we describe the core components of the control
architecture without reference to the safety behaviors. The specific way in which
each behavior is embedded in the architecture will be discussed in the next section.

7.7.1 Camera motion generator

The camera motion generator is primarily (i.e., during normal operation) in charge
of producing a suitable reference motion for the camera when an observation task is
being executed (context Observation). An image-based visual servoing scheme [133]
is used to move the camera so as to track a reference signal representing the motion
of a desired feature in the image plane, e.g., for finding an object in the scene.

7.7.2 Hand(s) motion-force generator

During normal operation, the hand(s) motion-force generator is in charge of producing
a suitable motion-force reference for the hand(s) when a manipulation task is being
executed (context Manipulation). For example, when a certain grasp must be
executed, the module will plan a continuous motion of the hand(s) so as to reach
the associated Cartesian posture.



112 7. Safe human-humanoid coexistence

7.7.3 Gait generator

The primary role of the gait generator is to produce suitable reference motions for
the robot Center of Mass (CoM) in order to execute a locomotion task (context
Locomotion). Since such a module is specific to humanoid robots, we will describe it
in some detail, considering for compactness the case of flat ground. The scheme at
the core of the module can however be easily extended to work on non-flat terrains,
in particular to deal with the presence of stairs, for example by adopting a complete
online version of the approach presented in Chap. [

The gait generator that we consider is based on the work presented in [68]. In
particular, it makes use of two sequential modules running in real time (Fig. [7.5)).
The first module, i.e., the footstep planner, generates a sequence of timed footsteps
to realize high-level omnidirectional velocity commands v;, vy, w. The second
module, i.e., Intrinsically Stable MPC (IS-MPC), produces a trajectory of the robot
CoM and feet such that (1) the Zero Moment Point (ZMP) is always within the
support polygon, thus guaranteeing that balance is maintained, and (2) that the
CoM trajectory is bounded with respect to the ZMP trajectory, implying internal
stability. Both modules require the solution of QP problems.

The high-level velocity commands v,, vy, w that drive gait generation are known
over a preview horizon T, = P -6 of P sampling intervals — each of duration 6 — in
the future. The footstep generation module plans footsteps over the same horizon,
whereas IS-MPC plans CoM and ZMP trajectories over a control horizon T, = C' - §.
It is assumed that P > C, so that IS-MPC can take full advantage of the preview
information.

At each sampling instant t, the footstep planner receives in input the high-level
reference velocities over the preview horizon, i.e., from ¢ to t + T, = tr1p.

First, the footstep timing over T), is determine in the form 7% = {T},..., TF},
where T? is the step duration between the (j — 1)-th and the j-th footstep, taken
from the start of the single support phase to the next. Since the step duration is
variable, the number F' of footsteps falling within 7, may change with t;.

Then, a sequence of F' footsteps (X' J’f, Yf, @’}) over the same interval is generated:

&E = (&) .. e
ko ~1 ~FN\T
i o= (@ - 95)
ofF = (0; ... 67)7,

where (:%Zc, ,1]?;, 9;) is the poseﬁ (position + orientation) of the j-th footstep. To this
end, we inject the high-level reference velocities into the following omnidirectional
motion model

T cos) —sinf 0 Vg
y | =| siné cosf 0 Uy (7.1)
0 0 0 1 w

5Step timing is chosen by a simple heuristic based on the velocity commands [68].

5The hat on the position coordinates indicates that these are candidates values which will be
later adjusted by IS-MPC. Orientations are final because their inclusion in the MPC formulation
would make the problem nonlinear.



7.8 Implementation of behaviors 113

and then distribute the footsteps around the resulting trajectory in accordance with
the timing 7. This is done by solving a sequence of two QP problems; the first
computes the footstep orientations

j

LI , t
min Z(G; — 930_1 — /t"l w(r)dr)?

oF =1 (7.2)
. ] 1—1
subject to [0 — 07| < Omax,
while the second computes the footstep positions
401 N2 4 (g AJ 1
min — Ax 0 — Ay’
Xk YE Z 1 )y - ” (7.3)

subJect to kinematic constraints.

In (7.2)), Omax is the maximum allowed rotation between two consecutive footsteps,
while #/ is the timestamp of the j—‘ph foofcstep. In 1) (i‘?, gjjoc) is the known position
of the support foot at t; and Az’, Ay’ are given by

; J
(&)= fom () Jorsn (4 )
Ay’ ! vy(T) £/2
where Ry, R; are the rotation matrices associated respectively to (7) and 9{ , L
is the chosen coronal distance between consecutive footsteps, and the sign of the
second term alternates for left/right footsteps. The kinematic constraints in the
second problem are built to guarantee that the footsteps are kinematically feasible
for the specific humanoid being considered.

Once the timed footstep plan is available, the IS-MPC module is called to
generate the CoM motion and simultaneously adjust the footstep positions. To
this purpose, we employ the version with automatic footstep placement of IS-MPC
described in Appendix[A.1] To ensure that the CoM trajectory does not diverge w.r.t.
the ZMP, IS-MPC incorporates an explicit stability constraint which involves the
future evolution, referred to as the tail, of the ZMP after the control horizon, which
are unknown and must be conjectured to obtain a causal version of the constraint.
In particular, one may set the tail to zero (truncated tail) if the high-level velocity
commands indicate that the robot should immediately stop, or surmise the value of
such velocities on the basis of the preview information encoded in the footstep plan
(anticipative tail).

Overall, the described gait generator provides a reactive scheme that is suitable
not only for regular gaits but also for executing sudden avoidance maneuvers, as
well as temporary or emergency stops — all actions which are required in our safety
framework.

7.8 Implementation of behaviors

In this section we discuss the implementation of safety behaviors inside the control
architecture of Fig. The main focus will be on those behaviors that are related
to locomotion, which are specific to humanoids. For the others we shall simply
provide pointers to existing work.



114 7. Safe human-humanoid coexistence

7.8.1 halt

The halt behavior realizes an emergency stop in the presence of immediate threats. As

explained in Sect. the behavior is declined differently depending on the context

and/or trigger. Here, we consider the case in which the context is Locomotion.
Activation of halt is realized via two mechanisms:

e the high-level velocity commands v, vy, w are immediately set to zero;

e as a consequence, the truncated tail is used in the stability constraint of
IS-MPC.

7.8.2 self-protect

As shown by Fig. [7.5] the self-protect behavior takes command of the robot at the
joint level and therefore overrides all the preceding control architecture. When an
impending fall is detected, this behavior acts so as to minimize the potential damage
to itself and/or the environment. In the following, we refer the reader to some
relevant works in this direction.

Choosing how to fall means assuming a proper configuration for reducing the
effect of the impact with the floor. [134] 135] present a controller that limits the
impact force, based on the idea of lowering the CoM as soon as possible by crouching
or knee-bending; [136] use a similar approach to manage forward or backward falls.
[137] compute whole-body trajectories aimed at minimizing damage due to falling
through an optimization-based control strategy.

In addition to lowering the impact force, strategies for absorbing the impact are
also useful. A control method that combines robot reconfiguration and post-impact
compliance is proposed by [138]: during the falling phase, the robot is kept away
from fall singularities, i.e., postures in which impact forces would be poorly absorbed.
After the impact, compliance control is activated, with the motors behaving as
spring-dampers.

Besides how to fall, it is also important to choose where to fall. [139] introduce a
controller which changes the fall direction in order to avoid specific objects or parts
of the environment. This method was extended to multiple objects by [140].

7.8.3 stop

The stop behavior temporarily interrupts locomotion in preparation for tracking a
moving object, or at the end of an evasive maneuver.
Activation of stop is realized via two mechanisms:

e the high-level velocity commands v, vy, w go from their current value to zero
over a fixed arrest time;

e as a consequence, the anticipative tail is used in the stability constraint of
IS-MPC.

Once the motion has been stopped, the state becomes Idle/track (see Fig. . If
the unexpected moving object leaves St the robot goes to the normal operation
state Idle/scan, where the original locomotion task can be resumed.



7.8 Implementation of behaviors 115

Figure 7.6. The geometry of evasion. A moving object enters S¢¥24¢, The chosen direction
of evasion is Meys-

The different effect of stop vs. halt will be illustrated via simulation in the next
section.

7.8.4 evade

The evade behavior is realized by sending to the robot high-level velocity commands
for avoiding an unexpected moving object that has entered the S¢¥29° area.

To devise such commands we use the technique presented in [57]. Consider the
geometry of the problem as shown in Fig. The angle 0,5 under which the robot
sees the moving object is directly measured by the robot (see the first assumption in
Sect. . The chosen direction of evasion is represented by meya, with the robot
moving backwards so as to keep the object in its field of view.

While the humanoid can in principle move in any direction with motion model ,
studies on humans [I41] indicate that time-efficient locomotion requires the orienta-
tion of the body to be tangent to the path, similarly to what happens in nonholonomic
mobile robots. For this reason, we adopt the unicycle as template model for evasive
maneuvers:

T = wcosf
= wvsind (7.4)
0 = w,

where z,y, 0 denote now the position and orientation of the unicycle, and v, w are
its driving and steering velocity inputs. The latter are chosen as

W = k(feva—0), (7.6)



116 7. Safe human-humanoid coexistence

While the driving velocity is set to a constant negative value, the steering velocity
forces the unicycle to align smoothly with the desired orientation, chosen asﬂ
Oeva = 0+ Oops —sign(Oops) - /2. As a result, we obtain w = k (Oops — sign(Oops) - 7/2),
which can be implemented using only on-board measurements. Alternatively, the
proportional control law may be replaced with

w = ksign(feva — 0), (7.7)

to make the evader perform the evasion maneuver with a constant curvature radius.

The final step is to send the control inputs to the gait generator, with
the adjustment v, = vcosé, v, = vsinf (while w is unchanged).

An observation is in order about obstacle avoidance during evasion maneuvers.
Since evasion is a safety behavior, it leads the humanoid to an area which was not
contemplated in the original motion plan. Obstacles in this area should therefore
be considered as unexpected, regardless of their being represented or not in the
environment map. With this rationale, any obstacle inside S?42Pt will trigger the
adapt_footsteps behavior during an evasion maneuver (see the first simulation in the
next section).

7.8.5 add__contact

The add_contact behavior can be activated in Idle, Observation and Manipulation.
The current task is interrupted and context is immediately changed to Idle to
allow the robot to establish an additional contact. This requires first choosing a
posture where one robot body (typically, a hand) is in contact with a reachable
contact surface, whose existence is indicated by the f.s flag. The hands motion-force
generator module is then invoked to plan a continuous motion-force reference that
will achieve the chosen desired posture.

When one or more contact surfaces are reachable, it is necessary to decide which
contact to choose. Clearly, it is essential that the added contact improves balance.
To this end, one may use concepts such as the generalization of ZMP support areas
to the case of multiple non-coplanar contacts [143], [130]. These aspects have also
been studied in the more general field of multi-contact planning for locomotion and
manipulation [144] 145] [146]; an interesting summary is given by [48].

We emphasize that additional contacts may also be exploited outside the safety
framework, i.e., during normal operation. For example, if the robot is required
to climb a staircase it is sensible to take advantage of the handrail if available.
In this case, however, the appropriate contacts must be integrated in the locomo-
tion/manipulation task being executed.

7.8.6 scan and track

Both the scan and track behaviors are realized by invoking the camera motion
generation module.

The scan behavior uses an artificial image feature as a reference signal. If the
context is Idle, the artificial feature moves cyclically throughout the surrounding

"This evasion strategy is called move aside, as the humanoid moves (backwards) in a direction
that is orthogonal to the object line of approach; other strategies are possible [142].



7.8 Implementation of behaviors 117

obstacle

N sagittal
Gavo axis
closest
obstacle point

Figure 7.7. The geometry of footstep adaptation with the definition of the relevant
quantities. The current robot placement is defined by its CoM. Also shown are the
current footstep locations (light blue), the kinematically feasible zone (green) and the
forbidden zone (yellow) due to the presence of the obstacle for the next footstep.

area so as to achieve complete coverage. In Locomotion or Manipulation, the feature
is fixed at the center of the specific area of interest.

In the track behavior, the image feature will be directly the closest point on the
unexpected moving object that has triggered the behavior.

7.8.7 adapt_footsteps

If the context is Locomotion and a stationary unexpected object is detected in S2dapt,
the adapt_footsteps behavior is invoked. This is realized, using an adaptation of the
technique we presented in [I47], by minor modifications of the two modules that
constitute the gait generator, i.e., the footstep planner and IS-MPC.

Refer to Fig.[7.7] for the geometry of the problem and the definition of the relevant
quantities. In particular, the range d and bearing 6,5 are directly measured by the
robot (again, see the first assumption in Sect. , while 0, is defined as

'9avo = aobs - Sign(eobs) : 77/2

Within the footstep planner, the first modification is in the QP problem used to
compute the footstep orientations from w (see ([7.2))), whose cost function is replaced
by

S i i1 [ > W(Oobs) () 2
S0 =07 = [ ) + o = (0] ~0une)
=1

s

With respect to the original cost function, this contains an additional term that
induces an alignment of the foosteps with 6,y,, i.e., with the tangent half-line



118 7. Safe human-humanoid coexistence

u}(gobs)
1
eobs
- —7/2 0 /2 T
u}(eobs)
1
eobs
- —m/2 0 /2 ™

Figure 7.8. The weight function w(fons). Top: if the robot is walking forward. Bottom: if
the robot is walking backwards.

originating at the closest object point (see Fig. . This second term is modulated
through a scaling factor kqps by the inverse of the squared distance and by the weight
function w(feps) defined in Fig. [7.8, The idea here is that when the robot moves
forward only obstacles lying in its front half-plane should be considered; whereas
when moving backwards (e.g., during an evasion maneuver) footstep adaptation is
only required to avoid obstacles behind the robot.

The second modification in the footstep planner is in the QP problem used to
compute the footstep positions (see ), to which a collision avoidance constraint
is added. With reference again to Fig. consider the point B = (xp,yp) located
along the line connecting the CoM with the closest object point, at a safety distance
A from the latter, and draw the normal to the same line through B. The half-plane
beyond this line (in yellow in Fig. is a forbidden zoneﬁ for the footstep locations.
This constraint is easily written as

xj IB
nt ; - ( ) >0 (7.8)
Yt YB

with ngps the unit vector defined in Fig. [7.7]

The same collision avoidance constraint must obviously be enforced also in the IS-
MPC module which will determine the final footstep positions. Thus, constraint
is additionally included in the QP problem of IS-MPC with automatic footstep
placement described in Appendix [AT]

Wrapping up, we may say that adapt_footsteps takes into account the presence
of unexpected stationary objects in the robot path at two levels: in the cost function
of the footstep orientation QP, and through the introduction of a collision avoidance
constraint in the footstep position QP as well as in IS-MPC. As shown in the next

8Turning the obstacle into a half-plane is necessary to convexify the obstacle avoidance constraint.
This might appear to be a conservative choice, but it should be noted that the position of the
half-plane is updated at each iteration, so the robot will eventually be able to go around the obstacle.



7.9 Simulations 119

two sections, both via simulations and experiments, this strategy is effective for
collision-free locomotion.

7.8.8 scale__velocity-force

If a moving obstacle enters S while the robot is in the Manipulation context, the
scale__velocity-force behavior is activated. Both the hand velocity and the interaction
forces are reduced for enhancing the level of safety. Studies are available in which
velocity/force bounds are derived taking into account the dynamic properties of the
robot as well as the possibility of human injury [14§].

7.9 Simulations

In this section we provide simulated demonstrations of the proposed safety framework.
The used robot is HRP-4. The robot has been equipped with a depth camera for
gathering range and bearing information about the obstacles. All simulations are
performed in the V-REP environment, enabling dynamic simulation via the Newton
Dynamics engine.

The first simulation is designed so as to bring up several safety concerns in
sequence, with the objective of illustrating how the state machine orchestrates
transitions between behaviors. Snapshots of the simulation are shown in Fig.
Only three of the safety areas defined in Sect. [7.5.2] are shown around the robot,
ie., Strack gGevade 5pnq §adapt regpectively with d™% = 5 m, d®4® = 3 m, and
d*dapt — 1 5 m. The remaining areas S*° and S"* are not shown because not
relevant.

At the beginning, the robot is standing, not performing any task, and scanning
the environment (state Idle/scan). At t =9 s, a human enters S""3k. This event
triggers the track behavior, and the robot starts following the human with its camera
(state Idle/track). At t = 25 s, the human enters S¢¥2d° triggering the evade
behavior: the robot initiates an evasion maneuver while still tracking the human
(state Locomotion/track/evade). At t = 29 s, while the robot is still performing
the evasion maneuver, a stationary object (the yellow cylinder) enters S242Pt; the
adapt_ footsteps behavior is activated and the footstep plan is modified to avoid
collision (state Locomotion/track/evade/adapt footsteps). When the human leaves
Sevade gt t = 37 s, the stop behavior is invoked to interrupt the evasion maneuver
(state Locomotion/track/stop); motion is terminated at ¢t = 40 s (state Idle/track).
The robot quits tracking the human when he leaves S at ¢t = 44 s (state
Idle/scan).

At t = 49 s the second part of the simulation begins. The robot is com-
manded to reach a goal in the workspace (bullseye mark). Accordingly, the context
switches to Locomotion and appropriate high-level reference velocities are sent
to the gait generator (state Locomotion/scan). Since the yellow object is still
in S2daPt the adapt_footsteps behavior is immediately activated (state Locomo-
tion/scan/adapt_footsteps). Once the object goes outside S?4@Pt at t = 62 s, the
robot can walk directly towards the goal (state Locomotion/scan). At t = 83 s,
another stationary object (the green cuboid) enters S24%P* and again collision is
avoided by footstep adaptation (state Locomotion/scan/adapt_footsteps). As soon



120 7. Safe human-humanoid coexistence

- [Locomotion/track/evade]  [Locomotion/track/evade/adapt_footsteps]

Figure 7.9. Simulation 1: A scenario leading to several safety behaviors being activated in
sequence. Snapshots correspond to transitions between states. The humanoid camera
view is shown in the upper right corner.



7.9 Simulations 121

Figure 7.10. Simulation 2: Stroboscopic motion of the robot using halt (top) vs stop
(bottom).

CoM velocity (sagittal component)
06 = high-level velocity v,
= 04r
.gu 0-2 .
’ \/—f
_02 1 1 1 1 1 1 1 1 1 ]
0 1 2 3 4 5 6 7 8 9 10
t [s]
CoM velocity (sagittal component)
06 = high-level velocity v,
— 047
£
— 0.2r
0
_02 1 1 1 1 1 1 1 1 1 ]
0 1 2 3 4 5 6 7 8 9 10

t[s]

Figure 7.11. Simulation 2: Velocity profiles with halt (top) and stop (bottom).



122 7. Safe human-humanoid coexistence

as the green object leaves S4%Pt (¢ = 104 s), the robot resumes normal walking
(state Locomotion/scan) until it reaches the desired goal, where it stops (state
Idle/scan). Note that the final stop is not the result of a safety behavior; rather, it
is produced directly by the gait generator in response to the high-level references
velocities vanishing at the goal.

The second simulation, shown in Figs. [7.I0H7.11], is aimed at highlighting the
difference between the halt and stop behaviors (see Sects. and respectively).
The robot is walking normally (state Locomotion/scan), with a reference sagittal
velocity v, = 0.4 m/s, when the halt and stop behaviors are respectively triggered
during a double support phase. The arrest time used by stop is 2 s. As expected,
the results indicate that with halt the robot stops immediately, almost bouncing
back; whereas a much smoother finish is obtained using stop.

7.10 Experiments

Experiments were simply designed to showcase different safety behaviors on an
actual humanoid platform. Indeed, we were more interested in a ‘proof of concept’
rather than a quantitative performance evaluation, also considering the fact that
the results will be in any case dependent on the specific platform.

In particular, we implemented the proposed approach on NAO. An Asus Xtion
PRO Live camera has been mounted over the robot head for measuring depth. Both
the camera motion generator and the gait generator run in real-time on the on-board
CPU at a control frequency of 100 Hz.

In the first experiment, shown in Fig. [7.12] we use another NAO controlled
through a gamepad as an unexpected moving object that pursues our robot. At the
beginning, the robot is standing, not performing any task, and scanning the environ-
ment (state Idle/scan). At ¢t = 4 s, the pursuer enters S™2k (we set d'ak = 1 m).
This triggers the track behavior (state Idle/track). At ¢t = 7 s, the pursuer en-
ters Sevade (devade — (0.6 m) and the evade behavior is activated (state Locomo-
tion/track/evade). When the pursuer leaves S€V29€ at t = 16 s, the stop behavior is
invoked to interrupt the evasion maneuver (state Locomotion/track/stop); motion
is terminated at t = 17 s (state Idle/track). The robot quits tracking the pursuer
when it leaves Sk at ¢ = 20 s (state Idle/scan).

The second experiment, shown in Fig. [7.13] focuses on the adapt footsteps
behavior. The robot is following a reference sagittal velocity v, = 0.08 m/s (state
Locomotion/scan) when, at ¢ = 6 s an unexpected stationary object (wooden panel)
enters S22t (we set d?4Pt = 0.9 m). Successful obstacle avoidance is produced by
footstep adaptation (state Locomotion/scan/adapt_footsteps), which is deactivated
at t =9 s when the obstacle is no more perceived (state Locomotion/scan). Note
that the panel on the left flank does not trigger adapt_footsteps because it never
enters S24aPt The robot then resumes walking in the desired direction.

Although we just reported results from two experiments, a similar successful
performance was consistently achieved in our trials, also thanks to the reliability
of the underlying MPC-based controller. Clearly, such performance is possible as
long as the necessary sensory information is made available to the robot; in this end,
robust perception strategies are an essential prerequisite for safety.



7.11 Discussion 123

Figure 7.12. Experiment 1: A NAO robot executing an evasion maneuver triggered by
another NAO used as a moving object. Snapshots correspond to transitions between
states. A close-up of the robot head is shown in the upper left corner.

Figure 7.13. Experiment 2: A NAO robot avoiding an unexpected obstacle through
footstep adaptation. The humanoid camera view is shown in the upper right corner.

7.11 Discussion

The objective of this section is to provide some additional analysis and details about
the proposed method.

7.11.1 Effect of safety on performance

The simulation and experimental results of the last two sections show that the pro-
posed framework effectively increases the overall level of safety, ultimately protecting
the robot as well as its co-workers. Obviously, this safety improvement will come at
a cost, i.e., a deterioration of performance (in terms of, e.g., time needed to complete
a task) due to the more cautious attitude of the robot.

To evaluate the above aspect in detail, we have performed a campaign of simu-
lations focusing on a scenario where an HRP-4 humanoid must execute a walk-to
locomotion task in a 25x25 m area. A variable number (1, 3, 5 or 10) of humans
walking at 0.2 m/s cross at random the path of the robot. To increase the robot’s
chances of detecting and avoiding the humans, an omnidirectional camera has been



124 7. Safe human-humanoid coexistence
.. . success rate
number success | minimum | maximum | average .
. . ) without
of humans rate time time time
safety framework
1 100% 84.75 111.22 89.64 90%
3 100% 84.75 143.23 113.1 70%
5 100% 100.20 148.10 113.59 70%
10 90% 103.95 163.75 128.37 60%

Table 7.1. HRP-4 executing a walk-to locomotion task in the presence of a variable number
of humans: performance data over 10 runs for each scenario.

added to its sensory equipment. As a consequence (see Sect. , the safety
behaviors involved in the simulations are stop, evade and halt, for which we have
used the following parameters: d°V24¢ =3 m, ¢"* =1 m, v = —0.3 m/s and k = 0.2.
A simulation is stopped and a failure is recorded when the halt behavior is triggered,
leading the robot to an Error state. Table summarizes the outcome of 10 runs
for each scenario, in terms of success rate (how many times the robot was able
to complete the task) and completion time (minimum, maximum and average).
For comparison, each simulation was also performed without the safety framework,
adding however to the control architecture a standard obstacle avoidance module
based on artificial potentials [149]; in this case, failure means that collision with a
human could not be avoided.

The results in Table confirm that our safety framework allows the robot
to complete the task in the large majority of cases, even in the presence of many
moving humans. As a counterpart, there is a limited increase in the average time
needed to complete the task (around 44% going from 1 to 10 humans). Note that
the success rate is much lower in the absence of the framework, due to collisions
between the robot and the humans.

7.11.2 Limitations of the method

While the results presented so far are clearly positive, one must acknowledge that
there are limitations to the proposed method.

1. Robot contexts (Sect. are separated. For example, the possibility that
the humanoid performs a manipulation task while walking is not considered
here. Our motivation for excluding such cases is twofold: on the one hand, we
are assuming that sensory resources are limited, so that it may be impossible
to adequately monitor both the manipulation and the walking area; on the
other hand, it is rather obvious that focusing on one task at a time allows to
maximize safety. However, an extension allowing execution of simultaneous
tasks should be in principle relatively easy to design: one can simply add the
combined contexts (e.g., Loco-manipulation) to the list and adapt the definition
of behaviors to the new contexts.

2. We are looking at the safety problem from the viewpoint of a single robot. If
multiple humanoids, all equipped with the proposed framework, are sharing



7.11 Discussion 125

the same environment, each of them will see the others as unexpected moving
obstacles, and perform evasion maneuvers whenever required. While this may
not be necessarily optimal, it should be considered that a proper multi-robot
safety framework would inevitably require some degree of centralization and
inter-robot communication, which may negatively affect the reactiveness of
the single robot and the robustness of the safety framework.

3. We are looking at the safety problem in a context of pure coexistence between
robots and humans, in the sense that physical collaboration between them
is not allowed. This simplifying assumption may be however appropriate for
many current applications, especially in industrial contexts where current
regulations de facto exclude human-humanoid collaboration [I19]. However,
there is no doubt that in the future such possibility should and will be allowed,
making the design of safety frameworks considerably more challenging. Still,
we believe that the structure of the proposed approach, based on the definition
of override/temporary override/proactive behaviors orchestrated by a state
machine, provides a valid template for such extension.

7.11.3 Adaptations

Although the safety guidelines proposed in Sect. [7.2]are completely general, our safety
framework is in part dependent on the specific equipment of the humanoid, because
safety behaviors were designed based on the sensing assumptions of Sect. [7-3] While
this is inevitable, adapting the method to the availability of different measurements
is relatively simple.

For example, consider the case in which the humanoid is equipped with an
omnidirectional camera, so that the perception area P becomes a full circle. As a
consequence, the robot does not need to direct its gaze, and it becomes possible to
observe a moving object while, e.g., scanning the walking area or performing another
observation task. This means that scan and track actually become a single behavior
that is always kept active.

Another interesting situation is when the robot can measure relative velocity
(direction and magnitude) of moving obstacles with respect to itself. In this case,
the trigger of the evade behavior may be modified to allow activation only when the
moving obstacle is directed ‘towards’ (in a quantitative sense to be suitably defined)
the robot. Allowing an object to cross the robot safety area or not depending on its
relative velocity may improve performance (some useless evasion may be avoided)
but will obviously increase the level of risk (if the object is a human who brusquely
changes direction, there may be no sufficient time left to perform the evasion); a
reasonable trade-off between these two aspects must then be found.

Similar adaptations can be derived for other possible variations in the sensory
equipment.

Finally, note that the framework description up to Sect. (i.e., including the
state machine) is independent from the control architecture of the robot. Clearly,
any implementation of the framework must take into account (and conform to) such
architecture; hence, to offer a worked out example we have first described a possible
control architecture based on MPC (Sect. and then discussed an implementation



126 7. Safe human-humanoid coexistence

| | | | |
1 15 2 25 3 35 4
devade [m]

Figure 7.14. Minimum robot-obstacle distance dp,;, as a function of devade

inside it (Sect. [7.8]). Implementing the framework in a different control architecture,
however, does not pose any conceptual difficulty.

7.11.4 Choice of parameters

A practically relevant issue in the presented framework is the choice of the various
parameters, such as the radiuses of the safety areas. Most of these choices can be
made on the basis of simple reasoning.

As an example, we discuss below a possible way to determine the threshold
d®vade which defines the S®29¢ area, based on the desired minimal distance between
the robot and a moving obstacle. The worst case to be considered for this scenario
is the one in which an obstacle moving at constant speed is heading towards the
humanoid along the robot’s sagittal axis. When the obstacle enters S¢V24¢_ the robot
starts an evasion maneuver under the control law , hence moving along
an arc of circle of radius R = v/k. Assuming that the obstacle moves at the same
speed v of the humanoid, a simple computation shows that the minimum distance
between the robot and the obstacles takes the value

devade
dmin = R, |21 — .
COS R

This relationship can be used for selecting a value of d®¥4¢ that guarantees a desired
dmin. For illustration, in Fig. we have plotted di, as a function of devade for
v =1m/s and k = 0.75, corresponding to R = 4/3 m. To achieve, say, dyi, = 2.4 m
one should choose d®*!® = 3 m (as in our simulations).

7.12 Conclusions

In this chapter we have presented a complete framework for the safe deployment
of humanoid robots in environments containing humans. This is obtained through
the definition of safety behaviors which are differentiated in override, temporary



7.12 Conclusions 127

override and proactive. A state machine handles activation/deactivation of these
behaviors based on the information given by the robot sensory system. In the
description of the implementation, we focused on locomotion since it is the main
aspect which distinguishes humanoids. An MPC setting has been used for realizing
all locomotion-related behaviors efficiently. Effectiveness of the proposed method has
been shown in dynamic simulation on the HRP-4 humanoid and through experiments
on a NAO robot. At the link https://youtu.be/WmZOLU30--w, a video containing
clips of the presented results is available.

This work can be improved under several aspects. The main challenge we will
consider in the future is going beyond human-robot coexistence to allow physical
collaboration between the robot and humans. This obviously raises additional safety
problems that can in principle be addressed by properly extending the proposed
framework, provided that a communication system has been established between
the human and the robot, e.g, using gestures and/or voice commands.


https://youtu.be/WmZ0LU30--w




129

Chapter 8

Conclusions

We have presented a set of techniques for planning the motions of a humanoid robot
in different contexts, ranging from known and static environments to unknown and
dynamic environments, possibly including humans.

In Chap. [3] we considered the problem of planning whole-body motions for a
humanoid robot that must execute a task implicitly requiring locomotion in an
environment cluttered by obstacles. For this problem we presented a unified method
for planning offline in the presence of a variety of tasks implicitly requiring locomotion,
such as navigation, reaching, manipulation and visual tasks. A solution is found
by generating possible concatenations of whole-body motions, each one realizing a
particular CoM movement primitive selected from a precomputed catalogue. Then,
we presented two extensions of the basic method for planning online in case of,
respectively, time limitations and unknown environments. We presented simulations
in several scenarios of different complexity obtained with the NAO humanoid in the
V-REP environment.

Although the approach based on CoM movement primitives revealed to be
very effective when dealing with full-fledged task-constraints, as in the case of
manipulation or visual tasks, its application in the presence of uneven ground is
difficult. For the case of navigation tasks on uneven ground, in Chap. 4l we proposed
an integrated motion planner/controller which allows the humanoid to exploit its
capability of stepping over or onto obstacles. The proposed architecture is composed
by two modules: an offline footstep planner and an online gait generator. For the
first module we proposed two possible randomized strategies that can efficiently
compute feasible and optimal footstep plans, respectively. We shown both simulation
and experimental results using the HRP-4 and NAO humanoids, respectively.

In Chap. [5] we addressed the motion planning problem in the presence of soft
tasks, i.e., tasks that are specified by a desired path in task space with an associated
error tolerance. We proposed a planner that opportunistically exploits the given
tolerance to fulfil the task only when exact task execution is obstructed by the
presence of a narrow or closed passage. As a result, the robot performs the assigned
task for as long as possible, and deviate from it only when strictly needed to avoid a
collision. The proposed strategy is first presented for the case of free-flying robots,
and V-REP simulation results are shown using the PR2 mobile manipulator in
various scenarios. Then, a possible extension to the case of humanoid robots is



130 8. Conclusions

illustrated.

Tasks that require a humanoid to sequentially establish multiple contacts with the
environment are considered in Chap. [6], where a randomized multi-contact motion
planner is presented. It first produces a sequence of multi-contact states which
guarantee static balance, collision avoidance, and feasibility w.r.t. the humanoid
kinematic limits. Then, such sequence is converted into an appropriate configuration
space trajectory. The proposed technique does not require precomputations or
heuristics design, differently from search-based approaches. Preliminary results
concerning the stand up task of the COMAN+ humanoid are presented.

Finally, in Chap. [7 we considered the problem of safe coexistence between
humans and humanoids where, differently from the other considered contexts, reactive
planning capabilities are required. We proposed a complete framework in which a
state machine orchestrates the activation/deactivation of several safety behaviors
according to information coming from the humanoid sensors. The implementation
of the framework is discussed with respect to a reference control architecture in
which behaviors related to locomotion are realized in a MPC setting. We shown
both simulation and experimental results using the HRP-4 and NAO humanoids,
respectively.

In addition to the possible future work already discussed in the concluding section
of each chapter, we would like to investigate also the extension of the proposed
techniques to different types of legged robots, such as quadrupeds or hybrid wheeled-
legged robots. Another interesting direction is the study of the considered motion
planning problems in contexts where multiple humanoids share the same environment
or even the same task which must be collaboratively executed.



131

Appendix A

Gait generation via IS-MPC

This appendix provides a quick overview of Intrinsically Stable MPC (IS-MPC) [68],
a model predictive control framework for humanoid gait generation that incorporates
an explicit CoM/ZMP boundedness constraint in the formulation.

IS-MPC has been introduced for both cases of flat and uneven ground. In the
following we briefly recall the main points of this technique for both cases, describing
how it generates a stable CoM trajectory that is compatible with a provided footstep
sequence. The reader is referred to [68, [90] for further details about IS-MPC.

We recall that, throughout this thesis, IS-MPC has been (i) used for generating
CoM movement primitives for the humanoid whole-body planning framework pre-
sented in Chap. |3} (i) combined with a randomized footstep planner to obtain the
integrated method for planning and executing humanoid motions on uneven ground
presented in Chap. {4} and (4i7) involved in the framework for safe human-humanoid
coexistence presented in Chap.

A.1 The flat ground case

The basic IS-MPC scheme [68] considers the case of a humanoid robot walking on
a flat ground. In this context, the complexity of the full humanoid dynamics is
avoided by using the Linear Inverted Pendulum (LIP) model, which works under
the simplifying assumption of constant CoM height and absence of rotational effects.
The LIP dynamics is expressed by

Te = 772(:UC —x,) (A.1)

along the x-axis (sagittal motion). Here x. and x, are, respectively, the coordinate
of the CoM and the ZMP, and n = \/g/h. with g and h., respectively, the gravity
acceleration and the constant CoM height. An identical (and decoupled) equation
expresses the dynamics along the y-axis (coronal motion).

Using the change of coordinates

:L‘s:l'c_j;c/n

Ty = Te+ Ec/M



132 A. Gait generation via IS-MPC

the LIP decomposes into a stable and an unstable subsystem

Ty = —n(ws — 2,)

Ty = Ty — 24)

where the unstable component z, is known as divergent component of motion [150]
or capture point [59].

IS-MPC works in a digital fashion over sampling intervals of duration §. At each
ti, it receives in input a sequence of F' footsteps (Xf , Yfk , @f), with the associated
timing TF, over a preview horizon T, = P -0 of P sampling intervals in the future

Xt = (@ ... 5T
1

where (:L‘f, yf ) Gf) is the pose of the j-th footstep and T is the step duration between
the (j — 1)-th and the j-th footstep. Then, IS-MPC predicts CoM and ZMP
trajectories over a control horizon T, = C - §, with P > C, that are compatible with
the timed footstep sequence.

The prediction model used by IS-MPC is a dynamic extension of the LIP,
expressed as

i 0 1 0 T 0
i | = n* 0 —n? e |+ | 0 |y, (A.2)
Ty, 0 0 O Ty, 1

for the = component; an analogous expression can be written for the y component.
Here, the ZMP velocity &, is the input, and is assumed to be constant over the
sampling intervals, yielding a piecewise-linear ZMP profile.

At each t;, the ZMP velocities over the control horizon

Z i

VE=(gk,. . gfteh

V4 Z )

Xk = (&b . aktoh

are determined by solving the following QP problem:

. vk -k
min [ X%+ Y
Yk

zZ1Z

subject to:

e ZMP constraints. These impose the balance condition. Balance of a humanoid
walking on flat ground is guaranteed if the ZMP lies at all times within
the support polygon of the robot. During single support phases, the ZMP
admissible region is the interior of the footstep, approximated as a rectangle
of dimensions dj and dj,, yielding the constraint

1 (d A AN
-5 (dz> < R; b < 2\ ) (A.3)
Y Y, — Yt Y



A.1 The flat ground case 133

where (x?, yf ) and R; are, respectively, the position and rotation matrix associ-
ated with the orientation of the j-th footstep in the control horizon. Constraint
can be written linearly in terms of the decision variables. During double
support phases, to avoid nonlinearities, the latter is approximated by a moving
constraint [I51]; in particular, the ZMP admissible region has exactly the same
shape and dimensions it has in single support, and it roto-translates from one
footstep to the other. The ZMP constraints involve simultaneously the x and
y coordinates and must be verified throughout the control horizon.

Stability constraint. This enforces boundedness of the CoM w.r.t. the ZMP.
At each ty, the stability condition [152]

wﬁ _ e_U(T_tk)l»Z@—)dT’ (A4)
tg

expresses a special initialization of x, at t; such that the free evolution cancels
the divergent component of the forced evolution, thus guaranteeing that the
CoM trajectory in output is bounded w.r.t. the ZMP trajectory in input.
Condition ((A.4) can be written in terms of the decision variables using the
piecewise-constant input assumption as

Cc-1 )
27'6%‘ Zf'éik' n k k

e wm $Z+Z = — e o xzﬂ 4 m(l’u — .TZ). (A5)
=0 1=C

The left-hand side of contains the ZMP velocities within the control
horizon (decision variables), whereas the right-hand side includes the ZMP
velocities beyond the horizon, collectively referred to as the tail, which are
unknown (hence the tilde) and must be conjectured to obtain a causal version
of the constraint. Depending on the assumed behavior of the ZMP velocities
z, after the control horizon, three options are possible: (i) the truncated tail
assumes that &, is zero after the control horizon, (i7) the periodic tail infinitely
replicates &, within the control horizon, (iii) the anticipative tail assumes a
more general profile for &, based on the available preview information. The
stability constraint is a single scalar condition on each coordinate, thus it must
be enforced separately along the x and y axes.

The generic IS-MPC iteration starts at ¢, and goes as follows.

1.

2.

3.

Compute X* and Y;* that solve the QP problem.
Extract the first control samples #¥ and g~.

Set i, = 2¥ in (A.2) and integrate from (z%, 2% x%) to obtain x.(t), ic(t), @, ()

for t € [tx,tg+1]. Do the same for the y component. The 3D CoM trajectory
during the considered time interval is (z¢, yc, hc).

IS-MPC has been shown to be recursively feasible and internally stable (in other
words, ZMP-to-CoM stable) provided that the anticipative tail is used and the
preview horizon is sufficiently long, i.e., if P is large enough.



134 A. Gait generation via IS-MPC

In some cases, e.g., in the presence of disturbances, it might be necessary to
modify the provided footstep sequence in order to maintain balance. To this end, the
basic IS-MPC scheme can be slightly modified in order to obtain automatic footstep
placement. In particular, the footstep sequence in input provides now only candidate
footstep position denoted as ka and Yfk, while the actual ones (that acts as
additional decision variables), denoted as XF and Y{¥, are determined together with
the ZMP velocities over the control horizon by solving the following QP problem:

: k12 k|12 k k|12 k k12
_omin XTIV 4 BUIXE — XFIE 4+ 1Y = YE)
Xk YFXEYE
subject to:
e ZMP and stability constraints as before.

e Kinematic constraints. These ensure that the generated footsteps are feasible
w.r.t. the kinematic limits of the specific humanoid being considered.

Note the additional term in the cost function that aims at placing the footsteps as
close as possible to the candidate ones.

A.2 The uneven ground case

The extension of IS-MPC proposed in [90] allows to generate variable height CoM
trajectories for a humanoid walking on a specific kind of uneven ground, renamed in
4] as world of stairs (see also Chap. , composed by horizontal patches located at
different heights.

The 3D dynamics of the CoM can be written as

Te = (-Tc - :L'Z)
Zec T Zg

Jo = (Ye — Ya)
Ze — 24

N

Ze = — —0,
m

where the first two equations are obtained from the moment balance around the
ZMP, and the third from the force balance along the the z axis, with f, and m
denoting, respectively, the z-component of the ground reaction force and the total
mass of the humanoid.

By setting (3¢ + ¢)/(2c — 2,) = 1, with 77 an arbitrary constant, a LIP-like model
is obtained

Yo = 2(Z/c — Yz) (A.6)
Ze = 772(Zc —2;) — g,
which allows vertical motion of the CoM, and is linear along the z and y axes, and
affine along the z axis.

!Orientations and timing are not modified to preserve linearity.



A.2 The uneven ground case 135

Similarly to the flat ground case, at each t;, IS-MPC receives in input a sequence
of F footsteps (Xf,Yfk, Zf, @f), with the associated timing 7F, over a preview
horizon T),. Note that this time, because of the unevenness of the ground, also the z
coordinate of each footstep is provided (through ZF). Then, IS-MPC predicts CoM
and ZMP trajectories over a control horizon 7T, that are compatible with the timed
footstep sequence.

The prediction model is a dynamic extension of the model in , which for
the = and y components is identical to that in , while for the z component it
has the additive term g.

At each ty, the ZMP velocities (X*,Y* Z¥) over the control horizon are deter-
mined by solving the following QP problem:

min || X51° + (1P + 125017 + 81125 — 2F))?

Xk Yk ZE

z1%z 'z

subject to:

e ZMP constraints. Balance of a humanoid walking on the considered kind of
uneven ground is guaranteed if the Center of Pressure (CoP) lies at all times
within the support polygon of the robot. Since the CoP, the CoM and the
ZMP are colinear, such condition is equivalent to the ZMP being internal
to the polyhedral cone having the CoM as vertex and the support polygon
as cross-section, leading to a nonlinear constraint. In order to remove this
nonlinearity, a conservative approximation of the polyhedral cone is employed,
leading to the linear (box) constraint

J

) 3 aytt — Ty ) ~?c
3z T k+i j Jz
& b &

where d% and CZZ are the reduced horizontal sizes of the constraint, chosen to
be compatible with the vertical size d% which is a design parameter.

As in the flat ground case, the box constraint is fixed during single support
phases, while it roto-translates from one footstep to the other during double
support phases.

e Stability constraint. The stability condition along the x and y axes are identical
to those for the flat ground case, and consequently the resulting constraints as
well (see and ([A.5), respectively). Along the z axis a slightly different
stability condition is obtained

- 9 + > —n(r—1x) d A8
u - 9 n e ZZ<T) T, ( . )
n tk

which results in the stability constraint for the z component

c-1 9] n g

—ind Lk+i —ind tk+i k k
Ze mn zZ‘H:—Ze ) Zz+l+1_e—77(5<zu_zz_7]2)' (AQ)
i=0 i=C

As before, three options are possible for conjecturing the ZMP velocities beyond
the control horizon, namely the truncated, periodic and anticipative tails.



136

A. Gait generation via IS-MPC

Note that, in addition to the regularization terms, the cost function includes an
additional term which attempts to bring the ZMP to patch level whenever possible.
Analogously to before, the generic IS-MPC iteration starts at ¢; and goes as follows.

1.

2.

Compute X¥, ¥ and Z* that solve the QP problem.
Extract the first control samples ¥, 9% and 2%

Set i, = ¥ in (A.2) and integrate from (z¥, 2% 2%) to obtain zc(t), e (t), ©,(t)
for t € [tg,tx+1]- Do the same for the y and z components. The 3D CoM
trajectory during the considered time interval is (¢, yc, 2c)-



137

Bibliography

[1]
2]

S. M. LaValle, Planning Algorithms. Cambridge University Press, 2006.

P. Ferrari, M. Cognetti, and G. Oriolo, “Anytime whole-body plan-
ning/replanning for humanoid robots,” in 18th IEEE-RAS Int. Conf. on
Humanoid Robots, pp. 1-9, 2018.

P. Ferrari, M. Cognetti, and G. Oriolo, “Sensor-based whole-body plan-
ning/replanning for humanoid robots,” in 19th IEEE-RAS Int. Conf. on
Humanoid Robots, pp. 511-517, 2019.

P. Ferrari, N. Scianca, L. Lanari, and G. Oriolo, “An integrated motion
planner/controller for humanoid robots on uneven ground,” in 2019 18th
European Control Conference (ECC), pp. 1598-1603, 2019.

M. Cefalo, P. Ferrari, and G. Oriolo, “An opportunistic strategy for mo-
tion planning in the presence of soft task constraints,” IEFEE Robotics and
Automation Letters, vol. 5, no. 4, pp. 6294-6301, 2020.

N. Scianca, P. Ferrari, D. De Simone, L. Lanari, and G. Oriolo, “A behavior-
based framework for safe deployment of humanoid robots,” Autonomous Robots,
2021.

B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo, Robotics: Modelling,
Planning and Control. Springer, London, 2009.

J. T. Schwartz and M. Sharir, “On the “piano movers” problem. ii. general
techniques for computing topological properties of real algebraic manifolds,”
Advances in Applied Mathematics, vol. 4, no. 3, pp. 298-351, 1983.

C. O’Dinlaing and C. K. Yap, “A “retraction” method for planning the motion
of a disc,” Journal of Algorithms, vol. 6, no. 1, pp. 104-111, 1985.

J. Canny, The complexity of robot motion planning. MIT press, 1988.

L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Probabilistic
roadmaps for path planning in high-dimensional configuration spaces,” IEFEE
Trans. on Robotics and Automation, vol. 12, no. 4, pp. 566-580, 1996.

S. M. LaValle and J. J. Kuffner, “Rapidly-exploring random trees: Progress
and prospects,” Algorithmic and Computational Robotics: New Directions,
no. 5, pp. 293-308, 2001.



138

Bibliography

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

22]

[23]

[24]

[25]

S. M. LaValle and J. J. Kuffner Jr, “Randomized kinodynamic planning,” Int.
J. of Robotics Research, vol. 20, no. 5, pp. 378—400, 2001.

S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal motion
planning,” Int. J. of Robotics Research, vol. 30, no. 7, pp. 846-894, 2011.

M. Zucker, J. Kuffner, and M. Branicky, “Multipartite RRT's for rapid replan-
ning in dynamic environments,” in 2007 IEEE Int. Conf. on Robotics and
Automation, pp. 1603-1609, 2007.

Y. Kuwata, J. Teo, G. Fiore, S. Karaman, E. Frazzoli, and J. P. How, “Real-
time motion planning with applications to autonomous urban driving,” IEEFE

Transactions on Control Systems Technology, vol. 17, no. 5, pp. 1105-1118,
2009.

K. Naderi, J. Rajamiki, and P. Haméldinen, “RT-RRT* a real-time path
planning algorithm based on RRT,” in 8th ACM SIGGRAPH Conference on
Motion in Games, pp. 113-118, 2015.

O. Khatib, “Real-time obstacle avoidance for manipulators and mobile robots,”
in 1985 IEEE Int. Conf. on Robotics and Automation, vol. 2, pp. 500-505,
1985.

E. Rimon and D. E. Koditschek, “The construction of analytic diffeomorphisms
for exact robot navigation on star worlds,” Transactions of the American
Mathematical Society, vol. 327, no. 1, pp. 71-116, 1991.

D. Fox, W. Burgard, and S. Thrun, “The dynamic window approach to collision
avoidance,” IEEE Robotics and Automation Magazine, vol. 4, no. 1, pp. 23-33,
1997.

M. Cefalo, E. Magrini, and G. Oriolo, “Sensor-based task-constrained motion
planning using model predictive control,” IFAC-PapersOnLine, vol. 51, pp. 220—
225, 2018.

G. B. Avanzini, A. M. Zanchettin, and P. Rocco, “Constrained model predictive
control for mobile robotic manipulators,” Robotica, vol. 36, no. 1, p. 19, 2018.

M. Logothetis, G. C. Karras, S. Heshmati-Alamdari, P. Vlantis, and K. J.
Kyriakopoulos, “A model predictive control approach for vision-based object
grasping via mobile manipulator,” in 2018 IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems, pp. 1-6, 2018.

J. Kuffner, J.J., K. Nishiwaki, S. Kagami, M. Inaba, and H. Inoue, “Footstep
planning among obstacles for biped robots,” in 2001 IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems, pp. 500-505, 2001.

J. Chestnutt, M. Lau, G. Cheung, J. Kuffner, J. Hodgins, and T. Kanade,
“Footstep planning for the honda ASIMO humanoid,” in 2005 IEEE Int. Conf.
on Robotics and Automation, pp. 629-634, 2005.



Bibliography 139

[26]

[27]

[28]

[36]

[37]

N. Perrin, O. Stasse, L. Baudouin, F. Lamiraux, and E. Yoshida, “Fast
humanoid robot collision-free footstep planning using swept volume approxi-
mations,” IEEE Trans. on Robotics, vol. 28, no. 2, pp. 427-439, 2012.

)

N. Perrin, “Biped footstep planning,’
Springer Netherlands, 2018.

in Humanoid Robotics: A Reference,

J. Pettré, J.-P. Laumond, and T. Siméon, “A 2-stages locomotion planner
for digital actors,” in 2003 ACM SIGGRAPH/FEurographics Symposium on
Computer Animation, pp. 258-264, 2003.

E. Yoshida, I. Belousov, C. Esteves, and J.-P. Laumond, “Humanoid motion
planning for dynamic tasks,” in 5th IEEE-RAS Int. Conf. on Humanoid Robots,
pp. 1-6, 2005.

M. Vukobratovic and D. Juricic, “Contribution to the synthesis of biped gait,”
IEEE Trans. on Biomedical Engineering, no. 1, pp. 1-6, 1969.

S. Chiaverini, G. Oriolo, and A. A. Maciejewski, “Redundant robots,” in
Springer Handbook of Robotics, pp. 221-242, Springer, 2016.

O. Kanoun, F. Lamiraux, and P. B. Wieber, “Kinematic control of redundant
manipulators: Generalizing the task-priority framework to inequality task,”
IEEE Trans. on Robotics, vol. 27, no. 4, pp. 785-792, 2011.

D. Rakita, B. Mutlu, and M. Gleicher, “Stampede: A discrete-optimization
method for solving pathwise-inverse kinematics,” in 2019 IEEE Int. Conf. on
Robotics and Automation, pp. 3507-3513, 2019.

Z. Kingston, M. Moll, and L. E. Kavraki, “Sampling-based methods for
motion planning with constraints,” Annual Review of Control, Robotics, and
Autonomous Systems, vol. 1, pp. 159-185, 2018.

G. Oriolo and C. Mongillo, “Motion planning for mobile manipulators along
given end-effector paths,” in 2005 IEEFE Int. Conf. on Robotics and Automation,
pp. 2166-2172, 2005.

B. Stephens, “Humanoid push recovery,” in 7th IEEE-RAS Int. Conf. on
Humanoid Robots, pp. 589-595, 2007.

D. Berenson, S. Srinivasa, and J. Kuffner, “Task space regions: A framework
for pose-constrained manipulation planning,” Int. J. of Robotics Research,
vol. 30, no. 12, pp. 1435-1460, 2011.

R. Shome and K. E. Bekris, “Improving the scalability of asymptotically
optimal motion planning for humanoid dual-arm manipulators,” in 2017 IEFE-
RAS Int. Conf. on Humanoid Robots, pp. 271-277, 2017.

G. Oriolo and M. Vendittelli, “A control-based approach to task-constrained
motion planning,” in 2009 IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems, pp. 297-302, 2009.



140

Bibliography

[40]

[41]

[42]

[43]

[46]

[49]

[50]

[51]

F. Burget, A. Hornung, and M. Bennewitz, “Whole-body motion planning for
manipulation of articulated objects,” in 20138 IEEFE Int. Conf. on Robotics and
Automation, 2013.

J. Kuffner and S. LaValle, “Rrt-connect: An efficient approach to single-
query path planning,” in 2000 IEEFE Int. Conf. on Robotics and Automation,
pp. 995-1001, 2000.

Y. Yang, V. Ivan, W. Merkt, and S. Vijayakumar, “Scaling sampling-based
motion planning to humanoid robots,” in 2016 IEEE Int. Conf. on Robotics
and Biomimetics, pp. 1448-1454, 2016.

N. Vahrenkamp, T. Asfour, and R. Dillmann, “Efficient motion planning for
humanoid robots using lazy collision checking and enlarged robot models,” in
2007 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 3062-3067,
2007.

J. Kuffner, K. Nishiwaki, S. Kagami, M. Inaba, and H. Inoue, “Motion planning
for humanoid robots under obstacle and dynamic balance constraints,” in 2001
IEEFE Int. Conf. on Robotics and Automation, pp. 692—698, 2001.

S. Dalibard, A. El Khoury, F. Lamiraux, A. Nakhaei, M. Taix, and J.-P.
Laumond, “Dynamic walking and whole-body motion planning for humanoid
robots: An integrated approach,” Int. J. of Robotics Research, vol. 32, no. 9-10,
pp- 1089-1103, 2013.

S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi, and
H. Hirukawa, “Biped walking pattern generation by using preview control of

zero-moment point,” in 2003 IEEE Int. Conf. on Robotics and Automation,
pp. 1620-1626, 2003.

S. J. Jorgensen, M. Vedantam, R. Gupta, H. Cappel, and L. Sentis, “Finding
locomanipulation plans quickly in the locomotion constrained manifold,” in
2020 IEEE Int. Conf. on Robotics and Automation, pp. 6611-6617, 2020.

K. Bouyarmane, S. Caron, A. Escande, and A. Kheddar, “Multi-contact motion
planning and control,” in Humanoid Robotics: A Reference, pp. 1-42, Springer
Netherlands, 2018.

K. Hauser, T. Bretl, J.-C. Latombe, K. Harada, and B. Wilcox, “Motion
planning for legged robots on varied terrain,” Int. J. of Robotics Research,
vol. 27, no. 11-12, pp. 1325-1349, 2008.

K. Bouyarmane and A. Kheddar, “Humanoid robot locomotion and manip-
ulation step planning,” Advanced Robotics, vol. 26, no. 10, pp. 1099-1126,
2012.

A. Escande, A. Kheddar, and S. Miossec, “Planning contact points for hu-
manoid robots,” Robotics and Autonomous Systems, vol. 61, no. 5, pp. 428-442,
2013.



Bibliography 141

[52]

[53]

[54]

[55]

[59]

[60]

[63]

D. E. Orin, A. Goswami, and S.-H. Lee, “Centroidal dynamics of a humanoid
robot,” Autonomous Robots, vol. 35, no. 2-3, pp. 161-176, 2013.

P. Michel, J. Chestnutt, J. Kuffner, and T. Kanade, “Vision-guided humanoid
footstep planning for dynamic environments,” in 5th IEEE-RAS Int. Conf. on
Humanoid Robots, pp. 13-18, 2005.

D. Maier, A. Hornung, and M. Bennewitz, “Real-time navigation in 3d en-
vironments based on depth camera data,” in 12th IEEE-RAS Int. Conf. on
Humanoid Robots, pp. 692-697, 2012.

N. Bohorquez, A. Sherikov, D. Dimitrov, and P. B. Wieber, “Safe navigation
strategies for a biped robot walking in a crowd,” in 16th IEEE-RAS Int. Conf.
on Humanoid Robots, pp. 379-386, 2016.

M. Naveau, M. Kudruss, O. Stasse, C. Kirches, K. Mombaur, and P. Souéres,
“A reactive walking pattern generator based on nonlinear model predictive
control,” IEEE Robotics and Automation Letters, vol. 2, no. 1, pp. 10-17, 2017.

M. Cognetti, D. De Simone, L. Lanari, and G. Oriolo, “Real-time planning
and execution of evasive motions for a humanoid robot,” in 2016 IEEFE Int.
Conf. on Robotics and Automation, pp. 4200-4206, 2016.

M. Morisawa, K. Harada, S. Kajita, K. Kaneko, J. Sola, E. Yoshida,
N. Mansard, K. Yokoi, and J.-P. Laumond, “Reactive stepping to prevent
falling for humanoids,” in 9th IEFE-RAS Int. Conf. on Humanoid Robots,
pp- 528-534, 2009.

J. Pratt, J. Carff, S. Drakunov, and A. Goswami, “Capture point: A step
toward humanoid push recovery,” in 6th IEEE-RAS Int. Conf. on Humanoid
Robots, pp. 200-207, 2006.

M. Cognetti, P. Mohammadi, and G. Oriolo, “Whole-body motion planning
for humanoids based on com movement primitives,” in 15th IEFE-RAS Int.
Conf. on Humanoid Robots, pp. 1090-1095, IEEE, 2015.

L. Baudouin, N. Perrin, T. Moulard, F. Lamiraux, O. Stasse, and E. Yoshida,
“Real-time replanning using 3D environment for humanoid robot,” in 11th
IEEE-RAS Int. Conf. on Humanoid Robots, pp. 584-589, 2011.

K. Okada, T. Ogura, A. Haneda, and M. Inaba, “Autonomous 3d walking
system for a humanoid robot based on visual step recognition and 3d foot step
planner,” in 2005 IEEE Int. Conf. on Robotics and Automation, pp. 623-628,
2005.

P. Michel, J. Chestnutt, S. Kagami, K. Nishiwaki, J. Kuffner, and T. Kanade,
“Gpu-accelerated real-time 3d tracking for humanoid locomotion and stair
climbing,” in 2007 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems,
pp. 463-469, 2007.



142

Bibliography

[64]

[65]

[66]

[74]

[75]

[76]

J. Chestnutt, Y. Takaoka, K. Suga, K. Nishiwaki, J. Kuffner, and S. Kagami,
“Biped navigation in rough environments using on-board sensing,” in 2009
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 3543-3548, 2009.

K. Nishiwaki, J. Chestnutt, and S. Kagami, “Autonomous navigation of a
humanoid robot over unknown rough terrain using a laser range sensor,” Int.
J. of Robotics Research, vol. 31, no. 11, pp. 1251-1262, 2012.

A. Nakhaei and F. Lamiraux, “Motion planning for humanoid robots in
environments modeled by vision,” in 8th IEEE-RAS Int. Conf. on Humanoid
Robots, pp. 197-204, 2008.

D. Maier, C. Lutz, and M. Bennewitz, “Integrated perception, mapping, and
footstep planning for humanoid navigation among 3d obstacles,” in 2013
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 2658-2664, 2013.

N. Scianca, D. De Simone, L. Lanari, and G. Oriolo, “MPC for humanoid gait
generation: Stability and feasibility,” IFEE Trans. on Robotics, vol. 36, no. 4,
pp. 1171-1178, 2020.

P. Ferrari, M. Cognetti, and G. Oriolo, “Humanoid whole-body planning for
loco-manipulation tasks,” in 2017 IEEE Int. Conf. on Robotics and Automation,
pp. 4741-4746, 2017.

N. Shahriari, S. Fantasia, F. Flacco, and G. Oriolo, “Robotic visual servoing
of moving targets,” in 2013 IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems, pp. 77-82, 2013.

F. Chaumette, S. Hutchinson, and P. Corke, “Visual servoing,”

Handbook of Robotics, pp. 841-866, Springer, 2016.

in Springer

R. Bohlin and L. E. Kavraki, “Path planning using lazy PRM,” in 2000 IEEE
Int. Conf. on Robotics and Automation, pp. 521-528, 2000.

G. Sanchez and J.-C. Latombe, “A single-query bi-directional probabilistic
roadmap planner with lazy collision checking,” in Robotics Research, pp. 403—
417, 2003.

A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard,
“OctoMap: An efficient probabilistic 3D mapping framework based on octrees,”
Autonomous Robots, vol. 34, no. 3, pp. 189-206, 2013.

M. Cefalo and G. Oriolo, “Dynamically feasible task-constrained motion
planning with moving obstacles,” in 2014 IEEE Int. Conf. on Robotics and
Automation, 2014.

R. Deits and R. Tedrake, “Footstep planning on uneven terrain with mixed-
integer convex optimization,” in 2014 IFEE-RAS Int. Conf. on Humanoid
Robots, pp. 279-286, 2014.



Bibliography 143

[77]

78]

[79]

[36]

[87]

A. Hornung, A. Dornbush, M. Likhachev, and M. Bennewitz, “Anytime search-
based footstep planning with suboptimality bounds,” in 2012 IEEE-RAS Int.
Conf. on Humanoid Robots, pp. 674-679, 2012.

R. J. Griffin, G. Wiedebach, S. McCrory, S. Bertrand, I. Lee, and J. Pratt,
“Footstep planning for autonomous walking over rough terrain,” in 19th IEEE-
RAS Int. Conf. on Humanoid Robots, pp. 9-16, 2019.

Z. Xia, G. Chen, J. Xiong, Q. Zhao, and K. Chen, “A random sampling-based
approach to goal-directed footstep planning for humanoid robots,” in 2009
IEEE/ASME Int. Conf. on Advanced Intelligent Mechatronics, pp. 168-173,
2009.

S. Kajita and K. Tani, “Study of dynamic biped locomotion on rugged terrain-
derivation and application of the linear inverted pendulum mode,” in 1991
IEEE Int. Conf. on Robotics and Automation, pp. 1405-1406, 1991.

P.-B. Wieber, “Trajectory free linear model predictive control for stable walking
in the presence of strong perturbations,” in 6th IEEE-RAS Int. Conf. on
Humanoid Robots, pp. 137-142, 2006.

S. Caron and A. Kheddar, “Dynamic walking over rough terrains by nonlinear
predictive control of the floating-base inverted pendulum,” in 2017 IEEE/RSJ
Int. Conf. on Intelligent Robots and Systems, pp. 5017-5024, 2017.

S. Caron, A. Escande, L. Lanari, and B. Mallein, “Capturability-based pattern
generation for walking with variable height,” IEEE Trans. on Robotics, vol. 36,
no. 2, pp. 517-536, 2019.

A. Herdt, Model predictive control of a humanoid robot. PhD thesis, Ecole
Nationale Supérieure des Mines de Paris, 2012.

M. A. Hopkins, D. W. Hong, and A. Leonessa, “Humanoid locomotion on
uneven terrain using the time-varying divergent component of motion,” in 14th

IEEE-RAS Int. Conf. on Humanoid Robots, pp. 266-272, 2014.

K. Terada and Y. Kuniyoshi, “Online gait planning with dynamical 3d-
symmetrization method,” in 7th IEEE-RAS Int. Conf. on Humanoid Robots,
pp- 222-227, 2007.

R. C. Luo, P. H. Chang, J. Sheng, S. C. Gu, and C. H. Chen, “Arbitrary biped
robot foot gaiting based on variate com height,” in 13th IEEE-RAS Int. Conf.
on Humanoid Robots, pp. 534-539, 2013.

J. Englsberger, C. Ott, and A. Albu-Schéffer, “Three-dimensional bipedal
walking control based on divergent component of motion,” IEEE Trans. on
Robotics, vol. 31, no. 2, pp. 355-368, 2015.

W. Burgard, M. Hebert, and M. Bennewitz, “World modeling,” in Springer
Handbook of Robotics, pp. 1135-1152, Springer, 2016.



144

Bibliography

[90]

[91]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

A. Zamparelli, N. Scianca, L. Lanari, and G. Oriolo, “Humanoid gait generation
on uneven ground using intrinsically stable MPC,” IFAC-PapersOnLine, vol. 51,
pp. 393-398, 2018.

T. Rofer, T. Laue, J. Richter-Klug, M. Schiinemann, J. Stiensmeier, A. Stolp-
mann, A. Stowing, and F. Thielke, “B-Human team report and code release
2015,” 2015. Only available online: http://www.b-human.de/downloads/
publications/2015/CodeRelease2015. pdf.

P. Fankhauser, M. Bloesch, and M. Hutter, “Probabilistic terrain mapping for
mobile robots with uncertain localization,” IEEE Robotics and Automation
Letters, vol. 3, no. 4, pp. 3019-3026, 2018.

G. Oriolo, M. Cefalo, and M. Vendittelli, “Repeatable motion planning for
redundant robots over cyclic tasks,” IEEFE Trans. on Robotics, vol. 33, no. 5,
pp. 11701183, 2017.

M. Cefalo and G. Oriolo, “A general framework for task-constrained motion
planning with moving obstacles,” Robotica, vol. 37, pp. 575-598, 2019.

T. Kunz and M. Stilman, “Manipulation planning with soft task constraints,”
in 2012 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 1937-1942,
2012.

M. Guo and M. M. Zavlanos, “Probabilistic motion planning under temporal
tasks and soft constraints,” IEEFE Trans. on Automatic Control, vol. 63, no. 12,
pp. 4051-4066, 2018.

I. Sucan and S. Chitta, “Motion planning with constraints using configuration
space approximations,” in 2012 IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems, pp. 1904-1910, 2012.

Z. Fusheng, L. Yizhou, G. Wei, W. Pengfei, L. Mantian, W. Xin, and L. Jingx-
uan, “Learning the metric of task constraint manifolds for constrained motion
planning,” FElectronics, vol. 7, p. 395, 2018.

V. Boor, M. Overmars, and A. V. der Stappen, “The gaussian sampling
strategy for probabilistic roadmap planners,” in 1999 IEEE Int. Conf. on
Robotics and Automation, pp. 1018-1023, 1999.

D. Hsu, “The bridge test for sampling narrow passages with probabilistic
roadmap planners,” in 2003 IEEE Int. Conf. on Robotics and Automation,
pp. 4420-4426, 2003.

Z. Sadeghi and H. Moradi, “A new sample-based strategy for narrow passage
detection,” in 2011 9th IEEE World Congress on Intelligent Control and
Automation, pp. 1059-1064, 2011.

M. Saha, J.-C. Latombe, Y.-C. Chang, and F. Prinz, “Finding narrow passages
with probabilistic roadmaps: The small-step retraction method,” Autonomous
Robots, vol. 19, no. 3, pp. 301-319, 2005.


http://www.b-human.de/downloads/publications/2015/CodeRelease2015.pdf
http://www.b-human.de/downloads/publications/2015/CodeRelease2015.pdf

Bibliography 145

[103]

[104]

[105]

[106]

[107]

[108]

109

[110]

[111]

[112]

[113]

[114]

[115]

D. Berenson, T. Siméon, and S. Srinivasa, “Addressing cost-space chasms in
manipulation planning,” in 2011 IEEE Int. Conf. on Robotics and Automation,
pp- 4561-4568, 2011.

S. Tonneau, A. Del Prete, J. Pettré, C. Park, D. Manocha, and N. Mansard,
“An efficient acyclic contact planner for multiped robots,” IEEE Trans. on
Robotics, vol. 34, no. 3, pp. 586-601, 2018.

Y. Guan and K. Yokoi, “Reachable space generation of a humanoid robot
using the monte carlo method,” in 2006 IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems, pp. 19841989, 2006.

L. Jamone, L. Natale, G. Sandini, and A. Takanishi, “Interactive online
learning of the kinematic workspace of a humanoid robot,” in 2012 IEEE/RSJ
Int. Conf. on Intelligent Robots and Systems, pp. 2606-2612, 2012.

M. P. Polverini, A. Laurenzi, E. M. Hoffman, F. Ruscelli, and N. G. Tsagarakis,
“Multi-contact heavy object pushing with a centaur-type humanoid robot:
Planning and control for a real demonstrator,” IEEFE Robotics and Automation
Letters, vol. 5, no. 2, pp. 859-866, 2020.

F. Ruscelli, M. P. Polverini, A. Laurenzi, E. M. Hoffman, and N. G. Tsagarakis,
“A multi-contact motion planning and control strategy for physical interaction
tasks using a humanoid robot,” in 2020 IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems, 2020.

A. Laurenzi, E. M. Hoffman, L. Muratore, and N. G. Tsagarakis, “Cartesl/O:
A ROS based real-time capable cartesian control framework,” in 2019 IEEE
Int. Conf. on Robotics and Automation, pp. 591-596, 2019.

A. Wichter and L. T. Biegler, “On the implementation of an interior-point filter
line-search algorithm for large-scale nonlinear programming,” Mathematical
Programming, vol. 106, no. 1, pp. 25-57, 2006.

A. Laurenzi, E. M. Hoffman, M. P. Polverini, and N. G. Tsagarakis, “Balancing
control through post-optimization of contact forces,” in 18th IEEE-RAS Int.
Conf. on Humanoid Robots, pp. 320-326, 2018.

A. Bicchi and G. Tonietti, “Fast and “soft-arm” tactics,” IEEE Robotics and
Automation Magazine, vol. 11, pp. 22-33, June 2004.

A. De Santis, B. Siciliano, A. De Luca, and A. Bicchi, “An atlas of physical
human-robot interaction,” Mechanism and Machine Theory, vol. 43, no. 3,
pp- 253-270, 2008.

T. Kruse, A. K. Pandey, R. Alami, and A. Kirsch, “Human-aware robot
navigation: A survey,” Robotics and Autonomous Systems, vol. 61, no. 12,
pp. 1726 — 1743, 2013.

T. S. Tadele, T. de Vries, and S. Stramigioli, “The safety of domestic robotics: A
survey of various safety-related publications,” IEEE Robotics and Automation
Magazine, vol. 21, no. 3, pp. 134-142, 2014.



146

Bibliography

[116]

[117]

18]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

A. De Luca and F. Flacco, “Integrated control for pHRI: Collision avoidance,
detection, reaction and collaboration,” in 2012 IEEE RAS & EMBS Int. Conf.
on Biomedical Robotics and Biomechatronics, pp. 288-295, 2012.

B. Lacevic, P. Rocco, and A. Zanchettin, “Safety assessment and control of
robotic manipulators using danger field,” IEEE Trans. on Robotics, vol. 29,
no. 5, pp. 1257-1270, 2013.

B. Navarro, A. Fonte, P. Fraisse, G. Poisson, and A. Cherubini, “In pursuit of
safety: An open-source library for physical human-robot interaction,” IEFE
Robotics and Automation Magazine, vol. 25, pp. 39-50, June 2018.

A. Kheddar, S. Caron, P. Gergondet, A. Comport, A. Tanguy, C. Ott,
B. Henze, G. Mesesan, J. Englsberger, M. A. Roa, P.-B. Wieber, F. Chaumette,
F. Spindler, G. Oriolo, L. Lanari, A. Escande, K. Chappellet, F. Kanehiro, and
P. Rabaté, “Humanoid robots in aircraft manufactoring — the Airbus use-case,”
IEEFE Robotics and Automation Magazine, vol. 26, pp. 30-45, Dec. 2019.

S. Kajita, H. Hirukawa, K. Harada, and K. Yokoi, Introduction to Humanoid
Robotics. Springer Publishing Company Inc., 2014.

E. Krotkov, D. Hackett, L. Jackel, M. Perschbacher, J. Pippine, J. Strauss,
G. Pratt, and C. Orlowski, “The DARPA Robotics Challenge finals: Results
and perspectives,” Journal of Field Robotics, vol. 34, no. 2, pp. 229-240, 2017.

C. G. Atkeson, P. B. Benzun, N. Banerjee, D. Berenson, C. P. Bove, X. Cui,
M. DeDonato, R. Du, S. Feng, P. Franklin, et al., “What happened at the
DARPA Robotics Challenge finals,” in The DARPA Robotics Challenge Finals:
Humanoid Robots to the Rescue, pp. 667-684, Springer, 2018.

J. Lim, I. Lee, I. Shim, H. Jung, H. M. Joe, H. Bae, O. Sim, J. Oh, T. Jung,
S. Shin, K. Joo, M. Kim, K. Lee, Y. Bok, D.-G. Choi, B. Cho, S. Kim, J. Heo,
I. Kim, J. Lee, I. S. Kwon, and J.-H. Oh, “Robot system of DRC-HUBO+
and control strategy of team KAIST in DARPA Robotics Challenge finals,”
Journal of Field Robotics, vol. 34, no. 4, pp. 802—-829, 2017.

P.-B. Wieber, R. Tedrake, and S. Kuindersma, “Modeling and control of legged
robots,” in Springer Handbook of Robotics, pp. 1203—1234, Springer, 2016.

P. Marion, M. Fallon, R. Deits, A. Valenzuela, C. Pérez D’Arpino, G. Izatt,
L. Manuelli, M. Antone, H. Dai, T. Koolen, et al., “Director: A user interface
designed for robot operation with shared autonomy,” Journal of Field Robotics,
vol. 34, no. 2, pp. 262-280, 2017.

R. J. Radke, S. Andra, O. Al-Kofahi, and B. Roysam, “Image change detection
algorithms: a systematic survey,” IEEE Transactions on Image Processing,
vol. 14, pp. 294-307, March 2005.

M. Stark, B. Schiele, and A. Leonardis, “Visual object class recognition,” in
Springer Handbook of Robotics, pp. 825-840, Springer, 2016.



Bibliography 147

[128]

[129]

[130]

[131]

[132]

[133]

134]

[135]

[136]

[137]

138

[139)]

[140]

F. Flacco, A. Paolillo, and A. Kheddar, “Residual-based contacts estimation
for humanoid robots,” in 16th IEEE-RAS Int. Conf. on Humanoid Robots,
pp. 409-415, 2016.

K. Ogata, K. Terada, and Y. Kuniyoshi, “Falling motion control for humanoid
robots while walking,” in 7th IEEE-RAS Int. Conf. on Humanoid Robots,
pp- 306-311, 2007.

S. Caron, Q.-C. Pham, and Y. Nakamura, “ZMP support areas for multi-
contact mobility under frictional constraints,” IEEE Trans. on Robotics, vol. 33,
no. 1, pp. 67-80, 2017.

E. T. Hall, The hidden dimension. Garden City, N.Y.: Doubleday, 1966.

J. Rios-Martinez, A. Spalanzani, and C. Laugier, “From proxemics theory to
socially-aware navigation: A survey,” Int. Journal of Social Robotics, vol. 7,
pp. 137-153, June 2014.

)

F. Chaumette and S. Hutchinson, “Visual servo control. I. basic approaches,’
IEEE Robotics and Automation Magazine, vol. 13, no. 4, pp. 82-90, 2006.

K. Fujiwara, F. Kanehiro, S. Kajita, K. Yokoi, H. Saito, K. Harada, K. Kaneko,
and H. Hirukawa, “The first human-size humanoid that can fall over safely
and stand-up again,” in 2003 IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems, vol. 2, pp. 1920-1926, 2003.

K. Fujiwara, F. Kanehiro, S. Kajita, and H. Hirukawa, “Safe knee landing of
a human-size humanoid robot while falling forward,” in 2004 IEEE/RSJ Int.
Conf. on Intelligent Robots and Systems, vol. 1, pp. 503508, 2004.

A. Yasin, Q. Huang, Z. Yu, Q. Xu, and A. A. Syed, “Stepping to recover: A
3D-LIPM based push recovery and fall management scheme for biped robots,”
in 2012 IEEFE Int. Conf. on Robotics and Biomimetics, pp. 318-323, 2012.

F. Braghin, B. Henze, and M. Roa, “Optimal trajectory for active safe falls
in humanoid robots,” in 19th IEEE-RAS Int. Conf. on Humanoid Robots,
pp. 305-312, 2019.

V. Samy and A. Kheddar, “Falls control using posture reshaping and active
compliance,” in 15th IEEE-RAS Int. Conf. on Humanoid Robots, pp. 908913,
2015.

S. Yun, A. Goswami, and Y. Sakagami, “Safe fall: Humanoid robot fall
direction change through intelligent stepping and inertia shaping,” in 2009
IEEE Int. Conf. on Robotics and Automation, pp. 781-787, 2009.

U. Nagarajan and A. Goswami, “Generalized direction changing fall control
of humanoid robots among multiple objects,” in 2010 IEEFE Int. Conf. on
Robotics and Automation, pp. 3316-3322, 2010.



148

Bibliography

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

K. Mombaur, A. Truong, and J.-P. Laumond, “From human to humanoid
locomotion — an inverse optimal control approach,” Autonomous Robots, vol. 28,
pp. 369-383, 2010.

M. Cognetti, D. De Simone, F. Patota, N. Scianca, L. Lanari, and G. Oriolo,
“Real-time pursuit-evasion with humanoid robots,” in 2017 IEEE Int. Conf.
on Robotics and Automation, pp. 40904095, 2017.

K. Harada, S. Kajita, K. Kaneko, and H. Hirukawa, “Dynamics and balance
of a humanoid robot during manipulation tasks,” IEEE Trans. on Robotics,
vol. 22, pp. 568-575, June 2006.

S. Lengagne, J. Vaillant, E. Yoshida, and A. Kheddar, “Generation of whole-
body optimal dynamic multi-contact motions,” Int. J. of Robotics Research,
vol. 32, no. 9-10, pp. 1104-1119, 2013.

C. Mandery, J. Borras, M. Jochner, and T. Asfour, “Analyzing whole-body
pose transitions in multi-contact motions,” in 15th IEFE-RAS Int. Conf. on
Humanoid Robots, pp. 1020-1027, 2015.

A. Werner, B. Henze, D. A. Rodriguez, J. Gabaret, O. Porges, and M. A. Roa,
“Multi-contact planning and control for a torque-controlled humanoid robot,” in
2016 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 5708-5715,
2016.

D. De Simone, N. Scianca, P. Ferrari, L. Lanari, and G. Oriolo, “MPC-based
humanoid pursuit-evasion in the presence of obstacles,” in 2017 IEEE/RSJ
Int. Conf. on Intelligent Robots and Systems, pp. 5245-5250, 2017.

S. Haddadin and E. Croft, “Physical human—robot interaction,” in Springer
Handbook of Robotics, pp. 1835-1874, Springer, 2016.

A. De Luca and G. Oriolo, “Local incremental planning for nonholonomic
mobile robots,” in 1994 IEEE Int. Conf. on Robotics and Automation, vol. 1,
pp. 104-110, 1994.

T. Takenaka, T. Matsumoto, and T. Yoshiike, “Real time motion generation
and control for biped robot -1st report: Walking gait pattern generation-,” in
2009 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2009.

A. Aboudonia, N. Scianca, D. De Simone, L. Lanari, and G. Oriolo, “Humanoid
gait generation for walk-to locomotion using single-stage MPC,” in 17th IEEE-
RAS Int. Conf. on Humanoid Robots, pp. 178-183, 2017.

L. Lanari and S. Hutchinson, “Inversion-based gait generation for humanoid
robots,” in 2015 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems,
pp. 637-642, 2015.



	Introduction
	Literature review
	Whole-body motion planning
	Core problem and approach
	Humanoid motion model
	Task-oriented planning
	CoM movement primitives

	Basic whole-body planner
	Motion generation
	Planner overview
	Planning experiments

	Anytime whole-body planning framework
	Framework overview
	Local motion planner
	Deadlock management
	Planning experiments

	Sensor-based whole-body planning framework
	Framework overview
	Mapping module
	Planning module
	Execution module
	Planning experiments

	Conclusions

	Motion planning on uneven ground
	Core problem and approach
	Basic footstep planner
	Problem formulation
	Planner overview
	Simulations

	Optimal footstep planner
	Problem formulation
	Planner overview
	Simulations

	Experiments
	Conclusions

	Motion planning in the presence of soft task constraints
	Problem formulation
	Overview of the opportunistic planner
	Hard planner
	Soft planner
	Soft tree extension

	Planning experiments
	Extension to humanoid robots
	Conclusions

	Multi-contact motion planning
	Background
	Problem and approach
	Multi-contact state planner
	Multi-contact state generator
	Transition configuration generator
	Inverse Kinematics and Centroidal Statics solvers

	Whole-body planner
	Preliminary results
	Conclusions

	Safe human-humanoid coexistence
	Safety standards
	Safety guidelines
	Sensing assumptions
	Overview of safety behaviors
	Override behaviors
	Temporary override behaviors
	Proactive behaviors

	Behavior-based safety framework
	Contexts
	Safety areas and thresholds
	Definitions of behaviors

	State machine
	Control architecture
	Camera motion generator
	Hand(s) motion-force generator
	Gait generator

	Implementation of behaviors
	halt
	self-protect
	stop
	evade
	add_contact
	scan and track
	adapt_footsteps
	scale_velocity-force

	Simulations
	Experiments
	Discussion
	Effect of safety on performance
	Limitations of the method
	Adaptations
	Choice of parameters

	Conclusions

	Conclusions
	Gait generation via IS-MPC
	The flat ground case
	The uneven ground case


