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Abstract: The present analysis utilized the 6-hourly data of wind speed (zonal and meridional) for
the period between 2011 and 2019, as retrieved from the Copernicus Marine Environmental Service
(CMEMS), covering the Thracian Sea (the northern part of the Aegean Sea). Data were estimated
from the global wind fields derived from the Advanced Scatterometer (ASCAT) L2b scatterometer
on-board Meteorological Operational (METOP) satellites, and then processed towards the equivalent
neutral-stability 10 m winds with a spatial resolution of 0.25° x 0.25°. The analysis involved:
flr;e;;‘tfg (a) descriptive statistics on wind speed and direction data; (b) frequency distributions of daily-mean

wind speeds per wind direction sector; (c) total wind energy content assessment per wind speed
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increment and per sector; (d) total annual wind energy production (in MWh/yr); and (e) wind
power density, probability density function, and Weibull wind speed distribution, together with the
relevant dimensionless shape and scale parameters. Our results show that the Lemnos Plateau has
the highest total wind energy content (4455 kWh/m? /yr). At the same time, the area to the SW of the
Dardanelles exhibits the highest wind energy capacity factor (~37.44%), producing 7546 MWh/yr.
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Case Study. Entergies 2021, 14, 3448. This indicates that this zone could harvest wind energy through wind turbines, having an efficiency

https:/ /doi.org/10.3390/en14123448 in energy production of 37%. Lower capacity factors of 24-28% were computed at the nearshore
Thracian Sea zone, producing between 3000 and 5600 MWh/yr.
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Through the European Green Deal, the European Union (EU) has set a target to reach
total decarbonization and achieve energy efficiency for its members by the year 2050 [1]. To
achieve this ambitious goal, the power production sector would follow the Clean Energy
Transition pathway, with renewable energy sources at the epicenter of such conversion.
In this gradually changing energy mix, the offshore wind industry is expected to play a

- significant role, experiencing a considerable increase in the coming several decades [2,3].
The EU plans to install in all European Sea at least 240 gigawatts (GW) of global offshore
wind power capacity by 2050 [4]. Current developments illustrate the exponential growth in
offshore wind installations (e.g., offshore wind grew from 1% of annual capacity additions
in global wind installations in 2009 to over 10% in 2019) [3].

Technological progress, recent developments in floating technologies, and significant
cost reductions, in conjunction with local, low level, and controllable environmental im-
pacts, appear to be the main factors driving the transformation of offshore wind energy into
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a safe and commercially viable form of clean power generation [5]. In any case, the total
offshore installations reached 29.1 GW by the end of 2019, representing only 5% of total
global wind capacity and generating barely 0.3% of global electricity production. In the EU,
approximately 10 million households are now being served by offshore wind energy. In the
U.S., the first commercial Offshore Wind Farm (OWF) started its operation in December
2016. However, up to the present date development activity remains impressively high, and
sixteen active commercial leases for offshore wind development have been procured [6]. In
Southeast Asia, countries such as China, Japan, and Taiwan lead the market, with China
surpassing 1 GW in annual offshore wind installation [3].

The above indicates the enormous potential for offshore wind capacity growth. On
this account, a large amount of new OWFs will be designed, installed, and will become
operational, especially in Europe where the European Commission (EC) forecasts that total
offshore wind installations will range between 240 and 450 GW by 2050 [4].

Although all OWFs are concentrated in the North and the Irish Seas, a clear tendency
from the private sector to harvest the Mediterranean’s wind power potential has also been
observed. A 30 MW wind farm comprised of 10 monopole wind turbines is expected to
be installed in the Apulia region, southern Italy, as the first Mediterranean offshore wind
project to be implemented. Even though 1 GW of offshore wind power is equivalent to
emissions of 3.5 MT CO, (Carbon dioxide), several technological, administrative, legislative,
environmental, socio-economic, and financial barriers exist in the development of OWF
projects. Such barriers have been summarized by Soukissian et al. [7]. The Geographic
Information System (GIS) mapping of offshore marine and maritime uses could assist the
selection of proper locations for and placements of turbines [8].

The most crucial suitability selection criterion for wind farm siting (i.e., the wind
resource availability [9]), in conjunction with the presence of a wide continental shelf
ensuring relatively shallow depths and an appropriate distance from shore [10], could be
met over the Thracian Sea in the Northern Aegean. Several investigators have assessed the
wind power potential in the broader area, especially in Canakkale [5] and Bozcaada [11],
the Samothraki Island [12], and the whole Aegean Sea [13]. Most studies have utilized
data from meteorological stations [5,11]. Bagiorgas et al. [13] used wind data from offshore
buoys. Soukissian et al. [7] downscaled the European Centre for Medium-Range Weather
Forecasts (ECMWF) reanalysis data, using a high-resolution meteorological model (15 year
period, 0.10° x 0.10°) validated by offshore buoy data, while Majidi Nezhad et al. [12]
utilized the ERA-Interim reanalysis dataset (40 year period, mean monthly data).

In this work, the gridded 6-hourly wind data collected from ASCAT L2b scatterometer
on-board METOP satellites, combined with the ECMWEF ERA-Interim atmospheric reanal-
ysis, as provided by the Copernicus Marine Environmental Monitoring Service (CMEMS),
were used to assess the offshore wind power potential over the whole Thracian Sea and the
Lemnos Plateau. This is an area of significant interest for wind offshore energy develop-
ment, especially along the NNE-SSW axis following the wind exiting from the Dardanelles
Straits [14,15].

Scatterometer data have been widely used in literature for large-scale wind resource
assessments, filling the gap in the absence of offshore meteorological stations while pro-
viding continuous, systematic, long-term, and relatively-accurate wind data. However,
data reliability suffers from low pixel resolution, together with errors related to sensor
malfunctioning, wind retrieval algorithm, rain contamination, land contamination, etc. [16].
Several global and regional wind resource assessment studies exist using scatterometer
data, mostly using QuickSCAT (Pimenta et al. [17] for offshore SE Brazil; Mostafaeipour [18]
for the Persian Gulf and Gulf of Oman; Karamanis et al. [19] for the Ionian Sea; and Fuverik
et al. [20] for the whole Mediterranean Sea). To minimize errors induced by the above fac-
tors, recent studies have explored offshore wind resources utilizing multiplatform datasets
such as QuickSCAT, rapidSCAT, METOP-A and METOP-B, OCEANSAT-2, and others [21].
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2. Materials and Methods
2.1. Study Area Description

The study area covers the Thracian Sea, the northern part of the Aegean Sea (from
39.7° N to 40.9° N and 23.7° E to 26.3° E), an area with complex bathymetry and hy-
drography (Figure 1). This area is characterized by abrupt topographic and bathymetric
changes due to the extensive width of the continental shelf (40 km) and the North Aegean
Trough, a NE-SW oriented deep trench separating the Thracian Sea shelf from Lemnos
Plateau [22]. Coastal morphology consists of semi-enclosed gulfs, such as Saros, Alexan-
droupolis, Kavala, and Strymonikos, located along the northern coast.

)
45, 46
#fLemnos Airport

Figure 1. Study area map and CMEMS grid discretization.

This area is influenced by the outflow of the Black Sea Water, exiting from the Dar-
danelles Straits and the prevailing N-NE wind circulation, known as the Etesians [23].
The present analysis divided the study area into six main sub-areas based on their physio-
graphic and meteorologic characteristics: the western Thracian Sea (stations 7-9, 17-19),
central Thracian Sea (10-13, 20-23), eastern Thracian Sea (14-16, 24-29), the Lemnos Plateau
(4346, 52-54), the Dardanelles’ zone of influence (47-49, 55, 56), and the Siggitikos Gulf-Mt
Athos (30-33, 41).

2.2. Wind Data Description

The 6-hourly data of wind speed (eastings and northings), measured 10 m above
sea level with a spatial resolution of 0.25° x 0.25°, were retrieved from the Copernicus
Marine Environmental Monitoring Service (CMEMS). The data product used was encoded
as WIND_GLO_WIND_L4_REP_OBSERVATIONS_012_006 (http://marine.copernicus.eu/
documents/PUM/CMEMS-WIND-PUM-012-006.pdf, accessed on 26 April 2021), referring
to a set of time-series comprised of level 4 reprocessed hindcasted wind observations,
assimilated on a global ocean model. Data were estimated from the global wind fields
derived from ASCAT scatterometers on-board the METOP-A and METOP-B satellites,
combined with ECMWEF ERA-Interim atmospheric reanalysis.

The dataset consists of six meteorological variables: wind speed, zonal and meridional
wind components, wind stress amplitudes, and the associated components. The present
analysis covered the period from January 2011 to December 2019. The resulting fields were
estimated on a daily and monthly basis, as equivalent neutral-stability 10 m winds having
spatial resolutions of 0.25° in longitude and latitude over the study area (Figure 1).

In total, 56 grid points were analyzed, while in situ daily-mean wind data were re-
trieved for the above defined period from the World Meteorological Organization (WMO)
stations located at the Lemnos Airport and the Chrisoupolis Airport (Hellenic Meteoro-
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logical Service, Figure 1). These data were used to assess the consistency of the CMEMS
remotely sensed wind dataset in the study area.

2.3. Qualitative Wind Data Assessment

A set of statistical parameters were used to test the quality of CMEMS scatterometer
datasets. These include the difference between temporal means (defined as bias) and the
Root Mean Square Difference (RMSD) between the in situ (considered as ground-truth) and
the satellite data products, the scalar (r) and the regression coefficient slope (bs). A similar
analysis was also performed by Bentamy et al. [24] between CMEMS and offshore wind
data from buoys in the California, Canary, and Benguela zones. These statistical measures
are estimated as:

Bias = X =Y €))
RMSD = /(X — )2 @)

[
STD =/ (X~ Y - X—Y)’ 3)

_ (X=X -(¥-Y)
P~ STD(X) — STD(Y) @)

V2
bs = \/; 5)

where X is the wind speed measured by the meteorological station and Y the CMEMS
wind speed.

2.4. Preliminary Data Processing

The 6-hourly wind data from 56 data points, located at the center of CMEMS grid
(covering the whole Thracian Sea) were retrieved in the form of u- and v-wind speed
time-series (in m/s) from 1 Janurary 2011 00:00 until 31 December 2019 21:00 (in total,
13,148 values per point). The power law was used to estimate the wind speed at wind
turbine hub height (93 m) with the 10 m wind speed, as:

Zup \"
Upup = u10( Zu ) (6)
10

where Uj,;, is the wind speed at the hub height of the wind turbine (m/s), Uy is the
CMEMS scatterometer data at 10 m above sea level (m/s), Zy,; is the hub height of the
wind turbine (m), Z; refers to 10 m above sea level, and & = 0.123 (as in Bagiorgas et al.) [13].

Using these wind data profiles, the mean daily and monthly values of wind speed
and direction at the hub height were produced for each examined grid point. Descriptive
statistical parameters on wind speed and direction data were computed as the dataset
minimum, first quartile (Q1), median, mean, third quartile (Q3), and maximum values.
Frequency distributions of daily-mean wind speeds were computed per wind directional
sector, and relevant tables were produced. Based on these results, wind roses were devel-
oped indicating the frequency variability per wind speed increment and per wind direction
sector. Mean-monthly wind speeds were computed on a year-to-year basis, and boxplots
were produced.

2.5. Weibull Probability Function

Several probability density functions are available in the literature to be fitted on the
distributions representing the wind speed frequency curve per directional sector for the
prediction of randomly distributed wind speed data [25]. The Weibull probability density
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function depicts an acceptable accuracy level in numerous wind power studies worldwide,
expressed mathematically as:

k—1 w, k
fo) = 5 () e )

where f(W) is the frequency of occurrence of wind speed W, A is the scale parameter
(measure for the wind speed), and k is the shape parameter (description of the shape of the
distribution) per directional bin. The Weibull distribution parameters were estimated by:

(B WEm W) i) Fo) ] .
I WEF(Wy) f(Wp >0)
1 " . 1/k

A= sz Lo ©)

where W), is the mean wind speed per directional bin b, n is the number of bins, f(W}) is the
frequency for wind speed ranging within bin b, and f(W,,) > 0 is the probability for wind
speed equal to or exceeding zero. To estimate the Weibull distribution parameters k and A,
an analysis was performed in R programming language (fitdistrplus package [26]) using
the maximum likelihood estimation method per directional bin.

2.6. Wind Energy Content and Power Density

Using the estimated Weibull probability density function, the total wind energy
content per directional bin was computed. The total wind energy content (in kWh/m?/yr)
can be understood as the theoretic energy potential of a particular site. Therefore, it is a
useful metric for the resource assessment of an area and for comparative purposes among
areas, being independent of the characteristics of the wind turbine. The available wind
energy content per wind speed increment and wind direction at each gridded point of the
Thracian Sea was assessed using the R-package bReeze, by:

E(W) = gpurH Y W3 £ (10)
=1

where p,;, is the density of air at the sea level under a mean temperature of 15 °C and
one atmospheric pressure (=1225 kg/m3), n is the total number of directional bins (=16),
H is the number of hours of the desired period (=8760 per year), W is the wind speed
per directional bin, and f(W)) is the probability of that bin, estimated by the Weibull
distribution described in the previous equation. [6].

Wind power density is an important factor when assessing the wind potential of a
location. It designates the available amount of energy per unit of time and swept area
of the blades at the selected location. It is this amount of energy that will be converted
to electricity by the wind turbine. The estimation of wind power density per directional
bin is achieved by fitting the Weibull distribution to the respective dataset, expressed
mathematically as:

(W) = 3o L W] FONY an
=1

2.7. Annual Wind Energy Production

The estimation of the annual wind energy production is as follows:

AEP = AmbipHZ F(W,)P(W,) (12)
c  p=1
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where Ay, is the average availability of the turbine, p,;; is the density of air (=1225 kg/m?),
ppc is the specific air density for power curve definition, f(Wj) is the probability of the wind
speed bin W), estimated by the Weibull distribution, and P(W},) is the power output for
that wind speed bin. Finally, H is the number of operational hours (= 8760 h).

The Capacity Factor (CF) represents the productive suitability of the wind turbine,
i.e., an indicator to assess the field performance of the turbine. It is defined as the ratio
between the average output power (Pout) of the wind turbine represented by the AEP and
the theoretical maximum power output on annual basis. It is defined as:

AEP
" PyH

CF (13)
where Py, is the wind turbine’s theoretical power, defined as being proportional to the wind
speed cubed for wind speeds lower than the rated wind speed and equal to the turbine
rated power for higher wind speeds. In this work, the annual energy production and the
capacity factor were assessed based on a Siemens SWT 2.3 MW wind turbine with a height
of 93 m. This turbine was selected as a potential monopile system to be deployed at an
offshore wind farm in NE Lemnos. The power curve for this turbine (consisting of wind
speed and power pairs), starting at the cut-in wind speed of the turbine and ending with
the cut-out wind speed, is shown in Figure 2.
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Figure 2. Wind turbine power curve.

3. Results
3.1. Assessment in Satellite Wind Analysis Accuracy

The intercomparison of the satellite-derived wind data products against “ground-
truth” data collected from meteorological stations led to the assessment of regional accuracy
in the satellite wind analysis. Unfortunately, offshore buoy data were not available. Thus,
comparisons were made against land-based stations of low altitude and in proximity to the
shore on a daily-mean basis. Figure 3a,b illustrate the scatter and fitted line plots between
the 10 m wind speed retrieved from CMEMS (grid points 45 and 2) and the wind data
collected from the Lemnos and Chrisoupolis meteorological stations, respectively.
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Figure 3. Density plots histograms of CMEMS wind speed data against wind data from on-site
stations in (a) Chrisoupolis Airport and (b) Lemnos Airport. The dashed line represents the perfect
match line, the red line the linear regression model fitted on the scattered data, and the light red area
the 95% confidence interval.

These figures illustrate the rather good correlation with a slight overestimation of
CMEMS wind speed data at the open Thracian Sea area (Lemnos: n = 3287; bias: —1.35;
RMSD =2.43; STD =2.02; p = 0.76; bg = 1.31), and a moderate overestimation at the Thracian
coastal zone (Chrisoupolis: n = 1825; bias: —1.25; RMSD = 2.33; STD = 1.97; p = 0.50;
bs = 1.59), in relation to the in situ meteorological datasets. In Lemnos, agreement is higher
at high wind speeds (15-20 m/s and >20 m/s, bias: —1.03; RMSD = 1.76; STD = 1.37;
p = 0.78; bs = 1.02). Regression equations for both areas were defined, as:

CMEMS scatterometer data = 1.011 x Meteorological station data + 1.230 (14)
for the Chrisoupolis Airport, and
CMEMS scatterometer data = 0.973 x Meteorological station data + 1.463 (15)

for the Lemnos Airport.

Errors and biases are attributed to the coarse resolution of data product, exhibiting
the tendency of satellite-derived ASCAT data to overestimate offshore winds [27]. Similar
findings were also reported by Alvarez et al. [28], showing that similar satellite data, such
as QuikSCAT, CCMP, and CFSR datasets, overestimated the wind (especially at high wind
speeds >4 m/s).

3.2. Descriptive Wind Statistics per Sub-Area

In order to be able to analyze the wind data at hub level (93 m) and to provide
analytical descriptive statistics, data from grid points were spatially-aggregated according
to the main physiographic units of the study area. Table 1 presents the summary values for
these sub-areas. Results indicate that along the Thracian Sea continental shelf, a gradient in
wind speed values exists with higher mean, median, and quartile values being exhibited
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towards the Eastern Thracian Sea. Furthermore, the highest offshore wind statistical
parameters are shown in the Lemnos Plateau and the Dardanelles area. However, the
maximum wind speed is lower than that in the West Thracian Sea. In all areas, data are
positively skewed. Data are highly skewed in the west and central Thracian Sea and in Mt
Athos (skewness >+5), characterized by increased maximum speeds under extreme events.
Leptokurtic curves prevail over the Thracian Sea and Mt Athos area (kurtosis ~1.3), and
mesokurtic curves prevail at the Lemnos Plateau and the Dardanelles.

Table 1. Descriptive wind statistics in (m/s) at hub height (93 m), per study sub-area.

Sub-Area Q1 Median Mean Q3 Max

West Thracian Sea 2.16 3.65 4.37 5.86 46.88
Central Thracian Sea 2.45 414 4.90 6.62 35.19

East Thracian Sea 3.17 5.32 6.05 8.25 29.66
Lemnos Plateau 3.60 6.20 6.99 9.57 32.72
Dardanelles’ Zone of Influence 3.82 6.48 7.15 9.81 29.30
Siggitikos Gulf and Mt Athos 2.86 4.88 5.82 7.89 31.73

An indicative time-series diagram illustrating the 6-hourly wind speed variability
in the Lemnos Plateau (grid point 46) at the hub height is shown in Figure 4. Winds
under extreme stormy conditions exceed the limit of 20 m/s, originating mainly from the
Dardanelles and affecting the northern part of the Aegean Sea. Data exhibit seasonality
showing higher winter values, with regular incidents exceeding 20 m/s. Mean monthly
values indicate that the seasonal component oscillates with an amplitude of 6 m/s, and
reveals a slightly upward trend (~0.008 m/s) over the years examined.

30

25

20

1“0' 13\{ 1"“3‘ 1“\"; 2 l 1“‘1" o ‘ 10”%‘ 2 ' 2 l
time
Figure 4. 6-hourly time series (blue line) and mean-monthly time-series (red line) of wind speed at
hub height in the Lemnos Plateau (grid point 46).

The wind speed exhibits intra-annual variability, with higher values in winter (espe-
cially in February) and significantly lower values in spring and summer (from April to
July). A representative boxplot diagram of monthly-mean wind speed values at the hub
level (93 m) at point 46 (the Lemnos Plateau) is shown in Figure 5.

Boxplot of Point 46

Wind Speed (ms™)

Figure 5. Boxplots for monthly wind speed values at hub height in the Lemnos Plateau (point 46).
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The spatial variability of frequency distributions in daily-mean wind speeds, per wind
directional sector, are shown in Figure 6. It is apparent that NE winds prevail in the study
area, followed by ENE at the nearshore parts of the Thracian Sea and Mt Athos, and by
NNE winds at the offshore Thracian Sea, the Lemnos Plateau, and the Dardanelles. Wind
speeds and frequencies per directional bin are more dispersed in the West and Central
Thracian Sea and Mt Athos area, with mean wind speeds of 5.6 m/s, 6.0 m/s, and 7.5 m/s
(~30%, 36%, and 35%) from the NE and ENE directions, respectively.

Figure 6. Wind frequency roses at hub height over the study area.

Eastwards and offshore, wind speeds are significantly higher, of higher frequency, and
appear confined along the NE direction, as in point 46 (the Lemnos Plateau) which has a
mean NE wind speed of 9.5 m/s and 33% frequency of occurrence. This is attributed to the
impact of orographic effects on the cyclonic synoptic circulation of surface wind field over
the Black Sea and the funneling effect along the Turkish Straits. In parallel, these offshore
points illustrate the influence of moderately strong S winds (~7.5 m/s, 8%).

3.3. Spatial Variability in Weibull Fitting Function Parameters

To achieve a clear view of the available wind potential of an area, we may not rely only
on the description of the instantaneous and mean wind speeds. The statistical parameters k
and A of the fitted Weibull probability density function will provide a better understanding
of wind dynamics. The probability of occurrence, and therefore the fraction of time for
each wind speed range per directional sector, prevailing in the study area may be derived
through this function. Table 2 presents the annual variation in Weibull parameters per
directional bin for all study area sub-regions. For all bins, the Weibull shape parameter k
varies between 1.40 in the West Thracian Sea and 1.73 in the Dardanelles region of influence,
with a mean value of 1.61 throughout the gridded data at hub level (z = 93 m). At the
nearshore Thracian Sea area, k-mean values range from 1.39 from the N direction to 1.63
from the WSW direction.
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Table 2. Weibull probability density function parameters, per directional bin, at hub height for all sub-areas.

Sub-Areas/ West Thracian Sea Central Thracian Sea East Thracian Sea Lemnos Plateau Dardanelles Siggitikos/Mt Athos
Directional Bins k A (m/s) k A (m/s) k A (m/s) k A (m/s) k A (m/s) k A (m/s)
N 1.38 471 1.45 4.67 1.35 5.08 1.42 5.03 1.47 5.05 1.46 541
NNE 1.50 5.87 1.61 7.08 1.79 8.79 1.71 8.80 1.82 9.16 1.56 7.49
NE 1.75 6.84 1.93 7.50 2.27 8.75 2.23 10.42 2.45 10.39 1.88 9.23
ENE 1.74 5.70 2.00 6.00 217 6.57 1.87 7.61 2.02 7.25 1.77 7.58
E 1.88 4.45 1.94 4.47 1.98 4.38 1.65 4.99 1.81 4.96 171 5.28
ESE 1.21 3.42 1.65 3.49 1.76 3.54 1.57 4.36 1.70 4.48 1.50 4.29
SE 1.50 3.32 1.28 3.24 1.60 3.81 1.46 4.75 1.55 4.56 1.51 4.23
SSE 148 3.62 1.38 3.79 151 4.38 1.57 5.89 1.65 5.76 1.46 4.81
S 1.27 4.53 1.35 5.40 1.56 6.70 1.67 8.13 1.75 8.42 1.40 6.13
SSW 1.44 4.02 1.53 5.26 1.68 6.74 1.73 7.43 1.79 7.68 1.51 5.64
SW 1.31 3.35 1.59 3.99 1.89 5.01 1.84 5.69 1.82 5.86 1.61 4.79
WSW 1.61 3.63 1.76 3.74 1.60 4.14 1.60 4.95 1.52 4.57 1.62 4.75
W 1.77 3.24 1.68 3.07 1.66 3.36 1.46 3.84 1.40 3.37 1.69 431
WNW 151 3.42 1.60 3.20 1.52 3.17 1.43 3.55 1.38 3.41 1.59 4.31
NW 1.45 3.87 1.40 3.33 1.34 3.31 1.31 3.95 1.19 3.41 1.40 4.68
NNW 1.50 4.09 1.29 3.29 1.30 3.50 1.56 3.93 1.59 3.54 1.48 4.81
all 1.40 4.79 1.48 5.42 1.64 6.77 1.63 7.81 1.73 8.02 1.47 6.44
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In terms of k-distribution over the various directional bins, higher values occur at the
NE direction in the East Thracian Sea, the Lemnos Plateau, the Dardanelles, and the Mt
Athos areas (ranging from 1.88 to 2.45), at the ENE direction in the central Thracian Sea
(k =2.00), and the E direction in the western Thracian part (k = 1.88). In parallel, the Weibull
scale parameter (A) exhibits a gradual increase from the western nearshore zone (4.79 m/s)
towards the east (6.77 m/s) and then offshore until the Lemnos Plateau (7.81 m/s) and the
highly dynamic Dardanelles area (8.02 m/s). The NE direction displays the higher A-values
in all sub-areas, except for the East Thracian Sea where the NNE direction prevails. The
highest NE-bin A-value is seen at the Lemnos area (10.42 m/s), followed by the Dardanelles
region (10.39 m/s).

The Weibull probability density function, fitted on the NE wind speed data at a specific
grid point located at the Lemnos Plateau, together with the cumulative probability density
function and the relevant Q-Q and P-P plots, are shown in Figure 7. Based on this analysis
and the wind turbine power curve (Figure 2), it can be deduced that the probability of wind
speed from the NE direction within the turbine operational (>5 m/s) window is 79.81%.

Empirical and theoretical dens. Q-Q plot

Density
0.00 0.10
[WE NN
Empirical quantiles
0 15

(a) Data (b) Theoretical quantiles

P-P plot

T T T T T
00 02 04 06 08 1.0
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(C) Data (d) Theoretical probabilities

Figure 7. Probability density model fitted on NE wind data at hub height (point 46, Lemnos Plateau)
(a) data histogram and fitted Weibull function, (b) Q—Q plot, (c) Cumulative density function, and
(d) P-P plot.

The iso-lines connecting points of equal k and A values, as extracted from the Weibull
probability distribution for the NE wind direction, is shown in Figure 8. Based on Figure 8a,
it is evident that k-values >2.4 occur in the Dardanelles area, and that k reduces gradually
towards the WNW direction with a stable rate of 0.1 per 20 km. On the other hand,
the spatial distribution of the scale parameter A seems more complex, with local peaks
(>10.5 m/s) at Bozcaada Island and at the Saros Gulf and a general W-E isolines orientation
indicating a sharp reduction in A towards the nearshore and onshore Thracian Sea grid
points (Figure 8b).

3.4. Total Wind Energy Content

Using the parameters of the Weibull distribution per grid point and integrating spa-
tially, Table 3 presents the wind energy content per directional sector, averaged over the
main sub-areas of the study region. The analysis suggests that the highest wind energy
content occurs in the Lemnos Plateau area (4455 kWh/m?/yr), followed by the Dard-
anelles (4398 kWh/m?/ yr), Siggitikos/Mt Athos (3091 kWh/ m2/ yr), and East Thracian Sea
(2964 kWh/m? /yr).
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Figure 8. Spatial distribution of the Weibull probability density function parameters: (a) the shape
parameter k and (b) the scale parameter A (in m/s) at the hub level over the study area.

Table 3. Total annual wind energy content (in kWh/m?) at hub level, per directional bin, for all sub-areas.

Sub-Areas/ West Thracian Central Thracian East Thracian Lemnos Plateau Dardanelles Siggitikos/Mt
Directional Bins Sea Sea Sea Athos
N 82 62 80 73 59 91
NNE 214 389 775 887 973 436
NE 435 664 1256 2256 2206 1308
ENE 222 238 262 353 252 556
E 60 47 30 42 32 96
ESE 60 15 9 19 14 45
SE 18 30 12 27 21 33
SSE 23 23 25 72 58 62
S 69 112 183 358 395 168
SSW 27 87 227 235 272 89
SW 42 26 52 56 61 40
WSW 14 14 21 29 22 34
W 9 8 6 13 7 21
WNW 16 9 5 10 7 24
NW 29 14 8 17 11 40
NNW 36 37 13 15 9 47
all 1354 1774 2964 4455 4398 3091

Table 3 indicates that the Lemnos Plateau and the Dardanelles region have a high
wind energy content spread over three directional bins (NNE, NE, and ENE), representing
an annual wind energy content of 3496 kWh/m? and 3431 kWh/m?, respectively. This
energy content is equivalent to the power density of 399 W/m? and 391 W/m?, respectively.
Approximately 22% of this sectorial energy content is being produced by winds in the
0-5 m/s range, 43% within the 5-10 m/s, 26% in the 10-15 m/s range, 7% in the 15-20 m/s,
and only 2% by winds higher than 20 m/s. The contribution of the S sector in the total
wind energy content of these two areas also seems quite considerable.

3.5. Annual Wind Energy Production

Considering the wind profile produced from z; = 10 m (CMEMS data) to hub height
(z2 = 93 m), the wind turbine power curve and dimensions and annual wind energy
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production (in MWh/yr) was estimated, following the previous Equation (10). The highest
wind energy may be produced in the Dardanelles region, with a spatially-averaged AEP-
value of 7546 MWh/yr. Approximately 75% of this energy (5684 MWh/yr) is concentrated
along the NNE, NE, and ENE directional sectors, with the NE-AEP being the highest
(48.8%). In parallel, most of the total AEP in Dardanelles is being produced from winds in
the range of 10-15 m/s (46% or 3532 MWh/yr) and 5-10 m/s (37% or 2859 MWh/yr).

In the Lemnos Plateau, the spatially-averaged estimated AEP-value reached 7212 MWh/yr,
mostly provided by the same directional bins (NNE, NE, and ENE), producing in total
5342 MWh/yr (i.e., 74% of total AEP). As previously discussed, most of the energy is
produced by winds in the range of 10-15 m/s and 5-10 m/s, with values of 3261 MWh/yr
and 2701 MWh/yr, respectively. The East Thracian Sea is another area of significant interest,
as the spatially-mean AEP approximates 5620 MWh/yr, 75% of which is produced from
the NNE, NE, and ENE sectors. Another interesting feature is the rising contribution of the
S and SSW directions (5.7% and 7.9%, respectively). The Siggitikos Gulf and the area of Mt
Athos exhibit AEP of the order of 5241 MWh/yr, while the Central Thracian and the West
Thracian Sea have values of 3743 MWh/yr and 2939 MWh/yr, respectively.

Based on the above AEP-estimates, the capacity factor of turbine performance reached
37.44% in the Dardanelles, 35.80% in the Lemnos Plateau, 27.89% in the East Thracian Sea,
and 26.02% in the Mt Athos area The capacity factor in the western and central Thracian
Sea was assessed at 14.58% and 18.58%, respectively.

4. Discussion

Over the latest decade, there has been a growing interest in exploiting wind energy
resources, particularly in offshore marine areas. This has been fueled by the recent trend
towards economic decarbonization and the stable turn towards marine renewables, in
association to cost reductions in turbine manufacturing, installation and maintenance,
and the advancements in floating wind turbine technology which is now capable of even
tripling the technical potential for offshore wind across the world [2,3]. Capital investments
and rates of return in this sector are highly correlated to wind energy resource density and
variability, indicating the need for long-term, high quality assessments of annual wind
energy production [29].

Although the methodology for such assessments has been standardized, there still
exist several bottlenecks related to the availability and reliability of long-term wind data
at the wind turbine level over the open sea. For this purpose, several investigators have
used wind data collected by on-site sensors (e.g., offshore buoys [13]), facing significant
periods of sensors malfunction and gaps in operation (these buoys are usually sparse), and
land-based meteorological stations (e.g., stations on islands and coastal zone) [5,30], which
collect long time-series but are prone to localized orographic effects. On the other hand,
data collected by satellites equipped with scatterometers may cover large marine areas,
but as measurements are available at the regular intervals of satellite crossings the outputs
of numerical models are utilized to fill in the spatio-temporal gaps. The final reanalysis
product contains gridded wind data, but at rather coarse spatial resolution [31]. In parallel,
scatterometers’ operation is limited by rain, ice, large spatial wind variability, and high
wind speeds.

Carvalho et al. [27] compared ASCAT-A and B wind data to wind speeds from off-
shore buoys and reported that scatterometer data slightly underestimated the wind field
(RMSE = 1.55; bias = 0.64; STDE = 1.40; R? = 0.90) along the Atlantic coast of the Iberian
Peninsula. Pickett et al. [32] working with the QuickSCAT satellite showed that the satellite—
buoy wind differences nearshore were more significant than those offshore. Wang et al. [31]
performed a similar analysis at the Central California Coast, reporting that ASCAT had the
lowest error metrics compared to the QuickSCAT. Overall data products overestimated
winds relative to the buoy at low wind speeds and underestimated at high wind speeds.
These works indicate that different wind products performance varies considerably by
study region, indicating the need for site-specific analyses.
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In the present work, 6-hourly wind speed and direction data with 0.25° spatial resolu-
tion, obtained from CMEMS (blending ASCAT observations and the ERA Interim model
results), were daily averaged and then compared to ground-truth data from land-based
stations over the period between 2015 and 2019. The evaluation metrics illustrated slight
to moderate overestimation at the Lemnos Plateau and the Central Thracian Sea, respec-
tively. The Weibull parameters computed here appear in agreement with those reported by
Aslan [5] and Bagiorgas et al. [13].

In terms of the wind power density, Bagiorgas et al. [33] reported a mean value of
600 W/m? at the Athos offshore buoy, located in the Lenmos Plateau, at a heigh of 10 m
from the sea surface water. Similarly, Bohran [34] calculated a mean energy content, ranging
between 400 and 1410 W/m?, at a height of 30 m at Bozcaada (in the Dardanelles area).
Aslan [5], using onshore wind stations, assessed the annual wind power content of the
Bozcaada Island (in the Dardanelles region) at 460 W/ m?. Soukissian et al. [7] estimated
the wind power potential of the Lemnos area at 468 W/m?, and that of the Thracian Sea at
71.7 W/m?.

Our analysis suggested that at hub height (i.e., 93 m from sea level), the spatially-
averaged wind power density reaches 513 W/m? at the Lemnos Plateau and 507 W /m?
at the Dardanelles, which is comparable to the above findings. Based on international
standards of wind density power classification, the wind energy potential at hub height
of Lemnos and the Dardanelles is classified in wind class 5 (excellent); the wind power
potential of the East Thracian Sea and Siggitikos Gulf/Mt Athos in wind class 3 (fair); the
Central Thracian Sea in class 2 (marginal); and the West Thracian Sea in class 1 (poor).
As shown in Table 3, winds from NNE, NE, and ENE directions contribute highly to this
energy production.

Considering the characteristics of a Siemens SWT 2.3 MW wind turbine, we have
assessed that a mean AEP of 5684 MWh/yr from the NNE, NE, and ENE sectors may be
produced in the Dardanelles region. In the Lemnos Plateau, these directional bins may
produce AEP of 5342 MWh/yr and ~5600 MWh/yr in the East Thracian Sea. The selected
turbine achieves a capacity factor of 37.4% in the Dardanelles and 35.8% in the Lemnos
Plateau. Konstantinidis et al. [15] estimated the capacity factor of Vestas V90-3 MW at
38.5% and RE power (Senvion) 5 M at 41% for the design of an OWF in the Lemnos area.

5. Conclusions

This work has examined the wind power potential of the Thracian Sea, a regional sea
at the northern part of the Aegean, with significant interest in regards to the installation
and operation of wind farms. CMEMS scatterometer wind data for the period between
2011 and 2019, blended with the numerical model reanalysis, were used for the assessment
of wind energy content and the annual wind energy production. Although it was at a
height of 10 m, the CMEMS wind data illustrated mild overestimation of the wind field
compared to the Lemnos station data. The estimated Weibull parameters and the assessed
wind power density were found comparable to that reported by previous investigators.
Earlier wind power assessments in the area utilized limited offshore buoy data or data from
nearshore, land-based stations. The basic differences in the present analysis, in relation to
previous works focusing in the area, lie in the fact that our analysis is based on gridded
data which covers extended offshore zones and quantifies the influence of each directional
bin on final wind energy production.

The highest spatially-averaged wind energy content at hub height occurs in the
Lemnos Plateau (4455 kWh/m?/ yr), followed by the Dardanelles (4398 kWh/ m?/ yr),
Siggitikos/Mt Athos (3091 kWh/m?/yr), and East Thracian Sea (2964 kWh/m?/yr). In
these areas, most of the wind energy is produced by three directional bins (i.e., NNE, NE,
ENE) and by wind magnitudes between 5-10 m/s. The spatially-averaged wind power
density reaches 513 W/m? at the Lemnos Plateau and 507 W/m? at the Dardanelles, and
the wind energy production for the selected wind turbine reaches 7212 MWh/yr and
7546 MWh/yr, respectively.
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