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Abstract. We study the discrete-to-continuum variational limit of the antiferromagnetic XY

model on the two-dimensional triangular lattice. The system is fully frustrated and displays
two families of ground states distinguished by the chirality of the spin field. We compute the

Γ-limit of the energy in a regime which detects chirality transitions on one-dimensional interfaces

between the two admissible chirality phases.

1. Introduction

Ordering problems in magnetism have been extensively studied by both the physics and the
mathematics communities. Researchers have been attracted by the rich phase diagrams and crit-
ical behaviors of magnetic models which are often the result of difficult-to-detect optimization
effects taking place at several energy and length scales. The reason for such a complex behavior
can be traced back to the presence of many competing mechanisms which give rise to frustration.
Frustration in the context of spin systems (here, as it is customary in the statistical mechanics
literature, we will often refer to magnets as to spins) refers to the situation where spins cannot find
an orientation that simultaneously minimizes all the pairwise exchange interactions. Such interac-
tions are said to be ferromagnetic or antiferromagnetic if they favour alignment or antialignment,
respectively. Often frustration occurs in those systems where spins are subject to conflicting short
range ferromagnetic and long range antiferromagnetic interactions, as when modulated phases ap-
pear (see, e.g., the expository paper [37]). For antiferromagnetic lattice systems, that is systems
of lattice spins subject to only antiferromagnetic interactions, frustration can also stem from the
relative spatial arrangement of spins induced by the geometry of the lattice. In this case frustration
is often referred to as geometric frustration. As a consequence of geometric frustration magnetic
compounds show complex geometric patterns that induce often unexpected effects whose under-
standing is one of the primary subjects in statistical and condensed matter physics as it can help
to better explain the nature of phase transitions in magnetic materials [30, 32, 33]. From a mathe-
matical perspective, several interesting questions can be addressed. In this paper we are interested
in the variational coarse graining of the system, in the line of what is by now addressed to as the
“discrete-to-continuum variational analysis of discrete systems”. Within this line of investigation
the analysis of spin systems turns out to be a difficult nonlinear optimization problem requiring
the combination of several methods ranging from simple discrete optimization procedures to so-
phisticated techniques in geometric measure theory and the calculus of variations. While models
where frustration is induced by the competition of ferromagnetic/antiferromagnetic interactions
have been already studied from a variational perspective (see, e.g., [1, 24, 12, 36, 20, 28]), what
we present here is the first discrete-to-continuum result for a geometrically frustrated system.

We carry out the discrete-to-continuum variational analysis (at zero temperature) of a geometri-
cally frustrated spin model in a specific energetic regime and we characterize the effective behavior
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of its low-energy states, that is states that can deviate from the global minimizers (ground states)
by a certain small amount of energy. More precisely we consider a 2-dimensional nearest-neighbors
antiferromagnetic planar spin model on the triangular lattice, cf. [30, Chapter 1]. Despite being
considered one of the most elementary geometrically frustrated spin models, its variational analysis
turns out to be quite a delicate task. More in detail, we let ε > 0 be a small parameter and we
consider the triangular lattice Lε with spacing ε (see Subsection 2.2 for the precise definition). To
every spin field u : Lε → S1 we associate the energy∑

εσ,εσ′∈Lε
|σ−σ′|=1

〈u(εσ), u(εσ′)〉 , (1.1)

where 〈·, ·〉 denotes the scalar product. (Below, the energy will be restricted to bounded regions in
the plane.) This model is antiferromagnetic since the interaction energy between two neighboring
spins is minimized by two opposite vectors. Such an order in the magnetic alignment, also known
as antiferromagnetic order, is frustrated by the geometry of the triangular lattice, which inhibits
a configuration where each pair of neighboring spins are opposite or, equivalently, where each
interaction is minimized. This suggests that the antiferromagneticXY model depends substantially
on the geometry of the lattice, which affects the structure of the ground states, the choice of
the relevant variables and of the energy scalings. Notice, for example, that on a square lattice
the system would not be frustrated, as opposite vectors distributed in a checkerboard structure
minimize each interaction. In fact, on the square lattice a straightforward change of variable allows
one to recast the antiferromagnetic XY model into the ferromagnetic XY model [2, Remark 3],
which is driven by an energy with neighboring interactions −〈u(εσ), u(εσ′)〉. The latter model has
been thoroughly investigated in the last decade both on the square lattice [2, 3, 5, 21, 22] and on the
triangular lattice [18, 29]. Independently of the geometry of the lattice, it has been proved that spin
fields that deviate from the ground states by an amount of energy which diverges logarithmically as
ε vanishes form of topological charges (vortex-like singularities of the spin field as those arising in
the Ginzburg-Landau model [10, 35]), when subject to boundary conditions or external magnetic
fields. In [9] we show how such a phenomenon also occurs in the antiferromagnetic XY model on
the triangular lattice.

We now come back to our model (1.1). In order to identify the relevant variable of the system,
we first need to characterize the ground states of the antiferromagnetic XY system in (1.1). To
this end it is convenient to rearrange the indices of the sum in (1.1) and to recast the energy as a
sum over all triangular plaquettes T with vertices εi, εj, εk ∈ Lε∑

T

(
〈u(εi), u(εj)〉+ 〈u(εj), u(εk)〉+ 〈u(εk), u(εi)〉

)
=

1

2

∑
T

(
|u(εi) + u(εj) + u(εk)|2 − 3

)
. (1.2)

In each triangle T the energy is minimized (and is equal to − 3
2 ) if and only if u(εi) + u(εj) +

u(εk) = 0, namely, when the vectors of a triple (u(εi), u(εj), u(εk)) point at the vertices of an
equilateral triangle. By the S1-symmetry, every rotation of a minimizing triple (u(εi), u(εj), u(εk))
is minimizing, too. The ground states in this model feature an additional symmetry, usually referred
to as Z2-symmetry: triple obtained by from a minimizing triple via a permutation of negative sign
as (u(εi), u(εk), u(εj)) is also minimizing. This determines two families of ground states, i.e., spin
fields for which the energy is minimized in each plaquette, see Figure 1. These two families can
be distinguished through the chirality, a scalar which quantifies the handedness of a certain spin
structure. To define the chirality of a spin field u in a triangle T , we need a consistent ordering
of its vertices εi, εj, εk. We assume that εi ∈ L1

ε, εj ∈ L2
ε, εk ∈ L3

ε, where L1
ε, L2

ε, L3
ε are the
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sublattices as in Figure 1, and we set (see (2.1) for the precise definition)

χ(u, T ) =
2

3
√

3

(
u(εi)×u(εj) + u(εj)×u(εk) + u(εk)×u(εi)

)
∈ [−1, 1] ,

where the symbol × stems for the cross product. We denote by χ(u) ∈ L∞(R2) the function equal
to χ(u, T ) on the interior of each plaquette T . The ground states are exactly those configurations
u that satisfy either χ(u) ≡ 1 or χ(u) ≡ −1, cf. Remark 2.2.

uposε unegε

ε

L1
ε L2

ε

L3
ε

Figure 1. A ground state uposε with positive chirality and a ground state unegε with negative

chirality. Any other ground state of the system is obtained by composing one of these two

configurations with a constant rotation. In the center: three points of the sublattices L1ε, L2ε,
and L3ε in black, gray, and white, respectively.

In this paper we analyze the energy regime at which the two families of ground states coexist
and at the same time the energy of the system concentrates at the interface between the two chiral
phases {χ = 1} and {χ = −1}. We fix Ω ⊂ R2 open, bounded, and with Lipschitz boundary and
we consider the energy (1.2) restricted to Ω, i.e., computed only on plaquettes of Lε contained in
Ω. We refer the energy to its minimum by removing the energy of the ground states (− 3

2 for each

plaquette) and we divide it by the number of lattice points in Ω (of order 1/ε2). We obtain (up to
a multiplicative constant) the energy per particle given by

Eε(u) =
∑
T⊂Ω

ε2|u(εi) + u(εj) + u(εk)|2.

We are interested to the asymptotic behavior of the energy above as ε → 0 on sequences of spin
fields uε : Lε → S1 that can deviate from ground states yet satisfying a bound Eε(uε) ≤ Cε. To this
end we define the energy Fε(u) := 1

εEε(u) and study sequences of spin fields with equibounded Fε
energy. Due to the S1-symmetry, the energy at this regime cannot distinguish ground states with
the same chirality, so that the relevant order parameter of the model is, in fact, not the spin field
but its chirality: in Proposition 3.1 we prove that a sequence (uε) satisfying Fε(uε) ≤ C admits a
subsequence (not relabeled) such that χ(uε)→ χ strongly in L1(Ω) for some χ ∈ BV (Ω; {−1, 1}),
i.e., the admissible chiralities in the continuum limit are−1 and 1 and the chirality phases {χ = −1}
and {χ = 1} have finite perimeter in Ω. This suggests that the model shares similarities with
systems having finitely many phases, such as Ising models [17, 1, 34] or Potts models [23]. However,
a crucial difference consists in the fact that in our case the variable that shows a phase transition
is not the spin variable itself, but the chirality, which depends on the spin field in a nonlinear way.
This is a source of difficulties that will be explained below.

To describe the asymptotic behavior of the system it is convenient to introduce the functionals
depending only on functions χ ∈ L1(Ω) defined (with a slight abuse of notation) by Fε(χ) :=
inf{Fε(u) : u : Lε → S1 such that χ = χ(u, T ) on every T ⊂ Ω} (equal to +∞ if χ is not the
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chirality of a spin field). The main result in this paper is Theorem 2.5, where we prove that the
Γ-limit of Fε with respect to the L1-convergence is an anisotropic surface energy given by

F (χ) =

∫
Jχ

ϕ(νχ) dH1 for χ ∈ BV (Ω; {−1, 1}) ,

extended to +∞ otherwise in L1(Ω), where Jχ is the interface between {χ = −1} and {χ = 1}
and νχ is the normal to Jχ. The density ϕ is given by the following asymptotic formula

ϕ(ν) = lim
ε→0

min
{
Fε(u,Q

ν) : u = upos
ε on ∂+

ε Q
ν , u = uneg

ε on ∂−ε Q
ν
}
, (1.3)

where Qν is the square with one side orthogonal to ν, upos
ε and uneg

ε are the ground states depicted
in Figure 1, and ∂±ε Q

ν are a discrete version of the top/bottom parts of ∂Qν . Asymptotic formulas
like (1.3) are common in discrete-to-continuum variational analyses and are often used to represent
Γ-limits of discrete energies [6, 12, 15, 14, 8, 31]. However, proving an asymptotic lower bound with
the density (1.3) for this model requires additional care and is the technically most demanding
contribution of this paper. We conclude this introduction by describing the main difficulties that
arise in the proof.

Via a classical blow-up argument (see Proposition 4.1) we obtain an asymptotic lower bound
with the surface density

ψ(ν) = inf
{

lim inf
ε→0

Fε(uε, Q
ν) : χ(uε)→ χν in L1(Qν)

}
, (1.4)

where χν is the pure-jump function which takes the values χν(x) = ±1 for ±〈x, ν〉 > 0. Hence,
the proof of the asymptotic lower bound boils down to the proof of the inequality ψ(ν) ≥ ϕ(ν).
To obtain the latter inequality, we need to modify sequences (uε) with χ(uε) → χν in L1(Qν)
without increasing their energy in such a way that they attain the boundary conditions required
in (1.3). A common approach to deal with this modification consists in selecting (via a well-known
slicing/averaging argument due to De Giorgi) a low-energy frame contained in Qν and close to
∂Qν where the sequence can be modified using a cut-off function that interpolates to the boundary
values. In our problem, instead, a cut-off modification of χ(uε) may generate a sequence of functions
that are not chiralities of spin fields (and thus have infinite energy Fε). Consequently, we have to
operate directly on the sequence (uε), on whose convergence we have no information due to the
invariance of the system under rotation of the spin field (the S1-symmetry discussed above). We
turn however the S1-symmetry to our advantage to define the needed modification. Inside a one-
dimensional slice of Lε, a spin field close to a ground state in one triangle can be slowly rotated to
reach any other ground state with the same chirality by paying an amount of energy proportional
to the energy in the starting triangle (see Lemma 4.5). This one-dimensional construction can then
be reproduced in the whole Qν starting from triangles in a low-energy frame close to ∂Qν in such
a way that the modified spin field attains the fixed ground states upos

ε and uneg
ε at the (discrete)

boundary. However, for this procedure to be successful, the usual slicing/averaging method to
find a low-energy frame close to ∂Qν is not enough. We need to improve it and to find a frame
with a better (smaller) energy bound. To this end, we proceed as follows. In Lemma 4.3 we show
that ψ(ν) can be equivalently defined using in place of Qν any rectangle coinciding with Qν along
the interface, but with arbitrarily small height (similar results appeared in different contexts, e.g.,
[16, 17, 25, 19, 26, 27, 31]). Hence the energy of any sequence (uε) admissible for (1.4) concentrates
arbitrarily close to the jump set of χν , i.e., the interface {〈x, ν〉 = 0}. (This is, in general, not true
for discrete systems, as observed in [11].) With this result at hand, in Lemma 4.4 we can apply
the averaging method with the advantage of knowing that in most of the space the total energy is
going to vanish, thus finally deducing the existence of a frame close to ∂Qν with the wished (small
enough) energy bound. Even at this point, to reproduce the one-dimensional interpolation along
this frame requires additional care. In fact, to conclude the argument one still needs to prove that
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the winding number of the spin field in the low-energy frame can be properly controlled (Step 3 of
Proposition 4.2).

2. Setting of the problem and statement of the main result

2.1. General notation. Throughout this paper Ω ⊂ R2 is an open, bounded set with Lipschitz
boundary. For every A ⊂ R2 measurable we denote by |A| its 2-dimensional Lebesgue measure.
With H1 we indicate the 1-dimensional Hausdorff measure in R2. Given two points x, y ∈ R2

we use the notation [x; y] := {λx + (1 − λ)y : λ ∈ [0, 1]} for the segment joining x and y. The
set S1 := {ν ∈ R2 : |ν| = 1} is the set of all 2-dimensional unit vectors. For every such vector
ν = (ν1, ν2) ∈ S1 we denote by ν⊥ := (−ν2, ν1) ∈ S1 the unit vector orthogonal to ν obtained
by rotating ν counterclockwise by π/2. Given v, w ∈ S1 we denote by 〈v, w〉 their scalar product
and by v×w = −〈v, w⊥〉 their cross product. We denote by ι the imaginary unit in the complex
plane. It will be often convenient to write vectors in S1 as exp(ιθ), θ ∈ R. We denote by Rν`,h the

rectangle of length ` > 0 and height h > 0 with two sides orthogonal to ν ∈ S1 given by

Rν`,h := {x ∈ R2 : |〈x, ν⊥〉| < `/2 , |〈x, ν〉| < h/2} ,
extending the definition to the case ` = +∞ by setting Rν∞,h := {x ∈ R2 : |〈x, ν〉| < h/2}. Given
ρ > 0 we define the cube centered at the origin with side length ρ and one face orthogonal to ν
by Qνρ := Rνρ,ρ. For ρ = 1 we simply write Qν instead of Qν1 . By Lν := {x ∈ R2 : 〈x, ν〉 = 0}
we denote the line orthogonal to ν passing through the origin, while Hν

+ := {x ∈ R2 : 〈x, ν〉 ≥ 0}
and Hν

− := R2 \ Hν
+ stand for the two half spaces separated by Lν . Given x0 ∈ R2 we set

Qνρ(x0) := x0 +Qνρ, Rν`,h(x0) := x0 +Rν`,h, Lν(x0) := x0 + Lν and Hν
±(x0) := x0 +Hν

±.

2.2. Triangular lattices and discrete energies. In this paragraph we define the discrete energy
functionals we consider in this paper. To this end we first define the triangular lattice L. It is
given by

L := {z1ê1 + z2ê2 : z1, z2 ∈ Z} ,

with ê1 = (1, 0), and ê2 = 1
2 (1,
√

3). For later use, we find it convenient here to introduce

ê3 := 1
2 (−1,

√
3) as a further unit vector connecting points of L and to define three pairwise

disjoint sublattices of L, denoted by L1, L2, and L3 (see Figure 1), by

L1 := {z1(ê1 + ê2) + z2(ê2 + ê3) : z1, z2 ∈ Z} , L2 := L1 + ê1 , L3 := L1 + ê2 .

Eventually, we define the family of triangles subordinated to the lattice L by setting

T (R2) :=
{
T = conv{i, j, k} : i, j, k ∈ L, |i− j| = |j − k| = |k − i| = 1

}
,

where conv{i, j, k} denotes the closed convex hull of i, j, k. It is also convenient to introduce the
families of upward/downward facing triangles

T ±(R2) :=
{
T = conv{i, j, k} ∈ T (R2) : i ∈ L1, j ∈ L2, k ∈ L3, ±(j − i)×(k − j)×(i− k) > 0

}
.

For ε > 0, we consider rescaled versions of L and T (R2) given by Lε := εL and Tε(R2) :=
εT (R2), T ±ε (R2) := εT ±(R2). With this notation every T ∈ Tε(R2) has vertices εi, εj, εk ∈ Lε.
The same notation applies to the sublattices, namely Lαε := εLα for α ∈ {1, 2, 3}. Given a Borel
set A ⊂ R2 we denote by Tε(A) := {T ∈ Tε(R2) : T ⊂ A} the subfamily of triangles contained in A.
Eventually, we introduce the set of admissible configurations as the set of all spin fields

SFε := {u : Lε → S1} .
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In the case ε = 1 we set SF := SF1. For u ∈ SFε we now define the discrete energies Fε(u) as
follows: for every T ∈ Tε(R2) we set

Fε(u, T ) := ε|u(εi) + u(εj) + u(εk)|2 ,
and we extend the energy to any Borel set A ⊂ R2 by setting

Fε(u,A) :=
∑

T∈Tε(A)

Fε(u, T ) .

If A = Ω we omit the dependence on the set and write Fε(u) := Fε(u,Ω).

2.3. Chirality. In this section we introduce the relevant order parameter to analyze the as-
ymptotic behavior of Fε, namely the chirality χ. More in detail, given u ∈ SFε and T =
conv{εi, εj, εk} ∈ Tε(R2) with i ∈ L1, j ∈ L2 and k ∈ L3 we set

χ(u, T ) :=
2

3
√

3

(
u(εi)×u(εj) + u(εj)×u(εk) + u(εk)×u(εi)

)
. (2.1)

Moreover, we define χ(u) : Ω→ R by setting χ(u)(x) := χε(u, T ) if x ∈ intT . Given u ∈ SFε and
T = conv{εi, εj, εk} ∈ Tε(R2) it is sometimes convenient to rewrite χε(u, T ) and Fε(u, T ) in terms
of the angular lift of u. More precisely, let θ(εi), θ(εj), θ(εk) ∈ R be such that u(εα) = exp(ιθ(εα)),
α ∈ {i, j, k}. Then

χ(u, T ) =
2

3
√

3

(
sin
(
θ(εj)− θ(εi)

)
+ sin

(
θ(εk)− θ(εj)

)
+ sin

(
θ(εi)− θ(εk)

))
, (2.2)

Fε(u, T ) = 3ε+ 2ε
(

cos
(
θ(εj)− θ(εi)

)
+ cos

(
θ(εk)− θ(εj)

)
+ cos

(
θ(εi)− θ(εk)

))
. (2.3)

The next lemma is useful to relate the chirality and the energy in a triangle.

Lemma 2.1. Let f, g : [0, 2π)×[0, 2π)→ R be given by

f(θ1, θ2) := sin(θ1) + sin(θ2 − θ1)− sin(θ2) ,

g(θ1, θ2) := cos(θ1) + cos(θ2 − θ1) + cos(θ2) .

Then f and g have the following properties:

(i) f(θ1, θ2) ∈ [− 3
√

3
2 , 3

√
3

2 ] for every θ1, θ2 ∈ [0, 2π). Moreover, f(θ1, θ2) ∈ {− 3
√

3
2 , 3

√
3

2 } if

and only if g(θ1, θ2) = − 3
2 .

(ii) f(θ1, θ1) = f(θ1, 0) = f(0, θ2) = 0 for every θ1, θ2 ∈ [0, 2π). In addition, for every
θ2 ∈ (0, 2π) there holds f( · , θ2) > 0 on (0, θ2) and f( · , θ2) < 0 on (θ2, 2π).

Proof. Since there obviously holds f(θ1, θ1) = f(θ1, 0) = f(0, θ2) = 0, we only need to prove (i)

and the second part of (ii). To prove (i) we show that min f = − 3
√

3
2 and max f = 3

√
3

2 and we
relate minimizers and maximizers of f to minimizers of g. To this end we start computing

∇f(θ1, θ2) =

(
cos(θ1)− cos(θ2 − θ1)
cos(θ2 − θ1)− cos(θ2)

)
and ∇g(θ1, θ2) =

(
− sin(θ1) + sin(θ2 − θ1)
− sin(θ2 − θ1)− sin(θ2)

)
.

A direct calculation shows that ∇f(θ1, θ2) = 0 for some (θ1, θ2) ∈ (0, 2π)×(0, 2π) if and only if

θ1 =
θ2

2
+ z1π and θ2 =

θ1

2
+ z2π , for some z1, z2 ∈ {0, 1} . (2.4)

For (θ1, θ2) ∈ (0, 2π)×(0, 2π) this can only be satisfied if

(θ1, θ2) = (2π
3 ,

4π
3 ) or (θ1, θ2) = (4π

3 ,
2π
3 ) . (2.5)
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Then, since f = 0 on the boundary of [0, 2π)×[0, 2π), we deduce that

min
[0,2π)×[0,2π)

f = f
((4π

3
,

2π

3

))
= −3

√
3

2
and max

[0,2π)×[0,2π)
f = f

((2π

3
,

4π

3

))
=

3
√

3

2
.

Moreover, g(( 2π
3 ,

4π
3 )) = g(( 4π

3 ,
2π
3 )) = − 3

2 , which shows one direction of the second part of (i). To

prove the opposite direction, let us assume that (θ1, θ2) ∈ (0, 2π)×(0, 2π) is such that g((θ1, θ2) =
min g. Then necessarily ∇g(θ1, θ2) = 0, from which we deduce that (θ1, θ2) must satisfy (2.4) (the
possibility that θ1 = π or θ2 = π are ruled out by the fact that g( · , π) = g(π, · ) = −1). The
pairs (θ1, θ2) satisfying (2.4) are either (θ1, θ2) = ( 2π

3 ,
4π
3 ) or (θ1, θ2) = ( 4π

3 ,
2π
3 ) and in both cases

it holds g(θ1, θ2) = − 3
2 . This yields that min g = − 3

2 and that the opposite direction of (i) holds,
upon noticing that g ≥ −1 on the boundary of [0, 2π)×[0, 2π). To complete the proof of (ii) let us

fix θ2 ∈ (0, 2π) and consider f( · , θ2) as a function of θ1. Then (2.4) shows that ∂f
∂θ1

(θ1, θ2) = 0 if

and only if θ1 ∈ {θpos
2 , θneg

2 }, where

θpos
2 :=

θ2

2
∈ (0, θ2) , θneg

2 :=
θ2

2
+ π ∈ (θ2, 2π) . (2.6)

Moreover, upon extending f( · , θ2) to an open interval containing (0, 2π), we get

∂f

∂θ1
(0, θ2) =

∂f

∂θ1
(2π, θ2) = 1− cos(θ2) > 0 and

∂f

∂θ1
(θ2, θ2) = cos(θ2)− 1 < 0 .

In particular, from the intermediate value theorem we deduce that f( · , θ2) is strictly increasing on
(0, θpos

2 ) and strictly decreasing on (θpos
2 , θ2). Since in addition f(0, θ2) = f(θ2, θ2) = 0 this implies

that f( · , θ2) > 0 on (0, θ2). Arguing similarly on the intervals (θ2, θ
neg
2 ) and (θneg

2 , 2π) we obtain
f( · , θ2) < 0 on (θ2, 2π), which proves (ii). �

Remark 2.2. Using the expressions of χ(u, T ) and Fε(u, T ) in (2.2)–(2.3) one can show that
χ(u, T ) ∈ [−1, 1] and χ(u, T ) ∈ {−1, 1} if and only if Fε(u, T ) = 0, i.e., configurations that
maximize or minimize χ( · , T ) are at the same time minimizers for Fε( · , T ). This follows from
Lemma 2.1 (i) upon noticing that in (2.2)–(2.3) it is not restrictive to assume that θ(εi) = 0, since
both χε and Fε are invariant under rotations in u. We observe that also a quantitative version of
this property holds. Namely, a continuity argument shows that for every δ > 0 there exists Cδ > 0
such that for every u ∈ SFε and every T ∈ Tε(R2) the following implication holds:

χ(u, T ) ∈ (−1 + δ, 1− δ) =⇒ Fε(u, T ) ≥ Cδε . (2.7)

Remark 2.3. As a consequence of Lemma 2.1 (ii) one obtains the following characterization of the
sign of the chirality. Let θ(εj) ∈ [0, 2π) be the angle between u(εi) and u(εj) and let θ(εk) ∈ [0, 2π)
the angle between u(εi) and u(εk). Then χ(u, T ) > 0 if and only if θ(εj) < θ(εk) and and
χ(u, T ) < 0 if and only if θ(εj) > θ(εk). In other words, a positive chirality on T = conv{εi, εj, εk}
corresponds to a counterclockwise ordering of (u(εi), u(εj), u(εk)) on S1, while a negative chirality
corresponds to a clockwise ordering on S1.

εi εj

εk

u(εi)

u(εj)

u(εk) εi εj

εk

u(εi)

u(εj)

u(εk)

Figure 2. On the left: a configuration of vectors with positive chirality which shows the criterion
explained in Remark 2.3. On the right: negative chirality.
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2.4. Statement of the main result. Notice that χ(u) ∈ L1(Ω). We then extend Fε to L1(Ω)
by setting

Fε(χ) = inf{Fε(u) : u ∈ SFε , χ(u) = χ} , (2.8)

with the convention inf ∅ = +∞.

Remark 2.4. If χ ∈ L1(Ω) is such that χ = χ(u) for some u ∈ SFε, then the infimum in (2.8) is
actually a minimum.

To state the main theorem we need to introduce two ground states, that we name upos
ε , uneg

ε ∈
SFε which have a uniform chirality equal to +1 and −1, respectively. They are given by

upos
ε (x) :=


exp(ι0) if x ∈ L1

ε ,

exp(ι2π/3) if x ∈ L2
ε ,

exp(ι4π/3) if x ∈ L3
ε ,

uneg
ε (x) :=


exp(ι0) if x ∈ L1

ε ,

exp(ι4π/3) if x ∈ L2
ε ,

exp(ι2π/3) if x ∈ L3
ε ,

for every x ∈ Lε. We also set upos := upos
1 , uneg := uneg

1 . The ground states upos and uneg will be
used as boundary conditions on the discrete boundary of the square Qν given by

∂±ε Q
ν = {x ∈ Lε : ± 〈ν, x〉 ≥ 3ε , dist(x, ∂Qν) ≤ 3ε} . (2.9)

Theorem 2.5. The energies Fε : L1(Ω) → [0,+∞] defined by (2.8) Γ-converge in the strong
L1(Ω)-topology to the functional F : L1(Ω)→ [0,+∞] given by

F (χ) :=


∫
Jχ

ϕ(νχ) dH1 if χ ∈ BV (Ω; {−1, 1}) ,

+∞ otherwise in L1(Ω) ,

(2.10)

where ϕ : S1 → [0,+∞) is defined by

ϕ(ν) := lim
ε→0

min
{
Fε(u,Q

ν) : u = upos
ε on ∂+

ε Q
ν , u = uneg

ε on ∂−ε Q
ν
}
. (2.11)

The proof of Theorem 2.5 will be carried out in Sections 4 and 5, where we prove separately
the asymptotic lower bound (Proposition 4.1) and the asymptotic upper bound (Proposition 5.1),
respectively.

Remark 2.6. By standard arguments in the analysis of asymptotic cell formulas (see e.g. [4,
Proposition 4.6]) one can show that the limit in (2.11) actually exists, so that ϕ is well defined.
Note that, by the symmetries of the interaction energies, there holds ϕ(−ν) = ϕ(ν). Moreover,
one can show (cf. [4, Proposition 4.7]) that the one-homogeneous extension of ϕ is convex, hence
continuous.

Remark 2.7. By a scaling argument we note that for all ρ > 0 there holds

ϕ(ν) = lim
ε→0

1

ρ
min

{
Fε(u,Q

ν
ρ) : u = upos

ε on ∂+
ε Q

ν
ρ , u = uneg

ε on ∂−ε Q
ν
ρ

}
, (2.12)

where ∂±ε Q
ν
ρ are defined according to (2.9) with Qνρ in place of Qν .

3. Compactness

Proposition 3.1. Let (uε) be a sequence of spin fields uε ∈ SFε satisfying

sup
ε
Fε(uε) < +∞ . (3.1)

Then there exists χ ∈ BV (Ω; {−1, 1}) such that up to subsequences χ(uε)→ χ in L1(Ω).
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To prove Proposition 3.1 we first estimate from below the energy of a spin field u on two
neighboring triangles where χ(u) changes sign. Given a triangle T ∈ Tε(R2) we introduce the class
Nε(T ) of its neighboring triangles, namely those triangles in Tε(R2) that share a side with T . More
precisely, we define

Nε(T ) := {T ′ ∈ Tε(R2) : H1(T ∩ T ′) = ε} . (3.2)

Lemma 3.2. Let u ∈ SFε and suppose that T pos, T neg ∈ Tε(R2) with T neg ∈ Nε(T pos) are such
that χ(u, T pos) ≥ 0 and χ(u, T neg) ≤ 0. Then Fε(u, T

pos ∪ T neg) ≥ 5
3ε.

Proof. It is not restrictive to assume that T pos = conv{εi, εj, εk} and T neg = conv{εi, εj′, εk}
with i ∈ L1, j, j′ ∈ L2 and k ∈ L3. Moreover, we can assume that u(εi) = ê1, that is, θ(εi) = 0
according to the notation in (2.2)–(2.3). Then, using the function g : [0, 2π)× [0, 2π)→ R defined
in Lemma 2.1, we can rewrite Fε(u, T

pos ∪ T neg) as

Fε(u, T
pos ∪ T neg) = 6ε+ 2ε

(
g
(
θ(εj), θ(εk)

)
+ g
(
θ(εj′), θ(εk)

))
.

Moreover, thanks to Lemma 2.1 (ii) the chirality constraint reads 0 ≤ θ(εj) ≤ θ(εk) ≤ θ(εj′).
Thus, the statement is proved if we show that for all θ1, θ2, θ3 ∈ [0, 2π) with 0 ≤ θ1 ≤ θ2 ≤ θ3

there holds

6 + 2
(
g(θ1, θ2) + g(θ3, θ2)

)
≥ 5

3
. (3.3)

We first observe that (3.3) trivially holds if θ2 = 0 or θ2 = π. Indeed, if θ2 = 0, then also θ1 = 0,
hence g(θ1, θ2) + g(θ3, θ2) = 4 + 2 cos(θ3) ≥ 2, thus (3.3) is satisfied. If, instead, θ2 = π, then a
direct computation shows that g(θ1, θ2) + g(θ3, θ2) = −2 for every θ1, θ3 ∈ [0, 2π), which directly
gives (3.3).

Suppose now that θ2 ∈ (0, 2π) \ {π} and let us minimize g( · , θ2) on the two intervals [0, θ2] and

[θ2, 2π). As in the proof of Lemma 2.1 we obtain that ∂g
∂θ1

(θ1, θ2) = 0 if and only if θ1 ∈ {θpos
2 , θneg

2 }
with θpos

2 , θneg
2 as in (2.6). Moreover, we have

∂2g

∂θ2
1

(θpos
2 , θ2) = −2 cos

(θ2

2

)
and

∂2g

∂θ2
1

(θneg
2 , θ2) = 2 cos

(θ2

2

)
. (3.4)

Thus, either θpos
2 ∈ (0, θ2) or θneg

2 ∈ (θ2, 2π) is a minimizer for g( · , θ2), depending on wether
θ2 ∈ (0, π) or θ2 ∈ (π, 2π). Suppose first that θ2 ∈ (π, 2π). Then (3.4) implies that g( · , θ2) is
minimized in [0, θ2) by θpos

2 , while in [θ2, 2π) it attains its minimum on the boundary, that is at
θ2. This yields

g(θ1, θ2) + g(θ3, θ2) ≥ g(θpos
2 , θ2) + g(θ2, θ2) = 2 cos

(θ2

2

)
+ 3 cos(θ2) + 1 , (3.5)

for every θ1 ∈ [0, θ2] and θ3 ∈ [θ2, 2π). Using the equality cos(θ2) = 2 cos2( θ22 )− 1, the estimate in
(3.5) can be continued via

g(θ1, θ2) + g(θ3, θ2) ≥ 6 cos2
(θ2

2

)
+ 2 cos

(θ2

2

)
− 2 . (3.6)

Since the mapping t 7→ 6t2 + 2t− 2 admits its minimum at t = −1/6, from (3.6) we finally deduce
that

g(θ1, θ2) + g(θ3, θ2) ≥ −13

6
,

which is equivalent to (3.3). Eventually, the case θ2 ∈ (0, π) follows similarly by exchanging the
roles of θ1 and θ3 and replacing θpos

2 by θneg
2 . �

Based on Lemma 3.2 we now prove Proposition 3.1.
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Proof of Proposition 3.1. We divide the proof in two steps. First, we construct a sequence (χ̂ε) of
auxiliary functions χ̂ε : Ω→ {−1, 1} whose level sets {χ̂ε = 1} have uniformly bounded perimeter.
Second, we show that the constructed auxiliary functions are close in L1(Ω) to the original chirality
functions χ(uε) defined according to (2.1).

Step 1. (Compactness of the auxiliary functions) Let ε > 0 and define χ̂ε : Ω→ {−1, 1} by

χ̂ε :=

{
1 if χ(uε) > 0 ,

−1 otherwise.

We claim that for every Ω′ ⊂⊂ Ω we have

H1(∂{χ̂ε = 1} ∩ Ω′) ≤ 5Fε(uε) . (3.7)

Then the uniform bound (3.1) together with [7, Theorem 3.39 and Remark 3.37] yields the existence
of a function χ ∈ BV (Ω; {−1, 1}) and a subsequence (not relabelled) such that χ̂ε → χ in L1(Ω).
To prove (3.7) it is convenient to consider the class of triangles

T pos
ε := {T ∈ Tε(Ω): χ(uε, T ) > 0 and χ(uε, T

′) ≤ 0 for some T ′ ∈ Nε(T ) ∩ Tε(Ω)} ,

where Nε(T ) is as in (3.2). Let Ω′ ⊂⊂ Ω. By the very definition of χ̂ε and of χ(uε) we have

∂{χ̂ε = 1} ∩ Ω′ ⊂ ∂
( ⋃
T∈T pos

ε

T
)
,

provided
√

3ε < dist(Ω′, ∂Ω). Estimating the H1-measure of the latter set in terms of the cardi-
nality of T pos

ε we thus infer

H1(∂{χ̂ε = 1} ∩ Ω′) ≤ 3ε#T pos
ε . (3.8)

The last term in (3.8) can be bounded using Lemma 3.2. Indeed, from Lemma 3.2 we deduce that

5

3
ε#T pos

ε ≤
∑

T∈Tε(Ω)

∑
T ′∈Nε(T )∩Tε(Ω)

Fε(uε, T ∪ T ′) ≤ 3Fε(uε), (3.9)

where the additional factor 3 comes from the fact that each triangle is counted 3 times. Thus,
(3.7) follows from (3.8) and (3.9).

Step 2. (Closeness to χ(uε)) We claim that for every δ > 0 and every Ω′ ⊂⊂ Ω there holds

lim
ε→0

∣∣{|χ̂ε − χ(uε)| > δ} ∩ Ω′
∣∣ = 0 , (3.10)

i.e., the functions χ̂ε − χ(uε) converge to 0 locally in measure. Since ‖χ̂ε − χ(uε)‖∞ ≤ 2, this
implies that (χ̂ε − χ(uε)) → 0 in L1(Ω), which concludes the proof of the Proposition 3.1 thanks
to Step 1. It remains to prove the claim (3.10). Let Ω′ ⊂⊂ Ω and δ > 0 and let Cδ be given by
(2.7). Setting

T δε := {T ∈ Tε(Ω): χ(uε, T ) ∈ (−1 + δ, 1− δ)} ,
for ε sufficiently small we deduce that

|{|χ̂ε − χ(uε)| > δ} ∩ Ω′| ≤
√

3

4
ε2#T δε ≤

√
3

4
εC−1

δ

∑
T∈T δε

Fε(uε, T ) ≤
√

3

4
εC−1

δ Fε(uε) .

Hence, (3.10) follows from the uniform bound (3.1). �
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4. Lower Bound

In this section we start proving the main result of our paper, namely Theorem 2.5 by presenting
the optimal lower bound estimate on the energy Fε, the technically most demanding part of our
contribution. We begin with a blow-up argument that gives us a first asymptotic lower bound.

Proposition 4.1. Let Fε be as in (2.8). Then for every χ ∈ L1(Ω) we have

Γ- lim inf
ε→0

Fε(χ) ≥ F (χ) ,

where F is given by (2.10) and the Γ- lim inf is with respect to the strong topology in L1(Ω).

Proof. Let χε → χ in L1(Ω). We assume that lim infε Fε(χε) < +∞, otherwise we have nothing
to prove. Moreover, upon extracting a (not relabeled) subsequence we can assume the liminf
to be a limit and hence supε Fε(χε) < +∞. In view of Remark 2.4 we can find a sequence of
spin fields uε ∈ SFε with χ(uε) = χε and Fε(χε) = Fε(uε). In particular, supε Fε(uε) < +∞.
Thus, from Proposition 3.1 we deduce that χ ∈ BV (Ω; {−1, 1}). As a consequence, to prove the
statement of the proposition it suffices to show that

lim inf
ε→0

Fε(uε) ≥
∫
Jχ

ϕ(νχ) dH1, (4.1)

where ϕ is as in (2.11). To prove (4.1) we consider the sequence of non-negative finite Radon
measures µε given by

µε :=
∑

T∈Tε(Ω)

ε|uε(εi) + uε(εj) + uε(εk)|2δεi ,

where δεi denotes the Dirac delta in εi. From the condition supε Fε(uε) < +∞ it follows that
supε µε(Ω) < +∞, hence there exists a non-negative finite Radon measure µ such that up to

subsequences (not relabeled) µε
∗
⇀ µ. By the Radon-Nikodým Theorem the measure µ can be

decomposed in the sum of two mutually singular non-negative measures as

µ = µjH1 Jχ + µs .

Then, to establish (4.1) it is sufficient to show that

µj(x0) ≥ ϕ(νχ(x0)) for H1-a.e. x0 ∈ Jχ , (4.2)

where νχ(x0) denotes the measure theoretic normal to Jχ at x0. To verify (4.2) we choose x0 ∈ Jχ
satisfying

(i) µj(x0) =
dµ

dH1 Jχ
(x0) = lim

ρ→0

µ(Qνρ(x0))

ρ
, where we have set ν := νχ(x0),

(ii) lim
ρ→0

1

ρ2

∫
Qνρ(x0)∩Hν+(x0)

|χε(x)− 1|dx = 0 = lim
ρ→0

1

ρ2

∫
Qνρ(x0)∩Hν−(x0)

|χε(x) + 1|dx,

and we notice that (i) and (ii) are satisfied for H1-a.e. x0 ∈ Jχ thanks to the Besicovitch derivation
Theorem and the definition of approximate jump point, respectively. Moreover, since µ is a finite
Radon measure, we can choose a sequence ρn → 0 along which µ(∂Qνρn(x0)) = 0. Thanks to [7,

Proposition 1.62 (a)], the convergence µε
∗
⇀ µ together with (i) implies that

µj(x0) = lim
n→+∞

µ(Qνρn(x0))

ρn
= lim
n→+∞

lim
ε→0

µε(Q
ν
ρn(x0))

ρn
≥ lim
n→+∞

lim sup
ε→0

1

ρn
Fε(uε, Q

ν
ρn(x0)) , (4.3)
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where the last inequality follows from the positivity of the energy. Notice that for every n ∈ N
there exist sequences (ρεn) and (xε0) with limε ρ

ε
n = ρn, limε x

ε
0 = x0, xε0 ∈ Lε, and

Tε(Qνρεn(xε0)) ⊂ Tε(Qνρn(x0)) .

In fact, if we write x0 in terms of the basis ê1, ê2 as x0 = a1ê1 + a2ê2 for some a1, a2 ∈ R, we
obtain the required sequence (xε0) by setting

xε0 := ε
⌊a1

ε

⌋
ê1 + ε

⌊a2

ε

⌋
ê2 ∈ Lε .

Then, upon noticing that |xε0−x0| ≤ 2ε, it suffices to set ρεn := ρn−4ε. Indeed, if T ∈ Tε(Qνρεn(xε0)),
by definition we have that for every x ∈ T

|〈x− xε0, ν〉| <
ρεn
2

and |〈x− xε0, ν⊥〉| <
ρεn
2
,

so that for any x ∈ T there also holds

|〈x− x0, ν〉| ≤ |〈x− xε0, ν〉|+ |xε0 − x0| <
ρn
2
,

and similarly |〈x − x0, ν
⊥〉| < ρn/2, hence T ∈ Tε(Qνρn(x0)). As a consequence, we obtain the

following estimate

1

ρn
Fε(uε, Q

ν
ρn(x0)) ≥ ρεn

ρn

ε

ρεn

∑
T∈Tε(Qνρn (xε0))

|uε(εi) + uε(εj) + uε(εk)|2

=
ρεn
ρn

∑
T∈Tσεn (Qν

σεn
)

σεn|vε,n(σεni) + vε,n(σεnj) + vε,n(σεnk)|2,
(4.4)

where we have set σεn := ε/ρεn and vε,n(z) := uε(x
ε
0 +ρεnz) for every z ∈ Lσεn . Let χν : R2 → {−1, 1}

be given by

χν(x) :=

{
1 if 〈x, ν〉 ≥ 0 ,

−1 if 〈x, ν〉 < 0 .

Then (ii) ensures that χ(vε,n)→ χν in L1(Qν) as first ε→ 0 and then n→ +∞. Thus, gathering
(4.3)–(4.4) and applying a diagonal argument we find a sequence σm := εm/ρnm converging to 0
as m→ +∞ such that for vm := vεm,nm there holds χ(vm)→ χν in L1(Qν) and

µj(x0) ≥ lim inf
m→+∞

Fσm(vm, Q
ν) .

For `, h > 0 let us finally introduce the minimization problem

ψ(`, h, ν) :=
1

`
inf
{

lim inf
ε→0

Fε(uε, R
ν
`,h) : χ(uε)→ χν in L1(Rν`,h)

}
, (4.5)

so that the sequence (vm) is admissible for ψ(1, 1, ν). Then (4.2) follows from Proposition 4.2
below, concluding the proof of Proposition 4.1. �

Proposition 4.2. Let ψ be the function defined in (4.5). Then ψ(1, 1, ν) ≥ ϕ(ν) for every ν ∈ S1.

To prove Proposition 4.2 it is necessary to modify admissible sequences for the infimum problem
defining ψ(1, 1, ν) in such a way that they satisfy the boundary conditions required in the minimum
problem defining ϕ(ν), without essentially increasing the energy. This will be done by a careful
interpolation procedure based on several auxiliary results and estimates that we prefer to state in
separate lemmas below. As a first step towards the proof of Proposition 4.2 we show that ψ(`, h, ν)
is independent of ` and h, which in turn will allow us to conclude that the energy of admissible
functions for ψ(1, 1, ν) concentrates close to the line segment Lν (see Lemma 4.4 below).
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Lemma 4.3. Let ψ : (0,+∞)×(0,+∞)×S1 → [0,+∞] be given by (4.5); then ψ(·, ·, ν) is indepen-
dent of `, h for every ν ∈ S1.

Proof. Let ν ∈ S1 be fixed. To show that ψ(·, ·, ν) does not depend on `, h it suffices to show that
for every `, h, λ > 0 the following identities hold

ψ(λ`, h, ν) = ψ(`, h, ν) and ψ(`, λh, ν) = ψ(`, h, ν) . (4.6)

Let us fix `, h > 0. We first observe that

ψ(`, λh, ν) ≥ ψ(`, h, ν) for every λ ∈ [1,+∞) , (4.7)

ψ(`, h, ν) ≥ ψ(`, λh, ν) for every λ ∈ (0, 1) , (4.8)

since Fε is increasing as a set function. The proof of (4.6) is now divided into three steps.

Step 1. ψ is invariant under dilations, i.e.,

ψ(λ`, λh, ν) = ψ(`, h, ν) for every λ > 0 . (4.9)

Let (uε) be any sequence of spin fields uε : Lε → S1 with χ(uε)→ χν in L1(Rνλ`,λh). We define the

rescaled functions vε : Lε/λ → S1 by setting vε(z) := uε(λz) for every z ∈ Lε/λ. Then χ(vε)→ χν
in L1(Rν`,h) and

F ε
λ

(vε, R
ν
`,h) =

∑
T∈T ε

λ
(Rν`,h)

ε

λ
|vε( ελ i) + vε(

ε
λj) + vε(

ε
λk)|2

=
1

λ

∑
T∈Tε(Rνλ`,λh)

ε|uε(εi) + uε(εj) + uε(εk)|2 =
1

λ
Fε(uε, R

ν
λ`,λh) .

Setting η := ε/λ → 0 as ε → 0 and passing to the infimum over all admissible sequences (uε) we
deduce that

ψ(λ`, λh, ν) ≥ 1

`
inf
{

lim inf
η→0

Fη(vη, R
ν
`,h) : χ(vη)→ χν in L1(Rν`,h)

}
= ψ(`, h, ν) .

The opposite inequality and hence (4.9) follow by observing that

ψ(`, h, ν) = ψ(λ−1(λ`), λ−1(λh), ν) ≥ ψ(λ`, λh, ν) .

Note that thanks to (4.9) it suffices to show the first equality in (4.6). In fact, if the first equality
in (4.6) is true, from (4.9) we directly deduce that

ψ(`, λh, ν) = ψ(λ−1`, h, ν) = ψ(`, h, ν) for every λ > 0 .

Step 2. We continue establishing the first equality in (4.6) by showing that

ψ(N`, h, ν) = ψ(`, h, ν) for every N ∈ N . (4.10)

For N ∈ N fixed let (uε) be a sequence of spin fields satisfying χ(uε) → χν in L1(RνN`,h). We
subdivide the rectangle RνN`,h in N open rectangles of the form

Rν`,h(xm) with xm :=
(
m− N − 1

2

)
`ν⊥ for m ∈ {0, . . . , N − 1} .

Notice that x ∈ Rν`,h(xm) if and only if∣∣〈x, ν⊥〉 − (m− N − 1

2

)
`
∣∣ < `

2
and |〈x, ν〉| < h

2
,
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and therefore Rν`,h(xm) ⊂ RνN`,h for all m ∈ {0, . . . , N − 1}. By choosing m0 ∈ {0, . . . , N − 1} such

that Fε(uε, R
ν
`,h(xm0

)) ≤ Fε(uε, Rν`,h(xm)) for every m ∈ {0, . . . , N − 1} we obtain the estimate

1

N`
Fε(uε, R

ν
N`,h) ≥ 1

N`

N−1∑
m=0

Fε(uε, R
ν
`,h(xm)) ≥ 1

`
Fε(uε, R

ν
`,h(xm0

)) . (4.11)

We now define a suitable shifted version of uε whose energy is concentrated in a rectangle centered
at zero. To this end, as in the proof of Proposition 4.1 it is convenient to write the vector ν⊥ in
terms of the basis {ê1, ê2} as ν⊥ = a1ê1 + a2ê2 for some a1, a2 ∈ R and to introduce the vector
xεm0
∈ Lε given by

xεm0
:= ε

⌊(m0 − N−1
2

)
`a1

ε

⌋
ê1 + ε

⌊(m0 − N−1
2

)
`a2

ε

⌋
ê2 .

We then define spin fields vε : Lε → S1 by setting vε(z) := uε(z + xεm0
). As in the proof of

Proposition 4.1 we notice that |xεm0
− xm0

| ≤ 2ε, χ(vε)→ χν in L1(Rν`,h) and Rν`−4ε,h−4ε(x
ε
m0

) ⊂
Rν`,h(xm0

). Let us fix λ ∈ (0, 1) and ελ > 0 sufficiently small such that `− 4ελ > λ`, h− 4ελ > λh.

Then for every ε ∈ (0, ελ) there holds Tε(Rνλ`,λh(xεm0
)) ⊂ Tε(Rν`,h(xm0

)), hence

1

`
Fε(vε, R

ν
λ`,λh) ≤ 1

`
Fε(uε, R

ν
`,h(xm0

)) .

Moreover, since vε is admissible for ψ(λ`, λh, ν), we have

λψ(λ`, λh, ν) ≤ 1

`
lim inf
ε→0

Fε(vε, R
ν
λ`,λh) . (4.12)

Combining (4.9) in Step 1 with (4.11)–(4.12), in view of the arbitrariness of uε we finally obtain

λψ(`, h, ν) = λψ(λ`, λh, ν) ≤ ψ(N`, h, ν) .

Thus, by letting λ → 1 we deduce that ψ(`, h, ν) ≤ ψ(N`, h, ν). Finally, (4.10) follows from (4.9)
and (4.8) by observing that

ψ(`, h, ν) ≤ ψ(N`, h, ν) = ψ(`, hN , ν) ≤ ψ(`, h, ν) .

Step 3. We prove the first equality in (4.6). Suppose first that λ ∈ (0,+∞)∩Q. Then λ = N/M
for some N,M ∈ N, hence applying twice (4.10) yields

ψ(λ`, h, ν) = ψ(NM `, h, ν) = ψ( 1
M `, h, ν) = ψ(M( 1

M `), h, ν) = ψ(`, h, ν) . (4.13)

Suppose now that λ ∈ (0,+∞) and let (λn) ⊂ (0,+∞) ∩Q with λn → λ as n→ +∞, λn > λ for
every n ∈ N. Thanks to (4.9) and (4.13) we deduce that

ψ(λ`, h, ν) = ψ(λn`,
λn
λ h, ν) = ψ(`, λnλ h, ν) ≥ ψ(`, h, ν) ,

where the last inequality follows from (4.7), since λn/λ > 1. To prove the opposite inequality it
suffices to take a sequence (λn) ⊂ (0,+∞) ∩ Q converging to λ with λn < λ. Then, arguing as
before and now applying (4.7) we obtain

ψ(λ`, h, ν) = ψ(`, λnλ h, ν) ≤ ψ(`, h, ν) ,

hence equality follows. �

On account of Lemma 4.3 we show that for a sequence (uε) realizing the infimum in the definition
of ψ(1, 1, ν) the energy concentrates close to the line Lν . As a consequence, we obtain that outside
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a small neighborhood of Lν there exists a suitable strip on which the energy is of order o(ε). To
be more precise, for fixed ν ∈ S1, δ > 0, and every ε > 0 we introduce the class S ν

ε,δ of strips

S ν
ε,δ :=

{
Qνr+12ε \

(
Q
ν

r ∪R
ν

1,δ

)
: r ∈ (1− 3δ, 1− 2δ)

}
. (4.14)

We denote the elements of S ν
ε,δ by Sε,r. Then the following result holds true.

Lemma 4.4. Let ν ∈ S1 and let (uε) be a sequence such that χ(uε) → χν in L1(Qν) and
Fε(uε, Q

ν) → ψ(1, 1, ν). Then for every δ > 0 there exists a sequence σε → 0 (depending on
δ) and a strip Sε = Sε,rε ∈ S ν

ε,δ such that

Fε(uε, Sε) + ‖χ(uε)− χν‖L1(Sε) ≤ εσε . (4.15)

Proof. Let ν ∈ S1 and (uε) be as in the statement and let δ > 0 be fixed. For every Borel set
A ⊂ Qν set

Gε(uε, A) := Fε(uε, A) +

∫
A

|χ(uε)− χν |dx .

We consider for ε small enough the family of pairwise disjoint strips Sε,rmε ∈ S ν
ε,δ with rmε =

1− 3δ + 12mε and m ∈ {0, . . . , b δ
12εc − 1} and we notice that

b δ
12ε c−1⋃
m=0

Sε,rmε ⊂ Qν1−2δ \ (Q
ν

1−3δ ∪R
ν

1,δ) ⊂ Qν \R
ν

1,δ .

This implies in particular that

b δ
12ε c−1∑
m=0

Gε(uε, Sε,rmε ) ≤ Gε
(
uε,

b δ
12ε c−1⋃
m=0

Sε,rmε

)
≤ Fε(uε, Qν \R

ν

1,δ) +

∫
Qν\Rν1,δ

|χ(uε)− χν |dx .

Averaging over m ∈ {0, . . . , b δ
12εc − 1} we thus find m(ε) such that the strip S

ε,r
m(ε)
ε

satisfies

Gε(uε, Sε,rm(ε)
ε

) ≤
⌊ δ

12ε

⌋−1(
Fε(uε, Q

ν \Rν1,δ) + ‖χ(uε)− χν‖L1(Qν)

)
. (4.16)

Notice that Fε(uε, Q
ν \ Rν1,δ) → 0 as ε → 0. In fact, Lemma 4.3 together with the choice of (uε)

yields

ψ(1, 1, ν) = lim
ε→0

Fε(uε, Q
ν) ≥ lim sup

ε→0
Fε(uε, R

ν
1,δ) ≥ lim inf

ε→0
Fε(uε, R

ν
1,δ) ≥ ψ(1, δ, ν) = ψ(1, 1, ν) ,

from which we readily deduce that Fε(uε, R
ν
1,δ)→ ψ(1, 1, ν) as ε→ 0, hence

Fε(uε, Q
ν \Rν1,δ) ≤ Fε(uε, Qν)− Fε(uε, Rν1,δ) → 0 as ε→ 0 .

Thus, in view of (4.16), it suffices to set σε := 13
δ (Fε(uε, Q

ν \ Rν1,δ) + ‖χ(uε) − χν‖L1(Qν)) and

rε := r
m(ε)
ε to find the required strip Sε,rε ∈ S ν

ε,δ satisfying (4.15). �

We are now in a position to start with the interpolation procedure mentioned before. The final
interpolation procedure will be based on a one-dimensional construction that we introduce below.

One-dimensional interpolation. To define the one-dimensional interpolation we consider slices
in the triangular lattice. To this end, let ê1, ê2, and ê3 be as in Section 2.2. Given α ∈ {1, 2, 3}
we consider the orthogonal vector ê⊥α to êα and we define the slice in the direction êα by

Σα :=
{
sêα + tê⊥α : s ∈ R , t ∈ [0,

√
3

2 ]
}
.
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Given z ∈ Z, we define

Σα,z := Σα +
√

3
2 z ê

⊥
α =

{
sêα + tê⊥α : s ∈ R , t ∈ [

√
3

2 z,
√

3
2 (z + 1)]

}
.

Finally, for every ε we set

Σα,zε := εΣα,z. (4.17)

We shall define the one-dimensional interpolation in a slice Σα starting from a triangle T0 ∈
T (R2) such that T0 ⊂ Σα. Let us denote by i0 ∈ L1, j0 ∈ L2, k0 ∈ L3 the vertices of T0. Note

that 〈i0, ê⊥α 〉, 〈j0, ê⊥α 〉, 〈k0, ê
⊥
α 〉 ∈ {0,

√
3

2 }. We define the lattice points ih ∈ L1, jh ∈ L2, kh ∈ L3

and the triangle Th with the following recursive formula: we set τ(0) := 1, τ(
√

3
2 ) := −1 and for

h ∈ N

ih+1 := ih + êα + 1
2 êα + τ(〈ih, ê⊥α 〉)

√
3

2 ê
⊥
α ,

jh+1 := jh + êα + 1
2 êα + τ(〈jh, ê⊥α 〉)

√
3

2 ê
⊥
α ,

kh+1 := kh + êα + 1
2 êα + τ(〈kh, ê⊥α 〉)

√
3

2 ê
⊥
α ,

Th+1 := conv{ih+1, jh+1, kh+1} ⊂ Σα ,

(4.18)

(see Figure 3). Observe that τ(〈ih+1, ê
⊥
α 〉) = −τ(〈ih, ê⊥α 〉), the analogous equality being true also

for jh and kh. Moreover, T2h = T0 + 3hêα.

We define the half-slice Σα(T0) of the lattice L starting from T0 by

Σα(T0) := conv{Th : h ∈ N} . (4.19)

Given u : L → S1 and N,m ∈ N, we now define in the half-slice Σα(T0) a one-parameter family
(parametrized by m) of spin fields which coincides with u on T0 and with the fixed ground state
upos on Th for h ≥ N . We construct the interpolation in such a way that the configuration
of spins rotates a fixed amount of times by 2π. To make the construction precise, we first say
that the three angles θ(i0) ∈ R (not necessarily in [0, 2π)), θ(j0) ∈ [θ(i0) − π, θ(i0) + π) and
θ(k0) ∈ [θ(j0)−π, θ(j0)+π) represent a lifting of u in T0 if u(i0) = exp(ιθ(i0)), u(j0) = exp(ιθ(j0))
and u(k0) = exp(ιθ(k0)). We then define the interpolated angles θ(ih), θ(jh), θ(kh) for h = 0, . . . , N
by

θ(ih) := θ(i0) + h
2πm− θ(i0)

N
=
(

1− h

N

)
θ(i0) +

h

N
2πm ,

θ(jh) := θ(j0) + h
2πm+ 2π

3 − θ(j0)

N
=
(

1− h

N

)
θ(j0) +

h

N
2πm+

h

N

2π

3
,

θ(kh) := θ(k0) + h
2πm+ 4π

3 − θ(k0)

N
=
(

1− h

N

)
θ(k0) +

h

N
2πm+

h

N

4π

3
,

(4.20)

and θ(ih) := 2πm, θ(jh) := 2πm+ 2π
3 , θ(kh) := 2πm+ 4π

3 for h ≥ N+1 (see Figure 3). Eventually,

we define uN,m : L ∩ Σα(T0)→ S1 by setting

uN,m(ih) := exp(ιθ(ih)) , uN,m(jh) := exp(ιθ(jh)) , uN,m(kh) := exp(ιθ(kh)) . (4.21)

Note that uN,m = upos on Th for h ≥ N .
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êα i0 j0

k0 jh

kh

ih

iN jN

kN

Σα(T0)

u upos

Figure 3. Example of interpolation from u to upos in the slice Σα(T0) starting from the triangle
T0 (in grey).

In the next lemma we estimate the energy of the interpolation on Σα(T0) in terms of the energy
on the initial triangle T0 plus an error depending on the number of steps N and on m. We assume
that the configuration of spins in the initial triangle is sufficiently close to a ground state with
chirality 1 (not necessarily upos).

Lemma 4.5. Let T0 ∈ T (R2) be a triangle of vertices i0 ∈ L1, j0 ∈ L2, and k0 ∈ L3. Let
u : L → S1 and let θ(i0) ∈ R, θ(j0) ∈ [θ(i0) − π, θ(i0) + π) and θ(k0) ∈ [θ(j0) − π, θ(j0) + π) be
three angles representing a lifting of u in T0 satisfying∣∣∣θ(j0)− θ(i0)− 2π

3

∣∣∣ ≤ 1

4
,
∣∣∣θ(k0)− θ(j0)− 2π

3

∣∣∣ ≤ 1

4
. (4.22)

Let N,m ∈ N and assume that

2πm ≥ |θ(i0)|+ 2π . (4.23)

Let uN,m be the interpolation on Σα(T0) defined according to (4.21). Then there exists a constant
C > 0 independent of N and m such that

F1(uN,m,Σα(T0)) ≤ C
(
NF1(u, T0) +

m2

N

)
.

Proof. It is not restrictive to assume that j0 − i0 = êα as in Figure 3. We shall estimate each of
the terms in the sum

F1(uN,m,Σα(T0)) =

N−1∑
h=0

|uN,m(ih) + uN,m(jh) + uN,m(kh)|2

+

N−1∑
h=0

|uN,m(ih+1) + uN,m(jh) + uN,m(kh)|2

+

N−1∑
h=0

|uN,m(ih+1) + uN,m(jh) + uN,m(kh+1)|2,

(4.24)

where we used that for h ≥ N we have that

|uN,m(ih) + uN,m(jh) + uN,m(kh)|2 = |upos(ih) + upos(jh) + upos(kh)|2 = 0 ,

being upos a ground state. Adopting the notation for the angles used in the construction in (4.21),
we recast the energy in the first term of the sum as

|uN,m(ih) + uN,m(jh) + uN,m(kh)|2

= 3 + 2 cos(θ(jh)− θ(ih)) + 2 cos(θ(kh)− θ(jh)) + 2 cos(θ(ih)− θ(kh)) .
(4.25)



18 ANNIKA BACH, MARCO CICALESE, LEONARD KREUTZ, AND GIANLUCA ORLANDO

Note that, by (4.20) and (4.22),∣∣∣θ(jh)− θ(ih)− 2π

3

∣∣∣ ≤ ∣∣∣θ(j0)− θ(i0)− 2π

3

∣∣∣ ≤ 1

4
,∣∣∣θ(kh)− θ(jh)− 2π

3

∣∣∣ ≤ ∣∣∣θ(k0)− θ(j0)− 2π

3

∣∣∣ ≤ 1

4
,∣∣∣θ(kh)− θ(ih)− 4π

3

∣∣∣ ≤ ∣∣∣θ(k0)− θ(i0)− 4π

3

∣∣∣ ≤ 1

2
.

(4.26)

By Taylor’s formula, there exists ζ ∈ [φ, 2π/3] such that 1+2 cos(φ) = −
√

3(φ− 2π
3 )+ 1

2 (φ− 2π
3 )2 +

1
3 sin(ζ)(φ− 2π

3 )3. As a result we obtain the estimates

1

3

(
φ− 2π

3

)2
≤ 1 + 2 cos(φ) +

√
3
(
φ− 2π

3

)
≤ 2

3

(
φ− 2π

3

)2
, for

∣∣∣φ− 2π

3

∣∣∣ ≤ 1

2
.

Analogously,

1

3

(
φ− 4π

3

)2
≤ 1 + 2 cos(φ)−

√
3
(
φ− 4π

3

)
≤ 2

3

(
φ− 4π

3

)2
, for

∣∣∣φ− 4π

3

∣∣∣ ≤ 1

2
.

Then by (4.25), (4.26), and the two previous estimates we infer that

|uN,m(ih) + uN,m(jh) + uN,m(kh)|2

≤ 2

3

[(
θ(jh)− θ(ih)− 2π

3

)2
+
(
θ(kh)− θ(jh)− 2π

3

)2
+
(
θ(kh)− θ(ih)− 4π

3

)2]
≤ 2

3

[(
θ(j0)− θ(i0)− 2π

3

)2
+
(
θ(k0)− θ(j0)− 2π

3

)2
+
(
θ(k0)− θ(i0)− 4π

3

)2]
≤ 2

3
3|uN,m(i0) + uN,m(j0) + uN,m(k0)|2 = 2F1(u, T0) .

This proves that

N−1∑
h=0

|uN,m(ih) + uN,m(jh) + uN,m(kh)|2 ≤ 2NF1(u, T0) .

Let us now consider the second term in the sum in the right-hand side of (4.24). For every
h = 0, . . . , N − 1 we have

|uN,m(ih+1) + uN,m(jh) + uN,m(kh)|2

≤ 2 |uN,m(ih) + uN,m(jh) + uN,m(kh)|2 + 2 |uN,m(ih+1)− uN,m(ih)|2.

The first term is estimated as via 2F1(u, T0). As for |uN,m(ih+1)− uN,m(ih)|2, by (4.20) we have
that

|uN,m(ih+1)− uN,m(ih)|2 = 2− 2 cos(θ(ih+1)− θ(ih)) = 2− 2 cos
(2πm− θ(i0)

N

)
.

Using the fact that 1− cos(t) ≤ t2

2 we deduce

|uN,m(ih+1)− uN,m(ih)|2 ≤
(2πm− θ(i0)

N

)2
≤ Cm

2

N2
,

since |θ(i0)| ≤ 2πm. Hence

N−1∑
h=0

|uN,m(ih+1) + uN,m(jh) + uN,m(kh)|2 ≤ CNF1(u, T0) + C
m2

N
.
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The third term in the right-hand side in (4.24) is treated analogously using the inequality

|uN,m(kh+1)− uN,m(kh)|2 = 2− 2 cos(θ(kh+1)− θ(kh)) = 2− 2 cos
(2πm+ 4π

3 − θ(k0)

N

)
≤
(2πm+ 4π

3 − θ(k0)

N

)2
≤ Cm

2

N2
,

where we used (4.22) to get that |θ(k0)|+ 4π
3 ≤ |θ(i0)|+ 1

2 + 4π
3 ≤ |θ(i0)|+ 2π ≤ 2π(m+ 1). �

We are now in a position to prove Proposition 4.2 and thus conclude the proof of the lower
bound in Proposition 4.1.

Proof of Proposition 4.2. For the reader’s convenience, we recall here the definitions of ϕ(ν) and
ψ(1, 1, ν):

ϕ(ν) = lim
ε→0

min{Fε(u,Qν) : u = upos
ε on ∂+

ε Q
ν and u = uneg

ε on ∂−ε Q
ν} ,

ψ(1, 1, ν) = inf
{

lim inf
ε→0

Fε(uε, Q
ν) : χ(uε)→ χν in L1(Qν)

}
.

Let us fix a sequence (uε) such that χ(uε)→ χν in L1(Qν) and Fε(uε, Q
ν)→ ψ(1, 1, ν). The aim

of this proof is to define a modification ũε of uε such that

ũε = upos
ε on ∂+

ε Q
ν and ũε = uneg

ε on ∂−ε Q
ν , (4.27)

lim sup
ε→0

Fε(ũε, Q
ν) ≤ lim

ε→0
Fε(uε, Q

ν) . (4.28)

This allows us to conclude that ϕ(ν) ≤ ψ(1, 1, ν).

The construction of the modified sequence (ũε) is divided in several steps.

Step 1. (Choosing a strip with low energy). We begin the construction by exploiting the
property that the energy of (uε) concentrates close to the interface Qν ∩ Lν in order to choose a
strip with low energy. Given δ ∈ (0, 1

3 ), we consider the family of strips S ν
ε,δ defined in (4.14) and

we apply Lemma 4.4 to deduce the existence of a strip Sε = Sε,rε = Qνrε+12ε \
(
Q
ν

rε ∪R
ν

1,δ

)
∈ S ν

ε,δ

such that

Fε(uε, Sε) + ‖χ(uε)− χν‖L1(Sε) ≤ εσε , (4.29)

where σε → 0. The modification ũε of uε will coincide with upos
ε and uneg

ε in Qν \ (Q
ν

1−δ ∪ R
ν

1,δ)
(notice that the square Qν1−δ contains the closure of Sε, cf. (4.14)). In the triangles contained
in Sε the energy is low and thus uε is close to ground states, yet not necessarily upos

ε or uneg
ε .

There ũε will start to interpolate from the configuration uε until it reaches the fixed ground state
upos
ε or uneg

ε close to the boundary.

We shall describe in detail how to define ũε in the top part of the cube given by Qν+ = Qν ∩
{x : 〈x, ν〉 > 0}, where the chirality of uε converges to 1. The construction in Qν− ∩ {x : 〈x, ν〉 < 0}
is completely analogous.

Step 2. (Choosing triangles with low energy). We show here how to choose the triangles with
low energy where to start the modification of uε. Let us consider the line

Lε := {x ∈ R2 : 〈x, ν〉 = rε
2 + 3ε} ,

which cuts in two the top part of the strip given by the rectangle

Stop
ε := Rνrε,6ε

(
( rε2 + 3ε)ν

)
=
(
Lε +B3ε(0)

)
∩Rνrε,1 ⊂ Sε . (4.30)
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We describe now how to start the modification in Stop
ε . The modification in the other parts

Sleft
ε := Rν

⊥

rε,6ε

(
( rε2 + 3ε)ν⊥

)
\Rν1,δ ,

Sright
ε := Rν

⊥

rε,6ε

(
− ( rε2 + 3ε)ν⊥

)
\Rν1,δ ,

cf. Figure 4, will be only sketched since it is completely analogous.

Qν1−2δ

δ
2

Sleft
ε

Sright
ε

Stop
ε

rε
2 6ε

Qν1−3δ

Lε

3ε

ν

ν⊥

Figure 4. Parts of the strip Sε in Qν+.

We consider now the slices (Σα,zε )z∈Z of the ε-triangular lattice defined in (4.17). We choose

α ∈ {1, 2, 3} such that |〈êα, ν〉| ≥
√

3
2 , namely the best approximation of ν in the set {ê1, ê2, ê3}.

Equivalently, |〈êα, ν⊥〉| ≤ 1
2 , where ν⊥ is the direction of Lε. (For Sright

ε and Sleft
ε we consider a

different direction, namely β ∈ {1, 2, 3} such that |〈êβ , ν⊥〉| ≥
√

3
2 .)

We can find a chain of closed triangles which intersect Lε such that each slice in the direction êα
contains only one triangle of the chain. Specifically, there exist (Tz)z∈Z, satisfying

Tz ∈ T +
ε (R2) , Tz ⊂ Σα,zε , Tz ∩ Lε 6= ∅ , Tz ∩ Tz+1 6= ∅ , (4.31)

for every z ∈ Z, cf. Figure 5. We prove this statement in Lemma 4.6 below, since the geometric
argument is irrelevant for the present discussion.

ν êα

Lε

Σα,zε

Figure 5. A chain of triangles (Tz)z∈Z.
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The modification of uε starts in the triangles Tz of the chain contained in Stop
ε . For this reason

it is convenient to consider

Ztop
ε := {z ∈ Z : Tz ⊂ Stop

ε } and z0 ∈ argminZtop
ε .

For future purposes we observe that
√

3

4
ε2#Ztop

ε =
∣∣∣ ⋃
z∈Ztop

ε

Tz

∣∣∣ ≤ |Stop
ε | = 6εrε ≤ 6ε =⇒ #Ztop

ε ≤ C1

ε
, (4.32)

for some positive constant C1 and for ε small enough.

Step 3. (Estimating the maximal winding number). The energy regime we are working in
does not rule out the possibility that inside the strip Sε the configuration of spin field displays
global rotations. However, the bound of the energy in Sε allows us to estimate the maximal
number of complete turns of 2π. To present precisely the estimate, we define in the trian-
gles chosen in Step 2 the liftings θε ∈ R of uε according to the following recursive argument.
Given z ∈ Ztop

ε we denote by iz ∈ L1, jz ∈ L2, kz ∈ L3 the points in the sublattices such that
εiz, εjz, εkz are the vertices of the triangle Tz (some points might have multiple labels). We now
define recursively angles θε(εiz), θε(εjz), θε(εkz) in suitably chosen intervals of length 2π satisfying
uε(εiz) = exp

(
ιθε(εiz)

)
, uε(εjz) = exp

(
ιθε(εjz)

)
, uε(εkz) = exp

(
ιθε(εkz)

)
as follows. We choose

θε(εiz0) ∈ [0, 2π) ,

θε(εjz0) ∈ [θε(εiz0)− π, θε(εiz0) + π) ,

θε(εkz0) ∈ [θε(εjz0)− π, θε(εjz0) + π) ,

θε(εiz+1) ∈ [θε(εiz)− π, θε(εiz) + π) .

The choice of θε(εjz) and θε(εkz) is made according to the same recursive procedure above, but
taking as starting point (instead of θε(εiz0)) the angles θε(εjz0) and θε(εkz0), respectively. We
claim that

1

2π
sup

z∈Ztop
ε

z≥z0

{
|θε(εiz)− θε(εiz0)| , |θε(εjz)− θε(εjz0)| , |θε(εkz)− θε(εkz0)|

}
≤ C2

√
σε
ε
, (4.33)

for some positive constant C2. To prove the claim, let us fix z∗ ∈ Ztop
ε , z∗ ≥ z0. Note that

z∗ − z0 ≤ C1

ε by (4.32). Jensen’s inequality implies that

|θε(εiz∗)− θε(εiz0)|2 ≤
( z∗−1∑
z=z0

|θε(εiz+1)− θε(εiz)|
)2
≤ (z∗ − z0)

z∗−1∑
z=z0

|θε(εiz+1)− θε(εiz)|2

≤ C1

ε

z∗−1∑
z=z0

|θε(εiz+1)− θε(εiz)|2 ≤
C

ε

z∗−1∑
z=z0

2− 2 cos
(
θε(εiz+1)− θε(εiz)

)
=
C

ε

z∗−1∑
z=z0

|uε(εiz+1)− uε(εiz)|2

(4.34)

for some positive constants C, where we used the fact that 1−cos(φ) ≥ 1
12φ

2 for every |φ| ≤ π. We
start observing that the regular hexagon Hz containing Tz and Tz+1 is contained in Sε. Indeed,
let x ∈ Hz and let y ∈ Tz ∩ Lε ⊂ Stop

ε . Then dist(x, Lε) ≤ |x − y| ≤ diamHz = 2ε < 3ε. Hence,
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cf. (4.30), x ∈ (Lε +B3ε(0)) ∩Rνrε+6ε,1 ⊂ Sε. Let us show that

|uε(εiz+1)− uε(εiz)|2 ≤
2

ε
Fε(uε, Hz) . (4.35)

Indeed, if Tz ∩ Tz+1 = {εiz} = {εiz+1}, then |uε(εiz+1) − uε(εiz)|2 = 0; if Tz ∩ Tz+1 = {εjz} =
{εjz+1} (and analogously if Tz ∩ Tz+1 = {εkz} = {εkz+1}), then we let T ′ be the third triangle
in conv{Tz, Tz+1}. The triangle T ′ is either conv{εiz, εjz, εkz+1} or conv{εiz+1, εjz, εkz} and is
always contained in Hz, see Figure 6. Letting εk be its vertex in L3

ε (either εkz or εkz+1) we have
that

|uε(εiz+1)− uε(εiz)|2 ≤ 2 |uε(εiz+1) + uε(εjz+1) + uε(εk)|2 + 2 |uε(εiz) + uε(εjz) + uε(εk)|2

≤ 2

ε
Fε(uε, Hz) .

Σα,z+1
ε

εiz+1

εjz

εk

Σα,zε

εkz εiz

T ′
HzTz

Tz+1

Figure 6. Triangle T ′ in a possible configuration of Tz and Tz+1.

Then we estimate the last sum in (4.34) using (4.35) by

z∗−1∑
z=z0

|uε(εiz+1)− uε(εiz)|2 ≤
z∗−1∑
z=z0

2

ε
Fε(uε, Hz) ≤

C

ε
Fε(uε, Sε) ≤ Cσε ,

for some positive constant C. In conclusion, by (4.34) we have that

|θε(εiz∗)− θε(εiz0)| ≤ C
√
σε
ε
.

Arguing in an analogous way for |θε(εjz∗)− θε(εjz0)| and |θε(εkz∗)− θε(εkz0)|, we conclude the
proof of the claim (4.33).

We consider the bound on the maximal winding number given by

mε :=
⌈
C2

√
σε
ε

⌉
+ 8 , (4.36)

where dC2

√
σε
ε e is the smallest natural number grater than or equal to C2

√
σε
ε and C2 is the

constant given in (4.33).

Step 4. (Modification on slices). We define the modification on the slices Σα,zε starting from
triangles Tz with z ∈ Ztop

ε by reproducing the construction in Lemma 4.5. Here we make precise
the choice of the parameters for this construction and the notation. Let us assume, without loss of

generality, that 〈êα, ν〉 ≥
√

3
2 (if, instead, 〈êα, ν〉 ≤ −

√
3

2 we work with −êα). For z ∈ Ztop
ε we let

i0z := iz ∈ L1, j0
z := jz ∈ L2, k0

z := kz ∈ L3 where εiz, εjz, εkz are the vertices of Tz. As in (4.18),
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we define the lattice points ihz ∈ L1, jhz ∈ L2, khz ∈ L3 and the triangle Thz with the following
recursive formula: for h ∈ N we set

ih+1
z := ihz + êα + 1

2 êα + τ(〈ihz , ê⊥α 〉)
√

3
2 ê
⊥
α ,

jh+1
z := jhz + êα + 1

2 êα + τ(〈jhz , ê⊥α 〉)
√

3
2 ê
⊥
α ,

kh+1
z := khz + êα + 1

2 êα + τ(〈khz , ê⊥α 〉)
√

3
2 ê
⊥
α ,

Th+1
z := conv{εih+1

z , εjh+1
z , εkh+1

z } ⊂ Σα,zε ,

(4.37)

where τ(0) := 1, τ(
√

3
2 ) := −1. As in (4.19), we define the half-slice Σα,zε (Tz) of the lattice Lε

starting from Tz by Σα,zε (Tz) := conv{Thz : h ∈ N}.
Number of interpolation steps. The number of interpolation steps will be defined by finding the
first shifted triangle T 2h

z0 in the half-slice Σα,z0ε (Tz0) that is well contained in Rν∞,1−δ \ R
ν

∞,1−2δ.
Specifically, we define

Nε := min{2h : h ∈ N , T 2h
z0 ⊂ Rν∞,1−5δ/4 \R

ν

∞,1−7δ/4} .
Given another z ∈ Ztop

ε , we have that

TNεz ⊂ Rν∞,1−δ \R
ν

∞,1−2δ . (4.38)

Indeed, let y = y0 + 3εNε2 êα ∈ TNεz with y0 ∈ Tz. Let x0 ∈ Tz0 ∩ Lε, cf. (4.31), and let

x := x0 + 3εNε2 êα ∈ TNεz0 . Since y0 ∈ Lε + B3ε(0), we have that |〈y0 − x0, ν〉| < 3ε and thus

|〈y−x, ν〉| < 3ε, i.e., y belongs to the 3ε-neighborhood of Rν∞,1−5δ/4\R
ν

∞,1−7δ/4, which is contained

in Rν∞,1−δ \R
ν

∞,1−2δ.

Observe that

Nε ≤
C3

ε
(4.39)

for some positive constant C3. To prove this, let x0 ∈ Tz0 and x := x0 + 3εNε2 êα ∈ TNεz0 . The

segment [x0;x] is fully contained in Rν∞,1−δ \ R
ν

∞,1−3δ and thus δ ≥ |〈x− x0, ν〉| = 3εNε2 〈êα, ν〉 ≥
3εNε2

√
3

2 .

Winding number. We choose mε given by (4.36). We consider the angles θε(εiz), θε(εjz), θε(εkz)
introduced in Step 3. By (4.36) and (4.33) we infer that

2πmε ≥ 2πC2

√
σε
ε

+ 16π ≥ 2π|θε(εiz)− θε(εiz0)|+ 16π ≥ 2π|θε(εiz)|+ 2π ,

hence (4.23) is satisfied.

Checking the assumptions on the angles. We check that the assumptions (4.22) are satisfied. First,
we claim that for ε small enough the configuration uε has positive chirality in every triangle
T ∈ Tε(R2) contained in Stop

ε . To prove it, let us start by showing that the sign of the chirality
is constant arguing by contradiction. Assume that there exist two triangles T ′, T ′′ ⊂ Stop

ε with a
common side such that χ(uε) ≤ 0 in T ′ and χ(uε) ≥ 0 in T ′′. Then by (4.29) and Lemma 3.2 we
would get

εσε ≥ Fε(uε, Sε) ≥ Fε(uε, T ′ ∪ T ′′) ≥
5

3
ε ,

which contradicts the condition σε → 0. Therefore χ(uε) has constant sign in Stop
ε . In fact,

χ(uε) > 0 in Stop
ε . If instead χ(uε) ≤ 0 in Stop

ε , by (4.29) we would have that

εσε ≥ ‖χ(uε)− χν‖L1(Stop
ε ) =

∫
Stop
ε

(1− χ(uε)) dx ≥ |Stop
ε | = 6εrε ≥ 6ε

(
1
2 − 3

2δ
)
,
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which contradicts σε → 0. In conclusion, χ(uε) > 0 in Stop
ε .

Let now z ∈ Ztop
ε . We have

|uε(εiz) + uε(εjz) + uε(εkz)|2 =
1

ε
Fε(uε, Tz) ≤

1

ε
Fε(uε, Sε) ≤ σε .

Since χ(uε) > 0 in Tz, for ε small enough uε is close to a ground state with chirality 1 and therefore,
using (2.3) and Lemma 2.1 (see also (2.5)),∣∣∣θε(εjz)− θε(εiz)− 2π

3

∣∣∣ ≤ 1

4
,
∣∣∣θε(εkz)− θε(εjz)− 2π

3

∣∣∣ ≤ 1

4
. (4.40)

Definition of the interpolation. We are in a position to define the interpolation. We reproduce the
one-dimensional construction of Lemma 4.5 by suitably translating and scaling it, providing the
precise notation as it will be useful for later estimates. We shall define the interpolation only on
slices starting from every other triangle Tz, for the constructions on two slices Σα,zε and Σα,z+2

ε

completely determine the values of the modified spin configuration in Σα,z+1
ε . For this reason, let

z ∈ Ztop
ε be such that z ≡ z0 mod 2. We then define the interpolated angles θ(εihz ), θ(εjhz ), θ(εkhz )

for h = 0, . . . , Nε as in (4.20) by (recall that i0z = iz, j
0
z = jz, k

0
z = kz)

θε(εi
h
z ) := θε(εiz) + h

2πmε − θε(εiz)
Nε

=
(

1− h

Nε

)
θε(εiz) +

h

Nε
2πmε ,

θε(εj
h
z ) := θε(εjz) + h

2πmε + 2π
3 − θε(εjz)
Nε

=
(

1− h

Nε

)
θε(εjz) +

h

Nε
2πmε +

h

Nε

2π

3
,

θε(εk
h
z ) := θε(εkz) + h

2πmε + 4π
3 − θε(εkz)
Nε

=
(

1− h

Nε

)
θε(εkz) +

h

Nε
2πmε +

h

Nε

4π

3
,

(4.41)

and θε(εi
h
z ) := 2πmε, θε(εj

h
z ) := 2πmε + 2π

3 , θε(εk
h
z ) := 2πmε + 4π

3 for h ≥ Nε + 1. Eventually, we

define utop
ε : Lε ∩ Σα,zε (Tz)→ S1 by setting

utop
ε (εihz ) := exp(ιθ(εihz )) , utop

ε (εjhz ) := exp(ιθ(εjhz )) , utop
ε (εkhz ) := exp(ιθ(εkhz )) .

By (4.38) we have that

utop
ε |T = upos

ε |T if T ⊂ Σα,zε (Tz) \R
ν

∞,1−δ . (4.42)

Estimate on “even” slices. We observe that the construction of utop
ε is simply a translation and a

scaling of the construction in Lemma 4.5. As the assumption (4.22) is satisfied, cf. (4.40), we can
apply Lemma 4.5 to deduce that

Fε(u
top
ε ,Σα,zε (Tz)) ≤ C

(
NεFε(uε, Tz) + ε

m2
ε

Nε

)
. (4.43)

Estimate on “odd” slices. We estimate the energy on the missing half-slices. Let us fix z, z+1, z+2 ∈
Ztop
ε with z ≡ z0 mod 2. Let T be a triangle contained in Σα,z+1

ε (Tz+1). Then T shares two
vertices with one triangle contained in Σα,zε (Tz) or with one triangle contained in Σα,z+2

ε (Tz+2).
Let us assume, without loss of generality, that the two shared vertices are the vertices εj′ ∈ L2

ε

and εk′ ∈ L3
ε of some triangle T ′ ⊂ Σα,zε (Tz). The third vertex of T ′ is of the type εih

′

z ∈ L1
ε for

some h′ ∈ N. Moreover, the third vertex of T is shared with a triangle Thz+2, h ∈ N, and is of the

type εihz+2 ∈ L3
ε. We remark that |h′ − h| ≤ 2. Indeed, by (4.37) we have that

ih
′

z = iz + h′ 32 êα ±
√

3
2 ê
⊥
α ,

ihz+2 = iz+2 + h 3
2 êα ±

√
3

2 ê
⊥
α .
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From the assumptions on the position of the two triangles together with the definition of ih
′

z , i
h
z+2

it follows that

0 = 〈ih′z − ihz+2, êα〉 = 〈iz − iz+2, êα〉+ (h′ − h) 3
2 =⇒ |h′ − h| = 2

3 |〈iz − iz+2, êα〉| ≤ 2 ,

where in the last inequality we used the fact that Tz ∩ Tz+1 6= ∅ and Tz+1 ∩ Tz+2 6= ∅.
We estimate the energy in the triangle T by

Fε(u
top
ε , T ) = ε|utop

ε (εihz+2) + utop
ε (εj′) + utop

ε (εk′)|2

≤ 2ε|utop
ε (εih

′

z ) + utop
ε (εj′) + utop

ε (εk′)|2 + 2ε|utop
ε (εih

′

z )− utop
ε (εihz+2)|2

= 2Fε(u
top
ε , T ′) + 2ε|utop

ε (εih
′

z )− utop
ε (εihz+2)|2 .

Note that (4.33) and (4.36) imply

|θε(εiz+2)| ≤ |θε(εiz+2)− θε(εiz0)|+ |θε(εiz0)| ≤ |θε(εiz+2)− θε(εiz0)|+ 2π ≤ 2πmε .

From (4.41), from the previous estimate, and since |h′ − h| ≤ 2 it follows that

|utop
ε (εihz )− utop

ε (εih
′

z+2)|2 = 2− 2 cos(θε(εi
h
z )− θε(εih

′

z+2)) ≤
∣∣θε(εihz )− θε(εih

′

z+2)
∣∣2

=
∣∣∣(1− h

Nε

)(
θε(εiz)− θε(εiz+2)

)
+
h− h′
Nε

(
2πmε − θε(εiz+2)

)∣∣∣2
≤ 2
∣∣θε(εiz)− θε(εiz+2)

∣∣2 + 2
∣∣∣h− h′
Nε

∣∣∣2∣∣∣2πmε − θε(εiz+2)
∣∣∣2

≤ 2
∣∣θε(εiz)− θε(εiz+2)

∣∣2 + C
m2
ε

N2
ε

It remains to estimate
∣∣θε(εiz) − θε(εiz+2)

∣∣2. Using the fact that 1 − cos(φ) ≥ 1
12φ

2 for every
|φ| ≤ π and by (4.35) we obtain that∣∣θε(εiz)− θε(εiz+2)

∣∣2 ≤ 2
∣∣θε(εiz)− θε(εiz+1)

∣∣2 + 2
∣∣θε(εiz+1)− θε(εiz+2)

∣∣2
≤ C

∣∣uε(εiz)− uε(εiz+1)
∣∣2 + C

∣∣uε(εiz+1)− uε(εiz+2)
∣∣2

≤ C

ε

(
Fε(uε, Hz) + Fε(uε, Hz+1)

)
,

where Hz is an hexagon containing Tz and Tz+1 and Hz+1 is an hexagon containing Tz+1 and
Tz+2. In conclusion, we have that

Fε(u
top
ε , T ) ≤ C

(
Fε(u

top
ε , T ′) + Fε(uε, Hz) + Fε(uε, Hz+1) + ε

m2
ε

N2
ε

)
.

Summing over all triangles in Σα,zε (Tz+1) (their number is CNε) we deduce that

Fε(u
top
ε ,Σα,z+1

ε (Tz+1))

≤ C
(
Fε(u

top
ε ,Σα,zε (Tz)) + Fε(u

top
ε ,Σα,z+2

ε (Tz+2)) +NεFε(uε, Hz) +NεFε(uε, Hz+1) + ε
m2
ε

Nε

)
.

(4.44)
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Final estimate on top part. By (4.44), (4.43), summing over z and by (4.29), (4.32), (4.36),
and (4.39) we conclude that1∑
z∈Ztop

ε

Fε(u
top
ε ,Σα,zε (Tz)) ≤

∑
z∈Ztop

ε
z≡z0 mod 2

C
(
Fε(u

top
ε ,Σα,zε (Tz)) +NεFε(uε, Hz) +NεFε(uε, Hz+1) + ε

m2
ε

Nε

)

≤
∑

z∈Ztop
ε

z≡z0 mod 2

C
(
NεFε(uε, Tz) +NεFε(uε, Hz) +NεFε(uε, Hz+1) + ε

m2
ε

Nε

)

≤ CNεFε(uε, Sε) + Cε
m2
ε

Nε
#Ztop

ε ≤ CC3

ε
εσε + Cε

(
C2

√
σε
ε

+ 4
)2 ε

C3

C1

ε

≤ C (σε + ε) .

(4.45)

Step 5. (Definition of modification in remaining parts of the square). The modification starting
from Sleft

ε and Sright
ε is completely analogous. We recall that β ∈ {1, 2, 3} is such that |〈êβ , ν⊥〉| ≥√

3
2 . We consider chains of triangles contained in Sleft

ε and Sright
ε given by Lemma 4.6 (suitably

adapted). In half-slices in the direction êβ starting from triangles of these chains and approaching
the boundary ∂Qν , we define uleft

ε and uright
ε as in Step 4.

ν

êα
êβ

1
2 − 5

2δ

1
2δ

rε
2

rε
2 + 3ε

1
2 − 5

2δ3
2δ

1
2δ

Figure 7. Definition of ũε in Qν+: in the hatched regions it is equal to upos; in the white region

enclosed by Qνrε+6ε it is equal to uε; outside of Qνrε it is defined through the interpolation utopε ,

uleftε , and urightε constructed with the slices in the lattice directions êα and êβ .

We are finally in a position to define ũε in Qν+. We fix δ ∈ (0, 1
8 ) and we consider the two-barred

cross-shaped set (the white region in Figure 7)

Pδ := Rν1−5δ,1 ∪ (Rν1,1−5δ \R
ν

1,3δ) .

1In this estimate it becomes evident that it was crucial to prove that the energy concentrates close to the interface.

A classical averaging/slicing argument would only provide a bound on the strip Sε of the type Fε(uε, Sε) ≤ Cε.
This would not suffice to conclude that the modified sequence does not increase the energy, as the right-hand side

in this estimate would end up to be a constant.
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Given T ∈ Tε(R2) such that T ⊂ Qν , we distinguish some cases.

Case T ⊂ Pδ ∩Qνrε+6ε: We set

if T ⊂ Pδ ∩Qνrε+6ε : ũε|T := uε|T (4.46)

Case T ⊂ Rν1−5δ,1 \ Q
ν

rε (part of the cross-shaped set Pδ aligned with ν): We give the definition

in the case T ⊂ Qν+ (the case T ⊂ Qν− being analogous). Let y0 ∈ T . Let us consider the
slice Σα,zε such that T ⊂ Σα,zε and let us show that z ∈ Ztop

ε . Let x ∈ Tz and first of all note that
x ∈ Lε + B3ε(0). Since T and Tz are contained in the same slice, by definition of Σα,zε we can

find s ∈ R such that x0 := y0 + sêα ∈ Tz. Since y0 /∈ Qνrε , the segment [x0; y0] is contained in

Rν∞,1 \ R
ν

∞,rε , thus |s|
√

3
2 ≤ |s||〈êα, ν〉| = |〈x0 − y0, ν〉| ≤ 1

2 (1 − rε), i.e., |s| ≤ 1√
3
(1 − rε) <

√
3δ.

Then, using that |〈êα, ν⊥〉| ≤ 1
2 ,

|〈x, ν⊥〉| ≤ |〈x− x0, ν
⊥〉|+ |〈x0 − y0, ν

⊥〉|+ |〈y0, ν
⊥〉|

≤ ε+ |s||〈êα, ν⊥〉|+ 1
2 − 5

2δ < ε+
√

3
2 δ + 1

2 − 5
2δ <

1
2 − 3

2δ <
rε
2 ,

i.e., x ∈ Rνrε,1 and hence x ∈ (Lε +B3ε(0)) ∩Rνrε,1 = Stop
ε . We set

if T ⊂ Rν1−5δ,1 \Q
ν

rε : ũε|T :=

{
utop
ε |T if T ⊂ Σα,zε (Tz) ,

uε|T otherwise.
(4.47)

The definition is consistent with the previous case: if T ⊂ Qνrε+6ε \Q
ν

rε , then T is not contained in
any half-slice Σα,zε (Tz) (because Tz∩∂Qνrε+6ε 6= ∅) and thus ũε|T = uε|T , in accordance with (4.46).

If T ⊂ Rν1−5δ,1 \Q
ν

rε but T is not contained in any half-slice Σα,zε (Tz), then T ⊂ Sε. In particular,

by (4.45) and (4.29) we infer that

Fε(ũε, R
ν
1−5δ,1 \Q

ν

rε) ≤
∑

z∈Ztop
ε

Fε(u
top
ε ,Σα,zε (Tz)) + Fε(uε, Sε) ≤ C(σε + ε) . (4.48)

Case T ⊂ (Rν1,1−5δ \ R
ν

1,3δ) \ Q
ν

rε (part of the cross-shaped set Pδ aligned with ν⊥): As in the

previous case, assuming T ⊂ Qν+, we define ũε|T := uleft
ε |T if T is contained in a half-slice starting

from a triangle in Sleft
ε , ũε|T := uright

ε |T if T is contained in a half-slice starting from a triangle in
Sright
ε , and ũε|T := uε|T otherwise. As before, the definition is compatible with (4.46). Similarly

to (4.48) we obtain that

Fε(ũε, (R
ν
1,1−5δ \R

ν

1,3δ) \Q
ν

rε) ≤ C(σε + ε) . (4.49)

Case T ∩ (R2 \Pδ) 6= ∅: let x be a vertex of T and assume that x is not the vertex of a triangle T ′

covered by the previous cases. Then we set ũε(x) := upos
ε (x) if 〈x, ν〉 ≥ 0 and ũε(x) := uneg

ε (x) if
〈x, ν〉 < 0. In particular,

if T ⊂ Qν+ \ P δ : ũε|T = upos
ε |T ,

if T ⊂ Qν− \ P δ : ũε|T = uneg
ε |T .

(4.50)

We remark that

ε2#{T ⊂ Qν : T ∩ ∂Pδ 6= ∅} ≤ Cδε =⇒ #{T ⊂ Qν : T ∩ ∂Pδ 6= ∅} ≤ C
δ

ε
(4.51)

and

#{T ⊂ Qν \ P δ : T ∩ Lν 6= ∅} ≤ C δ
ε
. (4.52)
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Let us check that ũε attains the desired boundary conditions (4.27). Let T ⊂ Qν+ \ Q
ν

1−δ. If

T ⊂ (Qν+ \Q
ν

1−δ)∩Rν1−5δ,1 (and similarly if T ⊂ (Qν+ \Q
ν

1−δ)∩(Rν1,1−5δ \R
ν

1,3δ)), then we are in the

case covered by (4.47). By (4.42) we have ũε|T = utop
ε |T = upos

ε |T . Otherwise, if T ∩ (R2 \Pδ) 6= ∅,
let x be a vertex of T and assume that x is not the vertex of a triangle T ′ covered by the previous
cases. Then, by definition, ũε(x) := upos

ε (x). We argue analogously if T ⊂ Qν− \Q
ν

1−δ. Finally, if
T ∩ Lν 6= ∅, then T ⊂ Lν + B2ε(0) and thus it is not relevant for the boundary conditions by the
definition of discrete boundary ∂±ε Q

ν .

Step 6. (Energy estimate). By (4.51), (4.50), and (4.52) we have that

Fε(ũε, Q
ν) ≤ Fε(ũε, Pδ) + Fε(ũε, Q

ν \ P δ) +
∑

T∩∂Pδ 6=∅
Fε(ũε, T )

≤ Fε(ũε, Pδ) + Fε(u
pos
ε , Qν+ \ P δ) + Fε(u

neg
ε , Qν− \ P δ) +

∑
T⊂Qν\P δ
T∩Lν 6=∅

Fε(ũε, T ) + Cδ

≤ Fε(ũε, Pδ) + Cδ .

Moreover, by (4.46), (4.48), and (4.49) we deduce that

Fε(ũε, Pδ) ≤ Fε(uε, Pδ ∩Qνrε+6ε) + Fε(ũε, R
ν
1−5δ,1 \Q

ν

rε) + Fε(ũε, (R
ν
1,1−5δ \R

ν

1,3δ) \Q
ν

rε)

≤ Fε(uε, Qν) + C (σε + ε) .

In conclusion,

lim sup
ε→0

Fε(ũε, Q
ν) ≤ lim

ε→0
Fε(uε, Q

ν) + Cδ .

Eventually, letting δ → 0 and with a diagonal argument, we construct a sequence which satis-
fies (4.28).

�

In the proof of Proposition 4.2 we applied the following lemma.

Lemma 4.6. Let Σα,zε be the slices of the triangular lattice defined in (4.17). Let L be a line in R2

orthogonal to ν and assume that |〈êα, ν⊥〉| ≤ 1
2 . Then there exists a chain of triangles (Tz)z∈Z

satisfying for every z ∈ Z

Tz ∈ T +
ε (R2) , Tz ⊂ Σα,zε , Tz ∩ L 6= ∅ , Tz ∩ Tz+1 6= ∅ . (4.53)

Proof. It is enough to prove the following:

Claim: Let z ∈ Z and let Tz ∈ T +
ε (R2) be such that Tz ⊂ Σα,zε and Tz ∩ L 6= ∅. Then there

exists Tz+1 ∈ T +
ε (R2) such that Tz+1 ⊂ Σα,z+1

ε , Tz+1 ∩L 6= ∅, and Tz ∩ Tz+1 6= ∅. (The analogous
statement with Σα,z−1

ε in place of Σα,z+1
ε holds true.)

With the proven claim at hand it is immediate to define a chain of triangles (Tz)z∈Z which satisfies
the properties in (4.53) by initializing the construction from a triangle Tz0 ∈ T +

ε (R2) which satisfies
Tz0 ∩ L 6= ∅ and Tz0 ⊂ Σα,z0ε . Such a triangle always exists since the set R2 \⋃T∈T +

ε (R2) T is the

union of disjoint open triangles, thus cannot contain L.

To prove the claim let us denote be êβ , êγ the remaining two unit vectors connecting points of L
and introduced in Section 2.2 and let us set τβ := sign〈êβ , ê⊥α 〉, τγ := sign〈êγ , ê⊥α 〉. For later use we
observe that τβ = τγ if and only if α 6= 2, that is if and only if 〈êβ , êα〉 = −〈êγ , êα〉. In particular,
we always have

τβ〈êβ , êα〉 = −τγ〈êγ , êα〉 and τβ〈êβ , êα〉τγ〈êγ , êα〉 = −1/4 . (4.54)
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Suppose now that Tz ∈ T +
ε (R2), Tz ⊂ Σα,zε with Tz ∩ L 6= ∅. The triangles T β := Tz + ετβ êβ ∈

T +
ε (R2) and T γ := Tz + ετγ êγ ∈ T +

ε (R2) satisfy Tz ∩ T β 6= ∅ and Tz ∩ T γ 6= ∅. Moreover, they
are contained in Σα,z+1

ε . Indeed, for x ∈ Tz we have 〈ê⊥α , x + ετβ êβ〉 = 〈ê⊥α , x〉 + ετβ〈ê⊥α , êβ〉 =

〈ê⊥α , x〉+ ε
√

3
2 ∈ [ε

√
3

2 (z + 1), ε
√

3
2 (z + 2)], hence T β ⊂ Σα,z+1

ε (analogously T γ ⊂ Σα,z+1
ε ).

T β T γ

Tz

Σα,z+1
ε

Σα,zε

êα

L

x

xγxβ

Tz

sαz
x

L

Figure 8. On the left: the triangles Tz , Tβ and T γ , the line L, and the segment [xβ ;xγ ]. On

the right: if x /∈ Tz , the angle between L and sαz belongs to [0, π
3

).

The triangle Tz has one side contained in ∂Σα,zε , i.e., either in sαz := Rêα + ε
√

3
2 zê

⊥
α or in

sαz+1 := Rêα + ε
√

3
2 (z + 1)ê⊥α . Let us assume, without loss of generality, that the side is contained

in sαz . The line L intersects sαz in a point x. We claim that x ∈ Tz. Indeed, if x /∈ Tz, then the
angle in [0, π2 ] between the lines L and sαz belongs to [0, π3 ), since L intersects also Tz, see Figure 8.

Let us fix y ∈ Tz ∩ L 6= ∅. Then we have |〈x − y, êα〉| > 1
2 |x − y|. This contradicts the fact that

|〈x − y, êα〉| = |x − y||〈ν⊥, êα〉| ≤ 1
2 |x − y| since |〈ν⊥, êα〉| ≤ 1

2 . In conclusion x ∈ Tz ∩ sαz . Then

xβ := x + ετβ êβ ∈ T β ∩ sαz+1, xγ := x + ετγ êγ ∈ T γ ∩ sαz+1. The line L intersects the segment

[xβ ;xγ ], and thus either T β or T γ . To see this, we let yλ := λxβ + (1− λ)xγ for λ ∈ [0, 1]. Note
that

〈y0−x, ν〉 = ετγ〈êγ , ν〉 = ετγ
(
〈êγ , ê⊥α 〉〈ê⊥α , ν〉+〈êγ , êα〉〈êα, ν〉

)
= ε
(√3

2
〈ê⊥α , ν〉+τγ〈êγ , êα〉〈êα, ν〉

)
,

and analogously 〈y1 − x, ν〉 = ε
(√

3
2 〈ê⊥α , ν〉 + τβ〈êβ , êα〉〈êα, ν〉

)
. In combination with (4.54), this

yields

〈y0 − x, ν〉〈y1 − x, ν〉 = ε2
(3

4
〈ê⊥α , ν〉2 −

1

4
〈êα, ν〉2

)
≤ 3

8
− 3

8
= 0 , (4.55)

where we used that 〈ê⊥α , ν〉2 = 〈êα, ν⊥〉2 ≤ 1
4 and 〈êα, ν〉2 ≥ 3

4 . Now (4.55) together with the
continuity of the mapping λ 7→ 〈yλ − x, ν〉 implies that there exists λ ∈ [0, 1] with 〈yλ − x, ν〉 = 0,
hence yλ ∈ (T β ∪ T γ) ∩ L.

�

5. Upper Bound

It remains to prove the Γ-limsup inequality to complete the proof of Theorem 2.5.

Proposition 5.1. Let Fε be as in (2.8). Then for every χ ∈ L1(Ω) we have

Γ- lim sup
ε→0

Fε(χ) ≤ F (χ) , (5.1)

where F is given by (2.10) and the Γ- lim sup is with respect to the strong topology in L1(Ω).
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Proof. It is not restrictive to assume that χ ∈ BV (Ω; {−1, 1}). Moreover, thanks to Remark 2.6,
the density result [13, Corollary 2.4], and the L1-lower semicontinuity of the Γ-limsup it suffices

to prove (5.1) for χ ∈ BV (Ω; {−1, 1}) such that Jχ is polygonal, i.e., Jχ =
⋃N
n=1 Γn, where Γn are

line segments satisfying H1(Γn ∩ ∂Ω) = 0. To simplify the exposition we restrict ourselves to the
case Jχ = Γ1 ∪ Γ2 with Γ1 = [x0;x1], Γ2 = [x1;x2], x0, x1, x2 ∈ R2, i.e., the two segments have
one common endpoint. The general case then follows by repeating the construction on each line
segment.

Step 1. (Construction of a recovery sequence) Denoting by `1, `2 the length of Γ1, Γ2 and by
ν1, ν2 the outer unit normal to the set {χ = 1} on Γ1, Γ2, upon relabeling we can assume that
x1 = x0 + `1ν

⊥
1 , x2 = x1 + `2ν

⊥
2 . Moreover, we have

F (χ) = `1ϕ(ν1) + `2ϕ(ν2) , (5.2)

where ϕ is as in (2.12). Let ρ > 0 be sufficiently small and let u1
ε,ρ ∈ SFε and u2

ε,ρ ∈ SFε be
admissible for the minimum problems defining ϕ(ν1), ϕ(ν2), respectively with

lim
ε→0

Fε(u
1
ε,ρ, Q

ν1
ρ ) = ρϕ(ν1) and lim

ε→0
Fε(u

2
ε,ρ, Q

ν2
ρ ) = ρϕ(ν2) . (5.3)

We now start constructing a recovery sequence for χ by subdividing Γ1 and Γ2 into segments
of length of order ρ and suitable shifting u1

ε,ρ, u
2
ε,ρ along these segments. In doing so we need to

leave out a small region close to the common endpoint x1. Namely, denoting by θ ∈ (0, π] the
angle between Γ1 and Γ2 we choose c = c(ν1, ν2) > 0 with c ≥ 1

2 + 1
2 cot( θ2 ) and we only subdivide

the smaller segments [x0;x1 − cρν⊥1 ] and [x1 + cρν⊥2 ;x2] as follows. We set M1
ε,ρ := b `1−cρρ+5ε c,

M2
ε,ρ := b `2−cρρ+5ε c and we choose lattice points

xεm,1 ∈ B2ε

(
x0 +m(ρ+ 5ε)ν⊥1

)
∩ L1

ε for m ∈ {0, . . . ,M1
ε,ρ} ,

xεm,2 ∈ B2ε

(
x1 + (cρ+m(ρ+ 5ε))ν⊥2

)
∩ L1

ε for m ∈ {0, . . . ,M2
ε,ρ} .

Note that the constant c and the lattice points xεm,1, xεm,2 are chosen in such a way that, for ε
small enough,

Uρ :=

M1
ε,ρ⋃

m=0

Qν1ρ (xεm,1) ∪
M2
ε,ρ⋃

m=0

Qν2ρ (xεm,2)

is a union of pairwise disjoint cubes, see Figure 9. This allows us to define uε,ρ ∈ SFε by setting

uε,ρ(x) :=


u1
ε,ρ(x− xεm,1) if x ∈ Qν1ρ (xεm,1) , m ∈ {0, . . . ,M1

ε,ρ} ,
u2
ε,ρ(x− xεm,2) if x ∈ Qν2ρ (xεm,2) , m ∈ {0, . . . ,M2

ε,ρ} ,
upos
ε (x) if x ∈ {χ = 1} \ Uρ ,
uneg
ε (x) if x ∈ {χ = −1} \ Uρ .

We observe that since xεm,1, x
ε
m,2 belong to the sublattice L1

ε, the boundary conditions satisfied by

the shifted functions u1
ε,ρ( ·−xεm,1), u2

ε,ρ( ·−xεm,2) are compatible one with each other and with upos
ε

and uneg
ε on Ω \ Uρ. In particular, if x ∈ Ω is such that dist(x, Jχ) ≥ ρ/2 then χ(uε,ρ)(x) = χ(x),

which implies that ‖χ(uε,ρ)− χ‖L1(Ω) ≤ CρH1(Jχ)→ 0 as ρ→ 0.
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ν⊥1

ν1

ν⊥2

ν2

x0

ρ

x1

ρ

x2

`2

Γ2

Qν2ρ (xεm,2) Qν1ρ (xεm,1)

`1

Γ1

Figure 9. Covering the segments Γ1 and Γ2 with cubes of side ρ in the Γ-lim sup construction.

Step 2. (Energy estimate) In order to estimate Fε(uε,ρ) we start by rewriting the energy as

Fε(uε,ρ) =

M1
ε,ρ∑

m=0

Fε
(
uε,ρ, Q

ν1
ρ (xεm,1)

)
+

M2
ε,ρ∑

m=0

Fε
(
uε,ρ, Q

ν2
ρ (xεm,2)

)
+
∑

T∈Tε(Ω)
T∩(Ω\Uρ)6=∅

Fε(uε,ρ, T ) , (5.4)

and we estimate the terms on the right-hand side of (5.4) separately. Let us first consider the
energy on triangles T ∈ Tε(Ω) with T ∩ (Ω \ Uρ) 6= ∅. Suppose that dist(T, Jχ) > 5ε. Then, if
T ⊂ Ω \Uρ we have uε,ρ = upos

ε or uε,ρ = uneg
ε on T , so that Fε(uε,ρ, T ) = 0. If instead T ∩Uρ 6= ∅,

the fact that dist(T, Jχ) > 5ε ensures that T intersects a cube in Uρ in a region where the boundary
conditions are prescribed. Thus, using once more the compatibility of the boundary conditions,
we infer that Fε(uε,ρ, T ) = 0. This implies that∑

T∈Tε(Ω)
T∩(Ω\Uρ) 6=∅

Fε(uε,ρ, T ) ≤ 3ε#{T ∈ Tε(Ω): T ∩ (Ω \ Uρ) 6= ∅ , dist(T, Jχ) ≤ 5ε} ≤ C(ρ+ ε/ρ) , (5.5)

where to obtain the first inequality we used Fε(uε,ρ, T ) ≤ 9ε, while the second inequality follows
by counting triangles contained either in

(
[x1 − cρν⊥1 ;x1] ∪ [x1;x1 + cρν⊥2 ]

)
+B6ε(0) or in

(
∂Uρ ∩

Jχ
)

+B6ε(0).

Combining (5.4), (5.5), and (5.3) we deduce that

lim sup
ε→0

Fε(uε) ≤ lim sup
ε→0

(M1
ε,ρ + 1)Fε(u

1
ε,ρ, Q

ν1
ρ ) + lim sup

ε→0
(M2

ε,ρ + 1)Fε(u
2
ε,ρ, Q

ν2
ρ ) + Cρ

≤
(⌊`1

ρ

⌋
+ 1
)
ρϕ(ν1) +

(⌊`2
ρ

⌋
+ 1
)
ρϕ(ν2) + Cρ .

(5.6)

Since the latter term converges to `1ϕ(ν1)+ `2ϕ(ν2) as ρ→ 0, thanks to (5.2) and (5.6), a diagonal
argument provides us with a sequence (uε) = (uε,ρ(ε)) with χ(uε) → χ in L1(Ω) and satisfying
lim supε Fε(uε) ≤ F (χ), from which we finally deduce (5.1). �
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