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Summary

This paper deals with the identification of the weight of a train in motion,

based on the measurement of the time history of strains at the foot of the rail.

The direct problem is initially considered, modelling the rail as a one-

dimensional infinite Euler–Bernoulli beam, resting on a viscoelastic soil and

subjected to a Dirac delta load travelling at constant speed. A closed-form solu-

tion is used to investigate the sensitivity of the response to the main mechani-

cal parameters. Then, the inverse problem consisting of the identification of

the loads for a given time history of measured strains is addressed as a minimi-

zation problem whose objective function is based on the difference between

experimental and model time histories of strains. First, an updating of the

interpretative model using the time history of a train of known weight is pur-

sued. Then, the actual load identification is performed. The procedure pro-

posed is initially applied to numerical data, also contaminated by noise.

Within the context of a Bayesian approach, identifiability of model parameters

and minimum number of measurements is examined; moreover, the sensitivity

of parameter estimation to errors in the known load and the sensitivity of load

identification to errors in the model parameters are investigated, as well as the

effect of noise. A validation is finally performed, using rail strains measured on

a stretch of line run by a locomotor of known weight.
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1 | INTRODUCTION

Knowledge of the dynamic loads acting on a structure is very important for its design, control, diagnosis and mainte-
nance. Increased standards of safety in railway transport require awareness of the loads actually travelling on railway
lines, in particular when dealing with freight trains. This enables the timely schedule of maintenance and monitoring
of rail wear, as well as to check unbalanced loads that can affect vehicle safety. The achievement of this goal requires
the development of methods for the identification of travelling loads. In particular, techniques that identify the forces
in motion without disturbing the normal operation process have attracted the interest of researchers over the last few
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decades. These techniques enable the vehicle loads to be determined indirectly from the dynamic responses and lead to
the formulation of an inverse problem.

The structure can be modelled as an Euler–Bernoulli plane infinite beam with constant properties resting on a vis-
coelastic foundation subjected to Dirac delta loads travelling at constant speed, whose solution has been known in
closed form since the middle of last century.1–3 This model was successfully used to synthetically describe the response
of rocket test tracks2 and train tracks,1,4 proving its ability to represent with satisfactory approximation the main physi-
cal phenomena tied to the amplification occurring when the travelling load approaches the critical speed. When consid-
ering foundations typical of railway engineering applications, the critical velocities obtained using the Euler–Bernoulli
beam are almost the same as those from the Timoshenko beam.5 The effectiveness of the description provided by the
Euler–Bernoulli beam was proved experimentally in several papers.6–8

Over time, research has advanced to describe more complex cases, in particular, concerning the behaviour of the
ballast or the interaction vehicle rail. Some non-exhaustive examples are the Pasternak two-parameter foundation
accounting for the interaction between adjacent springs, discussed in previous studies,9,10 also for Timoshenko beams,5

as well as investigations of the effect of load intensity and speed on the foundation stiffness, including nonlinear hard-
ening of the ballast,11 2-D12 and 3-D13,14 descriptions of the elastic foundation, detailed modelling of rails resting on
periodic supports,15 which is relevant when dealing with trains travelling at high speed, or dynamic models rep-
resenting the interaction of the rail track and the waggon system.14,16

Load identification problems, in their broadest sense, may include different characteristics of the load, which are its
time history and its distribution in space. Existing load identification methods can be classified into time domain, fre-
quency domain, state space, orthogonal function expansion and neural network methods. As most inverse problems,
load identification based on the measured response is an ill-conditioned problem: the response is typically a continuous
vector function in the spatial coordinates, which is only known at a few points of the structure and at discrete time
instants. Many load identification methods require the application of regularization techniques, one of the most popular
of which is Tichonov's, to enhance the accuracy of the solution. The reader can find a broad list of references in previ-
ous studies.17–20 Among the approaches proposed, the dynamic programming is worth mentioning.20 A large number
of methods operate in the time domain and identify moving forces minimizing the difference between measured and
model-predicted time-histories of the response. Using laboratory tests, it was shown that time domain methods have
the best performance compared to other moving load identification methods, except for the computational time.21

Although weigh-in-motion procedures were largely used in bridge structures,19 their applications to infinite beams
such as rails, where vibration modes cannot be defined, are relatively limited; examples of such research can be found
in previous studies.14,22–30 Some authors23,30 have focused on the identification of the wheel-rail contact force as a tool
to detect irregularities. In fact, a number of aspects can influence the wheel-rail contact force such as wheel profile22

and rail roughness,29 both tied to rail and wheel wear,27 horizontal forces that can arise and need to be evaluated to
assess the risk of derailment.25 Commercial high precision weigh-in-motion systems are also available, but they require
significant modifications of the track, which has to be supported over sensored sleepers, as well as strict speed limita-
tions.24 Contemporary research focuses on indirect load identification with measurements of the response, which do
not disturb integrity of the rail nor require any costly changes or interruption. This can be done applying on the rail
resistive strain gauges,14,26 piezoelectric sensors24 or fibre-Bragg gratings.28,30 Strain gauges have proved to be less sensi-
tive to speed variations than other sensors;24 moreover, they apply to the evaluation of different quantities that may be
bending14,26 and shear strains.29 Differently from the majority of past research on travelling load identification, we con-
sider wayside measurements following the approach introduced in Meli and Pugi.26 Measurements are planned to be
carried out where trains run at low speed, which is an advantageous situation in which simplified models describe the
response rather well.

In this paper, the inverse problem of load identification is pursued in the time domain, using an estimator that min-
imizes the difference between the experimental time history of the response, in terms of bending strains, at the foot of
the rail and the response provided by the model. The classical Euler–Bernoulli infinite beam resting on a viscoelastic
foundation, with the load modelled as a Dirac delta travelling at a constant speed is considered suitable for this inverse
problem. It was actually shown29 that the parametric excitation provided by the discrete supports of the rail and the
dynamic effects of the travelling mass can be ignored when far from the critical speed. Moreover, a closed-form solution
exists for the related direct problem, making it possible to analytically investigate the response sensitivity to the main
mechanical parameters. Models with higher complexity13,14,26,30,31 may be, instead, more appropriate to describe the
direct problem.
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Since the train moves at constant speed, position in time and space of loads is clearly determined from the maxi-
mum values of the response at the measurement point. Although the actual objective of the procedure is the identi-
fication of the train loads, it must be considered that the model contains several parameters, whose values may be
more or less uncertain, which have an influence on the load identification. Some authors have dealt with this
uncertainty by suggesting an updating of the model parameters using the known load of the locomotor for every
train,24 and others concluded that load identification is viable only in a statistical sense, by defining uncertainty
ranges whose amplitude increases with train speed.29 Another approach to the parameters' uncertainty is by formu-
lating iterative procedures able to simultaneously identify structural parameters and dynamic inputs.32,33 Here, the
load identification problem is formulated in two steps, developing some preliminary work of the authors.34,35 The
first step consists in updating the assumed interpretative model based on the response to a known load. The second
step is the actual load identification. Both steps are performed by minimizing the difference between measured and
model response quantities, following a traditional approach in load identification26,29 and in the solution to inverse
problems in general.

Solutions to the inverse problem are often ill conditioned in the sense that small changes in the response quantities
result in large changes in the calculated load magnitudes. Hence, the procedure is developed within the framework of a
Bayesian approach,36–40 which has the great advantage of analysing the main properties of this inverse problem:
identifiability, optimal choice and minimum number of parameters and measurements, as well as problems of well
posedness and ill conditioning, not covered by past research. Simulation data, referred to as pseudo-experimental data,
are used to quantify the sensitivity of parameter estimation to errors in the known load and the sensitivity of load iden-
tification to errors in the model parameters, as well as to investigate the effect of noise on data. Experimental tests were
eventually used for validation of the procedure, using a two-axle locomotor whose weight is known from static
measurements.

2 | DIRECT PROBLEM

The rail is represented as an Euler–Bernoulli plane infinite beam with constant geometrical and mechanical properties
resting on a linear elastic soil with viscous damping and subjected to a Dirac delta load δ(z � vt) of amplitude P moving
at constant speed v. The differential equation of motion is as follows:

EI
∂w4

∂z4
þρA

∂2w
∂t2

þ c
∂w
∂t

þkw¼ Pδðz� vtÞ, ð1Þ

where E is Young's modulus, ρ the density, A the area of the cross section, I its moment of inertia, c the coefficient of
viscous damping per unit length, k the soil stiffness per unit length and w the transverse displacement (Figure 1).

The equation of motion (1), with the change of variables z1 = z � vt and setting w1 = w(z1), can be rewritten as an
ordinary differential equation in the variable z1:

FIGURE 1 Infinite beam resting on a linear viscoelastic soil (a), cross section of the 60 UIC type rail (b) and geometrical and

mechanical properties of the system
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EI
dw4

1

dz41
þρAv2

d2w1

dz21
� cv

dw1

dz1
þkw¼Pδðz1Þ: ð2Þ

The complete solution will be of the kind:

w1ðz1Þ¼W 1e
κ1z1 þW 2e

κ2z1 þW 3e
κ3z1 þW 4e

κ4z1 ð3Þ

where κi, i¼ 1, ::,4, are the wavenumbers derived from the characteristic equation, with κ1 ¼ κ ∗
2 , κ3 ¼ κ ∗

4 where (∗)
stands for complex conjugate. These wavenumbers can represent harmonic travelling waves (κ imaginary), damped
waves (κ complex) and evanescent waves (κ real), depending on the train speed and on the geometrical and mechanical

parameters of the system. In particular, for c¼ 0, κi ¼�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρAv2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðρAv2Þ2�4EIk

q� �
=EI

s
, and we have damped waves

with complex κ for v< vcr ¼ð4kEI=ðρAÞ2Þ1=4, with vcr critical velocity, and propagating waves with imaginary κ for
v> vcr. The critical velocity is the load speed beyond which undamped waves can freely propagate in time and space.

For c≠ 0 and c< ccr ¼ 2ðkρÞ1=2 with ccr critical damping, waves are damped irrespective of the train speed. For c> ccr, if
v< vcr waves are damped, while for v> vcr, one couple of waves is damped and one couple is evanescent.

The constants W1, W2, W3 and W4 have to be determined by enforcing the boundary conditions. First of all, the
response has to go to zero at infinity:

z1 !�∞w1 ¼ 0 ð4Þ

z1 !�∞
∂w1

∂z1
¼ 0; ð5Þ

hence, the solution can be separated into its right wr and left wl parts, that is,

wrðz1Þ¼W 1e
κ1z1 þW 2e

κ2z1 z1 > 0 ð6Þ

wlðz1Þ¼W 3e
κ3z1 þW 4e

κ4z1 z1 ≤ 0, ð7Þ

with Re(κ1) < 0, Re(κ2) < 0 and Re(κ3) > 0, Re(κ4) > 0. The other boundary conditions to be satisfied are continuity and
equilibrium at the point where the load is applied:

dwl

dz1
z1¼0 ¼ 0; �EI

d3wl

dz31

����
����z1¼0 ¼Pδðz1Þ

2
ð8Þ

dwr

dz1
z1¼0 ¼ 0; wlð0Þ¼wrð0Þj ð9Þ

which finally give

wðz, tÞ¼
P

EIðκ1� κ2Þ
�eðz�vtÞκ1

ðκ1� κ3Þðκ1� κ4Þþ
eðz�vtÞκ2

ðκ2� κ3Þðκ2� κ4Þ
� �

z>0

P
EIðκ3� κ4Þ

eðz�vtÞκ3

ðκ1� κ3Þðκ2� κ3Þ�
eðz�vtÞκ4

ðκ1� κ4Þðκ2� κ4Þ
� �

z≤ 0

8>>><
>>>:

ð10Þ

and, in terms of curvatures:
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χðz, tÞ¼
P

EIðκ1� κ2Þ
�κ21e

ðz�vtÞκ1

ðκ1� κ3Þðκ1� κ4Þþ
κ22e

ðz�vtÞκ2

ðκ2� κ3Þðκ2� κ4Þ
� �

z>0

P
EIðκ3� κ4Þ

κ23e
ðz�vtÞκ3

ðκ1� κ3Þðκ2� κ3Þ�
κ24e

ðz�vtÞκ4

ðκ1� κ4Þðκ2� κ4Þ
� �

z≤ 0:

8>>><
>>>:

ð11Þ

In the following examples, we will assume that the beam has the mechanical and geometric characteristics of a
60 UIC type rail (see Figure 1, which shows also its cross section), with hG vertical distance between the centre of mass
and the foot of the rail. According to the research work in Lei,4 when calculating the distributed mass of the beam, the
mass of the sleepers and part of the mass of the ballast should be added to the mass of the rail, leading to a collaborating
mass of 2700 kg/m. In our case, this results in a critical velocity vcr ¼ 277 km/h, which can only be reached by high-
speed trains.

The time history of the response in terms of microstrains at the foot of the rail μϵ at z¼ 0 for P¼ 1 N is represented
in Figure 2, for different speeds and damping. These strains correspond to the response quantity measured in the exper-
imental tests and are tied to the curvature of Equation (11) by the linear relation ϵ¼ hGχ (Figure 1b), valid for small dis-
placements. Figure 2a shows that for speeds of 28 km/h approximately corresponding to 0.1vcr, the dependence of the
maximum amplitude on damping is very limited. When the speed increases, the response is no longer symmetric
(Figure 2b), and the maximum amplitude depends increasingly on the train speed (Figure 2a–c). For a speed equal to
the critical velocity, a resonance occurs: the maximum response increases and, as expected, depends greatly on damping
(Figure 2c). As the speed increases, higher frequencies are involved, as it emerges from the Fourier transform reported

FIGURE 2 Time histories of strains for different values of damping and speed: 28 km/h=0.1vcr (a), 140 km/h = 0.5vcr (b), 280 km/

h = vcr (c) and absolute value of the Fourier transform of three time histories of strains for increasing speed (d)

FIGURE 3 Analytical (a) and experimental (b) strain time histories of an ETR324
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in Figure 2d for three strain time histories with increasing speed and no damping (except the case of v= vcr when c¼
0:1ccr was assumed to avoid unbounded response). It is apparent that the maximum frequency involved, defined as the
frequency whose Fourier transform amplitude is 20% of the maximum value, increases from 10 (v¼ 0:1vcr) to
40 (v¼ 0:5vcr) and finally to 50Hz (v= vcr). This has consequences for the minimum sampling frequency required for
experimental recordings.

Figure 3a shows the analytical time history of the strains caused by a series of 10 Dirac delta loads with P = 78,400
N, which is approximately the load acting on one wheel of an unladen ETR324, obtained using Equation (1) with a trav-
elling speed of 22 km/h. Figure 3b reports, for comparison, the same quantity, experimentally measured, for an
ETR324, travelling at around the same speed. The pattern of the time history obtained from the model satisfactorily
agrees with the time history observed experimentally, which guarantees that the model is potentially fit to represent
experimental observations.

3 | INVERSE PROBLEM

The goal of the solution of the inverse problem consists in the identification of the amplitudes of the Dirac deltas
representing train loads. Actually, trains are composed of a number of carriages, and P is an l-element vector,
whose components Pi represent the load carried by each wheel. This situation can be modelled by linear superposi-
tion of strains caused by unit loads ϵ1 with a delay τi = di/v, where di is the spacing between the first and the ith
axles:

ϵðtÞ¼
Xl

i

Piϵ1ðt� τiÞ: ð12Þ

In the sensitivity analysis developed using pseudo-experimental data, one single load P will be considered. The
train speed v is directly measurable and will not be one of the unknowns of the problem. The model contains
several parameters, whose values may be more or less uncertain, that have an influence on the result of the load
identification, which is the actual goal of the procedure. These parameters are the object of a preliminary model
updating, made on the basis of the response to a known load. The mechanical and geometrical parameters that
govern the model response are ρA, EI, k and c. Damping is a parameter on whose value there is little agreement in
scientific literature.24 Since the measurements can be performed for trains running at low speed, in view of the
results obtained with the direct problem, it was assumed c¼ 0. The vector of unknown model parameters will then be
{ρA,EI, k}T.

Let us call ϵðxÞ the vector of observed quantities as a function of x, which is an n-element vector that can be either
the vector of model parameters in a problem of parameter estimation or the load vector for load identification. Let z be
the m-element vector of measured quantities, that is, the experimental response sampled in time. One measurement at
a single location will provide sufficient information to solve the inverse problem, although the procedure could be easily
applied to more than one measurement point by adding the data to the vector z. A higher amount of measurement loca-
tions can be beneficial in the presence of experimental errors but are not strictly necessary. The vector of observed
quantities is an m-element vector ϵðxÞ¼ fϵ1ðxÞ,…ϵmðxÞgT , whose ith element represents the strain sample provided by
the model at a given abscissa and at the ith time instant. The vector ϵðxÞ is related to the vector of measured quantities
z by the following equation:

z¼ ϵðxÞþn ð13Þ

where n is assumed to be a zero-mean white-noise vector, independent of x. Unknowns x can be considered random
variables that benefit from the a priori information of a Bayesian approach. According to this approach, the best esti-
mate x̂ is the vector that maximizes the occurrence of x, given the measured quantities z. The function p(xjz) is the a
posteriori probability density of the parameters x obtained given the measurements z.36,39 Assuming a normal distribu-
tion for x and n, and Sx (n�n) and Sn (m�m) being the positive definite covariance matrices of the unknowns and of
the noise, respectively, the maximum of the probability p(xjz) is attained for a value x̂, which minimizes the objective
function:
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lðxÞ¼ ½z�ϵðxÞ�TS�1
n ½z�ϵðxÞ�þðx�x0ÞTS�1

x ðx�x0Þ: ð14Þ

The first term of l(x) takes into account the difference between measured and model-predicted quantities, while the
second considers the distance between x and the initial estimate x0, both weighted by the inverse of the covariance
matrices of noise and parameters, respectively. In general, the response quantities depend nonlinearly on the model
parameters, while their dependence on the load P is linear, as it is obvious from Equation (11).

Local identification is assured when the conditions that (i) the first derivative of l(x) with respect to unknowns is
null and (ii) its Hessian matrix ℋ is positive definite are satisfied in a connected subspace of the unknowns space.
Within this context, linearizing the objective function in the neighbourhood of x0, its minimum is for

x̂¼ x0þðHTS�1
n HþS�1

x Þ�1
HTS�1

n ðz�ϵðx0ÞÞ, ð15Þ

where H is an (m � n) sensitivity matrix with components Hij ¼ ∂ϵi=∂xj and S¼ðHTS�1
n HþS�1

x Þ�1
is the a posteriori

covariance matrix. Within this linearized framework, the Hessian matrix writes ℋ¼HTS�1
n HþS�1

x whose first term
A¼HTS�1

n H is called Fisher or information matrix. When the relationship between unknowns and measured quanti-
ties is nonlinear, as in the case of parameter estimation, Equation (15) is applied iteratively, providing a better estimate
at each iteration. When the relationship is linear, as in the case of load identification, Equation (15) directly provides
the best estimate; in fact, the matrix A�1 corresponds to the weighted pseudo-inverse.

The characteristics of the inverse problem will be investigated using the response of the system in Figure 1 in terms
of strains at the foot of the rail, for a single unit load P, travelling at a speed v¼ 0:1vcr km/h. The same system will be
used to generate the pseudo-experimental data used in Section 3.1. Figure 4a reports the time history of the percentage
change of the strain for a 10% variation of each of the three parameters ρA, EI and k. The percentage is calculated in
relation to the maximum value of the strain that occurs at the time t¼ 0 s. These time histories are proportional to the
columns of the m� 3 sensitivity matrix. Figure 4a shows that, among the mechanical parameters, EI and k are the most
important, while ρA has little influence, as can be expected by the quasi-static character of the response for low train
speed.

Identifiability is the actual possibility to determine a single set of optimal parameters x̂ so that the objective function
is at a minimum. Here, convexity of the objective function is guaranteed locally by the positive definiteness of ℋ, due
to its structure and the positive definiteness of covariance matrices. Some information about identifiability is provided
byH, whose rank indicates the maximum number of identifiable parameters: in the present case, the rank ofH is 3, tak-
ing at least the minimum number of samples nonsymmetric with respect to the response peak (m¼ 3). On the contrary,
if symmetric samples are taken, three samples are not sufficient, and at least five of them are necessary for H to have
rank 3, meaning that symmetric data do not add independent information. For load identification, in the absence of
noise, a single sample per unknown load is theoretically sufficient.

More precise information on the choice of parameters and measurements is provided by the Fisher matrix, which
must be invertible for the solution to (15) to be calculated. It should be noted that the rank of the Fisher matrix equals
the rank of H. The list of the eigenvalues of A can put the parameters, or more frequently, their linear combination, in
order of importance. This is displayed by the shape of the eigenvectors, which enables the possible coupling between

FIGURE 4 Time histories of the per cent change of base strain for a 10% variation of mechanical parameters (a) and the eigenvectors of

the Fisher matrix with the maximum value set to 1 (b)
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parameters to be recognized. The eigenvectors of the rank-three 3 � 3 Fisher matrix, whose rows and columns corre-
spond to the parameters ρA, EI and k are reported in Figure 4b. They enable one to conclude that the parameters EI
and k are coupled, while ρA is an independent parameter with little influence on the response. In fact, the related
eigenvector has only the first component different from zero and is associated with the smallest eigenvalue, which is
nearly 13 orders of magnitude smaller than the first two. In such situation, it seems to be appropriate to discard the
parameter ρA and estimate the optimal EI and k only, using the response to a known load, with a 2 � 2 A matrix.

The flowchart in Figure 5 summarizes the procedure described in this section, which entails a preliminary model
updating using the response to a known load, followed by the actual load identification, depicted in Figure 5 for the
general case of more than one load.

3.1 | Pseudo-experimental data

The procedure proposed is first applied to pseudo-experimental data to investigate the main features of the inverse
problem and then, in the following subsection, is applied to experimental data.

Here, using a pseudo-experimental time history of strains generated by a unit known load, in the absence of noise,
we proceed to identify two parameters, EI and k. Given that the analysis is performed in the absence of noise, it is
assumed that Sn is an identity matrix and S�1

x is null, so that no restriction is posed on parameter variation. Three dif-
ferent couples of samples, as shown in Figure 6a, are taken as pseudo-experimental data. In particular, two non-
symmetric samples close to the points of maximum sensitivity (b, red points), two nonsymmetric samples distant from
the maximum sensitivity (c, black) and two symmetric samples (d, green) are considered. Figure 6b–d reports the objec-
tive functions of Cases B, C and D, respectively. In all the contour plots, the objective function is made non-dimensional
by dividing its value by the maximum square value of the response and by the number of samples m. The labels on the
contour lines indicate the related value. On comparing Figure 6b and Figure 6c, it can be seen that in both cases,
the objective function is smooth and has a unique minimum, but when samples are taken close to the points of maxi-
mum sensitivity (B), the objective function is more convex. In Case C, much of the curvature in direction EI is lost. In
both Cases B and C, even starting from initial parameters with a 20% error, convergence to the exact values occurs
within three and four iterative applications of Equation (15), respectively. Using the identified parameters, and proceed-
ing to the identification of the load, its exact value is evaluated with one single application of Equation (15). On choos-
ing symmetric points (Case D), the objective function has multiple minima placed along the black line of Figure 6d. In
this case, the 2� 2 Fisher matrix has rank 1; therefore, EI and k are not uniquely identifiable, since the two symmetric
samples are not independent data. It can be concluded that at least two samples nonsymmetric with respect to the max-
imum are necessary and sufficient to identify EI and k.

Inverse problems are often difficult because they are ill conditioned. Therefore, it is of interest to investigate the sen-
sitivity of parameter estimation to errors in the known load, as well as the sensitivity of load identification to errors in
the model parameters. In the first step of parameter estimation, the response to a known load has to be available.
In practice, the load is due to a vehicle in motion, which can be statically weighted but, when it travels along the track,
can give rise to an uneven distribution of the weight on the wheels, due to vehicle imbalance and irregularities of the

FIGURE 5 Flowchart of the load identification procedure
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track supports. The weight in motion can therefore differ from its static counterpart, resulting in an error on the esti-
mated EI and k that varies as shown in Figure 7 (upper and right frame labels for errors in percentage). The coordinates
of each blue point are the estimated values of EI and k when the known load embodies an error as defined in per cent
by the red labels. It should be noticed that an underestimation of the load results in an overestimation of the stiffness
parameters, and vice versa. Moreover, the error on the estimates of EI and k is locally almost linear: an underestimation

FIGURE 6 Strain samples of pseudo-experimental data in the absence of noise and (a) contour plots of the related objective function for

the (b) red samples, (c) black samples and (d) green samples

FIGURE 7 Per cent errors on the identified load due to errors in the parameters (contours, black labels) and per cent errors in

parameter estimate due to errors in the known load (blue points, red labels)
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of the load of �7% (upper right blue point, red label) gives an overestimation of EI and k of around the same amount.
In turn, an error in the estimate of the system parameters affects load identification. The related sensitivity is presented
again in Figure 7 by means of a contour plot of the error on the identified load (black labels) as a function of the model
parameters EI and k. This figure shows that there are couples of values EI and k belonging locally to straight lines to
which the same error on the identified load corresponds. The thick black line corresponds to a nearly null error on
the load.

Another important point is the effect of noise, which was investigated by adding to the pseudo-experimental time-
history a zero-mean Gaussian white noise vector n (Equation 13), which makes it possible to evaluate the goodness of
the estimator and perform a posteriori estimates of the variance of the identified quantities and of the error on their
mean value. The noise had large standard deviation, equal to 20% of the root-mean-square value of the strain in the
time range �2s, 2s. The covariance matrix of the noise Sn was taken as an identity matrix: in this way, all the samples
are equally weighted, with the result that those with a greater value will have a greater importance. Also in this case,
the inverse of the covariance matrix of parameters S�1

x was assumed null, which means that the domain of parameter
search is not restricted. Three time history realizations of strains used as input data are reported in Figure 8a,c,e, with
decreasing time steps dt¼ 0:05,0:01,0:001 s, corresponding to, respectively, 41, 201 and 2001 strain samples and to sam-
pling frequencies of 20, 100 and 1000Hz. The minimum sampling frequency used is 20Hz, which can describe strain

FIGURE 8 Time histories of strains with increasing number of samples and related objective functions and identified parameters with

per cent error (a, b) m¼ 41, (c, d) m¼ 201 and (d, e) m¼ 2001
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time histories with a maximum frequency content of 10Hz, in compliance with the Nyquist theorem (see Figure 2d).
When comparing responses at different speeds, the sampling frequency has to be altered accordingly. Figure 8b,d,f also
reports the corresponding contour plots of the objective functions, showing that they are smooth and have a single
minimum. The values of the identified EI and k together with their errors are also listed in Figure 8: by increasing the
number of samples, the error remarkably reduces. This is better shown in Figure 9, where the red points represent the
estimated EI and k obtained from a total of 30 different realizations with 41 (a), 201 (b) and 2001 (c) samples,
superimposed on the contour plot of the error committed on the load of Figure 7. It can be noticed that when a low
number of samples is used (Figure 9a), the identified values are too spread out. By increasing the number of samples
(Figure 9b,c), the identified parameters form a narrow cloud of points in the neighbourhood of the correct values, with
a limited error on the identified load. A quantitative measure of this result is given in Table 1, which reports, for each
of the three cases, the error on the mean value eμ and the related coefficient of variation cv (ratio between standard
deviation and expected value), both in per cent values. The error eμ is very limited and smaller than 1%. The coefficient
of variation of the estimates is very limited as well and smaller than that of the noise in data. In the cases with 2001
and 201 samples, the error on the load will be respectively in the range ±1% and ±3%, which is quite satisfactory. In
general, high-frequency experimental recordings are available; therefore, such precision on the identified parameters is
theoretically in reach. However, other sources of error may be present and can affect the estimates. In the experimental

FIGURE 9 Identified values (points) of EI and k obtained from cases with m¼ 41 (a), 201 (b) and 2001 (c) samples and related error

expected on the identified load (contours)

TABLE 1 Error on the mean value eμ and coefficient of variation cv in per cent values obtained for cases with m = 41 (a), 201 (b) and

2001 (c) samples

(a) (b) (c)

eμ cv eμ cv eμ cv

EI 0.20 4.2 0.15 2.3 0.13 0.8

k 0.56 8.1 0.24 3.8 0.15 1.2
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tests, a sampling frequency fs of 100Hz is adopted for a speed of around 25 km/h and then adjusted maintaining
approximately the same ratio fs/v.

3.2 | Experimental data

In this subsection, identification is performed using wayside experimental strains recorded by a resistive strain gauge at
the foot of a rail placed on an embankment, passed over by a locomotor moving at low speeds. The sensors TML FLAB-
6-11 foil strain gauges, with a resistance of 120 Ω and maximum strain 5%, were installed. The gauge has a frequency
response limit of around 250 kHz. A total of five transits of the locomotor are available, with increasing constant speeds
(Table 2) and maximum speed around 1/10 of the critical velocity. A picture and a sketch of the locomotor, whose total
weight is known from static measurements and assumed to be equally distributed on the wheels, are reported in
Figure 10a,b, respectively. A sampling frequency of 1000 Hz was used in the experimental recordings, which is quite
high based on the results of the previous subsection. The experimental signals were therefore downsampled adjusting
the sampling frequency to the different speeds, as reported in Table 2. The rail strain is affected by temperature, but this
effect can be omitted because the variations of strains due to the train transit take place in a short space of time. In
this experimental application, the inverse of covariance matrices of parameters S�1

x was assumed null. This is because
the parameters are difficult to be reliably estimated a priori.14,29,33 As concerns the parameter EI, although Young's
modulus of the material and the cross section of the rail are known, the possibility that the sleepers and ballast also pro-
vide an additional contribution to the bending stiffness was thus taken into account. The covariance of the noise Sn
was taken as an identity matrix, to equally weigh all the absolute differences between measured data and model
response.

The time histories of the slowest and the fastest transits (1 and 5) were used to identify the flexural stiffness EI and
the soil stiffness k, in order to embed possible effects tied to the speed change. The identified values of these parameters
are reported in Figure 11 together with the objective functions and the related experimental and optimized-model time
histories. In the updated model, the mean values EI¼ 6:98 �106 and k¼ 4:45 �107 N/m2 were used. The estimated EI is
quite close to the value 6.38 � 106N/m2 obtained from the geometry of the rail and the reference value of E reported in
Figure 1. It can be observed that the objective functions obtained with experimental data maintain a remarkable resem-
blance to those of the pseudo-experimental case (Figure 7), exhibiting smoothness and a single minimum, although the
experimental objective function is less convex and, of course, never reaches a null value.

TABLE 2 Identified loads and errors on the single loads and on the total load

transit v (km/h) fs (Hz) P1 (kN) % err1 P2 (kN) % err2 % errT

1 5.22 20 39.11 1.4 39.11 1.4 1.4

2 7.85 50 36.77 �4.6 38.30 �0.7 �2.7

3 12.46 50 39.84 3.3 40.54 5.1 4.2

4 19.51 100 36.90 �4.3 40.26 4.4 0.1

5 24.01 100 35.98 �6.7 40.27 4.5 �1.1

FIGURE 10 Picture (a) and sketch (b) of the locomotor

12 of 16 PAU AND VESTRONI



In the end, the updated model was used to identify the travelling locomotor loads that are considered, at this point,
as unknowns. It should be noted that in this experimental case, the unknown load is a two-component vector P¼
fP1,P2g (Figure 10c). The identified loads and the related errors are reported in Table 2, together with the error on the
total load errT. Table 2 shows that the identified load values are in close agreement with the expected ones, with errors
not greater than 5% on the total weight of the locomotor and mean absolute error smaller than 2%. The error obtained
is comparable with that obtained by other authors using more complex models19,26,29 and could be further reduced with
an experimental setup measuring strains on the two rails and using their mean.26 As obtained in Mosleh et al,29 the
error on the total load P is smaller than the error on its components P1 and P2 because the effects of imbalance are com-
pensated. Figure 12 shows a comparison between the experimental time histories of strains of a transit and those
obtained from the updated model with the identified loads, demonstrating a close agreement between experimental
data and response of the updated model, with a mean difference of the 4% of the maximum experimental response.

FIGURE 11 Experimental and updated-model time histories at different speeds (a, c) and the related objective functions (b, d)

FIGURE 12 Experimental and updated model with identified load time histories of the fourth transit
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4 | CONCLUSIONS

This paper has presented an approach to the identification of travelling loads of trains based on the minimization of the
difference between the experimental time history of strains at the base of the rail and its analytical counterpart. The
model describing the response was a one-dimensional plane infinite Euler–Bernoulli beam resting on a viscoelastic soil.
The loads were modelled as Dirac deltas travelling at constant speed. Damping was proved to not be significant for an
appropriate description of the response in the range of speeds far from the critical value, which is appropriate to deal
with this problem. Within a Bayesian approach, a sensitivity analysis, based also on the investigation of eigenvalues
and eigenvectors of the Fisher matrix, produces the result that, among the model parameters, the soil and the beam
stiffness are two coupled independent parameters, with the most relevant influence on the response, while the mass
density turned out to be an independent parameter with negligible effect for low train speed.

The identification of the travelling loads was performed in two steps: first, estimating the optimal model parameters
EI and k using the response to a known load and then using the updated model to actually identify the train loads. The
characteristics of the inverse problem were investigated using pseudo-experimental data in the absence and presence of
noise. As regards the minimum number of response samples, it was shown that, in the absence of errors, two strain
samples that are nonsymmetric with respect to the time instants of maximum response are necessary and sufficient to
the model updating, better if close to the points of maximum sensitivity, which guarantees greater convexity of the
objective function. The sensitivity of the results of parameter estimation to errors in the known load and the sensitivity
of load identification to errors in the model parameters were investigated. It was shown that errors on the model
parameters in the range ±10% cause an error on the identified load of similar magnitude. Furthermore, an analysis per-
formed on noisy data showed that, in the presence of errors, a much higher amount of data are necessary than those
necessary and sufficient if limited error on the identified load is sought. In particular, the sampling frequency fs has to
be adapted to the train velocity, and a ratio fs/v > 4 Hz/(km/h) should be used.

Experimental field tests were also performed, in which the strains at the foot of the rail caused by five transits of a
known-weight locomotor at low speed were recorded. With reference to the slowest and fastest transits, the model was
updated by identifying the optimal values of rail and soil stiffness and, afterwards, used as an interpretative model to
identify the weight of the locomotor in all the transits. The loads, assumed as unknowns, were identified with satisfac-
tory accuracy, with a mean absolute error on the total load smaller than 2%, proving the appropriateness of the simple
model employed in this inverse problem for speeds not exceeding 10% of the critical speed. The experimental time his-
tories and those of the updated model with identified loads were shown to be in close agreement.
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