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Abstract: We theoretically analyze the robustness to potential distortion of mode-locking in a
harmonic cavity nanolaser sustaining oscillation of Hermite-Gaussian modes. Different types of
imperfections of the harmonic potential that create the Hermite-Gaussian modes are considered:
the non-parabolicity of the potential and the possible random errors in the shape of the potential.
The influence of the different laser parameters, including the Henry factors of the gain medium
and the saturable absorber, on the robustness of the mode-locked regime is discussed in detail.
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1. Introduction

Periodic optical pulses generated by mode-locked lasers are of particular importance for a wide
range of applications, including high speed optical communications [1], biomedical imaging [2],
remote sensing [3], timing synchronization [4], optical signal processing [5], materials processing
[6], spectroscopy [7,8], etc. Among all possible sources, semiconductor mode-locked lasers are
very attractive devices because they generate stable periodic pulses at very high repetition rates
while being potentially very compact, cheap, efficient, and robust [9,10]. Nanolasers in particular
have attracted intense interest because they are expected to be more compact, integrable, and
energy efficient than conventional lasers [11].

Recently, a new type of photonic crystal cavity, sustaining oscillation of Hermite-Gaussian
(HG) modes in a parabolic potential, has been proposed and demonstrated [12-14]. These cavities
are attractive not only because of their compactness, but also because they exhibit a comb of
equally spaced modes. Based on this remarkable property, we proposed a new type of passively
mode-locked laser, obtainable by incorporating saturable gain and absorber sections in such a
cavity. In such a laser, the pulse repetition rate depends on the curvature of the potential instead
of the cavity length [15]. In addition, different dynamical laser behaviors, including self-starting
regimes, were investigated, such as Q-switching, Q-switched mode locking, continuous-wave
mode locking, etc. [16].

However, potential practical implementation of such a mode-locked laser needs to take into
account different types of defects that may affect the resonator. This is particularly true due
to the fact that realization of such lasers relies on nano-fabrication techniques. For example,
there might be some disorder in the size and position of the lattice holes [17-23], or simply
some surface roughness or variation of the thickness of some layers [17,18,24-27]. Such general
fabrication-related defects [19] may influence properties such as the band structure [18,27-33],
the attenuation [21,28,31,33-37], or the coupling strength between cavities [38]. Usually such a
disorder is undesirable except to obtain random laser operation [39-41], to observe Anderson
localization [18,31,42-44], or to induce new functionalities [45,46]. Some new methods to probe
disorder induced distortion in photonic devices have been developed [47,48]. Also, it has recently
been shown that the intensity variations due to the disordered medium can be entirely suppressed
by adding disorder-specific gain and loss components to the medium [49,50].
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In the lasers that we consider, we can take most of these effects into account by introducing
some distortion in the harmonic potential. Such a modification of the potential should be expected
to lead to a modification of the Hermite-Gaussian modes and to a distortion of the cavity mode
spectrum with respect to a perfect frequency comb. The question then arises to know whether
the mode locking regime of operation will be robust with respect to such alterations of the cavity
mode spectrum, which are unavoidable whatever the fabrication process. Thanks to the nonlinear
nature of mode locking, in general, semiconductor mode-locked lasers are very robust. Even the
locking of multi-mode fiber lasers is robust to disorder [51-54]. But this question needs to be
addressed in the peculiar case of harmonic cavity nanolasers.

The aim of this paper is thus to investigate the robustness of mode locking of the Hermite-
Gaussian modes in an harmonic cavity nanolaser from a theoretical and simulation standpoint.
We focus on two different kinds of distortion of the harmonic potential. The first one is the
non-parabolicity of the potential, which could for example be simply due to errors in the
positioning of the elements of the structure. A fourth-order term is introduced in the potential
to quantify this deformation. This distortion can strongly alter the Hermite-Gaussian modes
and shift the initially equally spaced frequencies. The second type of potential distortion we
consider consists in random errors in the shape of the potential, somewhat simulating disorder
due to different kinds of structural imperfections. To this aim, a Gaussian random function with
zero mean value is added to the potential. In both cases, we compare the mode spectrum of the
“cold” cavity with the laser spectrum, in order to isolate the capability of the laser nonlinearities
to restore mode-locked operation. We also take into account the existence of a non-zero Henry
factor for the gain medium and the absorber.

The paper is organized as follows: Section 2 introduces the model and the two kinds of
potential distortion. Section 3.1 focuses on the investigation of the effect of the non-parabolicity
of the potential. Section 3.2 describes the laser behavior in the presence of disorder created using
random errors in the shape of the potential. The evolution of the laser behavior is then statistically
investigated, including the influence of the Henry factor. Section 4 gives the conclusions of the
paper.

2. Harmonic cavity laser with imperfect potential

The starting point is the master equation initially developed in Refs. [15,16] to describe the
evolution of light in a nanolaser based on a harmonic potential for light and containing a gain
medium and a saturable absorber. The time evolution of the slowly varying amplitude A(x, ) of
the field inside the unidimensional cavity can be described by:

2 2
i(;—? + %wkk%: - %a%sz —iH(JAP)A =0, 1)
where wy is the second-order derivative of the dispersion at the bandgap edge of the photonic
crystal and Q is the free spectral range (FSR) of the harmonic resonator. This cavity effect is
described by the two terms in square brackets, which are a combination of the dispersion property
of the photonic bandgap structure and the parabolic potential created by slowly spatially varying
one of the structure parameters.

The three first terms in Eq. (1) lead to the existence of Hermite-Gaussian eigenmodes. The red
full line in Fig. 1(a) shows the parabolic potential created by the term proportional to x2. It also
shows the spectrum of equally separated eigenfrequencies (the free spectral range Q /27 is chosen
equal to 100 GHz), together with the shapes of their associated Hermite-Gaussian (HG) modes.

The dissipative term H; describes the effects of the gain medium, the losses, and the saturable
absorption:

1 1 !
Hy = Eg(x’ (1 —iay) - Ea(x’ N1 —ia,) - 270 )
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Fig. 1. (a) Hermite-Gaussian modes in a parabolic potential, with three different values of the
non-parabolicity coeflicient c¢4. Semi-transparent pink area: active media. (b-d) Evolution
of the mode characteristics of the “cold” cavity versus c4. (b) Frequency deviations f;, — f,, 0;
(c) frequency separations f,; — f,,—1 between successive modes; (d) frequency differences

Afn = 2fn = fusr1 = Jn-1-

where g holds for the intrinsic losses, g and a are the gain and absorption coefficients per unit
time, and a; and @, are the associated Henry factors for gain and absorption, respectively.
The saturation of the gain and of the absorption is described by the following set of spatially
local equations:
dg(1) __glnn) - go()  IAG P
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where go(x) and ag(x) are the unsaturated gain and absorption coefficients. In the present paper,
for the sake of simplicity, we suppose that go(x) and a(x) are homogeneously distributed in
the same region of the cavity centered around its center (pink shaded area in Fig. 1(a)). The
durations 7, and 7, represent the lifetimes of the gain and the absorption and I,¢ and Jga, are
the corresponding saturation intensities . The field A(x, r) inside the cavity can be expanded on
the basis of the Hermite-Gaussian modes ¥, (x) shown in Fig. 1(a):

A1) = ) Cal)e ™", () &)
n=0

with the eigenfrencies
1
wn=(n+§)§2. (6)

For a given field distribution A(x, ¢), the slowly varying modal coefficient C,(¢) can be calculated
by projecting the field amplitude on W¥,,:

C,(1) = et / " A(x, )W, (x)dx. (7)

00

2.1.  Non-parabolicity of the potential

If the potential is not a perfect parabola, the HG modes in the cavity get distorted. The frequency
difference between successive modes is then no longer uniform, and the cavity spectrum does
no longer form a perfect frequency comb. For example, the mode frequencies should decrease
(increase) if the potential is wider (narrower) than a perfect parabola.

To investigate the influence of such an anharmonicity on the mode locking, we introduce extra
terms to the term proportional to x* in Eq. (1). Since an asymmetry of the cavity would play
only a minor role, as shown in Supplement 1, we ignore here third-order terms. We thus add a
fourth-order term to the parabolic potential in order to quantify the distortion. Since the size of
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the cavity is determined from the scaling factor xg = \/wit /€, the master equation (Eq. (1)) in
the presence of distortion can be written in the following normalized form:

oA | 1,24 1(x) e (x)

Qar |22 T2\ Ta \ kg ©
Yo g(1 —ia,) _ a(l —iay) —I]A
2Q Y0 Y0 ’

where c4 is a dimensionless coefficient characterizing the amplitude of the distortion.

2.2. Potential disorder

We can follow a similar method to introduce the effect of random errors in the shape of the
potential. To this aim, a term D, R(x) is added to the potential, where R(x) is a standard centered
Gaussian random variable with variance 1. The amplitude of the disorder is adjusted by varying
Diax. The master equation can then be written as

LOA 1,4 |1(x)
R T o b (_) + PR 4 o
+ Yo [g(l - iay) _ a(l —ie,) _ I]A )
2Q Y0 Y0

3. Results and discussion

In this section we numerically simulate Eqs. (8) and (9) to predict the laser behavior in the
presence of potential distortion. To this aim, like in Ref. [16], we use the split-step Fourier
method. The spatial discretization period is equal to 0.13 xq. The time discretization period
is equal to 10 fs for all simulations. We have checked that it is small enough to ensure a good
accuracy for all the cases studied in this paper. As the gain width is fixed at w = 5xq, the
intensities of only the first six modes are significantly different from zero. Therefore, in the
following, only modes labeled n = 0 - - - 5 are taken into account.

In this section, we check whether the laser modes are locked using three different ways. The
first one is to monitor the relative phase differences A¢,, = 2¢,, — ¢p+1 — dn—1, Which are obtained
from the arguments of the C,,()’s in Eq. (7). The second one consists in calculating the frequency
separations between the modes in the presence of distortion, in order to check whether the laser
operation restores equally spaced frequencies. The last one consists of course in looking at the
regularity of the generated pulse train.

3.1.  Non-parabolicity of the potential

Three examples of distorted potentials with different values of ¢4 are shown in Fig. 1(a). A
positive value of ¢4 leads to a narrower potential, and vice versa. The gain and absorber are
supposed to spatially overlap in the middle of the cavity (transparent pink region of Fig. 1(a)).
Before studying the laser behavior in the presence of anharmonicity, we first calculate the
eigenfrequencies of the “cold” cavity in the presence of distortion. To this aim, a random noise
field is injected inside the cavity as initial value for the field. Then we compute the evolution of
this field according to Eq. (9) with yp = 0, ag = 0, and go = 0, i. e. in the absence of any losses
or gain. In these conditions, the “cold” cavity works as a spectral filter. The calculation is run
during 30 ns. Then the spectrum F(27f) of the intracavity field is calculated using the following
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expression:

+00 2
FQ2nf) = / dx. (10)

[oe]

+00
/ Alx, e ar

00

This equation is applied to the evolution of the field A(x,?) during the last 24 ns of the
simulation. The eigenfrequencies f;, of the cold cavity are then obtained by finding the peaks in
the spectrum F(27f).

Figure 1(b) shows the result of such simulations for varying values of c4. Each line corresponds
to the evolution of f;, — f, 0, for n = 0,...,5, where f,0 = w,/27n = (n + 1/2)Q/2x is the
eigenfrequency for ¢4 = 0. One can see that these frequency shifts f;, — f;, o linearly increase as
¢4 increases, and that the slope increases with the mode order n. By looking at the frequency
difference f;, — f,,—1 between successive modes, as shown in Fig. 1(c), one notices that the potential
distortion c4 # 0 destroys the periodicity of the frequency comb. The mode separation is larger
than the initial value of 100 GHz for c4>0, and conversely. Moreover, for a given value of ¢4,
one can see that the frequency separation between successive modes increases linearly with n.
This can be seen from Fig. 1(d), showing that Af,, = 2f,, — fur1 — fae1 = (fo = fr=1) = (fae1 = fu) 18
independent of 7.

The question then arises to know whether the nonlinearity of the active medium and of the
saturable absorber is still sufficient to obtain mode locked operation, i. e. to restore the periodicity
of the comb of modes, even for c4 # 0. We suppose here for example that the gain and absorber
regions have a width w = Sxq and spatially overlap in the cavity center, as represented by
the transparent pink region in Fig. 1(a). The values of the parameters are chosen as follows:
intrinsic losses lead to a dissipation rate yo = 10! s7!, the relative unsaturated gain coefficient is
re = go/vo = 70, and the relative unsaturated absorption coefficient is r, = ag/yo = 10. The
value of the gain lifetime is 7, = 1 ns, and the absorber lifetime is 7, = 10 ps. The ratio between
the saturation energies of the gain and absorber media is Rg = Eatg/Esata = 25. In the following,
three examples are investigated in details.

These three examples of the time evolution of the laser, corresponding to ¢4 = —0.01, ¢4 = 0.01,
and ¢4 = 0.02, are plotted in Fig. 2. Let us first look at Fig. 2(a), which has been obtained for
¢4 = —0.01. The upper plots show the time evolution of the mode intensities |C,,|> and of the
relative phase differences A¢,, = 2¢,, — ¢,+1 — dn—1 between the modes. We can see that all the
mode intensities are modulated. Furthermore, the phase difference A¢; varies in a monotonous
manner versus time, corresponding to a beat frequency of the order of 300 MHz, while all other
phase differences A¢,, for n = 2,3, 4 are locked. This means that all the modes are phase locked
except mode n = 0. This unlocked mode is responsible for the modulation of the intensity
|A,(x = 0,1)]? of the field propagating in the +x direction at cavity center x = 0, which is shown
in the two plots of Fig. 2(b). This indicates that mode 0 is more easily influenced by the distortion
of the potential when c4<0 and then loses the locking.

On the contrary, with ¢4 = 0.01 and all other parameters left unchanged, Figs. 2(c) and (d)
shows that all the modes are locked. All modulations have disappeared in the mode intensities
and relative phases, and the peak intensity of |A,(x = 0, )| remains stable with time, equal to
80 Isat,g, as can be seen in Fig. 2(d).

However, if ¢4 is further increased up to ¢4 = 0.02, Figs. 2(e) and (f) show that some modes
get unlocked, leading again to a modulation of the peak values of |A,(x = 0,7)|%.

From the above results, it is clear that there exists a locking region between c4 = —0.01 and
¢4 = 0.02, for which all modes can be locked. The same calculation is thus performed for varying
values of c4. The frequencies f, of the modes are obtained by calculating the spectrum of the
field within the last 24 ns of the simulation once the laser is in steady-state regime. The results
are plotted in Fig. 3. Figure 3(a) shows the peak intensities observed at the center of the cavity
for light traveling in the +x direction, while Figs. 3(b)-(d) are presented in a similar manner as
the results for the cold cavity shown in Figs. 1(b)-(d).
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Fig. 2. Steady-state time evolution of (a,c.e) the laser mode intensities and phase differences
and (b,d,f) the laser intensity traveling in the +x direction at cavity center (x = 0) for (a,b)
¢4 = —0.01 (partial mode-locking), (c,d) c4 = 0.01 (perfect mode-locking), (e,f) ¢4 = 0.02
(partial mode-locking). Other parameter values: rg = go/yo = 70, ra = ap/yo = 10,
w = 5xq, Tg = 1 ns, 7y = 10 ps, yp = 10'° s71, Q/27 = 100 GHz, Egag/Esata = 25.
ag =ay =0.

Figure 3(b) shows that the mode frequencies f, increase as c4 increases. The shift of higher
order modes is larger than that for lower order modes. But the comparison with Fig. 1(b) shows
that the mode frequency shifts f, — f,, o are clearly reduced by the nonlinearity of the active media,
especially for ¢4>0. It is clear that f;y does no longer follow the same evolution when c4< — 0.007.
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Fig. 3. Evolution of the steady-state laser characteristics versus c4. (a) Peak intensities
of the field propagating in the +x direction at x = 0. (b) Frequency deviations f;;, — f;, 0;
(c) frequency separations f;; — f;,—1 between successive modes; (d) frequency differences
Ay = 2fn — fu+1 — fn—1. Same parameter values as in Fig. 2.

Figure 3(c) shows that there exists an asymmetric locking region for —0.007 < ¢4 < 0.019.
With comparison with Fig. 2, one can see that the laser nonlinearity tends to reduce the frequency
separation between the modes. It is thus more efficient to induce mode locking for positive values
of ¢4 than for negative values. In the locking region, for a given value of ¢4, the mode separation
is the same for all values of n and linearly increases with c4. In addition, one can notice that the
mode frequency separation for ¢4 = 0 is reduced to 99.8 GHz due to the nonlinearity of active
media. Outside this locking region, some modes are still locked, as can be seen from Fig. 3(d).
Some of the modes still obey Af,, = 0, indicating that the corresponding mode frequencies are
equally spaced. This is a big difference with respect to Fig. 1(d), induced by the nonlinearity of
the amplifying and absorbing media.
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Based on Figs. 2 and 3, we can see that there are several ways to observe the locking. The
first one is to look at the phase difference A¢g, between the modes, as can be seen by comparing
Figs. 2(a) and 2(c). The second method consists in observing the frequency difference between
successive modes, such as f,, —f,,—1 in Fig. 3(c) or A¢,, in Fig. 3(d). These criteria are corroborated
by observing the evolution of the peak intensities like in the three examples of Figs. 2(b),(d), and
(f) and also summarized in Fig. 3(a). This plot shows all the peak intensities |Ap+|2 of the field
propagating into the +x direction at x = 0 detected during the last 10 ns of each simulation. If all
the modes are locked, this peak intensity has only one value as shown by the red dots in Fig. 3(a).

Outside the locking region, some modes are unlocked, leading to a slow modulation of the
intensity, as is visible in the cases of Figs. 2(b) and (f). It also leads to several peak intensity
values, as shown by the blue and green dots of Fig. 3(a). Unlocking is confirmed by the evolutions
of the frequencies f; in Figs. 3(c) and (d).

Figure 4(a) shows the evolution of the locking range with the unsaturated gain and absorption
rates ry = go/yo and r, = aop/yo. The two surfaces in this figure correspond to the two extremes
values of ¢4 between which all the laser modes are locked. In all cases, the upper limit for ¢4 is
larger than the lower limit, as already observed in Fig. 3(a). The locking range increases almost
linearly with the saturable absorption rate r,, except on the positive c4 side where it decreases
for large values of r,. This corresponds to situations where the laser is close to the border to
Q-switching regime [16].

(b)

go/70 = 120
ao/r =10

02 04 06 08 1
27%/ Q

Fig. 4. (a) Evolution of the mode-locking threshold values for ¢4 versus r, and rg. (b)
Evolution of the locking region (red region) versus yy. go/vo = 120 and ag/yg = 10 are
fixed. Same parameter values as in Fig. 2.

If the ratios 7y = go/y0 = 120 and r, = ap/yo = 10 are fixed, varying the intrinsic losses g
leads to the evolution of the locking region plotted in Fig. 4(b). The width of the region linearly
increases with . In fact, this increase is due to the increase in saturable absorption ag. At the
same time, the increase in gain g( ensures that the laser is far away from the Q-switching region.

3.2. Potential disorder

The non-parabolicity of the potential can be regarded as a special kind of distortion. Here we
extend the investigation of the robustness of mode locking from the influence of non-parabolicity
to the influence of random errors in the shape of the potential. A term Dp,xR(x) is thus added to
the potential to describe this disorder, as given by Eq. (9). When the laser reaches its steady-state
regime, the method of Eq. (10) is implemented to calculate the mode frequencies f;,.

To assess whether the laser remains locked in the presence of disorder, we define the free
spectral range (FSR) relative root mean square (RMS) deviation 4:

1 |1

N-1
=\ ¥ Dl = 2, (an

n=0
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where fi(n) is a linear fit of the evolution of the f;,’s with n and Af = fg(n) — fit(n — 1) is the
mode separation obtained from the fit.

Before applying this criterion to the case of the disordered potential, let us first test its
usefulness by applying it to the case of the non-parabolicity of the potential studied in the
preceding subsection. We thus calculate § according to Eq. (11) for the data of Figs. 1(b)-(d) and
3. We start with the “cold” cavity data of Fig. 1(b)-(d) and plot the corresponding FSR relative
RMS deviations d¢ versus ¢4 as open circles in Fig. 5(a). We then retrieve the linear evolution
of the cold cavity FSR versus ¢4, which was already observed in Figs. 1(c) and (d). The same
treatment is applied to the laser data of Figs. 3(b)-(d), leading to the evolution of ¢, versus c4
shown as triangles in Fig. 5(a). The locking region, in which dr, remains equal to zero, is clearly
visible in this figure. This shows that § can be used as a criterion to recognize mode locked
operation.
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Fig. 5. (a) FSR relative RMS deviations ¢ and d; as a function of c¢4. (b) Map of §; versus
oc for the same values of ¢4 as in (a). The blue (green) triangles correspond to unlocked
solution with ¢4 <0 (c¢4>0). The data for (a) and (b) are from Fig. 3 and Figs. 1(b)-(d). (c)
Distribution of cold cavity FSR relative RMS deviation ¢ versus Dpax. The calculation is
run 50 times for each value of Diax. (d) Example of histogram of d¢ for Diax = 0.07.

It is worth observing the evolution of 8y, versus 8¢, when ¢4 is varied, as plotted in Fig. 5(b). It
is clear that there exists a threshold value for ¢ below which locking is preserved.

The same method is implemented to calculate the FSR relative RMS deviation dc for the
“cold” cavity for a randomly disordered potential. We run the simulation for 30 ns, removing
the active media and losses (yo = 0, ap = 0, go = 0). The spectra are obtained from the last
24 ns of each simulation, so that the frequency resolution is 0.042 GHz. The eigenfrequencies
are extracted from the peaks of the field spectrum following Eq. (10) and used to calculate 6¢
according to Eq. (11). This leads to the evolution of 8¢ versus Dax, Which is plotted in Fig. 5(c).
Because of the random character of the potential disorder, the calculation is run 50 times for each
value of Dpax. Hence, in total this figure contains 1150 different solutions for 23 different values
of Diax. The general trend is that the range of values of d¢ increases linearly with Dyax. One
example of histogram of d¢ for Dyax = 0.07 is shown in Fig. 5(d).

To evaluate the robustness of mode locking to disorder, the RMS deviation ¢y is calculated
for laser operation with the same parameters as in the preceding subsection and including the
same potential disorder as in the case of the cold cavity. The results for r, = 10 and ry = 150 are
shown in Figs. 6(a)-(d). Obtained from 1150 solutions for 23 different values of Dy, the values
of o, are plotted as a function of Dy, in Fig. 6(a). Some values of ¢, drop to 0, contrary to what
was happening in Fig. 5(c). Especially, for Dpax = 0.005, all the values of ¢, are close to 0. This
indicates that an equally spaced comb is formed by mode locking.

Since we used exactly the same disordered potential in both cases, we can plot the value of
oL versus Oc , as shown in Fig. 6(b). We notice that there exists a threshold value dc g, of d¢
below which the laser remains locked. This means that the nonlinear locking effect can somewhat
compensate the disorder in the potential.

To define and find this threshold value ¢, we first plot the histogram of §. for all the
solutions (see Fig. 6(c)). It is clear that the histogram of d;. can be divided into two different
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Fig. 6. (a.e) Distribution of laser FSR relative RMS deviation 6 versus Dmax. (b,f)
Evolution of ¢, versus dc. (c,g) Corresponding histograms of §p, for all solutions (red)
and solutions exhibiting mode locking (blue). (d,h) Same as (b,f) versus 6c. The fits are
obtained from a Weibull distribution. (a-d) ra = 10, rg = 150; (e-h) ra = 30, rg = 150. All
other parameter values are the same as in Fig. 2.

regions. The unlocked solutions distribute along a wide range of values of 1, (marked by red
bars). However, there are 153 solutions located in the first bin within the range [0, 1.51 x 1074]
of values of 0, (marked by blue bars). Figure 6(d) compares a histogram of the values of 6c
corresponding to mode locked operation, together with a histogram of all the values of 5c. One
can notice that only a portion of the solutions with rather small values of §¢ are locked. From
this figure, we can define ¢y, as the threshold value above which less than 50% of simulations
lead to mode locking.

One way to directly find 6c g would be to simply calculate the ratio between the number of
locked solutions and the total number of simulations for each value of 5c. However, this strongly
depends on the number and width of the bins in the histogram. To circumvent this problem,
we fit the histograms using a Weibull distribution. The probability density function (PDF) of a
Weibull random variable is expressed as

L) s,
0 x<0,

fxs A, k) = {
where k>0 is the shape parameter and 4>0 is the scaling parameter of the distribution.

The results of these fits are shown as full lines in Fig. 6(d), where the fit parameters are 1 = 5.61
and k = 1.37 for the ensemble of all solutions and 4 = 0.98 and k = 1.53 for mode-locked
solutions. This leads to the threshold value 6c i = 1.2 X 1073, evaluated as the value of &¢ for
which the ratio of the two distributions is 0.5.

The same calculations are performed for r, = 30, ry = 150. The corresponding results are
plotted in Figs. 6(e)-(h). The fit parameters are unchanged for the ensemble of solutions and
become A = 2.7521 and k = 1.395 for the mode-locked solutions. We obtain in this case a larger
threshold value 6c i, = 3.8 X 1073 for mode-locking.

Using this method, we calculate the evolution of dc g, as a function of r,, which is shown
in Fig. 7(a) for different values of ry. The threshold dc 1, increases linearly with the saturable
absorption rate r,. However, the solutions finally approach the limit of Q-switching when r, is
increased. This leads to a sharp decrease in dc,w. On the contrary, increasing r, can keep away
from that border so that higher values of r, can be allowed. This indicates that the robustness of
locking to the disorder increases with the saturable absorption rate r,.
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Fig. 7. Evolution of the mode-locking threshold value of §c g, with different parameters:
(a) Oc versus 1, for ag = @y = 0 and several values of rg; (b) 6c versus ag = a, for several
values of ry and rg = 150; (c-d) d¢ versus ag and @, for ry = 10 and rg = 150. The dashed
lines in each subfigure represent the solutions for the case where the gain region is located in
the region —2.5 xo < x < 0 and the absorber in the region 0 < x < 2.5 xq. Other parameter
values: w = 5xq, g = 1 ns, 7y = 10 ps, 27yp/Q = 0.1 and Esat,g/Esata = 25.

The same technique is used to investigate the influence of the Henry factors o, and «, of the
gain medium and the absorber, respectively. For simplicity, we take g = @, and plot in Fig. 7(b)
the evolution of dc, as a function of ag = @,, with rg = 150 and for different values of 7.

It is interesting to notice that the Henry factor first increases the threshold dc . In other words,
it increases the robustness of mode-locking to disorder, especially for small values of r,. But,
clearly, a large value of the Henry factors is detrimental to locking, as reported in several Refs.
[16,55,56], so that the threshold ¢ ¢, eventually decreases.

We also investigate the robustness of mode locking to different values of the Henry factors for
the gain medium and the absorber (see Fig. 7(c)). This result is reminiscent of previous works
applied to standard semiconductor lasers [55-59], in which the difference between the Henry
factors was found to be detrimental to mode locking. In our case, we find that this difference
between the Henry factors reduces the robustness of the nanolaser mode locking to potential
disorders.

In Ref. [16], we found that the dynamical behaviors of the lasers were similar in the situations
where the gain and the absorber overlap or are separated inside the cavity. We thus also investigate
here the robustness of the laser mode-locking to potential disorder in the situation where the
gain and the absorber do no longer overlap. The values of the parameters as the same as before,
except that the gain region is located in the region —2.5 xo < x < 0 and the absorber in the
region 0 < x < 2.5 xq. The results are plotted as dashed lines in Figs. 7(a),(b), and (d). In
Fig. 7(a), for separated gain and absorber regions, dc g is found to increase with r, for ry = 150.
One significant difference with respect to the case where the two media overlap is that dc g is
divided by a factor of 2. This is due to the fact that the pulse just stays only half of the time in the
absorber region. The effective absorption for the whole field is then only one half of its value,
leading to a reduction of ¢y, to one half of its value when the absorber fills both sides of the
resonator. The same results are observed for the investigation of the robustness to the Henry
factors with r; = 150 and r, = 10 in Fig. 7(b) and Fig. 7(d).
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4. Conclusion

In this paper, we have theoretically analyzed the robustness of the mode locked regime of
oscillation in a harmonic cavity nanolaser, sustaining oscillation of Hermite-Gaussian modes, to
imperfections of its harmonic potential. First, we considered the effect of the non-parabolicity
of the potential. A fourth-order term was introduced to quantify the distortion of the potential,
which leads to shifts of the eigenfrequencies. We found that locking the modes using a saturable
absorber can to some extent compensate for this distortion.

Moreover, the more general case of random errors in the potential has been statistically analyzed
by calculating the relative root mean square (RMS) deviation d¢c of the comb frequencies. By
comparing the distribution of §¢ for the locked solutions with that for all the solutions, we could
obtain the evolution of the threshold value dc 1, with the laser parameters. The robustness of
mode locking to disorder was found to increase with the saturable absorption rate on the condition
that the gain is large enough to keep the laser away from the Q-switching regime. A well-chosen
value for the Henry factors has been shown to increase the robustness of the mode-locked regime.
Similar results are obtained for the robustness of the laser to the non-parabolicity of the potential
and are reported in Supplement 1.
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