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Abstract. We study the atomistic-to-continuum limit of a class of energy functionals for crys-

talline materials via Γ-convergence. We consider energy densities that may depend on interactions

between all points of the lattice and we give conditions that ensure compactness and integral-
representation of the continuum limit on the space of special functions of bounded variation. This

abstract result is complemented by a homogenization theorem, where we provide sufficient con-
ditions on the energy densities under which bulk- and surface contributions decouple in the limit.

The results are applied to long-range and multi-body interactions in the setting of weak-membrane

energies.

1. Introduction

The passage from atomistic to continuum models is of major interest in the description and
understanding of many physical phenomena and in models in applied sciences. Even for those
atomistic systems which are driven by simple lattice energies, the choice of the method to analyze
their asymptotic behavior as the interatomic distance tends to zero is nontrivial. Compare for
instance the results obtained by taking pointwise limits ([8, 9, 35]) to those obtained by variational
methods (see [18, 15] for an overview). There, the choice of the limit process underlines some
assumptions on the model, which are translated in the definition of convergence of discrete to
continuum functions, and may lead to different results.

In this paper we work within the variational framework, which amounts to allow for a very
general definition of convergence of discrete functions and is translated in analyzing the asymptotic
behavior of discrete systems in terms of Γ-convergence. This has proven to be a powerful tool
in Materials Science to predict or better understand the macroscopic response of a material to
microscopic deformations, but has also been used in other applied fields such as Computer Vision to
provide discrete approximations of given continuum energies that might be used, e.g., for numerical
simulations, or in Data Science, to provide continuum minimal-cut approximations to problems in
Machine Learning. We will use the terminology of ‘atoms’ and keep the application to physical
problems in mind, even though in the frameworks just mentioned discrete domains can be thought
of as composed by pixels or labels of data. We restrict our description to the case when the
reference configuration of a material at the atomistic scale can be assumed to be a (Bravais) lattice
(crystallization); this assumption could be relaxed to considering non-Bravais or disordered lattices,
at the expense of a more complex notation. In our case it is not restrictive to assume the reference
configuration to be (a portion of) the cubic lattice Zn in Rn, scaled by a small parameter. More
precisely, fixing ε > 0 one describes the atomistic deformation of a material occupying an open
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bounded domain Ω ⊂ Rn through a map u : Zε(Ω) → Rd, where Zε(Ω) := Ω ∩ εZn denotes the
set of ε-spaced material points (or simply atoms) of the system. In the most general case, one can
assume such a system to be driven by an energy of the form

Fε(u) =
∑

i∈Zε(Ω)

εnφεi ({ui+j}j∈Zε(Ω−i)). (1.1)

Here for fixed i the function φεi : (Rd)Zε(Ω−i) → [0,+∞) should be thought of as the potential energy
at scale ε describing the interaction between the atom at position i and the whole configuration
{uj}j∈Zε(Ω). As a consequence, energies as in (1.1) can model systems which are (at the same time)
non-homogeneous, multi-body, non-local and multi-scale.

1.1. Aim of the paper. In this paper we are interested in the variational description (via Γ-
convergence) of the limit of the Fε above as the lattice spacing ε vanishes while the density of the
atoms is kept constant thanks to the scaling factor εn. We refer to such a coarse-graining procedure
as discrete-to-continuum limit. As a matter of fact a fine description of the discrete-to-continuum
limit of physical systems driven by energies as those in (1.1) turns out to be a very challenging
task unless the potentials are explicitly known and take some very special form. Until now the
most general result in this direction has been obtained in [20], where the authors establish a set
of assumptions on the potential energies φεi which ensure that up to subsequences the Γ-limit of
energies as in (1.1) is an integral functional defined on a Sobolev space. The aim of the present paper
is the extension of such a general result to the setting of special functions of bounded variations,
that is to find sufficient conditions on φεi under which the variational limit energy of the sequence
(Fε) is of the form

F (u) =

∫
Ω

f(x,∇u) dx +

∫
Su

g(x, u+ − u−, νu) dHn−1 (1.2)

defined on those u (here we use the same notation u for both microscopic and macroscopic fields) be-
longing to SBV (Ω;Rd). Energies of this type are usually referred to as free-discontinuity functionals
and are widely used to model a number of phenomena in fracture mechanics, image reconstruction
or in the theory of liquid crystals, to make only a few examples ([7, 12, 11, 37]). The discrete-
to-continuum analysis performed in the present paper thus provides a very general framework on
the one hand for atomistic systems whose macroscopic behavior can be studied in the context of
fracture mechanics and on the other hand for possible discrete approximations of energies used in
image reconstruction, such as for instance the approximations studied in [28, 29, 19, 38]. We point
out that our analysis is also connected to some recent results in Data Science [41, 27, 40].

The assumptions on the potentials φεi that are needed to restrict the class of possible discrete-
to-continuum limits to functionals of the form (1.2) are carefully listed in Section 2. Here we
limit ourselves to highlight the main ideas behind them in the case that u represents the elastic
deformation field of a physical system to be studied within the theory of fracture mechanics. In
this case the two energy terms in (1.2) can be interpreted as follows. The bulk integral represents
the (hyper-)elastic energy stored in the system due to the contribution of bounded microscopic
deformation gradients, that is of deformations with |ui − uj |/ε of order one. The surface term
represents the energy the system needs to produce the fracture Su in Ω with opening u+ − u−.
Such an energy is instead due to microscopic deformation gradients of order 1/ε. In the simplest
possible case f(x,M) = |M |p and g = const the bulk and surface energies are proportional to the
p-th power of the Lp norm of the macroscopic deformation gradient ∇u and to the length of the
fracture, respectively.
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Within this framework the assumptions on the potentials φεi read as follows.

(H1) invariance under translations in u: This ensures that the integrand f in (1.2) does not
depend explicitly on u and g depends on u+ and u− only through their difference;

(H2) monotonicity in the strain: the potential energy is assumed to be a non-decreasing in the
finite differences |ui − uj | - in the simple case of pairwise interactions this translates to the
fact that the elastic energy increases as the modulus of the deformation gradient increases;

(H3) weak Cauchy-Born type upper bound: we only require that the potential energy of any
microscopic affine deformation is bounded from above by the p-th power (p > 1) of the
norm of its gradient;

(H4) lower bound that allows to deduce that the limit is defined on SBV (Ω): keeping in mind the
interpretation above, of finite differences as deformation gradients, φεi ({ui+j}) is assumed to
be bounded from below by |(ui−uj)/ε|p whenever this quantity is of order 1, and otherwise
by 1/ε;

(H5) mild non-locality: the potential energies φεi of different deformations that agree in a cube
of side length α centred at a point i are comparable up to an error that vanishes for large
α as ε→ 0 uniformly in i. This ensures that the Γ-limit is a local integral functional;

(H6) controlled non-convexity: the energy stored by a convex combination of two deformations is
asymptotically controlled by the sum of the energies corresponding to each single deforma-
tion. This technical assumption allows us to use the abstract methods of Γ-convergence (see
below) and is needed here to tame the effect of the possibly diverging number of multi-body
interactions.

We take the discrete-to-continuum limit of the energies in (1.1) under this set of assumptions. To
this end we regard a discrete field u as belonging to L1(Ω;Rd) by identifying it with its piecewise
constant interpolation on the cells of the ε lattice. Outside this set of functions we extend Fε to
L1(Ω;Rd) by setting it equal to +∞. We then define the discrete-to-continuum limit of Fε as its
Γ-limit as ε → 0 with respect to the strong L1-convergence. We remark that hypothesis (H2) is
quite restrictive in the framework of mechanics as it is not feasible for the modeling of materials
with resistance to compression. The variational analysis of such models in dimension higher than
one remains a major open problem, which has defied integral-representation techniques so far, and
we do not address it in the present paper. Some interesting results in that context can be found
for instance in [22] or [39] in the case of Lennard-Jones type potentials. Although (H2) rules out
the above mentioned models in the general setting, it is not a restrictive assumption in the case of
traction problems. Moreover, it is compatible with the assumptions on interaction potentials used
in the context of image reconstruction, and in recent applications to data science. In Section 5.1 we
provide a relaxed, albeit more complex, version of (H2), which allows us to consider more general
energy densities in the case that the system is driven by a two-body interaction energy.

1.2. Main results, methods of proof and comparison with existing results. In this paper
we prove compactness, integral-representation and homogenization results for energies of the form
(1.1). More precisely, in Theorem 3.1 we show that, up to subsequences, the discrete energies Fε
Γ-converge to a free-discontinuity functional of the type (1.2). Using this integral representation
we then prove the homogenization Theorem 4.3. There we show that under additional assumptions
on φεi which will be discussed at the end of this section the whole sequence (Fε) Γ-converges to

Fhom(u) =

∫
Ω

fhom(∇u) dx+

∫
Su

ghom(u+ − u−, νu) dHn−1, (1.3)

where fhom and ghom are some homogenized bulk and surface-energy densities, respectively.
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The proof of Theorem 3.1 relies on the so-called localization method of Γ-convergence (see [33,
Chapters 14–20] and also [14, Chapter 16]). Following this method we consider energies Fε as
functions defined both on u and on the open subsets of Ω by defining for every pair (u,A) with
u : Zε(Ω) → Rd and A ⊂ Ω open the localized energy Eε(u,A) according to (1.1) where now
the sum is taken only over i ∈ Zε(A). We then prove a general compactness result (Theorem
3.14) which ensures that for every sequence of positive numbers converging to zero there exist a
subsequence (εj) and a functional F such that for every A ⊂ Ω open and with Lipschitz boundary
the localized energies Fεj (·, A) Γ-converge to F (·, A). Subsequently, thanks to assumptions (H1)–
(H6) we recover enough information on F both as a function in u and as a set function to write
it as a free-discontinuity functional of the form (1.2) by using the general integral-representation
result in [10]. Before we comment on the homogenization result below we give a short overview on
the use of the localization method in the context of discrete systems.

The method was originally proposed by De Giorgi and has been successfully used in the context
of homogenization of multiple integrals in the continuum setting (see [17] and references therein).
It has been first adapted to study discrete-to-continuum limits in [1] in the context of pairwise-
interacting discrete systems modeling nonlinear hyper-elastic materials and giving rise to continuum
functionals finite on Sobolev spaces of the form

∫
Ω
f(x,∇u) dx. After that the application of the

localization method to discrete systems at a bulk scaling has been extended into several directions
including stochastic lattices [4, 30], more general interaction potentials [25, 23, 20] and has also been
combined with dimension-reduction techniques [3]. The most general result for discrete systems on
deterministic lattices with limit energies on Sobolev spaces is by now contained in [20].

At the surface scaling the analysis of discrete systems has required the use of the abstract method
for the first time in [5]. That paper derives the continuum domain-wall theory in ferromagnetism
from pairwise interacting Ising-type spin systems on (possibly stochastic) lattices (see also [24] for
thin films). The extension of this result to more general magnetic interactions has been considered
in [2]. There the authors give examples of systems not satisfying (the analog of) assumption (H5)
whose discrete-to-continuum limit is a nonlocal functional (see also [13]). A first general result for
discrete systems with multi-body and long-range interactions at this scaling has been obtained in
[16] in the context of spin-like systems with spatially modulated phases.

We point out that in the above mentioned papers the discrete energies under consideration
involve either a pure bulk or a pure surface scaling. In order to obtain a Γ-limit of the type (1.2)
one needs to consider discrete energies where both scalings are present at the same time. In this
case, however, it becomes more difficult to find the correct set of assumptions which makes the
localization method applicable. A first result in this direction has been obtained in [38], where
the author considers energies of the form (1.1) on a possibly stochastic lattice. The interaction
potentials φεi however are independent of i and ε, have finite range and depend on finitely many
particles uniformly in ε. Moreover, they depend on the configuration {uj}j through the set of
discrete differences {|ui− uj |}i,j . This type of dependence is essential to decouple the contribution
of bulk and surface scalings in the continuum limit, which finally allows to prove the full Γ-limit
result (without extraction of a subsequence) in the case of a stationary stochastic lattice. This
is done by exploiting for the first time in the discrete setting the theory of maximal functions
introduced in [36] and used in [21] in the context of homogenization. This technique turns out
to be useful also in the proof of the present homogenization result Theorem 4.3, which we finally
describe below.

Theorem 4.3 falls into the framework of periodic homogenization and thus requires the restriction
to a special class of periodic interaction-energy densities. As our interaction-energy densities at a
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point i may depend on the whole configuration {ui+j}j∈Zε(Ω−i) the meaning of periodicity needs
to be clarified. A proper definition of periodicity (at least in the interior of Ω) is possible when
restricting to finite-range interactions. This modeling assumption also helps to decouple the bulk
and the surface scaling in the Γ-limit, which is central to characterize the homogenized integrands
fhom and ghom in (1.3). We highlight that even under the finite-range assumption this task still
requires a major effort due to the lack of a gradient structure in the interaction potentials. In fact, a
crucial step in proving the homogenization result consists in establishing sufficient conditions on the
potential φεi (without enforcing an explicit gradient structure) which make it possible to distinguish
between the discretization of a macroscopic affine deformation of the form uM (x) = Mx with
M ∈ Rd×n and of a macroscopic jump, that is, a mapping of the form uζ(x1, . . . , xn) = ζχ{xn>0}
with ζ ∈ Rd. More in detail, to derive formulas for the homogenized integrands fhom and ghom in
(1.3) it is essential that the potentials φεi reflect the different scaling properties of uM and uζ when
passing from the scaled lattice εZn to the integer lattice Zn. Indeed, the affine function uM satisfies
uM (j) = ε uM (j/ε) for every j ∈ εZn, while for the jump function uζ there holds uζ(j) = uζ(j/ε)
for every j ∈ εZn. It thus seems natural to require that for a given discrete function u : Zn → Rd
and i ∈ Zn asymptotically there holds

εnφεεi({εuj/ε}) ∼ εnψbi ({uj}), εnφεεi({uj/ε}) ∼ εn−1ψsi ({uj}),

for some discrete bulk and surface potentials ψbi , ψ
s
i . This heuristic argument is made rigorous in

Section 4.1, where we carefully state the correct hypotheses on the interaction potentials and we
refer the reader to this section for more details.

1.3. Plan of the paper. The paper is organized as follows. In Section 2 we recall some basic
notation and we introduce the discrete functionals under consideration together with the precise
assumptions on the potential φεi . Section 3 is then devoted to the proof of the integral-representation
Theorem 3.1 and to the treatment of Dirichlet boundary problems. The latter allows us to obtain
asymptotic minimization formulas for the integrands f and g in (1.2) (see Remark 3.16), which are
a key ingredient to prove the homogenization result Theorem 4.3. This is done in Section 4, where
we also state precisely the periodicity- and the separation-of-scales assumptions. We conclude the
paper by giving some examples that fall into the framework of our discrete energies in Section 5.

2. Setting of the problem

Notation. Let n ≥ 1 be a fixed integer and Ω ⊂ Rn an open, bounded set with Lipschitz boundary.
We denote by A(Ω) the family of all open subsets of Ω and by Areg(Ω) the family of all open subsets
of Ω with Lipschitz boundary.

Let {e1, . . . , en} denote the standard orthonormal basis in Rn. If ν, ξ ∈ Rn we use the notation

〈ν, ξ〉 for the scalar product between ν and ξ and by |ν| :=
√
〈ν, ν〉 and |ν|∞ := sup1≤k≤n |〈ν, ek〉|

we denote the euclidian norm and the supremum norm of ν, respectively. Moreover, we set Sn−1 :=
{ν ∈ Rn : |ν| = 1} and for every ν ∈ Sn−1 we denote by Πν := {x ∈ Rn : 〈x, ν〉 = 0} the hyperplane
orthogonal to ν and passing through the origin and pν : Rn → Πν is the orthogonal projection onto
Πν . Further, Qν denotes a unit cube centered at the origin and with one face orthogonal to ν, and
for every x0 ∈ Rn and ρ > 0 we set Qνρ(x0) := x0 + ρQν . If ν = ek for some k ∈ {1, . . . , n} we
simply write Q and Qρ(x0) in place of Qek and Qekρ (x0).

For every A ⊂ Rn we write |A| for the n-dimensional Lebesgue measure of A, while Hn−1 denotes
the (n − 1)-dimensional Hausdorff measure in Rn. If p ∈ [1,+∞] and d ≥ 1 is a fixed integer we
use standard notation for Lebesgue spaces Lp(Ω;Rd) and Sobolev spaces W 1,p(Ω;Rd). Moreover,
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SBV (Ω;Rd) denotes the space of Rd-valued special functions of bounded variation in Ω (see, e.g.,
[6] for the general theory). If u ∈ SBV (Ω;Rd) we write ∇u for the approximate gradient of u, Su
for the approximate discontinuity set of u and νu is the generalized outer normal to Su. Moreover,
u+ and u− are the the traces of u on both sides of Su and we set [u] := u+ − u−. We also
consider the larger space GSBV (Ω;Rd) defined as the space of all functions u : Ω→ Rd such that
ϕ ◦ u ∈ SBVloc(Ω;Rd) for every ϕ ∈ C1(Rd;Rd) with supp(∇ϕ) ⊂⊂ Rd. For p ∈ (1,+∞) it is also
convenient to consider the spaces

SBV p(Ω;Rd) := {u ∈ SBV (Ω;Rd) : ∇u ∈ Lp(Ω;Rd×n), Hn−1(Su) < +∞}

and

GSBV p(Ω;Rd) := {u ∈ GSBV (Ω;Rd) : ∇u ∈ Lp(Ω;Rd×n), Hn−1(Su) < +∞}.
Note that GSBV p(Ω;Rd) is a vector space and for every u ∈ GSBV p(Ω;Rd) and ϕ ∈ C1(Rd;Rd)
with supp(∇ϕ) ⊂⊂ Rd there holds ϕ ◦ u ∈ SBV p(Ω;Rd) ∩ L∞(Ω;Rd) (see, e.g., [34, Section 2]).

For x0 ∈ Rn, ν ∈ Sn−1, ζ ∈ Rd and M ∈ Rd×n we will frequently consider the jump function
uνζ,x0

: Rn → Rd and the affine function uM,x0
: Rn → Rd defined by setting

uνζ,x0
(x) :=

{
ζ if 〈x− x0, ν〉 ≥ 0,

0 if 〈x− x0, ν〉 < 0,
and uM,x0(x) := M(x− x0), (2.1)

for every x ∈ Rn.

Setting. In all that follows ε > 0 denotes a parameter varying in a strictly decreasing sequence
of positive real numbers converging to zero. For any ε > 0, u : Rn → Rd, ξ ∈ Zn \ {0} and x ∈ Rn
we denote by

Dξ
εu(x) :=

u(x+ εξ)− u(x)

ε|ξ|
the difference quotient of u at x in direction ξ. If ξ = ek for some k ∈ {1, . . . , n} we write Dk

εu(x)
in place of Dek

ε u(x).
We now introduce the discrete functionals considered in this paper. To this end, for every A ⊂ Rn

let Zε(A) := A ∩ εZn and set Aε(Ω;Rd) := {u : Zε(Ω) → Rd}. It is then convenient to identify
discrete functions u ∈ Aε(Ω;Rd) with their piecewise-constant counterpart belonging to L1(Ω;Rd)
defined by setting

u(x) := u(i) =: ui for every x ∈ i+ [0, ε)n, i ∈ Zε(Ω). (2.2)

If (uε) is a sequence inAε(Ω;Rd) we say that (uε) converges in L1(Ω;Rd) to a function u ∈ L1(Ω;Rd)
if the sequence of the piecewise-constant interpolations of uε defined as in (2.2) does so.

Finally, for every i ∈ Zε(Ω) it is convenient to consider the translated set Ωi := Ω − i. We
then consider functions φεi : (Rd)Zε(Ωi) → [0,+∞) and we define the discrete functionals Fε :
L1(Ω;Rd)×A(Ω)→ [0,+∞] as

Fε(u,A) :=


∑

i∈Zε(A)

εnφεi ({ui+j}j∈Zε(Ωi)) if u ∈ Aε(Ω;Rd),

+∞ otherwise in L1(Ω;Rd).
(2.3)

In the case A = Ω we omit the dependence on the set and simply write Fε(u) in place of Fε(u,Ω).
With the identification as in (2.2) and the corresponding L1(Ω;Rd)-convergence we aim to describe
the Γ-limit of the functionals Fε in the strong L1(Ω)-topology under suitable conditions on the
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energy densities φεi . Namely, we assume that the functions φεi : (Rd)Zε(Ωi) → [0,+∞) satisfy the
following hypotheses for every ε > 0 and i ∈ Zε(Ω).

(H1) (translational invariance) For all w ∈ Rd and z : Zε(Ωi)→ Rd,

φεi ({zj + w}j∈Zε(Ωi)) = φεi ({zj}j∈Zε(Ωi));

(H2) (monotonicity) for all z, w : Zε(Ωi)→ Rd with |zj − zl| ≤ |wj − wl| for every j, l ∈ Zε(Ωi)
we have

φεi ({zj}j∈Zε(Ωi)) ≤ φ
ε
i ({wj}j∈Zε(Ωi));

(H3) (upper bound for linear functions) there exist c1 > 0 and p ∈ (1,+∞) such that for every
M ∈ Rd×n we have

φεi ({(Mx)j}j∈Zε(Ωi)) ≤ c1(|M |p + 1),

where by (Mx) we denote the linear function defined by (Mx)j := Mj;
(H4) (lower bound) there exists c2 > 0 such that

φεi ({zj}j∈Zε(Ωi)) ≥ c2 min

{
n∑
k=1

|Dk
ε z(0)|p, 1

ε

}
,

for all i ∈ Zε(Ω) with i+ εek ∈ Zε(Ω) for every k ∈ {1, . . . , n} and every z : Zε(Ωi)→ Rd.
Moreover, we require that the following is satisfied.

(H5) (mild non-locality) For every ε > 0, α ∈ N, j ∈ Zε(Rn) and ξ ∈ Zn there exists cj,ξε,α ≥ 0 such

that for every i ∈ Zε(Ω) and for all z, w : Zε(Ωi) → Rd with zj = wj for all j ∈ Zε(εαQ)
there holds

φεi ({zj}j∈Zε(Ωi)) ≤ φ
ε
i ({wj}j∈Zε(Ωi))

+
∑

j∈Zε(Ωi)

∑
ξ∈Zn

j+εξ∈Ωi

cj,ξε,α min

{
|Dξ

εz(j)|p,
1 + |z(j + εξ)− w(j + εξ)|

ε

}
,

and the sequence (cj,ξε,α) satisfies that following:

lim sup
ε→0

∑
α∈N

∑
j∈Zε(Rn)

∑
ξ∈Zn

cj,ξε,α < +∞ (2.4)

and for every η > 0 there exists a sequence (Mε
η ) with εMε

η → 0 as ε→ 0 such that

lim sup
ε→0

∑
max{α, 1ε |j|,|ξ|}>Mε

η

cj,ξε,α < η; (2.5)

(H6) (controlled non-convexity) there exists c3 > 0 and for every ε > 0, j ∈ Zε(Rn) and ξ ∈ Zn
there exists cj,ξε ≥ 0 with

lim sup
ε→0

∑
j∈Zε(Rn)

∑
ξ∈Zn

cj,ξε < +∞ (2.6)

such that for all i ∈ Zε(Ω), every z, w : Zε(Ωi) → Rd and every cut-off ϕ : Rn → [0, 1] we
have

φεi ({ϕjzj + (1− ϕj)wj}j∈Zε(Ωi)) ≤ c3
(
φεi ({zj}j∈Zε(Ωi)) + φεi ({wj}j∈Zε(Ωi))

)
+Rεi (z, w, ϕ),
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where

Rεi (z, w, ϕ) :=
∑

j∈Zε(Ωi)

∑
ξ∈Zn

j+εξ∈Ωi

cj,ξε

(
sup

l∈Zε(Ωi)
k∈{1,...,n}

|Dk
εϕ(l)|p|z(j + εξ)− w(j + εξ)|p

)

+
∑

j∈Zε(Ωi)

∑
ξ∈Zn

j+εξ∈Ωi

cj,ξε

(
min

{
|Dξ

εz(j)|p,
1

ε|ξ|

}
+ min

{
|Dξ

εw(j)|p, 1

ε|ξ|

})
;

Remark 2.1. Hypotheses (H1) together with (H3) imply that for every ε > 0, i ∈ Zε(Ω) and for
any constant function z : Zε(Ωi)→ Rd, zj = w for all j ∈ Zε(Ωi) we have

φεi ({zj}j∈Zε(Ωi)) = φεi ({0j + w}j∈Zε(Ωi)) = φεi ({0j}j∈Zε(Ωi)) ≤ c1 + 1. (2.7)

Note that the condition on the decaying tail of the sequence (cj,ξε,α) in (H5) is slightly more general
then the corresponding conditions in [1] and [20]. In fact, therein the authors choose for every η > 0
a constant Mη > 0 uniformly in ε such that the analog of (2.5) is satisfied. Here we show that this
assumption can be weakened by allowing Mε

η to depend on ε as long as εMε
η → 0. This weaker

condition makes it possible to rephrase an example considered in [13] in our framework (see Section
5.3).

Remark 2.2 (comments on hypothesis (H2) and its relaxation). Hypotheses (H2) is a technical
requirement. It guarantees the possibility to pass from GSBV p(Ω;Rd) to SBV p(Ω;Rd)∩L∞(Ω;Rd)
using a suitable truncation procedure (see Remark 2.3 below). This is essential in many proofs in
Sections 3 and 4. It can, however, be avoided if the space of admissible functions is restricted to
u ∈ Aε(Ω;Rd) satisfying a uniform L∞-bound ‖u‖L∞ ≤ c∞ for some fixed c∞ > 0. In this case the
domain of the Γ-limit in Theorem 3.1 would directly reduce to SBV p(Ω;Rd) ∩ L∞(Ω;Rd).

We also observe that instead of requiring (H2) one could also require that the energies Fε decrease
along the truncation operators considered in [26], i.e., Fε(φk(u), A) ≤ Fε(u,A), where the functions
φk ∈ C∞c (Rd;Rd) are as in Remark 2.3 below. Nevertheless, we prefer to state (H2) as above, since
it allows us to express the required properties of Fε on the level of the potentials φεi .

Eventually, we notice that in the case of pairwise interactions the presence of a gradient structure
allows to replace (H2) by a weaker “almost monotonicity” assumption, which only has to be satisfied
for “large gradients”. This is discussed in more detail in Section 5.1.

Remark 2.3 (Smooth truncation). As mentioned above, we will apply (H2) to suitably truncated Rd-
valued functions. To this end, following the approach in [26] we consider ϕ ∈ C∞c (R) with ϕ(t) = t
for all t ∈ R with |t| ≤ 1, ϕ(t) = 0 for all t ≥ 3 and ‖ϕ′‖∞ ≤ 1 and we define φ ∈ C∞c (Rd;Rd) by
setting

φ(ζ) :=

{
ϕ(|ζ|) ζ

|ζ| if ζ 6= 0,

0 if ζ = 0.

The function φ is 1-Lipschitz [26, Section 4] and for every k > 0 the function φk defined as

φk(ζ) := kφ( ζk ) is also 1-Lipschitz. In particular, since φk(0) = 0, we have

|φk(ζ)| ≤ |ζ| for every ζ ∈ Rd. (2.8)

For every u : Rn → Rd we now define the truncation Tku := φk(u) and we observe that thanks to
the 1-Lipschitzianity of φk (H2) yields

Fε(Tku,A) ≤ Fε(u,A), (2.9)
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for every k > 0, ε > 0, A ∈ A(Ω) and u ∈ Aε(Ω;Rd). Moreover, for every u ∈ GSBV p(Ω;Rd)
and every k > 0 the truncation Tku belongs to SBV p(Ω;Rd) ∩ L∞(Ω;Rd). Finally, if u ∈
GSBV p(Ω;Rd) ∩ L1(Ω;Rd) there holds (see [38, Lemma 2.1])

(i) Tku→ u a.e. and in L1(Ω;Rd) as k → +∞,
(ii) ∇Tku(x) = ∇φk(u(x))∇u(x) and in particular |∇Tku(x)| ≤ |∇u(x)| for a.e. x ∈ Ω and

every k > 0,
(iii) STku ⊂ Su and ([u], νu) = ([Tku], νTku) Hn−1-a.e. on Su ∩ {|u±| ≤ k} up to a simultaneous

change of sign of [Tku] and νTku, and by Lipschitzianity |(Tku)+ − (Tku)−| ≤ |u+ − u−| for
every k > 0. Moreover limk→+∞Hn−1(STku) = Hn−1(Su).

Remark 2.4 (Γ-liminf and Γ-limsup). In all that follows we use standard notation for the Γ-liminf
and the Γ-limsup, i.e., for every pair (u,A) ∈ L1(Ω;Rd)×A(Ω) we set

F ′(u,A) := Γ- lim inf
ε→0

Fε(u,A) := inf{lim inf
ε→0

Fε(uε, A) : uε → u in L1(Ω;Rd)},

F ′′(u,A) := Γ- lim sup
ε→0

Fε(u,A) := inf{lim sup
ε→0

Fε(uε, A) : uε → u in L1(Ω;Rd)}.

If A = Ω we write F ′(u) and F ′′(u) in place of F ′(u,Ω) and F ′′(u,Ω).
The functional F ′ is superadditive as a set function [33, Proposition 16.12] and both the func-

tionals F ′ and F ′′ are increasing as set functions [33, Proposition 6.7] and L1(Ω;Rd)-lower semicon-
tinuous in u [33, Proposition 6.8]. Moreover, from (2.9) we deduce that F ′(Tku,A) ≤ F ′(u,A) and
F ′′(Tku,A) ≤ F ′′(u,A) for every (u,A) ∈ L1(Ω;Rd)×A(Ω) and k > 0. Hence, the L1(Ω;Rd)-lower
semicontinuity together with (i) in Remark 2.3 ensure that

lim
k→+∞

F ′(Tku,A) = F ′(u,A),

lim
k→+∞

F ′′(Tku,A) = F ′′(u,A). (2.10)

Finally, we also consider the inner-regular envelopes of F ′ and F ′′ defined as

F ′−(u,A) := sup{F ′(u,A′) : A′ ∈ A(Ω), A′ ⊂⊂ A},
F ′′−(u,A) := sup{F ′′(u,A′) : A′ ∈ A(Ω), A′ ⊂⊂ A}, (2.11)

respectively. Then F ′− and F ′′− are inner regular by definition, increasing and L1(Ω;Rd)-lower
semicontinuous [33, Remark 15.10].

3. Compactness and integral representation

In this section we state and prove the first main result of the paper, which is the following
integral-representation result for the Γ-limit of the functionals Fε.

Theorem 3.1 (Integral representation). Let Fε be as in (2.3) and suppose that φεi : (Rd)Zε(Ωi) →
[0,+∞) satisfy (H1)-(H6). For every sequence of positive numbers converging to 0 there exists a
subsequence (εj) such that (Fεj ) Γ-converges to a functional F : L1(Ω;Rd)→ [0,+∞] of the form

F (u) =


∫

Ω

f(x,∇u) dx+

∫
Su

g(x, [u], νu) dHn−1 if u ∈ GSBV p(Ω;Rd) ∩ L1(Ω;Rd),

+∞ otherwise in L1(Ω;Rd).
(3.1)

Here, for every x0 ∈ Rn, ν ∈ Sn−1, ζ ∈ Rd and M ∈ Rd×n the integrands are given by the formulas

f(x0,M) = lim sup
ρ→0

1

ρn
m(uM,x0

, Qνρ(x0)), g(x0, ζ, ν) = lim sup
ρ→0

1

ρn−1
m(uνζ,x0

, Qνρ(x0)), (3.2)
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where uM,x0 , u
ν
ζ,x0

are given by (2.1) and for every ū ∈ SBV p(Ω;Rd) and every A ∈ Areg(Ω) we
have set

m(ū, A) := inf{F (u,A) : u ∈ SBV p(A;Rd), u = ū in a neighborhood of ∂A}. (3.3)

In particular, g(x, t, ν) = g(x,−t,−ν) for every (x, t, ν) ∈ Ω × Rd × Sn−1. Moreover, for every
A ∈ Areg(Ω) and every u ∈ GSBV p(Ω;Rd) ∩ L1(Ω;Rd) there holds

Γ- lim
j→+∞

Fεj (u,A) =

∫
A

f(x,∇u) dx+

∫
Su∩A

g(x, [u], νu) dHn−1. (3.4)

Remark 3.2 (Choice of convergence). The convergence in measure would be a more general choice
with respect to the L1-convergence chosen in Theorem 3.1. In this case one could follow the
arguments in [26] to prove an integral representation as above. Here we prefer to work with the
latter convergence, as we are interested in Dirichlet boundary value problems (cf. Lemma 3.15), in
which case the L1-convergence becomes the natural choice thanks to the lower bound (H4) together
with the monotonicity assumption (H2) and Remark 2.3.

3.1. Proof of the integral-representation result. We will prove Theorem 3.1 gathering Propo-
sitions 3.3, 3.4, 3.6, 3.10 and 3.12 below which together with the general compactness result Theorem
3.14 ensure that the Γ-limit F exists up to subsequences and that a suitable perturbation of F sat-
isfies all hypotheses of [10, Theorem 1]. As a first step we show that F ′′(·, A) is local for every
A ∈ Areg(Ω).

Proposition 3.3 (Locality). Let φεi : (Rd)Zε(Ωi) → [0,+∞) satisfy hypotheses (H1)-(H6). Then
for any A ∈ Areg(Ω) and u, v ∈ GSBV p(Ω;Rd) ∩ L1(Ω;Rd) with u = v a.e. in A we have

F ′′(u,A) = F ′′(v,A).

Proof. Let A, u, v be as in the statement. Thanks to (2.10) it suffices to consider the case u, v ∈
SBV p(Ω;Rd) ∩ L∞(Ω;Rd). We first show that F ′′(u,A) ≤ F ′′(v,A). To this end, choose uε, vε ∈
Aε(Ω;Rd) converging in L1(Ω;Rd) to u, v, respectively and satisfying

lim
ε→0

Fε(uε, A) = F ′′(u,A), lim
ε→0

Fε(vε, A) = F ′′(v,A). (3.5)

Up to considering the truncated functions T‖u‖L∞uε, T‖v‖L∞ vε we can assume that ‖uε‖L∞ ≤
3‖u‖L∞ , ‖vε‖L∞ ≤ 3‖u‖L∞ .

For fixed η > 0 and every ε > 0 let Mε
η > 0 be given by (2.5) and define wε ∈ Aε(Ω;Rd) by

setting

wiε :=

{
viε if dist∞(i, A) ≤ εMε

η ,

uiε otherwise in Zε(Ω).

Since the sequences (uε), (vε) are bounded in L∞(Ω;Rd) uniformly in ε and u = v a.e. in A we have

‖wε − u‖L1(Ω) ≤ ‖vε − v‖L1(A) + ‖uε − u‖L1(Ω\A) + cεn#{i ∈ Zε(Ω): dist(i, ∂A) < εMε
η}.

Moreover, since ∂A is Lipschitz, it admits an upper Minkowsky content, hence

(εMε
η )n−1#{i ∈ Zε(Ω): dist(i, ∂A) < εMε

η} ≤ cHn−1(∂A) + oεMε
η
(1).

Thus, the assumption on Mε
η ensures that wε → u in L1(Ω;Rd), which implies that

F ′′(u,A) ≤ lim sup
ε→0

Fε(wε, A). (3.6)
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We now come to estimate Fε(wε, A). For every i ∈ Zε(A) we set

αε(i) := sup{α ∈ N : wjε = vjε for every j ∈ Zε(i+ εαQ)},

so that condition (H5) yields

Fε(wε, A) ≤
∑

i∈Zε(A)

εnφεi ({vi+jε }j∈Zε(Ωi))

+
∑

i∈Zε(A)

εn
∑

j∈Zε(Ωi)

∑
ξ∈Zn

j+εξ∈Ωi

cj,ξε,αε(i) min

{
|Dξ

εw
i+j
ε |p,

1 + |wi+j+ξε − vi+j+ξε |
ε

}
. (3.7)

We observe that by construction αε(i) > Mε
η for every i ∈ Zε(A). Estimating the minimum in (3.7)

with (1 + |wi+j+ξε − vi+j+ξε |)/ε and using the uniform bound on ‖vε‖L∞ and ‖wε‖L∞ thus gives

Fε(wε, A) ≤ Fε(vε, A) + (1 + 3‖u‖L∞ + 3‖v‖L∞)
∑
α>Mε

η

∑
j∈Zε(Rn)

∑
ξ∈Zn

cj,ξε,αε
n−1#{i ∈ Zε(A) : αε(i) = α}.

Moreover, the Lipschitz regularity of A yields

εn−1#{i ∈ Zε(A) : αε(i) = α} ≤ cHn−1(∂A) + oε(1),

which in view of the choice of Mε
η and (2.5) gives

lim sup
ε→0

Fε(wε, A) ≤ lim sup
ε→+∞

Fε(vε, A) + cη.

Gathering (3.5) and (3.6) we thus obtain

F ′′(u,A) ≤ F ′′(v,A) + cη,

and the desired inequality follows by the arbitrariness of η > 0. �

As a next step towards the proof of Theorem 3.1 the following two propositions show that F ′

and F ′′ satisfy suitable growth conditions.

Proposition 3.4 (Compactness and Lower bound). Let Fε be given by (2.3) and suppose that the
functions φεi : (Rd)Zε(Ωi) → [0,+∞) satisfy (H4). Let A ∈ Areg(Ω) and suppose that uε ∈ Aε(Ω;Rd)
are such that supε Fε(uε, A) < +∞. If in addition the sequence (uε) is equi-integrable on A, then uε
converge up to subsequences to a function u ∈ GSBV p(A;Rd) ∩ L1(A;Rd). Moreover, there holds

F ′(u,A) ≥ c
(∫

A

|∇u|p dx+Hn−1(Su ∩A)

)
(3.8)

for some c > 0 independent of u and A.

Proof. Let uε ∈ Aε(Ω;Rd) be as in the statement. In view of (H4) we have

Fε(uε, A) ≥ c2
∑

i∈Zε(A)

εn min

{
n∑
k=1

|Dk
εuε(i)|p,

1

ε

}
=: Gε(uε, A), (3.9)

hence [38, Lemma 3.3] applied to L = Zn and f(p) = min{‖p‖1, 1
ε} together with the equi-

integrability assumption and the uniform bound on Fε(uε, A) provide us with a subsequence (not
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relabeled) and a function u ∈ GSBV p(A;Rd)∩L1(A;Rd) such that uε → u in L1(A;Rd). Moreover,
from [38, Lemma 3.3] and (3.9) we also deduce

F ′(u,A) ≥ c2G′(u,A) ≥ c
(∫

A

|∇u|p dx+Hn−1(Su ∩A)

)
for some c > 0 independent of u and A. �

In order to prove an upper bound for F ′′(u) we need to restrict to a suitable dense class of func-
tions. To this end, it is convenient to introduce the following definition of a regular triangulation.

Definition 3.5. Let A ⊂ Rn be open, bounded and with Lipschitz boundary. We say that a
family (Ul)l=1,...,N of pairwise disjoint open n-simplices U1, . . . , UN is a regular triangulation of A if

A ⊂
⋃N
l=1 U l and if for any (l, l′) ∈ {1, . . . , N}2 the intersection Sl,l′ := U l ∩U l′ is either the empty

set or an (n − k)-dimensional simplex for some k ∈ {1, . . . , n}. The (n − 1)-dimensional simplices
Sl,l′ are called the faces of the triangulation and by θ ∈ (0, π) we denote the minimal angle between
two faces of such a triangulation.

Proposition 3.6 (Upper bound). Let A ∈ Areg(Ω) and u ∈ GSBV p(A;Rd) ∩ L1(Ω;Rd) and
suppose that the functions φεi satisfy (H1)–(H6). Then

F ′′(u,A) ≤ c
(∫

A

(|∇u|p + 1) dx+

∫
Su∩A

(1 + |u+(y)− u−(y)|) dHn−1(y)

)
(3.10)

for some c > 0 independent of u and A.

Proof. Let Ω̃ ⊂ Rn be any open bounded set with Lipschitz boundary such that Ω ⊂⊂ Ω̃.
Step 1: As a preliminary step we prove the existence of some constant c > 0 such that for any

u ∈ SBV p(Ω̃;Rd) ∩ L∞(Ω̃;Rd) and any A ∈ Areg(Ω) there holds

F ′′(u,A) ≤ c
(∫

A

(|∇u|p + 1) dx+

∫
Su∩A

(1 + |u+(y)− u−(y)|) dHn−1(y)

)
. (3.11)

We first prove (3.11) for A polyhedral set.
Thanks to [32, Theorem 3.1] (see also [31, Theorem 3.9]), employing a standard density argument

it suffices to prove (3.11) for u ∈ SBV p(Ω̃;Rd) ∩ L∞(Ω̃;Rd) such that Su is essentially closed (i.e.,
Hn−1(Su \Su) = 0), Su is the intersection of Ω with a finite union of (n− 1)-dimensional simplices

and u ∈ W 1,∞(Ω̃ \ Su;Rd). Moreover, since u ∈ W 1,∞(Ω̃ \ Su;Rd), arguing again by density we

may assume that u is piecewise affine on Ω̃ \ Su. More precisely, we may assume that there exist

a regular triangulation (Ul)l=1,...,N of Ω̃ and M1, . . . ,MN ∈ Rd×n, b1, . . . , bN ∈ Rd such that u
satisfies the following.

(i) u(x) =
∑N
l=1 χUl∩Ω̃(x)(Mlx+ bl) for any x ∈ Ω̃ ∩

⋃N
l=1 Ul;

(ii) Su = Ω̃ ∩
⋃K
k=1 Slk,l′k , where (Slk,l′k)k=1,...,K is a collection of faces of the triangulation;

(iii) for any face Sl,l′ with (l, l′) 6= (lk, l
′
k) for every k ∈ {1, . . . ,K} we have

u(x) = Mlx+ bl = Ml′x+ bl′ for every x ∈ Sl,l′ .

Since A is a polyhedral set, up to refining the triangulation and renumbering the simplices we may
also assume that

A =

L⋃
l=1

U l
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for some L < N . Finally, we can assume that
⋃
l,l′ Sl,l′ ∩ εZn = ∅, since otherwise we may

consider the shifted lattice εZn + ξε for a suitable sequence ξε → 0. We then define a sequence
(uε) ⊂ Aε(Ω̃;Rd) by setting

uiε := u(i) for every i ∈ Zε(Ω̃)

and we note that uε → u ∈ L1(Ω;Rd). Moreover, we write

Fε(uε, A) =

L∑
l=1

Fε(uε, Ul), (3.12)

and we estimate Fε(uε, Ul) for every l ∈ {1, . . . , L}. To this end, for l ∈ {1, . . . , L} fixed and for
i ∈ Zε(Ul) set

αlε(i) := sup{α ∈ N : ujε = Mlj + bl for every j ∈ i+ εαQ}.
Thanks to (H1) and (H5) we deduce

Fε(uε, Ul) ≤
∑

i∈Zε(Ul)

εnφεi ({(Mlx)(i+ j)}j∈Zε(Ωi))

+
∑

i∈Zε(Ul)

εn
∑

j∈Zε(Ωi)

∑
ξ∈Zn

j+εξ∈Ωi

cj,ξ
ε,αlε(i)

min

{
|Dξ

εu(i+ j)|p, 1 + |u(i+ j + εξ)− (Mlx+ bl)(i+ j + εξ)|
ε

}

=: I lε,1 + I lε,2. (3.13)

Moreover, (H3) gives

I lε,1 ≤ c1
∑

i∈Zε(Ul)

εn(|M |p + 1) = c1

∫
Ul

(|∇u|p + 1) dx+ o(1), (3.14)

so that it remains to estimate I lε,2. To do so, we need to introduce some notation. In what follows
for ε > 0, i ∈ Zε(Ul), j ∈ Zε(Ωi) and ξ ∈ Zn we use the abbreviation

mj,ξ
ε,lu(i) := min

{
|Dξ

εu(i+ j)|p, 1 + |u(i+ j + εξ)− (Mlx+ bl)(i+ j + εξ)|
ε

}
.

Further, by
N (l) :=

{
l′ ∈ {1, . . . , N} : Sl,l′ is an (n− 1)-dimensional simplex

}
we denote the set of all indices which label the “neighboring” simplices of Ul. Moreover, for η > 0
fixed and every ε > 0 we choose Mη > 0 such that

lim sup
ε→0

∑
max{α, 1ε |j|,|ξ|}>Mε

η

cj,ξε,α < η,

and we find mε ∈ N such that εmε → 0 and mε >
4Mη cos θ

sin θ , where θ ∈ (0, π) is as in Definition 3.5.
Finally, for any l′ ∈ N (l) set

Il
′

ε := {i ∈ Zε(Ul) : dist∞(i, Ul′) ≤ εmε}
and

J l
′

ε := Zε(Ul) \ Il
′

ε .

Setting Uεl := {x ∈ Ul : dist∞(x,Rn \ Ul) > ε} we get⋂
l′∈N (l)

J l
′

ε = Zε(U
ε
l ).
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For l′ ∈ N (l) we also set

Ll
′

ε :=
⋂

l′′∈N (l)

l′′ 6=l′

J l
′′

ε

and we rewrite I lε,2 as

I lε,2 =
∑

i∈Zε(Uεl )

εn
∑

j∈Zε(Ωi)

∑
ξ∈Zn

j+εξ∈Ωi

cj,ξ
ε,αlε(i)

mj,ξ
ε,lu(i)

+
∑

l′,l′′∈N (l)

l′ 6=l′′

∑
i∈Il′ε,m∩Il

′′
ε,m

εn
∑

j∈Zε(Ωi)

∑
ξ∈Zn

j+εξ∈Ωi

cj,ξ
ε,αlε(i)

mj,ξ
ε,lu(i)

+
∑

l′∈N (l)

∑
i∈Il′ε ∩Ll

′
ε

εn
∑

j∈Zε(Ωi)

∑
ξ∈Zn

j+εξ∈Ωi

cj,ξ
ε,αlε(i)

mj,ξ
ε,lu(i). (3.15)

In order to estimate the first term in (3.15) we note that

εn−1#
{
i ∈ Zε(Uεl ) : αlε(i) = α

}
≤ cHn−1(∂Ul) + oε(1)

for every α ∈ N. Moreover, for every i ∈ Zε(U
ε
l ) we have αlε(i) ≥ 2mε. Thus, the estimate

mj,ξ
ε,lu(i) ≤ (2‖u‖L∞ + 1)ε−1 yields∑

i∈Zε(Uεl )

εn
∑

j∈Zε(Ωi)

∑
ξ∈Zn

j+εξ∈Ωi

cj,ξ
ε,αlε(i)

mj,ξ
ε,lu(i)

≤ (1 + 2‖u‖L∞)
∑
α≥2m

∑
j∈Zε(Rn)

∑
ξ∈Zn

cj,ξε,αε
n−1#

{
i ∈ Zε(Uεl ) : αlε(i) = α

}
≤ c(u)

∑
max{α, 1ε |j|,|ξ|}>Mε

η

cj,ξε,α. (3.16)

To bound the second term in (3.15) we observe that for every l′, l′′ ∈ N (l) with l′ 6= l′′ and every
α ∈ N we have

εn−1#
{
i ∈ Il

′

ε ∩ Il
′′

ε : αlε(i) = α
}
≤ εmεc

(
Hn−1(Sl,l′) +Hn−1(Sl,l′′) + oε(1)

)
.

Hence, as in (3.16) we obtain∑
l′,l′′∈N (l)

l′ 6=l′′

∑
i∈Il′ε,m∩Il

′′
ε,m

εn
∑

j∈Zε(Ωi)

∑
ξ∈Zn

j+εξ∈Ωi

cj,ξ
ε,αlε(i)

mj,ξ
ε,lu(i)

≤ (1 + 2‖u‖L∞)
∑

l′,l′′∈N (l)

l′ 6=l′′

∑
α∈N

∑
j∈Zε(Rn)

∑
ξ∈Zn

cj,ξε,αε
n−1#

{
i ∈ Il

′

ε,m ∩ Il
′′

ε,m : αlε(i) = α
}

≤ c(u, n)εm
∑
α∈N

∑
j∈Zε(Rn)

∑
ξ∈Zn

cj,ξε,α → 0 as ε→ 0. (3.17)
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Finally, the last term in (3.15) can be estimated as follows. If j ∈ εZn and ξ ∈ Zn are such that
max{ 1

ε |j|, |ξ|} ≥
mε sin θ
4 cos θ then the choice of mε allows us to deduce that∑

l′,l′′∈N (l)

l′ 6=l′′

∑
i∈Il′ε ∩Ll

′
ε

εn
∑

max{ 1
ε |j|,|ξ|}≥

mε sin θ
4 cos θ

cj,ξ
ε,αlε(i)

mj,ξ
ε,lu(i)

≤ (1 + 2‖u‖L∞)
∑

l′,l′′∈N (l)

l′ 6=l′′

∑
α∈N

∑
max{ 1

ε |j|,|ξ|}>Mε
η

cj,ξε,αε
n−1#

{
i ∈ Il

′

ε ∩ Ll
′

ε : αlε(i) = α
}

≤ c(u, n)
∑

max{α, 1ε |j|,|ξ|}>Mε
η

cj,ξε,α, (3.18)

where in the last step we have used that

εn−1#{i ∈ Il
′

ε ∩ Ll
′

ε : αlε(i) = α} ≤ cHn−1(Sl,l′) + oε(1).

Otherwise, for every l′ ∈ N (l), i ∈ Il′ε ∩ Ll
′

ε and j ∈ Zε(Ωi), ξ ∈ Zn with max{ 1
ε |j|, |ξ|} <

mε sin θ
4 cos θ

we have [i + j, i + j + εξ] ⊂ Ul ∪ Ul′ . We now distinguish between the case where Sl,l′ does not

belong to Su (i.e., (l, l′) 6= (lk, l
′
k) for every k ∈ {1, . . . ,K}) and the case where (l, l′) = (lk, l

′
k) for

some k ∈ {1, . . . ,K}.
In the first case we have u ∈W 1,∞(Ul ∪Ul′ ;Rd); hence, the inclusion [i+ j, i+ j+ εξ] ⊂ Ul ∪Ul′

together with Jensen’s inequality yield

mj,ξ
ε,lu(i) ≤ |Dξ

εu(i+ j)|p =
1

|ξ|p

∣∣∣∣∫ 1

0

∇u(i+ j + εtξ)ξ dt

∣∣∣∣p
≤ 1

|ξ|p

∫ 1

0

|∇u(i+ j + εtξ)|p|ξ|p dt ≤ ‖∇u‖L∞(Ul∪Ul′ ;Rd),

so that ∑
i∈Il′ε ∩Ll

′
ε

∑
j∈Zε(Ωi)

|j|<εmε sin θ
4 cos θ

∑
ξ∈Zn

|ξ|<mε sin θ
4 cos θ

cj,ξ
ε,αlε(i)

εnmj,ξ
ε,lu(i)

≤
∑
α∈N

∑
j∈Zε(Rn)

∑
ξ∈Zn

‖∇u‖L∞(Ul∪Ul′ ;Rd)c
j,ξ
ε,αε

n#
{
i ∈ Il

′

ε ∩ Ll
′

ε : αlε(i) = α
}

≤ εc(u)
∑
α∈N

∑
j∈Zε(Rn)

∑
ξ∈Zn

cj,ξε,α → 0 as ε→ 0. (3.19)

Suppose finally that Sl,l′ = Slk,l′k for some k ∈ {1, . . . ,K}. Then we may estimate εnmj,ξ
ε,lu(i) as

follows,

εnmj,ξ
ε,lk

u(i) ≤ εn−1
(
1 + |(Ml′k

x+ bl′k)(i+ j + εξ)− (Mlkx+ blk)(i+ j + εξ)|
)

≤ εn−1
(
1 + |(Ml′k

x+ bl′k)(pνk(i) + dist(i,Πνk) + j + εξ)

− (Mlkx+ blk)(pνk(i) + dist(i,Πνk) + j + εξ)|
)

≤ εn−1
(

1 + |Ml′k
pνk(i) + bl′k − (Mlkpνk(i) + blk)|+ |Ml′k

−Mlk |
(√

n+
sin θ

4 cos θ

)
εmε

)
≤ c

∫
pνk (i)+[0,ε)n−1

(
1 + |Ml′k

pνk(i) + bl′k − (Mlkpνk(i) + blk)|+ εmε|Ml′k
−Mlk |

)
dHn−1(y)
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≤ c
∫
pνk (i)+[0,ε)n−1

(
1 + |Ml′k

y + bl′k − (Mlky + blk)|+ ε(mε + 1)|Ml′k
−Mlk |

)
dHn−1(y).

Note that Ml′k
y + bl′k = u+(y), Mlky + blk = u−(y) for Hn−1-a.e. y ∈ Slk,l′k . Hence, we obtain∑

i∈I
l′
k
ε ∩L

l′
k
ε

∑
j∈Zε(Ωi)

|j|<εmε sin θ
4 cos θ

∑
ξ∈Zn

|ξ|<mε sin θ
4 cos θ

cj,ξ
ε,αlε(i)

εnmj,ξ
ε,lu(i)

≤ c
∑
α∈N

∑
j∈Zε(Rn)

∑
ξ∈Zn

cj,ξε,α
∑

i∈I
l′k
ε ∩L

l′k
ε

α
lk
ε (i)=α

∫
pνk (i)+[0,ε)n−1

(
1 + |u+(y)− u−(y)|+ c(u)εmε

)
dHn−1(y)

≤
(
c

∫
Slk,l′k

(1 + |u+(y)− u−(y)|) dHn−1(y) + c(u)εmεHn−1(Slk,l′k)
)∑
α∈N

∑
j∈Zε(Rn)

∑
ξ∈Zn

cj,ξε,α. (3.20)

Eventually, summing up over l and gathering (3.12)-(3.20), thanks to the choice of Mε
η and mε we

deduce that

lim sup
ε→0

Fε(uε, A) ≤ c
(∫

A

(|∇u|p + 1) dx+

∫
Su∩A

(1 + |u+(y)− u−(y)|) dHn−1(y)

)
+ c(u)η,

hence (3.11) follows by the arbitrariness of η > 0.

In the general case A ∈ Areg(Ω) we choose A′ polyhedral with A ⊂⊂ A′ ⊂⊂ Ω̃. Since F ′′ is
increasing in A we then obtain

F ′′(u,A) ≤ F ′′(u,A′) ≤ c
(∫

A′
(|∇u|p + 1) dx+

∫
Su∩A′

(1 + |u+(y)− u−(y)|) dHn−1(y)

)
,

and (3.11) follows by letting A′ ↘ A.
Step 2: We now prove (3.10) for A ∈ Areg(Ω) and u ∈ SBV p(A;Rd) ∩ L∞(A;Rd). Thanks

to the Lipschitz-regularity of A, using a local reflection argument we can extend u to a function
ũ ∈ SBV p(Ω̃) ∩ L∞(Ω̃) in such a way that Hn−1(Sũ ∩ ∂A) = 0. Thus Step 1 together with
Proposition 3.3 give

F ′′(u,A) = F ′′(ũ|A, A) ≤ c
(∫

A

(|∇u|p + 1) dx+

∫
Su∩A

(1 + |u+(y)− u−(y)|) dHn−1(y)

)
= c

(∫
A

(|∇u|p + 1) dx+

∫
Su∩A

(1 + |u+(y)− u−(y)|) dHn−1(y)

)
.

Step 3: We finally remove the assumption u ∈ SBV p(A;Rd) ∩ L∞(A;Rd) by considering
the truncated functions introduced in Remark 2.3. More precisely, for any u ∈ GSBV p(A;Rd) ∩
L1(Ω;Rd) and any k > 0 consider the truncation Tku ∈ SBV p(A;Rd) ∩ L∞(Ω;Rd). Combining
Step 2 with (2.10) we then obtain

F ′′(u,A) = lim
k→+∞

F ′′(uk, A)

≤ c lim sup
k→+∞

(∫
A

(|∇Tku|p + 1) dx+

∫
STku∩A

(1 + |(Tku)+(y)− (Tku)−(y)|) dHn−1(y)

)
,

hence (3.10) follows by Properties (ii) and (iii) in Remark 2.3. �
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As a next step we establish an almost subadditivity of the functional F ′′ as a set function. As a
preliminary step we prove a version of [1, Lemma 3.6] and of a fundamental estimate (see Lemma
3.8) adapted to our setting.

Lemma 3.7. Let BR ⊂ Rn be an open ball with Ω ⊂⊂ BR and u : Zε(BR) → Rd. There exists
c > 0 depending only on n such that for any ξ ∈ Zn we have∑

i∈Zε(Ω)
i+εξ∈Ω

min

{
|Dξ

εu(i)|p, 1

ε|ξ|

}
≤ c

∑
i∈Zε(BR)

min

{
n∑
k=1

|Dk
εu(i)|p, 1

ε

}
.

Proof. Following the same procedure as in [1, Lemma 3.6] for ξ ∈ Zn and i ∈ Zε(Rn) we set

Iξε (i) := {j ∈ Zε(Rn) : (j + [−ε, ε]n) ∩ [i, i+ εξ] 6= ∅},

and for i ∈ Zε(Ω) with i+ εξ ∈ Ω we choose a sequence (ih)
|ξ|1
h=0 ⊂ Iξε (i) satisfying

i0 = i, i|ξ|1 = i+ εξ, ih = ih−1 + εei(h) for some i(h) ∈ {1, . . . , n},

so that

Dξ
εu(i) =

1

|ξ|

|ξ|1∑
h=1

Di(h)
ε u(ih−1).

As in [1, Lemma 3.6], applying Jensen’s inequality we obtain

|Dξ
εu(i)|p ≤ n

p
2

|ξ|1

|ξ|1∑
h=1

|Di(h)
ε u(ih−1)|p,

hence the fact that min is non-decreasing yields

min

{
|Dξ

εu(i)|p, 1

ε|ξ|

}
≤ min

 n
p
2

|ξ|1

|ξ|1∑
h=1

|Di(h)
ε u(ih−1)|p, 1

ε|ξ|


=
n
p
2

|ξ|1
min


|ξ|1∑
h=1

|Di(h)
ε u(ih−1)|p, |ξ|1

ε|ξ|n p2

 ≤ n
p
2

|ξ|1
min

 ∑
j∈Iξε (i)

n∑
k=1

|Dk
εu(j)|p, |ξ|1

ε|ξ|n p2


≤ n

p
2

|ξ|1

∑
j∈Iξε (i)

min

{
n∑
k=1

|Dk
εu(j)|p, |ξ|1

ε|ξ|n p2

}
, (3.21)

where in the last step we have used the subadditivity of min. Note that for ξ ∈ Zn, i ∈ Zε(Ω) with
i+ εξ ∈ Ω and ε sufficiently small there holds Iξε (i) ⊂ Zε(BR). Thus, from (3.21) together with the

fact that |ξ|1
|ξ|n

p
2
≤ 1 we deduce

∑
i∈Zε(Ω)
i+εξ∈Ω

{
|Dξ

εu(i)p,
1

ε|ξ|

}
≤ n

p
2

|ξ|1

∑
j∈Zε(BR)

#J ξε (j) min

{
n∑
k=1

|Dk
εu(j)|p, 1

ε

}
, (3.22)

where for any j ∈ Zε(BR) we have set

J ξε (j) := {i ∈ Zε(Ω): i+ εξ ∈ Ω, j ∈ Iξε (i)}.
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In [1, Lemma 3.6] it has been proved that #J ξε (j) ≤ c(n)|ξ| for some c(n) > 0 independent of ε, j, ξ,

hence the result follows from (3.22) taking c = c(n)n
p
2 upon noticing that |ξ| ≤ |ξ|1. �

Lemma 3.8 (Fundamental estimate). Let u ∈ GSBV p(Ω;Rd) ∩ L1(Ω;Rd) and A,B ∈ A(Ω) and
suppose that φεi satisfy (H1)–(H6). Moreover, let (uε), (vε) ⊂ Aε(Ω;Rd) be two sequences converging
both to u in L1(Ω;Rd). For every η > 0 and for every A′, B′ ∈ Areg(Ω) with A′ ⊂⊂ A and B′ ⊂⊂ B
there exists a sequence (wηε ) ⊂ Aε(Ω;Rd) converging to u in L1(Ω;Rd) such that wηε = uε on A′,
wηε = vε on B′ \A for every ε > 0 and satisfying

lim sup
ε→0

Fε(w
η
ε , A

′ ∪B′) ≤ (1 + η)
(

lim sup
ε→0

Fε(uε, A) + lim sup
ε→0

Fε(vε, B)
)

+ c(u,A′, B′)η, (3.23)

for some constant c(u,A′, B′) > 0 independent of η.

Remark 3.9. We will use Lemma 3.8 both to prove an almost subadditivity of the functional F ′′

and to modify boundary conditions of a recovery sequence in the proof of Lemma 3.15. For the
latter purpose it is convenient to notice that if the sequence (vε) in Lemma 3.8 satisfies

sup
ε>0

∑
i∈Zε(BR)

εn min

{
n∑
k=1

|Dk
εvε(i)|p,

1

ε

}
< +∞, (3.24)

where BR ⊂ Rn is an open ball with Ω ⊂⊂ BR, then the function wηε can be chosen in such a way
that wηε = vε on Ω \A.

Proof of Lemma 3.8. It suffices to prove the result for u ∈ SBV p(Ω;Rd) ∩ L∞(Ω;Rd), then the
general case follows by arguing as in Step 3 of Proposition 3.6. Moreover, we can assume that the
sequences (uε), (vε) ⊂ Aε(Ω;Rd) satisfy

lim sup
ε→0

Fε(uε, A) < +∞, (3.25)

lim sup
ε→0

Fε(vε, B) < +∞. (3.26)

Thanks to (H2), upon considering the truncated sequences (TMuε), (TMvε) with M = ‖u‖L∞(Ω;Rd)

we can always assume that ‖uε‖L∞(Ω;Rd), ‖vε‖L∞(Ω;Rd) ≤ 3‖u‖L∞(Ω;Rd) for every ε > 0, which

implies that uε → u, vε → u also in Lp(Ω;Rd). Moreover, in view of (H4) we get

sup
ε>0

∑
i∈Zε(A′′)

εn min

{
n∑
k=1

|Dk
εuε(i)|p,

1

ε

}
< +∞, (3.27)

sup
ε>0

∑
i∈Zε(B′′)

εn min

{
n∑
k=1

|Dk
εvε(i)|p,

1

ε

}
< +∞, (3.28)

for every A′′ ⊂⊂ A, B′′ ⊂⊂ B.
Step 1: We first replace (uε) and (vε) by sequences (ũε), (ṽε) satisfying (3.27) and (3.28) with

BR in place A′′ (respectively B′′), where BR ⊂ Rn is an open ball with Ω ⊂⊂ BR. To do so, we use
a local reflection argument as in Proposition 3.6 Step 2 to extend u ∈ SBV p(Ω;Rd) ∩ L∞(Ω;Rd)
to a function ũ ∈ SBV p(BR;Rd) ∩ L∞(BR;Rd) with

F ′′(ũ|Ω,Ω) ≤ c
(∫

Ω

(|∇u|p + 1) dx+

∫
Su

(1 + |u+(y)− u−(y)|) dHn−1(y)

)
< +∞. (3.29)
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In view of (3.29) there exists a sequence (wε) ⊂ Aε(Ω;Rd) converging in L1(Ω;Rd) to ũ|Ω = u with

lim sup
ε→0

Fε(wε,Ω) = F ′′(ũ|Ω,Ω) < +∞.

Arguing again by truncation we can assume that ‖wε‖L∞(Ω;Rd) ≤ 3‖u‖L∞(Ω;Rd) for every ε > 0 and

thus wε → u in Lp(Ω;Rd). Moreover, appealing once more to (H4), upon extending wε by 0 outside
of Ω we get

sup
ε>0

∑
i∈Zε(BR)

εn min

{
n∑
k=1

|Dk
εwε(i)|p,

1

ε

}
< +∞. (3.30)

We now choose A′′, A′′′, B′′, B′′′ ∈ Areg(Ω) with A′ ⊂⊂ A′′ ⊂⊂ A′′′ ⊂⊂ A and B′ ⊂⊂ B′′ ⊂⊂
B′′′ ⊂⊂ B and cut-off functions ϕA between A′′ and A′′′ and ϕB between B′′ and B′′′. Set

ũε := ϕAuε + (1− ϕA)wε

ṽε := ϕBvε + (1− ϕB)wε,

so that ũε = uε on A′′ and ṽε = vε on B′′. We still have ũε, ṽε → u in Lp(Ω;Rd), hence

lim
ε→0

∑
i∈Zε(Ω)

εn|ũε − ṽε|p = 0. (3.31)

Further, for every i ∈ Zε(BR) and every k ∈ {1, . . . , n} there holds

Dk
ε ũε(i) = ϕA(i+ εek)Dk

εuε(i) + (1− ϕA(i+ εek))Dk
εwε(i) +Dk

εϕA(i)(viε − wiε).

Thus, (3.28) and (3.30) together with the equi-boundedness of ‖vε‖Lp(Ω;Rd), ‖wε‖Lp(Ω;Rd) and the
fact that {ϕA > 0} ⊂⊂ A yield

sup
ε>0

∑
i∈Zε(BR)

εn min

{
n∑
k=1

|Dk
ε ũε(i)|p,

1

ε

}
< +∞. (3.32)

Analogously we also obtain

sup
ε>0

∑
i∈Zε(BR)

εn min

{
n∑
k=1

|Dk
ε ṽε(i)|p,

1

ε

}
< +∞. (3.33)

Step 2: For fixed η > 0 we now construct the required sequence (wηε ) ⊂ Aε(Ω;Rd) converging
to u in L1(Ω;Rd) and satisfying (3.23). To this end, for every ε > 0 let Mε

η > 0 be as in (2.5) in
(H5) with

lim sup
ε→0

∑
max{α, 1ε |j|,|ξ|}>Mε

η

cj,ξε,α < η.

Moreover, set dA := dist(A′,Rn \A′′), choose L ∈ N and for every l ∈ {1, . . . , L} set

Al :=
{
x ∈ A′′ : dist(x,A′) <

l dA
L

}
,

and let A0 := A′. Note that up to choosing A′′ such that dA is small enough the sets Al have
Lipschitz-boundary for every l ∈ {1, . . . , L} and satisfy Hn−1(∂Al) ≤ Hn−1(∂A′) + 1.

For every l ∈ {1, . . . , L− 1} let ϕl be a cut-off function between Al and Al+1, so that ϕl ≡ 1 on
Al, ϕl ≡ 0 on Ω \Al+1 and ‖∇ϕl‖L∞(Ω,Rn) ≤ 2L

dA
.
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We also set dB := dist(B′,Rn \ B′′) and we choose ε0 > 0 such that ε
√
nMε

η < min{dB , dA
L }

for every ε ∈ (0, ε0). For every l ∈ {1, . . . , L − 3} and ε ∈ (0, ε0) we then define a function
wε,l ∈ Aε(Ω;Rd) by setting

wiε,l := ϕl(i)ũ
i
ε + (1− ϕl(i))ṽiε,

and we remark that wε,l → u in L1(Ω;Rd) as ε → 0, wε,l = ũε = uε on A′, and wε,l = ṽε = vε on
B′ \A. Moreover,

Fε(wε,l, A
′ ∪B′) = Fε(wε,l, Al−1) + Fε(wε,l, (Al+2 \Al−1) ∩B′) + Fε(wε,l, B

′ \Al+2). (3.34)

We estimate the three terms on the right-hand side of (3.34) separately. We start with the estimate
for Fε(wε,l, Al−1). To this end, for every i ∈ Zε(Al−1) we set

αlε(i) := sup{α ∈ N : i+ εαQ ⊂ Al}.

Since ε
√
nMε

η <
dA
L , we have αlε(i) > Mε

η for every i ∈ Zε(Al−1). Further,

wi+jε,l = ũi+jε = ui+jε for every j ∈ Zε(εαlε(i)Q),

and for every α ∈ N we have

εn−1#{i ∈ Zε(Al−1) : αlε(i) = α} ≤ cHn−1(∂Al) + oε(1) ≤ c(Hn−1(∂A′) + 1).

Hence, (H3) yields

Fε(wε,l, Al−1) ≤
∑

i∈Zε(Al−1)

εnφεi ({ui+jε }j∈Zε(Ωi))

+
∑

i∈Zε(Al−1)

∑
j∈Zε(Ωi)

∑
ξ∈Zn

j+εξ∈Ωi

cj,ξ
ε,αlε(i)

min

{
|Dξ

εwε,l(i+ j)|p, 1 + |wε,l(i+ j + εξ)− uε(i+ j + εξ)|
ε

}

≤ Fε(uε, A) + (1 + 6‖u‖L∞)
∑
α>Mε

η

∑
j∈Zε(Rn)

∑
ξ∈Zn

cj,ξε,αε
n−1#{i ∈ Zε(Al−1) : αlε(i) = α}

≤ Fε(uε, A) + c(1 + 6‖u‖L∞)(Hn−1(∂A′) + 1)
∑
α>Mε

η

∑
j∈Zε(Rn)

∑
ξ∈Zn

cj,ξε,α. (3.35)

Analogously, for every i ∈ Zε(B′ \Al+2) we set

βlε(i) := sup{β ∈ N : i+ εβQ ⊂ B′′ \Al+1},

and we observe that βlε(i) > Mε
η for every i ∈ Zε(B′ \Al+2) and

wi+jε,l = ṽi+jε = vi+jε for every j ∈ Zε(εβlε(i)Q).

Thus, an analogous computation as in (3.35) leads to

Fε(wε,l, B
′ \Al+2)

≤ Fε(vε, B) + (1 + 6‖u‖L∞)
∑
β>Mε

η

∑
j∈Zε(Rn)

∑
ξ∈Zn

cj,ξε,βε
n−1#{i ∈ Zε(B′ \Al+2) : βlε(i) = β}

≤ Fε(vε, B) + c(1 + 6‖u‖L∞)(Hn−1(∂A′) +Hn−1(∂B′) + 1)
∑
β>Mε

η

∑
j∈Zε(Rn)

∑
ξ∈Zn

cj,ξε,β . (3.36)
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Finally, in view of (H6) we have

Fε(wε,l, (Al+2 \Al−1) ∩B′) ≤ c3

( ∑
i∈Zε(Sl)

εnφεi ({ũi+jε }j∈Zε(Ωi)) +
∑

i∈Zε(Sl)

εnφεi ({ṽi+jε }j∈Zε(Ωi))

)

+
∑

i∈Zε(Sl)

εnRεi (ũε, ṽε, ϕl), (3.37)

where Sl := (Al+2 \Al−1) ∩B′ and

Rεi (ũε, ṽε, ϕl) =

(
2L

dA

)p ∑
j∈Zε(Ω)

∑
ξ∈Zn
j+εξ∈Ω

cj−i,ξε |ũε(j + εξ)− ṽε(j + εξ)|p

+
∑

j∈Zε(Ω)

∑
ξ∈Zn
j+εξ∈Ω

cj−i,ξε

(
min

{
|Dξ

ε ũε(j)|p,
1

ε|ξ|

}
+ min

{
|Dξ

ε ṽε(j)|p,
1

ε|ξ|

})
.

Note that the same computations as in (3.35) and (3.36) lead to∑
i∈Zε(Sl)

εnφεi ({ũi+jε }j∈Zε(Ωi)) ≤ Fε(uε, Sl) + c(u,A′)
∑
α>Mε

η

∑
j∈Zε(Rn)

∑
ξ∈Zn

cj,ξε,α (3.38)

and ∑
i∈Zε(Sl)

εnφεi ({ṽi+jε }j∈Zε(Ωi)) ≤ Fε(vε, Sl) + c(u,A′, B′)
∑
α>Mε

η

∑
j∈Zε(Rn)

∑
ξ∈Zn

cj,ξε,α, (3.39)

respectively. Moreover, Lemma 3.7 together with (3.32) and (3.33) give

sup
ε>0

sup
ξ∈Zn

∑
j∈Zε(Ω)
j+εξ∈Ω

εn
(

min

{
|Dξ

ε ũε(j)|p,
1

ε|ξ|

}
+ min

{
|Dξ

ε ṽε(j)|p,
1

ε|ξ|

})
≤M (3.40)

for some M > 0. For every l we have #{l′ 6= l : Sl ∩ Sl′ 6= ∅} ≤ 5. Thus, gathering (3.34)-(3.40),
summing up over l and averaging we find l(ε) ∈ {1, . . . , L− 3} such that

Fε(wε,l(ε), A
′ ∪B′) ≤ 1

L− 4

L−3∑
l=1

Fε(wε,l, A
′ ∪B′)

≤
(

1 +
5c3
L− 4

)
(Fε(uε, A) + Fε(vε, B)) + c(u,A′, B′)

∑
α>Mε

η

∑
j∈Zε(Rn)

∑
ξ∈Zn

cj,ξε,α

+
5

L− 4

(
2L

dA

)p ∑
i∈Zε(A′′∩B′)

∑
j∈Zε(Ω)

∑
ξ∈Zn
j+εξ∈Ω

εncj−i,ξε |ũε(j + εξ)− ṽε(j + εξ)|p

+
5

L− 4

∑
i∈Zε(A′′∩B′)

εn
∑

j∈Zε(Ω)

∑
ξ∈Zn
j+εξ∈Ω

cj−i,ξε

(
min

{
|Dξ

ε ũε(j)|p,
1

ε|ξ|

}
+ min

{
|Dξ

ε ṽε(j)|p,
1

ε|ξ|

})

≤
(

1 +
5c3
L− 4

)
(Fε(uε, A) + Fε(vε, B)) + c(u,A′, B′)

∑
α>Mε

η

∑
j∈Zε(Rn)

∑
ξ∈Zn

cj,ξε,α
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+
5

L− 4

(
2L

dA

)p ∑
ξ∈Zn

∑
z∈Zε(Rn)

cz,ξε
∑

j∈Zε(Ω)
j+εξ∈Ω

|ũε(j + εξ)− ṽε(j + εξ)|p

+
5

L− 4

∑
ξ∈Zn

∑
z∈Zε(Rn)

cz,ξε
∑

j∈Zε(Ω)
j+εξ∈Ω

εn
(

min

{
|Dξ

ε ũε(j)|p,
1

ε|ξ|

}
+ min

{
|Dξ

ε ṽε(j)|p,
1

ε|ξ|

})

≤
(

1 +
5c3
L− 4

)
(Fε(uε, A) + Fε(vε, B)) + c(u,A′, B′)

∑
α>Mε

η

∑
j∈Zε(Rn)

∑
ξ∈Zn

cj,ξε,α

+
5

L− 4

(
2L

dA

)p∑
ξ∈Zn

∑
z∈Zε(Rn)

cz,ξε

 ∑
i∈Zε(Ω)

εn|ũiε − ṽiε|p +
5M

L− 4

∑
ξ∈Zn

∑
z∈Zε(Rn)

cz,ξε ,

hence (3.25),(3.26) and (3.31) together with the choice of Mη yield

lim sup
ε→0

Fε(wε,l(ε), A
′ ∪B′) ≤

(
1 +

5c3
L− 4

)
(lim sup

ε→0
Fε(uε, A) + lim sup

ε→0
Fε(uε, B))

+ c(u,A′, B′)η +
c

L− 4
.

It remains to choose L ∈ N sufficiently large such that 5c3
L−4 < η and c

L−4 < η, then wηε := wε,l(ε) is

the required sequence satisfying (3.23). �

As a direct consequence of Lemma 3.8 we obtain the almost subadditivity of F ′′.

Proposition 3.10 (Almost subadditivity). Let u ∈ GSBV p(Ω;Rd) ∩ L1(Ω;Rd) and A,B ∈ A(Ω)
and suppose that φεi satisfy (H1)–(H6). For every A′, B′ ∈ Areg(Ω) with A′ ⊂⊂ A and B′ ⊂⊂ B
we have

F ′′(u,A′ ∪B′) ≤ F ′′(u,A) + F ′′(u,B). (3.41)

Proof. Let u ∈ GSBV p(Ω;Rd) ∩ L1(Ω;Rd), A,B ∈ A(Ω) and suppose that (uε), (vε) ⊂ Aε(Ω;Rd)
are two sequences that both converge to u in L1(Ω;Rd) and satisfy

lim sup
ε→0

Fε(uε, A) = F ′′(u,A) and lim sup
ε→0

Fε(vε, B) = F ′′(u,B).

Let η > 0 be arbitrary, then Lemma 3.8 provides us with a sequence (wηε ) converging to u in
L1(Ω;Rd) and satisfying (3.33). Thus, by the choice of (uε) and (vε) we obtain

F ′′(u,A′ ∪B′) ≤ lim sup
ε→0

Fε(w
η
ε , A

′ ∪B′) ≤ (1 + η)(F ′′(u,A) + F ′′(u,B)) + c(u,A′, B′)η,

from which we deduce (3.41) thanks to the arbitrariness of η > 0. �

Remark 3.11 (Extension). As a last step we establish the inner regularity of F ′′(u, ·) on Lipschitz

sets. To this end it is convenient to extend the functionals Fε(·, ·) toAε(Ω̃;Rd)×A(Ω̃)→ [0,+∞) for

Ω̃ ⊂ Rn open bounded and with Lipschitz boundary such that Ω ⊂⊂ Ω̃ similar as in [20, Proposition

3.6]. More precisely, for every ε > 0 and i ∈ Zε(Ω̃) set Ω̃i := Ω̃ − i and define φ̃εi : (Rd)Zε(Ω̃i) by
setting

φ̃εi ({zj}j∈Zε(Ω̃i)) :=

{
φεi ({(z|Ω)j}j∈Zε(Ωi)) if i ∈ Zε(Ω),

min
{∑n

k=1 |Dk
ε z(0)|p, 1

ε

}
if i ∈ Zε(Ω̃ \ Ω).
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Then, for every (u,A) ∈ Aε(Ω̃;Rd)×A(Ω̃) we set

F̃ε(u,A) :=
∑

i∈Zε(Ω̃)

εnφ̃εi ({ui+j}j∈Zε(Ω̃i)). (3.42)

Note that the functions φ̃εi still satisfy (H1)-(H6) with Ω̃ in place of Ω and c1, c2, c3 replaced by
max{c1,

√
n}, min{c2, 1} and max{c3, 3p−1}. In particular, Propositions 3.6 and 3.10 hold true also

with Ω̃ and F̃ in place of Ω and F . Moreover, for every u ∈ Aε(Ω;Rd), ũ ∈ Aε(Ω̃;Rd) with ũi = ui

for every i ∈ Zε(Ω) and A ∈ A(Ω) the definition of φ̃εi implies that

F̃ε(ũ, A) = Fε(u,A).

Thus, for every u ∈ GSBV p(Ω;Rd)∩L1(Ω;Rd), ũ ∈ GSBV p(Ω̃;Rd)∩L1(Ω̃;Rd) with ũ = u a.e. in
Ω and every A ∈ A(Ω) we obtain

F̃ ′′(ũ, A) = F ′′(u,A). (3.43)

The extension described above allows us to prove the following result.

Proposition 3.12 (Inner regularity). Suppose that φεi : (Rd)Zε(Ωi) → [0,+∞) satisfy (H1)-(H6).
Then for every (u,A) ∈ GSBV p(Ω;Rd) ∩ L1(Ω;Rd)×Areg(Ω) there holds

F ′′(u,A) = F ′′−(u,A),

where F ′′−(u,A) is as in (2.11).

Proof. Let (u,A) ∈ GSBV p(Ω;Rd)∩L1(Ω;Rd)×Areg(Ω). Since F ′′ is increasing as a set function
it suffices to prove F ′′(u,A) ≤ sup{F ′′(u,A′) : A′ ⊂⊂ A}. A standard way to prove this inequality
consists in using the subadditivity together with the upper bound. In order to apply the same
reasoning in our case we need to consider an open bounded set Ω̃ ⊂ Rn with Lipschitz boundary
such that Ω ⊂⊂ Ω̃ and extend Fε to a functional F̃ε : Aε(Ω̃;Rd)×A(Ω̃)→ [0,+∞) as described in

Remark 3.11. Then we apply Proposition 3.6 and Proposition 3.10 to F̃ .
Let Ω̃ be as above; arguing as in Step 2 and Step 3 in the proof of Proposition 3.6 we can assume

that u ∈ SBV p(A;Rd) ∩ L∞(A;Rd) and extend u to a function ũ ∈ SBV p(Ω̃;Rd) ∩ L∞(Ω̃;Rd)
satisfying Hn−1(Sũ ∩ ∂A) = 0.

Let η > 0 be fixed; since A has Lipschitz boundary and Hn−1(Sũ ∩ ∂A) = 0 we can find open
bounded Lipschitz sets

U ′ ⊂⊂ U ′′ ⊂⊂ V ′ ⊂⊂ V ′′ ⊂⊂ A ⊂⊂ Ã ⊂ Ω̃

such that A \ U ′′ ∈ Areg(Ω), Ã \ U ′ ∈ Areg(Ω̃) and∫
Ã\U ′

(|∇ũ|p + 1) dx+

∫
Sũ∩(Ã\U ′)

(1 + |ũ+(y)− ũ−(y)|) dHn−1(y) ≤ η.

Note that A \ U ′′ ⊂⊂ Ã \ U ′. Thus, appealing to Propositions 3.6 and 3.10 with F̃ and Ω̃ in place
of F and Ω we obtain

F̃ ′′(ũ, A) ≤ F̃ ′′(ũ, (A \ U ′′) ∪ V ′) ≤ F̃ ′′(ũ, Ã \ U ′) + F̃ (ũ, V ′′)

≤ c

(∫
Ã\U ′

(|∇ũ|p + 1) dx+

∫
Sũ∩(Ã\U ′)

(1 + |ũ+(y)− ũ−(y)|) dHn−1(y)

)
+ F̃ (ũ, V ′′)

≤ sup{F̃ ′′(ũ, A′) : A′ ⊂⊂ A}+ cη.
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Thanks to (3.43) we deduce that

F ′′(u,A) ≤ sup{F ′′(u,A′) : A′ ⊂⊂ A}+ cη

and we conclude by the arbitrariness of η > 0. �

Remark 3.13. Note that Proposition 3.12 holds true also when F ′′−(u,A) is replaced by

sup{F ′′(u,A′) : A′ ∈ Areg(Ω), A′ ⊂⊂ A}.

On account of Propositions 3.3, 3.4, 3.6, 3.10 and 3.12 we can now prove the following compactness
result.

Theorem 3.14 (Compactness by Γ-convergence). Let Fε be as in (2.3) and suppose that φεi :
(Rd)Zε(Ωi) → [0,+∞) satisfy (H1)-(H6). For every sequence of positive numbers converging to 0
there exist a subsequence (εj) and a functional F : L1(Ω;Rd)×A(Ω)→ [0,+∞) with

F (·, A) = F ′−(·, A) = F ′′−(·, A) on GSBV p(Ω;Rd) ∩ L1(Ω;Rd). (3.44)

Moreover, F satisfies the following properties:

(i) For every A ∈ A(Ω) the functional F (·, A) is lower semicontinuous in the strong L1(Ω;Rd)-
topology and local;

(ii) there exists c > 0 such that for every (u,A) ∈ GSBV p(Ω;Rd) ∩ L1(Ω;Rd)×A(Ω) we have

1

c

(∫
A

|∇u|p dx+Hn−1(Su ∩A)

)
≤ F (u,A)

≤ c
(∫

A

(|∇u|p + 1) dx+

∫
Su∩A

(1 + |[u]|) dHn−1

)
;

(iii) for every u ∈ GSBV p(Ω;Rd)∩L1(Ω;Rd) the set function F (u, ·) is the restriction to A(Ω)
of a Radon measure;

(iv) for every A ∈ Areg(Ω) there holds

F (·, A) = F ′(·, A) = F ′′(·, A) on GSBV p(Ω;Rd) ∩ L1(Ω;Rd).
(v) F is invariant under translations in u.

Proof. Thanks to the general compactness theorem [33, Theorem 16.9] we obtain a subsequence
(εj) and a functional F satisfying (3.44). Moreover, Remark 2.4 yields the (L1(Ω;Rd)-lower semi-
continuity, while Proposition 3.3 combined with Remark 3.13 ensures that F (·, A) is local for every
A ∈ A(Ω). Further, for every u ∈ GSBV p(Ω;Rd)∩L1(Ω;Rd) the estimates in (ii) are a consequence
of the corresponding estimates for regular sets in Propositions 3.4 and 3.6 together with the inner
regularity of the set functions F1(u, ·), F2(u, ·) defined as F1(u,A) :=

∫
A
|∇u|p dx +Hn−1(Su ∩ A)

and F2(u,A) :=
∫
A

(|∇u|p + 1) dx+
∫
Su∩A(1 + |[u]|) dHn−1.

Since the set function F (u, ·) is inner regular by construction, increasing and superadditive
(Remark 2.4), in order to obtain (iii) it suffices to prove that F (u, ·) is also subadditive, then the
claim follows thanks to the De Giorgi and Letta measure criterion and the upper bound in (ii). Let
u ∈ GSBV p(Ω;Rd) ∩ L1(Ω;Rd) and A,B ∈ A(Ω) and U ∈ A(Ω) with U ⊂⊂ A ∪B. We now show
that F ′′(u, U) ≤ F (u,A) + F (u,B), then the subadditivity follows by passing to the supremum
over U . To this end we remark that we can find A′, A′′, B′, B′′ ∈ Areg(Ω) with A′ ⊂⊂ A′′ ⊂⊂ A
and B′ ⊂⊂ B′′ ⊂⊂ B such that U ⊂⊂ A′ ∪B′. Thus, since F ′′ is increasing as a set function from
Proposition 3.10 we deduce

F ′′(u, U) ≤ F ′′(u,A′ ∪B′) ≤ F ′′(u,A′′) + F ′′(u,B′′) ≤ F (u,A) + F (u,B).
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Finally, in view of Proposition 3.12 we have F ′′(u,A) = F (u,A) for every (u,A) ∈ GSBV p(Ω;Rd)∩
L1(Ω;Rd) × Areg(Ω), hence (iv) follows by (3.44) together with the trivial inequality F ′−(u,A) ≤
F ′(u,A) ≤ F ′′(u,A). It remains to remark that (v) is a direct consequence of the fact that thanks
to (H2) the functionals Fε are invariant under translation in u. �

We are now in a position to prove Theorem 3.1.

Proof of Theorem 3.1. Let (εj) and F be as in Theorem 3.14. Then Propositions 3.4 and 3.6 ensure
that the domain of F coincides with GSBV p(Ω;Rd)×L1(Ω;Rd). Moreover, in view of Theorem 3.14
the restriction of the functional F to SBV p(Ω;Rd)×A(Ω) satisfies all hypotheses of [10, Theorem
1] except for the lower bound. In order to recover the lower bound we use a standard perturbation
argument, that is, for every σ > 0 we consider the functional Fσ : SBV p(Ω;Rd)×A(Ω)→ [0,+∞)
defined as

Fσ(u,A) := F (u,A) + σ

∫
Su∩A

|[u]| dHn−1.

We observe that for every σ > 0 Fσ satisfies all hypotheses of [10, Theorem 1] which thus provides
us with two functions fσ0 : Ω×Rd×Rd×n → [0,+∞) and gσ0 : Ω×Rd×Rd×Sn−1 → [0,+∞) such
that

Fσ(u,A) =

∫
A

fσ0 (x, u,∇u) dx+

∫
Su∩A

gσ0 (x, u+, u−, νu) dHn−1,

for every u ∈ SBV p(Ω;Rd) and A ∈ A(Ω). Moreover, since F and then also Fσ is invariant under
translation in u, formulas (2) and (3) in [10, Theorem 1] imply that fσ0 does not depend on u and gσ0
depends on the values u+ and u− only through their difference [u], i.e., fσ0 (x, u, ξ) = fσ(x, ξ) and
gσ0 (x, a, b, ν) = gσ(x, a− b, ν) for some functions fσ : Ω× Rd×n → [0,+∞), gσ : Ω× Rd × Sn−1 →
[0,+∞). Finally, formulas (2) and (3) in [10, Theorem 1] also imply that fσ and gσ decrease as
σ decreases. Hence, setting f(x, ξ) := limσ→0+ fσ(x, ξ), g(x, t, ν) := limσ→0+ gσ(x, t, ν), from the
pointwise convergence of Fσ to F and the Monotone Convergence Theorem we deduce

F (u,A) =

∫
A

f(x,∇u) dx+

∫
Su∩A

g(x, [u], νu) dHn−1,

for every u ∈ SBV p(Ω;Rd) and A ∈ A(Ω). In particular, thanks to Theorem 3.14 (iv) we deduce
that (3.4) holds for every u ∈ SBV p(Ω;Rd) and A ∈ Areg(Ω), and choosing A = Ω in the formula
above we obtain the desired integral representation on SBV p(Ω;Rd). We finally observe that
formulas (2) and (3) in [10, Theorem 1] imply that the integrands f and g are given by (3.2).

Eventually, we show that the integral representation also extends to GSBV p(Ω;Rd)∩L1(Ω;Rd).
To this end, for every u ∈ GSBV p(Ω;Rd) ∩ L1(Ω;Rd) and every k > 0 we consider again the
truncation Tku as in Remark 2.3. Using (ii) and (iii) in Remark 2.3 together with (2.10) and
appealing to the Monotone Convergence Theorem we get

Γ- lim
j→+∞

Fεj (u) = lim
k→+∞

F (Tku) = lim
k→+∞

(∫
Ω

f(x,∇Tku) dx+

∫
STku

g(x, [Tku], νTku) dHn−1

)

=

∫
Ω

f(x,∇u) dx+

∫
Su

g(x, [u], νu) dHn−1.

�
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3.2. Treatment of Dirichlet problems. For further use in Section 4, we study here the asymp-
totic behavior of minimum problems for Fε when suitable Dirichlet boundary conditions are taken
into account. More precisely, for every δ > 0, every A ∈ Areg(Ω) and every pointwise well-defined
function ū ∈ L1(Ω;Rd) we consider the minimization problem

mδ
ε(ū, A) := inf{Fε(u,A) : u ∈ Aδε(ū, A)},

where
Aδε(ū, A) := {u ∈ Aε(Ω;Rd) : u(i) = ū(i) if dist(i,Rn \A) < δ},

and we study the asymptotic behavior of mδ
ε(ū, A) when first ε→ 0 and then δ → 0. For our purpose

it is sufficient to consider boundary data ū ∈ SBV p(Ω;Rd)∩L∞(Ω;Rd) satisfying Hn−1(Sū∩∂A) =
0 and such that the function ūε ∈ Aε(Ω;Rd) defined by setting ūiε := ū(i) satisfies condition (3.24)
in Remark 3.9 and

ūε → ū in L1(Ω;Rd), lim sup
ε→0

Fε(ūε, B) ≤ c
(∫

B

|∇ū|p dx+Hn−1(Sū ∩B)

)
, (3.45)

where B ∈ Areg(Ω). For ū as above we can prove the following convergence result.

Lemma 3.15. Let φεi : (Rd)Zε(Ωi) → [0,+∞) satisfy hypotheses (H1)–(H6) and let Fεj be the
subsequence provided by Theorem 3.1. Moreover, let A ∈ Areg(Ω) with A ⊂⊂ Ω. For every pointwise
well-defined function ū ∈ SBV p(Ω;Rd)∩L∞(Ω;Rd) with Hn−1(Sū ∩ ∂A) = 0 and satisfying (3.24)
and (3.45) we have

lim
δ→0

lim inf
j→+∞

mδ
εj (ū, A) = lim

δ→0
lim sup
j→+∞

mδ
εj (ū, A) = m(ū, A),

where m(ū, A) is as in (3.3).

Remark 3.16. Lemma 3.15 together with (3.2) provide us with asymptotic formulas for the inte-
grands f and g given by Theorem 3.1. Indeed, for x0 ∈ Ω, ν ∈ Sn−1 and ρ > 0 sufficiently small
we have Qνρ(x0) ⊂⊂ Ω. Moreover, for every ζ ∈ Rd and M ∈ Rd×n the functions uM,x0

, uνζ,x0
as in

(2.1) satisfy the hypotheses of Lemma 3.15. Thus, passing to the upper limit as ρ → 0 we obtain
the following formulas for f and g

f(x0,M) = lim sup
ρ→0

1

ρn
lim
δ→0

lim inf
j→+∞

mδ
εj (uM,x0) = lim sup

ρ→0

1

ρn
lim
δ→0

lim sup
j→+∞

mδ
εj (uM,x0),

g(x0, ζ, ν) = lim sup
ρ→0

1

ρn−1
lim
δ→0

lim inf
j→+∞

mδ
εj (u

ν
ζ,x0

) = lim sup
ρ→0

1

ρn−1
lim
δ→0

lim sup
j→+∞

mδ
εj (u

ν
ζ,x0

).

Proof of Lemma 3.15. Let A, ū be as in the statement. Observe that due to monotonicity the limit
as δ → 0 exists. We show that m(ū, A) is both an asymptotic lower and an asymptotic upper
bound for mδ

εj (ū, A).
Step 1: We first establish the inequality

m(ū, A) ≤ lim
δ→0

lim inf
j→+∞

mδ
εj (ū, A). (3.46)

To this end, let δ > 0 be fixed and let uj ∈ Aεj (Ω;Rd) be admissible for mδ
εj (ū, A) with

Fεj (uj , A) = mδ
εj (ū, A).

Thanks to Remark 2.3 we can assume that ‖uj‖L∞ ≤ 3‖ū‖L∞ . In particular, the sequence (uj)
is equi-integrable, hence (H3) together with Proposition 3.4 yield the existence of a subsequence
(not relabeled) converging in L1(Ω;Rd) to some u ∈ GSBV p(A;Rd) ∩ L1(A;Rd). Since uj = ūεj
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on ∂A+Bδ(0), (3.45) ensures that u = ū on ∂A+Bδ(0), hence u is admissible for m(ū, A). Thus,
Theorem 3.1 yields

m(ū, A) ≤ F (u,A) ≤ lim inf
j→+∞

Fεj (uj , A) = lim inf
j→+∞

mδ
εj (ū, A)

hence (3.46) follows by letting δ → 0.
Step 2: We now prove that

lim
δ→0

lim sup
j→+∞

mδ
εj (ū, A) ≤m(ū, A).

To this end, for fixed η > 0 we choose u ∈ SBV p(A;Rd) with u = ū in a neighborhood of ∂A
and F (u,A) ≤ m(ū, A) + η. Thanks to Proposition 3.3 we can extend u to Ω \ A by ū without
changing F (u,A). Moreover, Theorem 3.1 provides us with a sequence of functions uj ∈ Aεj (Ω;Rd)
converging to u in L1(Ω;Rd) and satisfying

lim sup
j→+∞

Fεj (uj , A) = F (u,A). (3.47)

We now modify uj to fulfill the required discrete boundary condition. Since u = ū in a neighborhood

of ∂A, we can find A′ ∈ Areg(Ω), A′ ⊂⊂ A such that u = ū on A \ A′ (and by extension u = ū on

Ω \ A′). Since moreover Hn−1(Sū ∩ ∂A) = 0 we can choose further sets A′′, A′′′, Ã ∈ Areg(Ω) with

A′ ⊂⊂ A′′ ⊂⊂ A′′′ ⊂⊂ A ⊂⊂ Ã and∫
Ã\A′

|∇ū|p dx+Hn−1(Sū ∩ Ã \A′) ≤ η.

We are thus in a position to apply Lemma 3.8 to the sequence (uj) and the sequence (vj) defined

by setting vij := uij if i ∈ Zεj (A
′), vij := ū(i) if i ∈ Zεj (Ω \ A′) and the sets A′′ ⊂⊂ A′′′ and

A \ A′′ ⊂⊂ Ã \ A′. In fact, Lemma 3.8 together with Remark 3.9 provide us with a sequence (wηj )

with wηj = uj on A′′, wηj = vj = ū on Ω \A′′′ and

lim sup
j→+∞

Fεj (w
η
j , A) = lim sup

j→+∞
Fεj (w

η
j , A

′′ ∪A \A′′)

≤ (1 + η)

(
lim sup
j→+∞

Fεj (uj , A) + lim sup
j→+∞

Fεj (vj , Ã \A′)
)

+ cη. (3.48)

In view of (3.45) and the choice of A′, Ã we have

lim sup
j→+∞

Fεj (vj , Ã \A′) ≤ c

(∫
Ã\A′

|∇ū|p dx+Hn−1(Sū ∩ Ã \A′)

)
≤ cη.

Moreover, for δ sufficiently small wηj is admissible for mδ
εj (ū, A). Thus, gathering (3.47)–(3.48)

thanks to the choice of u we deduce that

lim
δ→0

lim sup
j→+∞

mδ
εj (ū, A) ≤ lim sup

j→+∞
Fεj (wj , A) ≤ (1 + η)m(ū, A) + cη

and we conclude by the arbitrariness of η > 0. �
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4. Homogenization

In this section we consider a special class of periodic interaction-energy densities φεi for which
we can show that the Γ-limit provided by Theorem 3.1 does not depend on the Γ-converging
subsequence, which in turn implies that the whole sequence (Fε) Γ-converges. We first need to
specify what periodicity means in the case of interaction-energy densities φεi : (Rd)Zε(Ωi) → [0,+∞)
that may depend on the whole state {zj}j∈Zε(Ωi). This difficulty is also present in [20, Section 5].
To avoid the dependence of φεi on Ωi in [20] the authors use a sequence of periodic finite-range
interactions φki defined on the entire lattice (Rd)Zn whose range increases as k increases and which
converge for every i ∈ Zn to a long-range interaction-energy density φi : (Rd)Zn → [0,+∞) as
k → +∞. For i ∈ Zε(Ω) the functions φεi are then obtained by a rescaling of a suitably chosen

φ
k(ε)
i
ε

, where εk(ε) is proportional to the distance of i to the boundary of Ω. Since the energy

densities φεi that we consider here contain both a bulk and a surface scaling the approach in [20]
cannot be adapted to our setting. Instead, here we consider functions ψεi : (Rd)Zε(Rn) → [0,+∞)
defined on the entire scaled lattice εZn which have only finite range. This finite-range assumption
will be crucial to decouple the bulk and the surface scaling in the Γ-limit.

We now state our precise hypotheses. LetK ∈ N, L ∈ N and consider functions ψεi : (Rd)Zε(Rn) →
[0,+∞) which are εK-periodic in i and satisfy hypotheses (H1)–(H6) with Zε(Ωi) replaced by
Zε(Rn); where in addition the sequences (cj,ξε,α) and (cj,ξε ) provided by (H5) and (H6), respectively,
satisfy

cj,ξε,α = 0 if max{α, 2| jε |∞, 2|ξ|∞, 2|
j
ε + ξ|∞} ≥ L,

cj,ξε = 0 if max{2| jε |∞, 2|ξ|∞, 2|
j
ε + ξ|∞} ≥ L.

(4.1)

In particular, whenever z, w : Zε(Rn)→ Rd are such that zj = wj for all j ∈ Zε(εLQ), we have

ψεi ({zj}j∈Zε(εLQ)) = ψεi ({wj}j∈Zε(εLQ)). (4.2)

We also set

ΩLε := {x ∈ Ω: dist∞(x, ∂Ω) > Lε}
and we define φεi : (Rd)Zε(Ωi) → [0,+∞) by setting

φεi ({zj}j∈Zε(Ωi)) :=



ψεi ({zjχ
j
εLQ}j∈Zε(Rn)) if i ∈ Zε(ΩLε ),

min
{ n∑
k=1

εek∈Ωi

|Dk
ε z(0)|p, 1

ε

}
if i ∈ Zε(Ω \ ΩLε ),

(4.3)

which is well-defined thanks to (4.2). By construction, φεi : (Rd)Zε(Ωi) → [0,+∞) satisfy hypotheses
(H1)–(H6). We now aim to prove that for φεi : (Rd)Zε(Ωi) → [0,+∞) defined as in (4.3) the
integrands f and g provided by Theorem 3.1 are independent of the position x.

Proposition 4.1. Let Fε be as in (2.3) with φεi : (Rd)Zε(Ωi) → [0,+∞) given by (4.3), where
ψεi : (Rd)Zε(Rn) → [0,+∞) are εK-periodic in i, satisfy (H1)–(H6) with Zε(Ωi) replaced by Zε(Rn),
and (4.1). Let (εj) and F be the subsequence and the functional provided by Theorem 3.1. Then F
is of the form

F (u) =

∫
Ω

f̄(∇u) dx+

∫
Su

ḡ([u], νu) dHn−1, u ∈ GSBV p(Ω;Rd), (4.4)
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for some functions f̄ : Rd×n → [0,+∞) and ḡ : Rd × Sn−1 → [0,+∞) possibly depending on the
Γ-converging subsequence. Moreover, for every A ∈ Areg(Ω) and u ∈ GSBV p(Ω;Rd) there holds

Γ- lim
j→+∞

Fεj (u,A) =

∫
A

f̄(∇u) dx+

∫
Su∩A

ḡ([u], νu) dHn−1.

We prove Proposition 4.1 by adapting a well-known argument (see, e.g., [21, Lemma 3.7]) to our
setting showing that the minimization problem m(ū, A) defined in (3.3) is invariant under transla-
tion for a suitable class of functions ū. We start by introducing some notation. For every A ∈ A(Ω)
and y ∈ Rn we set τyA := A+y. Moreover, for every u : Ω→ Rd and every A ∈ A(Ω) with τyA ⊂ Ω
we define τyu : τyA → Rd by setting τyu(x) := u(x − y) for every x ∈ τyA. For our purpose it is
sufficient to consider pointwise well-defined functions ū ∈ SBV ploc(Rn;Rd) which satisfy

τyū
i
ε → τyū in L1(Ω;Rd) for every y ∈ Rn, (4.5)

where for every y ∈ Rn the function τyūε ∈ Aε(Ω;Rd) is defined by setting τyū
i
ε := τyū(i) for every

i ∈ Zε(Rn). We now prove the following lemma.

Lemma 4.2. Suppose that φεi : (Rd)Zε(Ωi) → [0,+∞) are given by (4.3), where ψεi : (Rd)Zε(Rn) →
[0,+∞) are εK-periodic in i, satisfy (H1)–(H6) with Zε(Ωi) replaced by Zε(Rn), and (4.1). Let A ∈
Areg(Ω) with A ⊂⊂ Ω and let ū ∈ SBV ploc(Rn;Rd) be a pointwise well-defined function satisfying
(4.5). For any y ∈ Rn with τyA ⊂⊂ Ω there holds

m(ū, A) = m(τyū, τyA),

where m(ū, A),m(τyū, τyA) are defined according to (3.3).

Proof. Let A, ū and y be as in the statement and let us prove that

m(τyū, τyA) ≤m(ū, A). (4.6)

To this end let u ∈ SBV p(A;Rd) be admissible for m(ū, A) and A′ ⊂⊂ A with u = ū in A \ A′.
In view of Proposition 3.3 we can extend u to Ω \ A by ū without changing F (u,A). In order to
simplify notation we still denote the subsequence provided by Theorem 3.1 by ε and we choose a
sequence (uε) ⊂ Aε(Ω;Rd) converging to u in L1(Ω;Rd) and satisfying

lim
ε→0

Fε(uε, A) = F (u,A).

We now construct a suitable sequence (vε) converging to τyu in L1(Ω;Rd). We choose A′′, A′′′ ∈
Areg(Ω) with A′ ⊂⊂ A′′ ⊂⊂ A′′′ ⊂⊂ A and ε0 sufficiently small such that for all ε ∈ (0, ε0) the
following conditions are satisfied.

(i) A ∪ τyA ⊂ ΩLε ;

(ii) τyA
′′ ⊂ τyεA′′′ and τyA

′′′ ⊂ τyεA, where yε := εKb yεK c;
(iii) εL < dist∞(A′′, ∂A′′′).

For ε ∈ (0, ε0) we then define vε ∈ Aε(Ω;Rd) by setting

viε :=

{
ui−yεε if i ∈ Zε(τyA′′′),
τyū(i) if i ∈ Zε(Ω \ τyA′′′),

which is well-defined thanks to the second inclusion in (ii).
Since u = ū in Ω \ A′, thanks to (4.5) we have that vε → τyu in L1(Ω;Rd). Moreover, for all

i ∈ Zε(τyA′′) and j ∈ Zε(εLQ) assumption (iii) yields i+ j ∈ τyA′′′, and hence

vi+jε = ui−yε+jε .
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Thanks to the locality property (4.2) and the periodicity assumption we thus obtain

Fε(vε, τyA
′′) =

∑
i∈Zε(τyA′′)

εnψεi ({ui−yε+jε χjεLQ}j∈Zε(Rn)) ≤
∑

i∈Zε(A′′′)

εnψεi ({ui+jε χjεLQ}j∈Zε(Rn))

≤
∑

i∈Zε(A)

εnφεi ({ui+jε }j∈Zn) = Fε(uε, A),

where in the second inequality we have used the first inclusion in (ii). Together with the fact that
F (·, τyA′′) = Γ- limε Fε(·, τyA′′) and vε → τyu in L1(Ω;Rd) the above inequality allows us to deduce
that

F (τyu, τyA
′′) ≤ lim inf

ε→0
Fε(vε, τyA

′′) ≤ lim
ε
Fε(uε, A) = F (u,A).

In view of Proposition 3.12, Remark 3.13 and the arbitrariness of A′′ ⊂⊂ A we finally get

F (τyu, τyA) ≤ F (u,A). (4.7)

Hence, since τyu is admissible for m(τyū, A) and u was arbitrarily chosen we obtain (4.6) by passing
to the infimum on both sides of (4.7). To deduce the result it then suffices to remark that the
opposite inequality follows by applying (4.6) with τ−y. �

On account of Lemma 4.2 we now prove Proposition 4.1.

Proof of Proposition 4.1. Let F be as in Theorem 3.1. We claim that the integrands f and g as
in (3.2) are independent of the position x0, then F can be written in the form (4.4). To prove the
claim we fix x0, y0 ∈ Ω and choose ρ > 0 sufficiently small such that Qνρ(x0) ∪ Qνρ(y0) ⊂⊂ Ω. For

every M ∈ Rd×n and every (ζ, ν) ∈ Rd × Sn−1 the functions uM,x0
and uνζ,x0

defined as in (2.1)
satisfy the hypotheses of Lemma 4.2. Thus, we obtain

m(uνζ,y0
, Qνρ(y0)) = m(τy0−x0

uνζ,x0
, τy0−x0

Qνρ(x0)) = m(uνζ,x0
, Qνρ(x0))

and

m(uM,y0
, Qνρ(y0)) = m(τy0−x0

uM,x0
, τy0−x0

Qνρ(x0)) = m(uM,x0
, Qνρ(x0)).

We conclude by letting ρ→ 0. �

4.1. Separation of bulk and surface effects. In this subsection we give sufficient conditions on
the functions ψεi under which a separation of energy contributions takes place in the limit. We state
the precise hypotheses after introducing some notation. For every ε > 0, every u : Zε(Rn) → Rd
and every i ∈ Zε(Rn) set

|∇εu|(i) :=

n∑
k=1

(
|Dek

ε u(i)|+ |D−ekε u(i)|
)
, |∇ε,Lu|(i) :=

∑
ξ∈Z1(LQ)

∣∣∣∣ui − ui+εξε

∣∣∣∣ .
We then assume that for every i ∈ Zn there exist ψbi , ψ

s
i : (Rd)Zn → [0,+∞) such that the following

properties hold (see the Introduction for an explanation of their meaning).

(Hψ1) For every η > 0 and every Λ > 0 there exists ε̄ = ε̄(η,Λ) > 0 such that for every ε ∈ (0, ε̄),
for every i ∈ Zn and for every z : Zn → Rd with |∇1,Lz|(0) < Λ we have

|ψεεi({εz
j
ε }j∈Zε(Rn))− ψbi ({zj}j∈Zn)| < η.
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(Hψ2) For every η > 0 there exist Λ(η) > 0 and ε̂ = ε̂(η) > 0 such that for every ε ∈ (0, ε̂), for

every i ∈ Zn and every z : Zn → Rd with ε
1−p
p |∇1,Lz|(0) ≥ Λ(η) or |∇1,Lz|(0) = 0 we have

|εψεεi({z
j
ε }j∈Zε(Rn))− ψsi ({zj}j∈Zn)| < η.

Moreover, we assume that the functions ψsi satisfy the following continuity hypotheses.

(Hψ3) There exists a constant cs > 0 such that for every z, w : Zn → Rd with |∇1,Lz|(0) > 0,
|∇1,Lw|(0) > 0 and for every i ∈ Zn there holds

|ψsi ({zj}j∈Zn)− ψsi ({wj}j∈Zn)| ≤ cs
∑

j∈Z1(QL(i))

∑
ξ∈Z1(QL(i))
j+ξ∈QL(i)

|zj+ξ − wj+ξ|.

The main result of this section is the following theorem which states that under the additional
assumptions (Hψ1)–(Hψ3) the bulk and surface interactions decouple in the Γ-limit. As a conse-
quence we obtain asymptotic minimization formulas for the bulk and the surface energy density
that are independent of the Γ-converging subsequence.

Theorem 4.3 (Homogenization). Assume that φεi : (Rd)Zε(Ωi) → [0,+∞) are given by (4.3),
where ψεi : (Rd)Zε(Rn) → [0,+∞) are εK-periodic in i, satisfy (H1)–(H6) with Zε(Ωi) replaced by
Zε(Rn), and (4.1), and suppose that in addition (Hψ1)–(Hψ3) are satisfied. Then the functionals
Fε : L1(Ω;Rd) → [0,+∞] defined as in (2.3) Γ-converge in the strong L1(Ω;Rd)-topology to the
functional Fhom : L1(Ω;Rd)→ [0,+∞] given by

Fhom(u) =


∫

Ω

fhom(∇u) dx+

∫
Su

ghom([u], νu) dHn−1 if u ∈ GSBV p(Ω;Rd),

+∞ otherwise in L1(Ω;Rd),

where fhom : Rd×n → [0,+∞) and ghom : Rd × Sn−1 → [0,+∞) are given by

fhom(M) = lim
T→+∞

1

Tn
inf
{ ∑
i∈Z1(TQ)

ψbi ({ui+j}j∈Zn) : u ∈ A
√
nL

1 (uM , TQ)
}

(4.8)

and

ghom(ζ, ν) = lim
T→+∞

1

Tn−1
inf
{ ∑
i∈Z1(TQν)

ψsi ({ui+j}j∈Zn) : u ∈ A
√
nL

1 (uζ,ν , TQ
ν)
}
. (4.9)

The proof of Theorem 4.3 will be established in Sections 4.1.1 and 4.1.2 below in which we treat
separately the bulk and the surface energy density. As a preliminary step it is useful to compare
the two operators |∇ε,L| and |∇ε|.

Lemma 4.4. There exist constants ĉ1, ĉ2 > 0 depending only on n, p and L such that for every
u : Zε(Rn)→ Rd and every i ∈ Zε(Rn) there holds

|∇ε,Lu|p(i) ≤ ĉ1
∑

j∈Zε(QεL(i))

|∇εu|p(j), (4.10)

and for every A ⊂ Rn we have∑
i∈Zε(A)

min
{
|∇ε,Lu|p(i),

1

ε

}
≤ ĉ2

∑
i∈Zε(A+εL[−1,1]n)

min
{
|∇εu|p(i),

1

ε

}
. (4.11)



32 ANNIKA BACH, ANDREA BRAIDES, AND MARCO CICALESE

Proof. Let u : Zε(Rn)→ Rd and i ∈ Zε(Rn). By Jensen’s inequality we have

|∇ε,Lu|p(i) ≤ (#Z1(LQ))p−1
∑

ξ∈Z1(LQ)

∣∣∣∣ui − ui+εξε

∣∣∣∣p . (4.12)

Moreover, for any ξ ∈ Z1(LQ) there exists a sequence of lattice points i0, . . . , i|ξ|1 ∈ Zε(QεL(i)) with
the following properties: i0 = i, i|ξ|1 = ξ and for every h ∈ {1, . . . , n} there exists i(h) ∈ {1, . . . , n}
such that ih ∈ {ih−1 + ei(h), ih−1 − ei(h)}. Thus, using again Jensen’s inequality we obtain∣∣∣∣ui − ui+εξε

∣∣∣∣p =
∣∣∣ |ξ|1∑
h=1

D
±ei(h)
ε u(ih−1)

∣∣∣p ≤ |ξ|p−1
1

|ξ|1∑
h=1

|D±ei(h)
ε u(ih−1)|p ≤ |ξ|p1

∑
j∈Zε(Qεl(i))

|∇εu|p(j).

Summing the above estimate over ξ ∈ Z1(LQ) from (4.12) we deduce

|∇ε,Lu|p(i) ≤ (#(Z1(LQ))p−1
∑

ξ∈Z1(LQ)

|ξ|p1
∑

j∈Zε(QεL(i))

|∇εu|p(j) ≤
npLp

2p
(#(Z1(LQ))p

∑
j∈Zε(QεL(i))

|∇εu|p(j),

which gives (4.10) with ĉ1 := npLp

2p (#(Z1(LQ))p.
Now (4.11) is a direct consequence of (4.10). In fact, using (4.10) together with the subadditvity

of the min, for any A ⊂ Rn we obtain∑
i∈Zε(A)

min
{
|∇ε,Lu|p(i),

1

ε

}
≤

∑
i∈Zε(A)

min
{
ĉ1

∑
j∈Zε(QεL(i))

|∇εu|p(j),
1

ε

}
≤

∑
i∈Zε(A)

∑
j∈Zε(QεL(i))

min
{
ĉ1|∇εu|p(j),

1

ε

}
≤ max{ĉ1, 1}

∑
j∈Z1(LQ)

∑
i∈Zε(A)

min
{
|∇εu|p(i+ εj),

1

ε

}
≤ max{ĉ1, 1}#Z1(LQ)

∑
i∈Zε(A+εL[−1,1]n)

min
{
|∇εu|p(i),

1

ε

}
,

hence (4.11) follows by setting ĉ2 := max{ĉ1, 1}#Z1(LQ). �

4.1.1. The bulk energy density. In this section we show that the bulk energy density f̄ in (4.4)
coincides with fhom as in (4.8). This will be done by comparing our functionals with a class of
functionals that fall into the framework of [20]. More precisely, we introduce rescaled interaction-

energy densities ψε,bi : (Rd)Zε(Ωi) → [0,+∞) given by

ψε,bi ({zj}j∈Zε(Ωi)) :=


ψbi
ε

({ 1
εz
εjχεjLQ}j∈Zn) if i ∈ Zε(ΩLε ),

n∑
k=1

εek∈Ωi

|Dk
ε z(0)|p if i ∈ Zε(Ω \ ΩLε ),

and we consider the functionals Gε : L1(Ω;Rd)×A(Ω)→ [0,+∞] defined by setting

Gε(u,A) :=
∑

i∈Zε(A)

εnψε,bi ({ui+j}j∈Zε(Ωi)), for u ∈ Aε(Ω;Rd), (4.13)

and extended to +∞ on L1(Ω;Rd) \ Aε(Ω;Rd).
We show that the functions ψbi have the same properties as the functions φki : (Rd)Zn → [0,+∞)

defined in [20, Section 5] for k = L fixed. In addition, they satisfy a suitable upper bound (see
(Hb7) below).



FREE-DISCONTINUITY FUNCTIONALS FROM DISCRETE TO CONTINUUM 33

Lemma 4.5 (Properties of ψbi ). Suppose that ψεi : (Rd)Zε(Rn) → [0,+∞) are εK-periodic in i,
satisfy (H1)–(H6) with Zε(Ωi) replaced by Zε(Rn), and suppose that in addition (4.1) is satisfied.
Assume moreover that there exists ψbi : (Rd)Zn → [0,+∞) such that (Hψ1) holds true. Then the
functions ψbi are K-periodic in i and satisfy conditions (H1)–(H3) with Zε(Ωi) replaced by Zn.
Moreover, the following holds true for every i ∈ Zn.

(Hb4) (lower bound) For every z : Zn → Rd there holds

ψbi ({zj}j∈Zn) ≥ c2
n∑
k=1

|Dk
1z(0)|p;

(Hb5) (locality) for all z, w : Zn → Rd with zj = wj for all j ∈ Z1(LQ) we have

ψbi ({zj}j∈Zn) = ψbi ({wj}j∈Zn);

(Hb6) (controlled non-convexity) there exists c4 > 0 such that for all z, w : Zn → Rd and every
cut-off ϕ : Rn → [0, 1] we have

ψbi ({ϕjzj + (1− ϕj)wj}j∈Zn) ≤ c3
(
ψbi ({zj}j∈Zn + ψbi ({wj}j∈Zn

)
+ c4

∑
j∈Z1(LQ)

∑
ξ∈Z1(LQ)
j+ξ∈LQ

(
sup

l∈Z1(LQ)
k∈{1,...,n}

|Dk
1ϕ(l)|p|z(j + ξ)− w(j + ξ)|p + |Dξ

1z(j)|p + |Dξ
1w(j)|p

)
;

(Hb7) (upper bound) there exists c5 = c5(n,L, p) > 0 such that for all z : Zn → Rd there holds

ψbi ({zj}j∈Zn) ≤ c5(|∇1,Lz|p(0) + 1).

Proof. We first show that ψbi is K-periodic in i. Fix η > 0 and let z : Zn → Rd be arbitrary. We
find ε̄ = ε̄(z, η) > 0 corresponding to (Hψ1) with Λz = |∇1,Lz|(0) < +∞ such that for all ε ∈ (0, ε̄)
and for all i ∈ Zn we have

ψεεi({εz
j
ε }j∈Zε(Rn))− η < (ψbi ({zj}j∈Zn) < ψεεi({εz

j
ε }j∈Zε(Rn)) + η. (4.14)

Thus, for all k ∈ {1, . . . , n} the K-periodicity of ψεεi together with the fact that (4.14) holds
uniformly in i ensure that

ψbi+Kek({zj}j∈Zn) < ψεε(i+Kek)({εz
j
ε }j∈Zε(Rn)) + η = ψεεi({εz

j
ε }j∈Zε(Rn)) + η < ψbi ({zj}j∈Zn) + 2η.

Using the first inequality in (4.14) the same argument as above then leads to

ψbi ({zj}j∈Zn)− 2η < ψbi+Kek({zj}j∈Zn) < ψbi ({zj}j∈Zn) + 2η,

and we conclude by the arbitrariness of η > 0.
An analogous argument shows that (H1)–(H3) transfer from ψεεi to ψbi and that (Hb5) follows

from (4.2). Moreover, for every η > 0 and z : Zn → Rd there exists ε̄ = ε̄(z, η) > 0 such that for all
ε ∈ (0, ε̄) and every i ∈ Zn we have

ψbi ({zj}j∈Zn) > ψεεi({εz
j
ε }j∈Zε(εLQ))− η ≥ c2 min

{ n∑
k=1

|Dk
1z(0)|p, 1

ε

}
− η = c2

n∑
k=1

|Dk
1z(0)|p − η,

hence (Hb4) follows again by the arbitrariness of η > 0.
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We continue proving (Hb6). Let (cj,ξε ) be the sequence provided by (H6). In view of (2.6) there
exists ε0 > 0 such that

c4 := sup
ε∈(0,ε0)

∑
j∈Zε(εLQ)

∑
ξ∈Z1(LQ)
j+εξ∈εLQ

cj,ξε < +∞.

Fix η > 0; for any z, w : Zn → Rd and ϕ : Zn → [0, 1] we find ε̄ = ε̄(z, w, ϕ, η) ∈ (0, ε0) such that
for all ε ∈ (0, ε̄) and for all i ∈ Zn there holds

ψbi ({ϕjzj + (1− ϕj)wj}j∈Zn) ≤ ψεεi({ϕ
j
ε εz

j
ε + (1− ϕ

j
ε )εw

j
ε }j∈Zε(Rn)) + η,

ψεεi({εz
j
ε }j∈Zε(Rn)) + ψεεi({εw

j
ε }j∈Zε(Rn)) ≤ ψbi ({zj}j∈Zn) + ψbi ({wj}j∈Zn) + η.

Then (H6) together with (4.1) yield

ψbi ({ϕjzj + (1− ϕj)wj}j∈Zn) ≤ c3
(
ψbi ({zj}j∈Zn) + ψbi ({wj}j∈Zn) + η

)
+Rε(z, w, ϕ) + η,

where

Rε(z, w, ϕ) =
∑

j∈Zε(εLQ)

∑
ξ∈Z1(LQ)
j+εξ∈εLQ

cj,ξε
(

sup
l∈Z1(LQ)
k∈{1,...,n}

|Dk
1ϕ(l)|p|z( jε + ξ)− w( jε + ξ)|p

)
+ cj,ξε

(
|Dξ

1z(
j
ε )|p + |Dξ

1w( jε )|p
)
.

Since ε̄ ∈ (0, ε0) we have cj,ξε ≤ c4 for all ε ∈ (0, ε̄), j ∈ Zε(εLQ) and ξ ∈ Z1(LQ). Hence

Rε(z, w, ϕ) ≤ c4
∑

j∈Z1(LQ)

∑
ξ∈Z1(LQ)
j+ξ∈LQ

(
sup

l∈Z1(LQ)
k∈{1,...,n}

|Dk
1ϕ(l)|p|z(j + ξ)− w(j + ξ)|p + |Dξ

1z(j)|p + |Dξ
1w(j)|p

)

and (Hb6) follows by the arbitrariness of η > 0.
Using a similar argument we eventually verify (Hb7). We consider the sequence (cj,ξε,α) provided

by (H5) and we remark that thanks to (2.4) there exists ε0 > 0 such that

c̄5 := sup
ε∈(0,ε0)

∑
j∈Zε(εLQ)

∑
ξ∈Z1(LQ)
j+εξ∈εLQ

cj,ξε,1 < +∞. (4.15)

For any z : Zn → Rd we choose ε̄ = ε̄(z) ∈ (0, ε0) such that ψbi ({zj}j∈Zn) < ψεεi({εzj/ε}j∈Zε(Rn))+1

for every ε ∈ (0, ε̄). Moreover we define a constant function ẑ : Zn → Rd by setting ẑj := z0 for
every j ∈ Zn. Since ε̄ < ε0, (H5) and (2.7) in Remark 2.1 yield for any ε ∈ (0, ε̄) the estimate

ψbi ({zj}j∈Zn) ≤ c1 + 2 +
∑

j∈Zε(εLQ)

∑
ξ∈Z1(LQ)
j+εξ∈εLQ

cj,ξε,1|D
ξ
1z(

j
ε )|p ≤ c1 + 2 + c̄5

∑
j∈Z1(LQ)

∑
ξ∈Z1(LQ)
j+ξ∈LQ

|Dξ
1z(j)|p.

Finally, the last term in the estimate above can be bounded via∑
j∈Z1(LQ)

∑
ξ∈Z1(LQ)
j+ξ∈LQ

|Dξ
1z(j)|p ≤ 2p−1(1 + #Z1(LQ))|∇1,Lz|p(0),

hence we obtain (Hb7) by setting c5 := max{c1 + 2, c̄52p−1(1 + #Z1(LQ))}. �
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Remark 4.6. The arguments used to verify (Hb7) also show that for all ε ∈ (0, ε0) with ε0 as in
(4.15), for all i ∈ Zε(Rn) and for all z : Zε(Rn)→ Rd there holds

ψεi ({zj}j∈Zε(Rn)) ≤ c5(|∇ε,Lz|p(0) + 1).

Thanks to Lemma 4.5 the following is a consequence of [20, Theorem 5.1].

Theorem 4.7. Let Gε : L1(Ω;Rd) × A(Ω) → [0,+∞] be given by (4.13) and suppose that the
functions ψεi : (Rd)Zε(Rn) → [0,+∞) are εK-periodic in i, satisfy (H1)–(H6) with Zε(Ωi) replaced
by Zε(Rn), and the locality condition (4.1). Assume that in addition Hypotheses (Hψ1) holds true.
Then Gε Γ-converges in the strong Lp(Ω;Rd)-topology to the functional G : Lp(Ω;Rd) → [0,+∞]
given by

G(u) =

∫
Ω

fhom(∇u) dx, u ∈W 1,p(Ω;Rd)

and extended by +∞ in Lp(Ω;Rd) \W 1,p(Ω;Rd), where the integrand fhom is given by (4.8). In
particular, the limit defining fhom exists and is independent of the Γ-converging subsequence.

Remark 4.8. Note that Theorem 4.7 holds also locally, i.e., for every A ∈ A(Ω) and every u ∈
W 1,p(Ω;Rd) we have

Γ- lim
ε→0

Gε(u,A) =

∫
A

fhom(∇u) dx.

Moreover, thanks to the finite-range assumption (4.1) the width of the boundary layer in the

definition of fhom can be chosen as
√
nL (instead of

√
T as in [20, Theorem 5.1]).

Thanks to (Hψ1) we can compare the two discrete energies Fε and Gε following a similar strategy
as in [38]. To this end it is convenient to recall the notion of discrete maximal function and some
of its properties that have been proved in [38] (see also [36]).

Given ε > 0, v : Zε(Rn)→ R and r > 0 we define the maximal functionMr
εv : Zε(Rn)→ [0,+∞)

by setting

Mr
εv(i) := sup

s∈(0,r)

1

#Zε(B
|·|1
s (i))

∑
j∈Zε(B

|·|1
s (i))

|vj |,

where B
|·|1
s (i) is the closed ball of radius s around i with respect to the | · |1-norm. The following

lemma is a consequence of [38, Lemma 5.16 and Remark 5.17].

Lemma 4.9. There exists a constant c̄ > 0 such that for all ε > 0 and for every u : Zε(Rn)→ Rd
there holds

|ui − uj | ≤ c̄|i− j|1
(
Mc̄|i−j|1

ε |∇εu|(i) +Mc̄|i−j|1
ε |∇εu|(j)

)
for every i, j ∈ Zε(Rn).

Moreover, the following result has been established in [38, Lemma 5.18].

Lemma 4.10. Let x0 ∈ Rn, λ > 0 and suppose that uε : Zε(Rn)→ Rd satisfy

sup
ε>0

∑
i∈Zε(B(3+6c̄

√
n)λ(x0))

|∇εuε|p(i) < +∞,

where c̄ is as in Lemma 4.9. Then there exist a subsequence (εh) and functions wh : Zεh(Rn)→ Rd
such that |∇εhwh|p is equiintegrable on B2λ(x0) and

lim
h→+∞

εnh#{i ∈ Zεh(B2λ(x0)) : uεh 6≡ wh on B
|·|1
εh

(i)} = 0. (4.16)
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Remark 4.11. Let the sequences (uε), (εh) and (wh) be as in Lemma 4.10. Then we also have

lim
h→+∞

εnh#{i ∈ Zεh(Bλ(x0)) : uεh 6≡ wh on Zεh(QεhL(i))} = 0. (4.17)

To verify (4.17) we denote by Uh the set in (4.16) and by ULh the set in (4.17) and we remark that for

every i ∈ ULh there exists ji ∈ QεhL(i) such that ujiεh 6= wjih . Since i ∈ Bλ(x0) we have ji ∈ B2λ(x0)
for h sufficiently large, so that ji ∈ Uh. Hence for h sufficiently large we get

εnh#ULh ≤ εnh
∑
j∈Uh

#{i ∈ ULh : j ∈ QεhL(i)} ≤ cLnεnh#Uh → 0 as h→ +∞.

We are now in a position to prove the following result.

Proposition 4.12. Let the sequence (Fε) be defined according to (2.3) with φεi : (Rd)Zε(Ωi) →
[0,+∞) as in (4.3) and assume the functions ψεi : (Rd)Zε(Rn) → [0,+∞) are εK-periodic in i,
satisfy (H1)–(H6) with Zε(Ωi) replaced by Zε(Rn), the locality condition (4.1), and (Hψ1). Then
f̄(M) = fhom(M) for every M ∈ Rd×n, where f̄ is as in (4.4).

Proof. The strategy used to derive the formula for f̄ follows closely the one used in [38, Proposition
5.19]. A main difference with respect to the situation in [38] is the fact that the interaction-energy
densities ψεi are bounded from below only in terms of |∇εu|, while they can be bounded from
above in terms of the finite-range gradient |∇ε,Lu|. To circumvent this additional difficulty we will
frequently use Lemma 4.4.

The proof is divided into two major steps establishing separately a lower and an upper bound of
f̄ in terms of fhom.

Step 1: f̄ ≥ fhom

Fix M ∈ Rd×n and let x0 ∈ Ω and ρ > 0 with Bρ(x0) ⊂⊂ Ω. Then

|B1|f̄(M) =
1

ρn
F (uM,x0 , Bρ(x0)).

We now estimate F (uM,x0
, Bρ(x0)) from below. Without loss of generality we assume x0 = 0 and

for fixed ρ0 > 0 with Bρ0 ⊂⊂ Ω we choose functions uε ∈ Aε(Ω;Rd) converging in L1(Ω;Rd) to uM
and satisfying

lim
ε→0

Fε(uε, Bρ0) = F (uM , Bρ0).

Then (uε) is a recovery sequence for uM on Bρ for every ρ ∈ (0, ρ0), since

F (uM , Bρ) = F (uM , Bρ0)− F (uM , Bρ0 \Bρ)
≥ lim
ε→0

Fε(uε, Bρ0)− lim inf
ε→0

Fε(uε, Bρ0 \Bρ) ≥ lim sup
ε→0

Fε(uε, Bρ),

where in the first step we used that F (uM , Bρ) does not concentrate on the boundary of Bρ. In
particular, we have

|B1|f̄(M) ≥ 1

ρn
lim sup
ε→0

Fε(uε, Bρ) for every ρ ∈ (0, ρ0). (4.18)

We now introduce a constant k̄ > 0 satisfying

k̄ > 3 + 6c
√
n+ |M |,

where c is as in Remark 4.9. Since |uM | ≤ |M |ρ ≤ k̄ρ on Bρ, the truncated functions Tk̄ρuε converge

to uM in L1(Bρ,Rd). In particular, in view of Remark 2.3 they still provide a recovery sequence
for uM on Bρ.



FREE-DISCONTINUITY FUNCTIONALS FROM DISCRETE TO CONTINUUM 37

Fix η > 0 and for every ρ ∈ (0, (3k̄2)−1ρ0) let ε̄ρ = ε̄(η,
√
nL
2 k̄Λρ#Z1(LQ)) be given by (Hψ1)

with Λρ to be chosen later. We choose

ερ < min
{
ρ2, ρ

p
p−1 , ε̄ρ,

dist∞(Bρ0
, ∂Ω)

L

}
non-decreasing in ρ and satisfying

Fερ(Tk̄ρuερ , B3k̄2ρ) ≤ c(|M |p + 1)ρn, (4.19)

1

|B1|ρn

∫
Bρ

|Tk̄ρuερ − uM |p dx ≤ ρp+1. (4.20)

Here, the first estimate can be realized thanks to (4.18) and the fact that f̄(M) ≤ c(|M |p + 1).
Observe that since ρ < (3k̄2)−1ρ0 our choice of ερ implies that B3k̄2ρ ⊂ Bρ0

⊂ ΩLερ and hence

Fερ(Tk̄ρuερ , B3k̄2ρ) =
∑

i∈Zερ (B3k̄2ρ)

εnρψ
ερ
i ({ui+jερ χjερLQ}j∈Zερ (Rn)) =

∑
i∈Z1(B3k̄2 ρ

ερ
)

εnρψ
ερ
ερi

({ερvi+j/ερρ }j∈Zερ (Rn)),

(4.21)

where vρ : Zn → Rd is defined by setting

viρ :=
1

ερ
Tk̄ρu

ερi
ερ χ

ερi
Ω , for every i ∈ Zn.

Substep 1a: Construction of Lipschitz-competitors
We now aim to replace vρ by a Lipschitz function v̄ρ with Lipschitz constant at most k̄Λρ. To this
end we introduce the sets of regular and singular points defined as

Rρ := {i ∈ Z1(Bk̄ ρ
ερ

) : M
k̄2 ρ

ερ

1 |∇1vρ| ≤ Λρ}, Sρ := {i ∈ Zn : |∇1vρ|(i) ≥ Λρ/2},

respectively. Note that for every i, j ∈ Rρ thanks to Lemma 4.9 we have the Lipschitz estimate

|viρ − vjρ| ≤ c̄
√
n|i− j|

(
M

k̄2 ρ
ερ

1 |∇1vρ|(i) +M
k̄2 ρ

ερ

1 |∇1vρ|(j)
)
≤ k̄Λρ|i− j|.

Using Kirszbraun’s extension theorem we thus find a function v̄ρ : Zn → Rd coinciding with vρ on
Rρ and satisfying |v̄iρ − v̄jρ| ≤ k̄Λρ|i− j| for every i, j ∈ Zn. In particular, we have

|∇1,Lv̄ρ|(i) ≤
√
nL

2
k̄Λρ#Z1(LQ) for every i ∈ Zn. (4.22)

In addition, by truncation with the operator T3k̄ ρ
ερ

we can assume that ‖v̄ρ‖∞ ≤ 9k̄ ρ
ερ

.

In the remaining part of this substep we bound the number of points in which vρ and v̄ρ do not
coincide, that is the cardinality of Z1(Bk̄ ρ

ερ
)\Rρ. We first observe that for every i ∈ Z1(Bk̄ ρ

ερ
)\Rρ

there exists si ∈ (0, k̄2 ρ
ερ

) such that

Λρ#Z1(B
|·|1
si (i)) ≤

∑
j∈Z1(B

|·|1
si

(i))

|∇1vρ|(j).
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Applying Vitali’s covering lemma we find Iρ ⊂ Z1(Bk̄ ρ
ερ

) \ Rρ (finite) such that the family

(B
|·|1
si (i))i∈Iρ is disjoint and

Z1(Bk̄ ρ
ερ

) \ Rρ ⊂
⋃
i∈Iρ

B
|·|1
5si(i),

hence

#Z1(Bk̄ ρ
ερ

) \ Rρ ≤ #Z1

( ⋃
i∈Iρ

B
|·|1
5si(i)

)
≤ 5n#Z1

( ⋃
i∈Iρ

B
|·|1
si (i)

)
. (4.23)

To estimate the cardinality of Z1

(⋃
iB
|·|1
si (i)

)
we distinguish between the lattice points in

⋃
iB
|·|1
si (i)

belonging to Sρ and those that belong to its complement. In fact, since the balls B
|·|1
si (i) are disjoint,

the definition of Sρ implies that

Λρ#Z1

( ⋃
i∈Iρ

B
|·|1
si (i)

)
≤

∑
j∈Z1(

⋃
i B
|·|1
si

(i))

|∇1vρ|(j) ≤
∑

j∈
⋃
i B
|·|1
si

(i)∩Sρ

|∇1vρ|(j) +
Λρ
2

#Z1

( ⋃
i∈Iρ

B
|·|1
si (i)

)
,

hence

#Z1

( ⋃
i∈Iρ

B
|·|1
si (i)

)
≤ 2

Λρ

∑
j∈

⋃
i B
|·|1
si

(i)∩Sρ

|∇1vρ|(j). (4.24)

We aim to bound the term on the right-hand side of (4.24) via Fερ(Tk̄ρuερ , B3k̄2ρ). To this end we
introduce the set of jump points

Jρ :=
{
i ∈ Zn : |∇1vρ|p(i) ≥ 1/ερ

}
and we use Hölder’s inequality to obtain the estimate∑

j∈
⋃
i B
|·|1
si

(i)∩Sρ\Jρ

|∇1vρ|(j) ≤
(

#
( ⋃
i∈Iρ

B
|·|1
si (i) ∩ Sρ \ Jρ

)) p−1
p
( ∑
i∈

⋃
i B
|·|1
si

(i)∩Sρ\Jρ

|∇1vρ|p(j)
) 1
p

. (4.25)

Then by definition for every j ∈
⋃
iB
|·|1
si (i) ∩ Sρ \ Jρ we have

|∇1vρ|p(j) = min
{
|∇1vρ|p(j),

1

ερ

}
≤ (2n)p−1

(
min

{ n∑
k=1

|Dk
εv
j
ρ|p,

1

ερ

}
+ min

{ n∑
k=1

|Dk
εv
j−ek
ρ |p, 1

ερ

})
,

where in the second step we used the subadditivity of min. Moreover, for every j ∈
⋃
iB
|·|1
si (i) there

holds

j − ek ∈
⋃
i∈Iρ

B
|·|1
si+ερ(i) ⊂ B3k̄2 ρ

ερ
for every k ∈ {1, . . . , n}. (4.26)

Thus, from (H4) together the energy bound (4.19) we infer∑
j∈

⋃
i B
|·|1
si

(i)∩Sρ\Jρ

|∇1vρ|p(j) ≤ 2(2n)p−1
∑

j∈Z1(B3k̄2 ρ
ερ

)

min
{ n∑
k=1

|Dk
1vρ(j)|p,

1

ερ

}
≤ cρ

n

εnρ
, (4.27)
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where the additional factor 2 comes from the fact that each term is counted at most twice. Finally,

since |∇1vρ| ≥ Λρ
2 on Sρ, (4.27) gives(Λρ

2

)p
#
⋃
i∈Iρ

B
|·|1
si (i) ∩ Sρ \ Jρ ≤

∑
j∈

⋃
i B
|·|1
si

(i)∩Sρ\Jρ

|∇1vρ|p(j) ≤ c
ρn

εnρ
. (4.28)

Gathering (4.25), (4.27) and (4.28) we eventually deduce that

2

Λρ

∑
j∈

⋃
i B
|·|1
si

(i)∩Sρ\Jρ

|∇1vρ|(j) ≤ cΛ−pρ
ρn

εnρ
. (4.29)

To estimate the remaining contributions in (4.24) we observe that for every j ∈ Jρ there exists
k(j) ∈ {1, . . . , n} such that either |Dk

1v
j
ρ|p ≥ 1/ερ(2n)p or |Dk

1v
j−ek
ρ |p ≥ 1/ερ(2n)p. Using the

inclusion in (4.26) once more we then obtain

1

ερ(2n)p
#
( ⋃
i∈Iρ

B
|·|1
si (i) ∩ Jρ

)
≤ 2

∑
j∈Z1(B3k̄2 ρ

ερ
)

min
{ n∑
k=1

|Dk
1vρ(j)|p,

1

ερ

}
≤ cρ

n

εnρ
,

where the additional factor 2 results again from a possible double counting of interactions. Moreover,
the uniform bound on vρ implies |Dk

1vρ(j)| ≤ ck̄ ρ
ερ

for every j ∈ Zn, so that the above estimate

yields

2

Λρ

∑
j∈

⋃
i B
|·|1
si

(i)∩Jρ

|∇1vρ|(j) ≤ ck̄Λ−1
ρ

ρ

ερ
#
( ⋃
i∈Iρ

B
|·|1
si (i) ∩ Jρ

)
≤ cρΛ−1

ρ

ρn

εnρ
. (4.30)

Combining (4.23), (4.24), (4.29) and (4.30) and choosing Λρ = ρ
1

1−p we finally deduce that

#(Z1(Bk̄ ρ
ερ

) \ Rρ) ≤ c(ρΛ−1
ρ + Λ−pρ )

ρn

εnρ
= cρ

p
p−1

ρn

εnρ
. (4.31)

Substep 1b: From Lipschitz continuity to equiintegrable gradients
In this substep we show that the rescaled functions ṽρ obtained by setting

ṽiρ :=
ερ
ρ
v̄
ρ
ερ
i

ρ for every i ∈ Z ερ
ρ

(Rn)

satisfy the hypotheses of Lemma 4.10 with λ = 1 and x0 = 0 along the vanishing sequence σρ :=
ερ
ρ .

We start by observing that ṽρ satisfy the following conditions.

(i) ‖ṽρ‖∞ ≤ 9k;

(ii) |ṽiρ − ṽjρ| ≤ kΛρ|i− j| for all i, j ∈ Zσρ(Rn);

(iii) ṽiρ = 1
ρTk̄ρu

ρi
ερ if ρ

ερ
i ∈ Rρ.

Note that (ii) implies that |∇σρ ṽρ|p(i) ≤ cΛpρ for every i ∈ Zσρ(Rn). We thus obtain the estimate∑
i∈Zσρ (Bk̄)

σnρ |∇σρ ṽρ|p(i) ≤
∑

i∈Zερ (Bk̄ρ)
i
ερ
∈Rρ

εnρ
ρn

n∑
k=1

i
ερ

+ek∈Rρ

|Dk
ερTk̄ρu

i
ερ |

p + cΛpρ
εnρ
ρn

#(Z1(Bk̄ ρ
ερ

) \ Rρ).

(4.32)
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Thanks to (4.31) we can bound the second term on the right-hand side of (4.32) by a constant.
Moreover, the definition of the maximal function together with the choice of the set Rρ implies
that for all i ∈ Zερ(Bk̄ρ) with i/ερ ∈ Rρ we have

n∑
k=1

|Dk
ερTk̄ρu

i
ερ |

p ≤ |∇ερTk̄ρuερ |p(i) = |∇1vρ|p ≤ Λpρ = ρ
p

1−p <
1

ερ
,

where in the last step we have used that ερ < ρ
p
p−1 . Hence we can bound the first term on the

right-hand side of (4.32) by the energy and use (4.19) to deduce that∑
i∈Zσρ (Bk̄)

σnρ |∇σρ ṽρ|p(i) ≤
c

ρn
Fερ(Tk̄ρuερ , Bk̄ρ) + c ≤ c.

Thanks to our choice of k̄ Lemma 4.10 then provides us with a subsequence (ρh) and functions
wh : Zσh(Rn)→ Rd such that |∇σhwh|p is equiintegrable on B2 and

lim
h→+∞

σnh#{i ∈ Zσh(B2) : ṽρh 6≡ wh on B
|·|1
σh

(i)} = 0, (4.33)

where we have set σh := σρh . Moreover, upon truncation we can assume that ‖wh‖∞ ≤ 27k̄.
Substep 1c: Conclusion of the lower-bound inequality

We continue by proving that the sequence (wh) obtained in Substep 1b converges to uM in
Lp(B1;Rd). To simplify notation we set εh := ερh . We start by estimating

‖wh − um‖Lp(B1;Rd) ≤ ‖wh −
1

ρh
Tk̄ρhuεh(ρh·)‖Lp(B1;Rd) + ‖ 1

ρh
Tk̄ρhuεh(ρh·)− uM‖Lp(B1;Rd).

By a change of variables and (4.20) we obtain

‖ 1

ρh
Tk̄ρhuεh(ρh·)− uM‖pLp(B1;Rd)

≤ 1

ρn+p
h

∫
Bρh

|Tk̄ρhuεh − uM |
p dx ≤ ρh → 0 as h→ +∞.

Moreover, we denote by Uh the set in (4.33) and we remark that for all i ∈ Zσh(B2) \ Uh with
i/σh ∈ Rρh we have wih = 1/ρhTk̄ρhu

ρhi
εh

. Thus, the uniform bound on ‖wh‖∞ together with (4.31),
(4.33) yield

‖wh−
1

ρh
Tk̄ρhuεh(ρh·)‖pLp(B1;Rd)

≤ c|M |pσnh
(
#Uh+#(Z1(B2

ρh
εh

) \ Rρh)
)
≤ c|M |p

(
σnh#Uh+ρ

p
p−1

h

)
,

where the second inequality follows from (4.31). Thanks to (4.33) we conclude that wh → uM in
Lp(B1;Rd).

We finally show that up to a small error 1/ρnhFεh(uεh , Bρh) is asymptotically bounded from below
by |B1|fhom. Then the required inequality follows from (4.18) by letting h → +∞. We start by
introducing the sets

ULh := {i ∈ Zσh(B1) : ṽρh 6≡ wh on QσhL(i)},
Vh := {i ∈ Z1(B ρh

εh

) : Z1(QL(i)) ⊂ Rρh , σhi ∈ Zσh(B1) \ ULh }.

and by observing that Remark 4.11 and (4.31) yield

σnh#(Z1(B ρh
εh

) \ Vh) ≤ σnh
(
#ULh + cLn#(Z1(Bk̄ ρhεh

) \ Rρh)
)
→ 0 as h→ +∞. (4.34)
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Moreover, thanks to the locality property (4.2) we have

1

ρnh
Fεh(uεh , Bρh) ≥ 1

ρnh
Fεh(Tk̄ρhuεh , Bρh) ≥

∑
i∈Vh

σnhψ
εh
εhi

({εhv̄
i+ j

εh
ρh }j∈Zεh (Rn))

≥
∑
i∈Vh

σnhψ
b
i ({v̄i+jρh

}j∈Zn)− η,

where the last inequality follows from (4.22) and (Hψ1) together with the fact that εh < ε̄ρh . By

construction v̄i+jρh
= 1/σhw

σh(i+j)
h for every i ∈ Vh and every j ∈ Z1(LQ), hence we obtain

1

ρnh
Fεh(uεh , Bρh) ≥

∑
i∈Zσh (B1)

σnhψ
b
i
σh

({ 1

σh
wi+σhjh }j∈Zn)−

∑
i∈Z1(B ρh

εh

)\Vh

σnhψ
b
i ({

1

σh
w
σh(i+j)
h }j∈Zn)− η

≥ Gσh(wh, B1)− c5
∑

i∈Z1(B ρh
εh

)\Vh

σnh
(
|∇σh,Lwh|p(σhi) + 1)− η

≥ Gσh(wh, B1)− c5
∑

i∈Z1(B ρh
εh

)\Vh

σnh

(
ĉ1

∑
j∈Zσh (σhQL(i))

|∇σhwh|p(j) + 1
)
− η, (4.35)

where ĉ1 is given by (4.10). In order to further estimate the second term in (4.35) we consider the
set

Wh := {j ∈ Zσh(B3/2) : ∃ i ∈ Z1(B ρh
εh

) \ Vh s.t. j ∈ σhLQ(i)}

and for every j ∈ Wh we define

γh(j) := #{i ∈ Z1(B ρh
εh

) \ Vh : j ∈ σhLQ(i)}.

Then for h sufficiently large we have∑
i∈Z1(B ρh

εh

)\Vh

σnh
∑

j∈Zσh (σhQL(i))

|∇σhwh|p(j) ≤
∑
j∈Wh

σnhγh(j)|∇σhwh|p(j) ≤ c(n,L)
∑
j∈Wh

σnh |∇σhwh|p(j),

(4.36)

where in the second step we used that γh(j) ≤ #Zσh(QσhL(j)) ≤ cLn for every j ∈ Wh. We
eventually observe that #Wh ≤ cLn#(Z1(B ρh

εh

) \Vh)→ 0 as h→ +∞. Hence the equiintegrability

of |∇σhwh|p on B2 yields the existence of some hη > 0 such that

c5ĉ1c(n,L)
∑
j∈Wh

σnh |∇σhwh|p(j) < η for every h ≥ hη.

As a consequence, combining (4.35) and (4.36) we obtain

1

ρnh
Fεh(uεh , Bρh) ≥ Gσh(wh, B1)− c5σnh#(Z1(B ρh

εh

) \ Vh)− 2η, (4.37)

for all h ≥ hη. Thus, since wh → uM in Lp(B1,Rd), from (4.18), (4.34) and (4.37) together with
Theorem 4.7 and Remark 4.8 we deduce that

|B1|f̄(M) ≥ lim inf
h→+∞

Gσh(wh, B1)− 2η ≥ G(uM , B1)− 2η = |B1|fhom(M)− 2η

and we conclude by letting η → 0.
Step 2: f̄ ≤ fhom
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In order to prove this inequality we choose a sequence (uε) converging to uM in Lp(Ω;Rd) and
satisfying

lim
ε→0

Gε(uε, Bρ0
) = G(uM , Bρ0

).

Fix ρ ∈ (0, (3k̄2)−1ρ0); then the truncated functions Tk̄ρuε still provide a recovery sequence for uM
on Bρ. In particular, we obtain

|B1|fhom(M) =
1

ρn
G(uM , Bρ) ≥

1

ρn
lim sup
ε→0

Gε(Tk̄ρuε, Bρ). (4.38)

In order to use (Hψ1) to pass from Gε to Fε we need replace Tk̄ρuε by a sequence of functions
with equiintegrable discrete gradients. This can be done by using Lemma 4.10 along the vanishing
sequence ε with λ = ρ. We start by observing that thanks to (Hb4) the functions Tk̄ρuε satisfy the
assumptions of Lemma 4.10. In fact,

c2
(2n)p

∑
i∈Zε(Bk̄ρ)

εn|∇εTk̄ρuε|p(i) ≤ c2
∑

i∈Zε(B2k̄ρ)

εn
n∑
k=1

|Dk
εTk̄ρu

i
ε|p ≤ Gε(uε, Bρ0) ≤ cρn,

for some c > 0 uniformly with respect to ε. Thus, Lemma 4.10 ensures the existence of a subsequence
εh and functions wh : Zεh(Rn)→ Rd (possibly depending on ρ) such that |∇εhwh|p is equiintegrable
on B2ρ and such that

lim
h→+∞

εnh#{i ∈ Zεh(B2ρ) : Tk̄ρuεh 6≡ wh on B
|·|1
εh

(i)} = 0. (4.39)

Moreover, upon truncation we can assume that ‖wh‖∞ ≤ 9k̄. Denoting by Uεh the set in (4.39) the
uniform bound on ‖Tk̄ρuεh‖∞ and ‖wh‖∞ together with (4.39) give

‖wh − uM‖Lp(Bρ;Rd) ≤ ‖wh − Tk̄ρuεh‖Lp(Bρ;Rd) + ‖Tk̄ρuεh − uM‖Lp(Bρ;Rd)

≤ c|M |(εnh#Uεh)
1
p + ‖Tk̄ρuεh − uM‖Lp(Bρ;Rd) → 0 as h→ +∞.

Hence, Theorem 3.1 implies that

|B1|f̄(M) =
1

ρn
F (uM , Bρ) ≤

1

ρn
lim inf
h→+∞

Fεh(wh, Bρ), (4.40)

and it remains to compare Fεh(wh, Bρ) andGεh(Tk̄ρuεh , Bρ). We start by comparingGεh(Tk̄ρuεh , Bρ)
and Gεh(wh, Bρ). To this end we introduce the sets

ULεh := {i ∈ Zεh(Bρ) : Tk̄ρuεh 6≡ wh on QεhL(i)},
VLεh := {j ∈ Zεh(B3ρ/2) : ∃ i ∈ ULεh s.t. j ∈ QεhL(i)},

and we remark that as in Substep 1c one can show that

lim
h→+∞

εnh#ULεh = 0, lim
h→+∞

εnh#VLεh = 0.

Thus, arguing as in (4.36) and using the equiintegrability of |∇εhwh|p on B2ρ we deduce that there
exists h1 = h1(η, ρ) > 0 such that for all h ≥ h1 we have

c5
ρn

∑
i∈Ulεh

εnh(|∇εh,Lwh|p(i) + 1) ≤ c5
ρn
ĉ1c(n,L)

∑
i∈VLεh

εnh
(
|∇εhwh|p(i) + 1

)
< η.
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As a consequence, thanks to the upper bound (Hb7) we obtain

1

ρn
Gεh(Tk̄ρuεh , Bρ) ≥

1

ρn
Gεh(wh, Bρ)−

1

ρn

∑
i∈ULεh

εnhψ
b
i
εh

({ 1
εh
wi+εhjh }j∈Zn)

≥ 1

ρn
Gεh(wh, Bρ)− η for all h ≥ h1. (4.41)

We finally estimate from below Gεh(wh, Bρ) in terms of Fεh(wh, Bρ). For every Λ > 0 we set

Sεh(Λ) := {i ∈ Zεh(B2ρ) : |∇εh,Lwh|p(i) ≥ Λ}.

For every i ∈ Sεh(Λ) Lemma 4.4 gives

Λ ≤ |∇εh,Lwh|p(i) ≤ ĉ1
∑

j∈Zεh (QεhL(i))

|∇εhwh|p(j) ≤ ĉ1#Z1(LQ) max
j∈Zεh (QεhL(i))

|∇εhwh|p(j).

In particular, for every i ∈ Sεh(Λ)∩Bρ there exists ji ∈ Zεh(B2ρ) with |∇εhwh|p(ji) ≥ Λ/(ĉ1#Z1(LQ)).
Setting ĉ := ĉ1#Z1(LQ) this gives∑

i∈Sεh (Λ)∩Bρ

|∇εh,Lwh|p(i) ≤
∑

j∈Sεh (Λ/ĉ)

|∇εhwh|p(j)#{i ∈ Sεh(Λ): j ∈ QεhL(i)}

≤ #Z1(LQ)
∑

j∈Sεh (Λ/ĉ)

|∇εhwh|p(j).

Thus, for fixed η > 0 the equiintegrability of |∇εhwh|p on B2ρ ensures the existence of Λ̄ = Λ̄(η, ρ) >
0 and h2 = h2(η, ρ) > 0 such that for every h ≥ h2 we have

c5
ρn

∑
i∈Sεh (Λ̄)∩Bρ

εnh(|∇εh,Lwh|p(i) + 1) ≤ c5
ρn

#Z1(LQ)
∑

j∈Sεh (Λ̄/ĉ)

εnh(|∇εhwh|p(i) + 1) < η. (4.42)

In addition, since |∇εh,Lwh|(i) < Λ̄
1
p for all i ∈ Zεh(Bρ) \ Sεh(Λ̄), in view of (Hψ1) there exists

h3 = h3(η, ρ) > 0 such that for all h ≥ h3 and for all i ∈ Zεh(Bρ) \ Sεh(Λ̄) there holds

|ψεhi ({wi+jh }j∈Zεh (Rn))− ψbi
εh

({ 1
εh
wi+εhjh }j∈Zn)| < η

|B1|
. (4.43)

Combining (4.42) and (4.43) in view of Remark 4.6 we deduce that for all h ≥ max{h2, h3} we have

1

ρn
Gεh(wh, Bρ) ≥

1

ρn

∑
i∈Zεh (Bρ)\Sεh (Λη,ρ)

εnh(ψεhi ({wi+jh }j∈Zεh (Rn))− η)

≥ 1

ρn
Fεh(wh, Bρ)− η − o(εh)− c5

ρn

∑
i∈Sεh (Λ̄)∩Bρ

εnh(|∇εh,Lwh|p(i) + 1)

≥ 1

ρn
Fεh(wh, Bρ)− 2η − o(εh). (4.44)

Eventually, gathering (4.40), (4.38), (4.41) and (4.44) we obtain

|B1|fhom(M) ≥ 1

ρn
lim inf
h→+∞

Fεh(wh, Bρ)− 3η ≥ |B1|f̄(M)− 3η,

hence we may conclude letting η → 0. �
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4.1.2. The surface energy density. In this section we finally characterize the surface-energy density
of the Γ-limit. We start by proving some properties of the unscaled interaction-energy densities ψsi .
Since these properties can be obtained in a similar way as the corresponding properties of ψbi in
Lemma 4.5 we only sketch the proof.

Lemma 4.13. Suppose that ψεi : (Rd)Zε(Rn) → [0,+∞) are εK-periodic in i, satisfy (H1)–(H6)
with Zε(Ωi) replaced by Zε(Rn), and suppose that in addition (4.1) is satisfied. Assume moreover
that there exists ψsi : (Rd)Zn → [0,+∞) such that (Hψ2) holds true. Then the functions ψsi are K-
periodic in i and satisfy Hypotheses (H1)–(H2) with Zε(Ωi) replaced by Zn. Moreover, the following
holds for every i ∈ Zn.

(Hs3) (upper bound for constant functions) For all z : Zn → Rd with z ≡ w for some w ∈ Rd we
have ψsi ({zj}j∈Zn) = 0;

(Hs4) (upper bound) there exists c6 = c6(n,L) > 0 such that for all z : Zn → Rd there holds

ψsi ({zj}j∈Zn) ≤ c6(‖z‖L∞(LQ) + 1);

(Hs5) (locality) for all z, w : Zn → Rd with zj = wj for all j ∈ Z1(LQ) we have

ψsi ({zj}j∈Zn) = ψsi ({wj}j∈Zn).

In particular, ψsi ({zj}j∈Zn) = 0 for all z : Zn → Rd with z ≡ w on Z1(LQ) for some
w ∈ Rd.

Proof. The periodicity of ψsi , (H1)–(H2) and (Hs5) follow from the corresponding properties of ψεi
as in the case of ψbi . Thus, we only prove (Hs3) and (Hs4) here. To this end, fix η > 0 and suppose
that z : Zn → Rd is such z ≡ w for some w ∈ Rd. Then |∇1,Lz|(0) = 0 and according to (Hψ2) we

find ε̂ = ε̂(η) > 0 such that ψsi ({zj}j∈Zn) < εψεεi({z
j
ε }j∈Zε(Rn)) + η for every ε ∈ (0, ε̂) and every

i ∈ Zn. Thus, (2.7) gives

ψsi ({zj}j∈Zn) < ε(c1 + 1) + η,

and we obtain (Hs3) by letting first ε→ 0 and then η → 0.
We continue proving (Hs4). Let ε0 and c̄5 be as in (4.15) and let z : Zn → Rd. Note that either

|∇1,Lz|(0) = 0 or we can find ε(z) ∈ (0, ε0) such that ε
1−p
p |∇1,Lz|(0) ≥ Λ(1) for any ε ∈ (0, ε(z)).

Thanks to (Hψ2) there exists ε̂ ∈ (0, ε(z)) such that ψsi ({zj}j∈Zn) < εψεεi({z
j
ε }j∈Zε(Rn)) + 1 for

every ε ∈ (0, ε̂) and every i ∈ Zn. Arguing as in the proof of Lemma 4.5 to obtain (Hb7) we deduce

ψsi ({zj}j∈Zn) < ε(c1 + 1) + 1 + εc̄5
∑

j∈Z1(LQ)

∑
ξ∈Z1(LQ)
j+ξ∈LQ

1 + |z
j
ε+ξ − z0|
ε

≤ ε(c1 + 1) + 1 + c̄5(1 + 2‖z‖L∞(LQ;Rd))(#Z1(LQ))2,

hence (Hs4) follows by setting c6 := 2 max{c̄5(#Z1(LQ))2, 1} and letting ε→ 0. �

Remark 4.14. Thanks to (Hs3) and (Hs5) the continuity assumption (Hψ3) reads as follows. For
every z, w : Zn → Rd with |∇1,Lz|(0) > 0 there holds

ψsi ({zj}j∈Zn) ≥ ψsi ({wj}j∈Zn)− cs
∑

j∈Z1(QL(i))

∑
ξ∈Z1(QL(i))
j+ξ∈QL(i)

|zj+ξ − wj+ξ| for every i ∈ Zn.

On account of Lemma 4.13 we now prove the following proposition.
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Proposition 4.15. Let Fε be given by (2.3) with φεi : (Rd)Zε(Ωi) → [0,+∞) as in (4.3) and assume
that the functions ψεi : (Rd)Zε(Rn) → [0,+∞) are εK-periodic in i, satisfy (H1)–(H6) with Zε(Ωi)
replaced by Zε(Rn), and the locality condition (4.1). Suppose in addition that there exist ψsi :
(Rd)Zn → [0,+∞) such that (Hψ2) and (Hψ3) are satisfied. Then for each pair (ζ, ν) ∈ Rd × Sn−1

there exists the limit defining ghom in (4.9) and ghom(ζ, ν) = ḡ(ζ, ν), where ḡ is as in (4.4).

Proof. Having Lemma 4.13 at hand the existence of the limit in (4.9) can be proved as in [16,
Proposition 4.5] and we thus omit its proof here.

Let (ζ, ν) ∈ Rd × Sn−1 be fixed and let us show that ḡ(ζ, ν) = ghom(ζ, ν). To reduce notation
for every T > 0 we set

gT (ζ, ν) := inf
{ ∑
i∈Z1(TQν)

ψsi ({ui+j}j∈Zn) : u ∈ A
√
nL

1 (uζ,ν , TQ
ν)
}
,

so that ghom(ζ, ν) = limT 1/Tn−1gT (ζ, ν).
Step 1: ḡ(ζ, ν) ≥ ghom(ζ, ν)

Let ḡ be as in (4.4); thanks to formula 3.2 in Theorem 3.1 together with Remark 3.16 and Proposition
4.1 there exists x0 ∈ Ω such that

ḡ(ζ, ν) = lim sup
ρ→0

lim
δ→0

lim sup
ε→0

1

ρn−1
inf{Fε(u,Qνρ(x0) : u ∈ Aδε(uνζ,x0

, Qνρ(x0))}.

Note that to simplify notation we do not relabel the Γ-converging subsequence. Moreover, from now
on we assume x0 = 0. We fix a number α ∈ (0, (p−1)/p) whose meaning will become clear later and
for every ρ > 0 we denote by Nρ := bρ−αc the integer part of ρ−α. We further write ζ = (ζ1, . . . , ζd)
and we choose ρ ∈ (0, 1) with Q2ρ ⊂⊂ Ω such that 2/Nρ < |ζm| for every m ∈ {1, . . . , d} with
ζm 6= 0. Let δ ∈ (0, ρ/2) and for every ε > 0 with ε

√
nL < δ let uε ∈ Aδε(uνζ , Qνρ) be such that

Fε(uε, Q
ν
ρ) ≤ Fε(uνζ , Qνρ) ≤ cρn−1. (4.45)

Since ε
√
nL < δ < ρ/2 and Q2ρ ⊂⊂ Ω we can extend uε by 0 outside Ω without modifying

the energy or changing the boundary conditions. Moreover, by truncation we can assume that
‖uε‖L∞ ≤ 3|ζ|.

Let us fix η > 0; in the remaining part of this step we construct functions wε : Zn → Rd
which are admissible for the minimum problem defining gTε(ζ, ν) with Tε = ρ/ε and satisfying for
ε sufficiently small (depending on η) the estimate

1

ρn−1
Fε(uε, Q

ν
ρ) ≥ 1

Tn−1
ε

∑
i∈Z1(TεQν)

ψsi ({wi+jε }j∈Zn)−R(ε, ρ)− cη, (4.46)

where the remainder R(ε, ρ) is such that limρ limεR(ε, ρ) = 0 and the constant c depends only on
n,L and ζ. Passing to the limit first in ε then in δ and finally in ρ, thanks to the arbitrariness of
uε ∈ Aδε(uνζ , Qνρ) we may then deduce that

ḡ(ζ, ν) ≥ lim inf
ε→0

1

Tn−1
ε

gTε(ζ, ν)− cη = ghom(ζ, ν)− cη, (4.47)

which will eventually give the desired inequality by letting η → 0.
To obtain the required sequence (wε) we carefully combine the arguments used in [38, Proposition

5.21] in the discrete setting with those used in [21, Proposition 6.2] and [26, Theorem 5.2(d)] in the
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continuum setting. We start by introducing some notation. For every m ∈ {1, . . . , d} we denote by
(uiε)

m the m-th component of uε and for every t ∈ R we consider the superlevel set

Smε (t) := {i ∈ Zε(Qνρ) : (uiε)
m ≥ t}.

Further we introduce the set

Rmε (t) := {i ∈ Zε(Qνρ) : ∃ ξ ∈ Z1(LQ) s.t. i+ εξ ∈ Zε(Rn) \ Smε (t), i ∈ Smε (t) or vice versa}.

Finally, let N ∈ N with 3|ζ|+ 1/Nρ ≤ N ; note that for any t ∈ [−N,N ] and any m ∈ {1, . . . , d} a
point i ∈ Zε(Qνρ) belongs to Rmε (t) if and only if t ∈ [(uiε)

m, (ui+εξε )m) or t ∈ ((ui+εξε )m, (uiε)
m] for

some ξ ∈ Z1(LQ). Thus, for any i ∈ Zε(Qνρ) we have∫ N

−N
χRmε (t)(i) dt ≤ ε|∇ε,Luε|(i). (4.48)

We choose Λ(η) according to (Hψ2) and denote by

Jε :=
{
i ∈ Zε(Qνρ) : |∇ε,Luε|p(i) ≥

Λ(η)p

ε

}
the set of jump points. Without restriction we assume that Λ(η) ≥ 1. Summing up (4.48) over all
i ∈ Zε(Qνρ) \ Jε from Hölder’s inequality we deduce that

εn−1

∫ N

−N
#(Rmε (t) \ Jε) dt ≤

∑
i∈Zε(Qνρ)\Jε

εn|∇ε,Luε|(i)

≤ ε
n(p−1)

p

(
#
(
Zε(Q

ν
ρ) \ Jε

)) p−1
p
( ∑
i∈Zε(Qνρ)\Jε

εn|∇ε,Luε|p(i)
) 1
p

≤ cΛ(η)ρ
n(p−1)

p

( ∑
i∈Zε(Qνρ)

εn min
{
|∇ε,Luε|p(i),

1

ε

}) 1
p

. (4.49)

Moreover, thanks to Estimate 4.11 in Lemma 4.4 and (H4) we have∑
i∈Zε(Qνρ)

εn min
{
|∇ε,Luε|p(i),

1

ε

}
≤ 2ĉ2

∑
i∈Zε(Qνρ+εL[−1,1]n)

εn min
{ n∑
k=1

|Dk
εu(i)|p, 1

ε

}

≤ 2ĉ2

(
1

c2
Fε(uε, Q

ν
ρ) +

∑
i∈Zε(Qνρ+εL[−1,1]n)\Qνρ

εn min
{ n∑
k=1

|Dk
εu

ν
ζ (i)|p, 1

ε

})
, (4.50)

where in the second step we used the boundary conditions satisfied by uε. Note that the last term
on the right-hand side of (4.50) can be bounded by

εn−1#{i ∈ Zε(Qνρ + εL[−1, 1]) \Qνρ : dist(i,Πν) ≤ ε} ≤ c(L)ε.

Inserting the above estimate and the energy bound (4.45) in (4.50), the estimate in (4.49) can be
continued to

εn−1

∫ N

−N
#(Rmε (t) \ Jε) dt ≤ cΛ(η)ρ

n(p−1)
p
(
ρn−1 + ε

) 1
p ≤ cΛ(η)

(
ρ
np−1
p + ρ

n(p−1)
p ε

1
p
)
.
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Hence for every integer l with −NNρ ≤ l ≤ NNρ there exists tml ∈ [l/Nρ, (l + 1)/Nρ) such that

εn−1

NNρ−1∑
l=−NNρ

#(Rmε (tml ) \ Jε) ≤ εn−1Nρ

∫ N

−N
#(Rmε (t) \ Jε) dt ≤ cΛ(η)

(
ρ
np−1
p −α + ε

1
p ρ

n(p−1)
p −α).

(4.51)

Note that α was chosen such that (np − 1)/p − α > n − 1. Moreover, since ‖uε‖L∞ ≤ N − 1/Nρ
the sets Smε (tml ) \ Smε (tml+1), m ∈ {1, . . . , d}, l = −NNρ, . . . , NNρ − 1 form a partition of Zε(Q

n
ρ ).

Thus, we can define a discrete function vε componentwise by its restriction to Smε (tml ) \ Smε (tml+1)
setting

(viε)
m
|Smε (tml )\Smε (tml+1) :=


0 if tml ≤ 0 < tml+1,

ζm if tml ≤ ζm < tml+1,

tml otherwise.

Note that vε is well-defined since 2/Nρ < |ζm| if ζm 6= 0, so that in this case ζm and 0 can not
belong to the same interval [tml , t

m
l+1).

We claim that the required sequence (wε) is obtained by setting wiε := vεiε for every i ∈ Zn.
First note that by construction the functions vε satisfy the required boundary conditions, i.e.,
vε ∈ Aδε(uνζ , Qνρ). Thus, since εL < δ the rescaled functions wε are admissible for the minimum

problem defining gTε(ζ, ν). We finally show that there exists ε̂ = ε̂(η) > 0 such that for all ε ∈ (0, ε̂)
the functions wε satisfy (4.46). To this end we show that ψsi ({wi+jε }j∈Zn) essentially only gives a
contribution to the energy when εi ∈ Jε, in which case it will turn out to be comparable to
εψεi ({uεi+jε }j∈Zε(Rn)) thanks to (Hψ2) and (Hψ3). We start by introducing the rescaled functions

ũε defined by setting ũiε := uεiε for every i ∈ Zn and we observe that for i ∈ Z1(TεQ
ν) with εi ∈ Jε

we have

ε
1−p
p |∇1,Lũε|(i) = ε

1
p |∇ε,Luε|(εi) ≥ Λ(η). (4.52)

Hence, from (Hψ2) we deduce the existence of ε̂ = ε̂(η) > 0 such that for every ε ∈ (0, ε̂) and every
i ∈ Zn with εi ∈ Jε there holds

εφεi ({uεi+jε }j∈Zε(Ωi)) = εψεεi({uεi+jε }j∈Zε(Rn)) ≥ ψsi ({ũi+jε }j∈Zn)− η. (4.53)

We now compare ψsi ({ũi+jε }j∈Zn) and ψsi ({wi+jε }j∈Zn). By construction we have

‖wε − ũε‖L∞ = ‖vε − uε‖L∞ ≤
2
√
d

Nρ
≤ 4
√
dρα. (4.54)

For every i ∈ Zn with |∇1,Lũe|(i) > 0 (4.54) together with (Hψ3) and Remark 4.14 gives

ψsi ({ũi+jε }j∈Zn) ≥ ψsi ({wi+jε }j∈Zn)− cs
∑

j∈Z1(QL(i))

∑
ξ∈Z1(QL(i)
j+ξ∈QL(i)

|wj+ξε − ũj+ξε | ≥ ψsi ({wi+jε }j∈Zn)− cρα,

(4.55)

where c > 0 depends only on n, d and L. In particular, (4.55) holds for every i ∈ Zn with ε ∈ Jε
thanks to (4.52). Gathering (4.55) and (4.53) we thus obtain

1

ρn−1
Fε(uε, Q

ν
ρ) ≥ εn−1

ρn−1

∑
i∈Zε(Qνρ)∩Jε

εφεi ({ui+jε }j∈Zε(Ωi))
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≥ 1

Tn−1
ε

∑
i∈Z1(TεQ

ν)
εi∈Jε

ψsi ({wi+jε }j∈Zn)−
(
ρα + η

) εn−1

ρn−1
#(Zε(Q

ν
ρ) ∩ Jε). (4.56)

Moreover, since 1/ε ≤ |∇ε,Luε|p(i) for every i ∈ Jε, we can argue as in (4.50) to bound the
cardinality of the set Zε(Q

ν
ρ) ∩ Jε via

εn−1

ρn−1
#(Zε(Q

ν
ρ) ∩ Jε) ≤

1

ρn−1

∑
i∈Zε(Qνρ)∩Jε

εn min
{
|∇ε,Luε|p(i),

1

ε

}
≤ c

ρn−1

(
Fε(uε, Q

ν
ρ) + ε) ≤ c+

cε

ρn−1
,

(4.57)

where the last inequality follows from (4.45). It then remains to show that the contributions of
ψsi ({wi+jε }j∈Zn) for εi 6∈ Jε are negligible. First note that for every i ∈ Z1(TεQ

ν) with wε ≡ wiε
on Z1(QL(i)) Hypotheses (Hs5) gives ψsi ({wi+jε }j∈Zn) = 0. On the other hand, if i ∈ Z1(TεQ

ν)
is such that wε 6≡ wiε on Z1(QL(i)) then i belongs to Rmε (tml ) for some m ∈ {1, . . . , d} and l ∈
{−NNρ, . . . , NNρ − 1}. Thus, we have

1

Tn−1
ε

∑
i∈Z1(TεQ

ν)
εi 6∈Jε

ψsi ({wi+jε }j∈Zn) ≤ 1

Tn−1
ε

d∑
m=1

NNρ−1∑
l=−NNρ

∑
εi∈Rmε (tml )\Jε

ψsi ({wi+jε }j∈Zn). (4.58)

We finally observe that (4.54) and our choice of ρ imply that ‖wε‖L∞ ≤ 4|ζ|, so that we can use
the upper bound in (Hs4) together with (4.51) to bound the sum on the right-hand side of (4.58).
In fact, we have

1

Tn−1
ε

d∑
m=1

NNρ−1∑
l=−NNρ

∑
εi∈Rmε (tml )\Jε

ψsi ({wi+jε }j∈Zn) ≤ c6(4|ζ|+ 1)
εn−1

ρn−1

d∑
m=1

NNρ−1∑
l=−NNρ

#(Rmε (tml ) \ Jε)

≤ cΛ(η)
(
ρ
p−1
p −α + ε

1
p ρ

p−n
p −α

)
. (4.59)

Gathering (4.56)-(4.59) we deduce that the sequence (wε) satisfies (4.46) with

R(ε, ρ) = cΛ(η)
(
ρα + ερ1−n + ρ

p−1
p −α + ε

1
p ρ

p−n
p −α

)
→ 0 as first ε→ 0 and then ρ→ 0,

where the convergence of R(ε, ρ) is guaranteed by the choice of α ∈ (0, (p − 1)/p). Thus the
argument in (4.47) concludes this step providing us with the inequality ḡ ≥ ghom.

Step 2: ḡ(ζ, ν) ≤ ghom(ζ, ν)
In order to prove the inequality we construct a recovery sequence for uνζ,x0

on Qνρ(x0), where x0 ∈ Ω

and ρ > 0 are such that Qνρ(x0) ⊂⊂ Ω. To simplify the exposition we only consider the case ν = en
here and we assume that x0 = 0 and ρ = 1. We fix η > 0 and set

Q(η) :=
(
− 1/2, 1/2

)n−1 ×
(
− η/2, η/2

)
.

Moreover, we choose T = T (η) ∈ N as a multiple of K with 1/T < η and uT ∈ A
√
nL

1 (uenζ , TQ)
satisfying

1

Tn−1

∑
i∈Z1(TQ)

ψsi ({u
i+j
T }j∈Zn) ≤ ghom(ζ, en) + η. (4.60)

Starting from uT we now construct a sequence (uε) converging in L1(Ω;Rd) to uenζ and satisfying

lim sup
ε→0

Fε(uε, Q(η)) ≤ ghom(ζ, en) + cη, (4.61)
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where the constant c > 0 depends only on L, n, ζ. Then Proposition 4.1 gives

ḡ(ζ, en) = F (uenζ , Q(η)) ≤ lim inf
ε→0

Fε(uε, Q(η)) ≤ ghom(ζ, en) + cη,

and we obtain the required inequality thanks to the arbitrariness of η > 0.
As a first step we define a function ūT : Zn → Rd which is T -periodic in the directions

(e1, . . . , en−1) inside the stripe {|〈x, en〉| < T/2} by setting

ūT :=

{
ui−Tj

′

T if i ∈ Z1(Tj′ + TQ) for some j′ ∈ Zn−1 × {0},
uenζ (i) otherwise in Zn.

For every ε > 0 and every i ∈ Zε(Rn) we then set uiε := u
i/ε
T and we observe that as ε → 0 the

sequence (uε) converges in L1(Ω;Rd) to uenζ . It remains to show that (uε) satisfies (4.61). To this
end, for every ε > 0 we consider the stripe

Sε(T ) := {x ∈ Rn : |〈x, en〉| < εT/2}.

For ε < η/T we can rewrite the energy as

Fε(uε, Q(η)) =
∑

i∈Z1(1/εQ)∩S1(T )

εnψεεi({ū
i+
j
ε

T }j∈Zε(Rn)) +
∑

i∈Zε(Q(η))\Sε(T )

εnψεi ({u
en
ζ (i+ j)}j∈Zε(Rn)). (4.62)

Thanks to the upper bound for constant functions (2.7) the second term on the right-hand side of
(4.62) is at most proportional to η. In fact we have∑

i∈Zε(Q(η))\Sε(T )

εnψεi ({u
en
ζ (i+ j)}j∈Zε(Rn)) ≤ (c1 + 1)εn#{i ∈ Zε(Q(η))} ≤ cη (4.63)

with c depending only on n. We continue estimating the first term on the right-hand side of (4.62).
Since T is fixed, the function ūT takes only finitely many values. Thus, there exists ε0 = ε0(T, η) > 0

such that for every ε ∈ (0, ε0) and every i ∈ Zn we either have ε
1−p
p |∇1,LūT |(i) ≥ Λ(η/T ) or

|∇1,LūT |(i) = 0, where Λ(η/T ) is given by (Hψ2). As a consequence, setting ε1 := min{ε0, ε̂(η/T )}
with ε̂(η/T ) again given by (Hψ2), for every ε ∈ (0, ε1) and every i ∈ Zn we obtain

|ψsi ({ū
i+j
T }j∈Zn − εψ

ε
εi({ū

i+
j
ε

T }j∈Zε(Rn)| <
η

T
.

Combining the above estimate with (4.62) and (4.63) we deduce that for every ε ∈ (0, ε1) there
holds

Fε(uε, Q(η)) ≤
∑

i∈Z1(1/εQ)∩S1(T )

εn−1ψsi ({ū
i+j
T }j∈Zn) +

η

T
εn−1#(Z1(

1

ε
Q) ∩ S1(T )) + cη. (4.64)

Note that there exists a constant c > 0 depending only on n such that

εn−1#(Z1(
1

ε
Q) ∩ S1(T )) ≤ cT, for every ε > 0.

Thus, setting

Zε(T ) := {j′ ∈ Zn−1 × {0} : εTj′ + εTQ ∩Q 6= ∅}

the estimate in (4.64) can be continued to

Fε(uε, Q(η)) ≤ εn−1
∑

j′∈Zε(T )

∑
i∈Z1(Tj′+TQ)

ψsi ({ū
i+j
T }j∈Zn) + cη. (4.65)
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Note that for every j′ ∈ Zε(T ) and for every i ∈ Z1(Tj′ + TQ) we have

ūi+jT = ui−Tj
′+j

T for every j ∈ Z1(LQ). (4.66)

In fact, the above equality holds true by definition of ūT if i ∈ Z1(Tj′ + TQ) is such that QL(i) ⊂
Tj′+TQ. If instead i ∈ Z1(Tj′+TQ) is such that QL(i)∩ (Rn \Tj′+TQ) 6= ∅, then the boundary
conditions satisfied by uT together with the fact that 〈j′, en〉 = 0 ensure that

ūi+jT = uenζ (i+ j) = ui−Tj
′+j

T .

Moreover, in combination with the locality property and periodicity, (4.66) gives∑
i∈Z1(Tj′+TQ)

ψsi ({ū
i+j
T }j∈Zn) =

∑
i∈Z1(Tj′+TQ)

ψsi ({u
i−Tj′+j
T }j∈Zn) =

∑
i∈Z1(TQ)

ψsi ({u
i+j
T }j∈Zn).

Thus, since #Zε(T ) ≤ (b 1
εT c+ 1)n−1, from (4.65) we deduce that

Fε(uε, Q(η)) ≤ (εT )n−1
(⌊ 1

εT

⌋
+ 1
)n−1 1

Tn−1

∑
i∈Z1(TQ)

ψsi ({u
i+j
T }j∈Zn) + cη

≤ (εT )n−1
(⌊ 1

εT

⌋
+ 1
)n−1(

ghom(ζ, en) + η +
1

Tn−1

∑
i∈Z1(∂TQ)

ψsi ({u
en
ζ (i+ j)}j∈Zn)

)
+ cη,

where to establish the second inequality we also used (4.60) and the boundary conditions satisfied
by uT . We finally remark that for every i ∈ Z1(∂TQ) with |〈i, en〉| ≥ L/2 the function uenζ (i + ·)
coincides with the constant function sign〈i, en〉 on LQ, so that ψsi ({ui+j}j∈Zn) = 0. If instead
|〈i, en〉| < L/2 we use the upper bound in (Hs3) to deduce that ψsi ({ui+j}j∈Zn) ≤ c6(|ζ| + 1).
Hence, we obtain

1

Tn−1

∑
i∈Z1(∂TQ)

ψsi ({u
en
ζ (i+ j)}j∈Zn) ≤ c#Z1(∂TQ ∩ {|〈i, en〉| < L/2}) ≤ c

T
< cη,

where the constant c depends only on n,L, ζ. Letting ε→ 0 we eventually find

lim sup
ε→0

Fε(uε, Q(η)) ≤ ghom(ζ, en) + cη,

that is, the sequence (uε) satisfies (4.61) and we may conclude. �

Proof of Theorem 4.3. The result follows combining Theorem 3.1, Proposition 4.1, Proposition 4.12
and Proposition 4.15. �

5. Examples

5.1. Pair interactions. In the special case of interaction-energy densities φεi that take into account
only pairwise interactions of the point i with the remaining lattice points Theorem 3.1 provides an
analogous result to [1, Theorem 3.1] in the GSBV -setting (see also [19] and [29] for the case of
interaction-energy densities that are independent of the position i). More in detail, our result can
be applied to energies of the form

Fε(u) =
∑

i∈Zε(Ω)

εn
∑
ξ∈Zn
i+εξ∈Ω

fξε (i,Dξ
εu(i)), (5.1)
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i.e., when φεi : (Rd)Zε(Ωi) → [0,+∞) are given by

φεi ({zj}j∈Zε(Ωi)) :=
∑
ξ∈Zn
i+εξ∈Ω

fξε (i,Dξ
εz(0)).

Here we assume that there exist constants aξε, â
ξ
ε ≥ 0 and bξε, b̂

ξ
ε ≥ 0 such that for every ε > 0 and

every ξ ∈ Zn we have

min
{
aξε|ζ|p,

bξε
ε

}
≤ fξε (i, ζ) ≤ min

{
âξε|ζ|p,

b̂ξε
ε

}
for every (i, ζ) ∈ Zε(Ω)× Rd, (5.2)

where the constants aξε, â
ξ
ε, b

ξ
ε, b̂

ξ
ε satisfy the following hypotheses.

(Hpw1) (upper bound) We have

M := lim sup
ε→0

∑
α∈N

∑
ξ∈Zn
|ξ|∞≥α2

(âξε + b̂ξε) < +∞ (5.3)

and for every η > 0 there exists Mη > 0 such that

lim sup
ε→0

∑
α∈N
α>Mη

∑
ξ∈Zn

|ξ|∞≥min{α2 ,
Mη√
n
}

(âξε + b̂ξε) < η; (5.4)

(Hpw2) (lower bound) there exist a, b > 0 such that aekε ≥ a, bekε ≥ b for every ε > 0 and every
k ∈ {1, . . . , n};

(Hpw3) (relative control) there exists γ > 0 such that for every ε > 0 and every ξ ∈ Zn with âξε 6= 0

there holds |ξ|b̂ξε ≤ γâξε.
Under the above assumptions φεi satisfy hypotheses (H1) and (H3)–(H6). In fact, (H1) is automat-
ically satisfied, since φεi depends on {zj}j∈Zε(Ωi) only through differences zj − zl. Moreover, for ε

small enough the upper bound (H3) is satisfied with c1 := lim supε
∑
ξ â

ξ
ε + 1, which is finite thanks

to (5.3). The lower bound (H4) holds true in view of (Hpw2).
To verify the mild non-locality condition (H5) we observe that for any ε > 0, i ∈ Zε(Ω), α ∈ N

and z, w : Zε(Ωi)→ Rd with zj = wj for all j ∈ Zε(εαQ) we have

φεi ({zj}j∈Zε(Ωi)) =
∑

ξ∈Z1(αQ)

fξε (i,Dξ
εw(0)) +

∑
|ξ|∞≥α2
i+εξ∈Ω

fξε (i,Dξ
εz(0))

≤ φεi ({wj}j∈Zε(Ωi)) +
∑
|ξ|∞≥α2
i+εξ∈Ω

min
{
âξε|Dξ

εz(0)|p, b̂
ξ
ε

ε

}
,

where the second inequality follows from the positiveness of the fξε and (5.2). Thus, the required
sequence cj,ξε,α in (H5) is obtained by setting

cj,ξε,α :=

{
âξε + b̂ξε if |ξ|∞ ≥ α

2 , j = 0,

0 otherwise,

which satisfies (2.4) and (2.5) thanks to (5.3) and (5.4), respectively.
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It remains to establish (H6). To this end, let z, w : Zε(Ωi)→ Rd and ϕ : Zε(Ωi)→ [0, 1] a cut-off
and set v := ϕz+ (1−ϕ)w. Let us show that φεi ({vj}j∈Zε(Ωi)) ≤ Rεi (z, w, ϕ) with Rεi (z, w, ϕ) as in
(H6). We start by observing that

Dξ
εv(0) = ϕ(0)Dξ

εz(0) + (1− ϕ(0))Dξ
εw(0) +Dξ

εϕ(0)(zεξ − wεξ) for every ξ ∈ Zn. (5.5)

Thus, (5.2) together with the convexity of | · |p and the subadditivity of the min ensure that

φεi ({vj}j∈Zε(Ωi) ≤
∑
ξ∈Zn
i+εξ∈Ω

min
{
âξε|Dξ

εz(0)|p, b̂
ξ
ε

ε

}
+ min

{
âξε|Dξ

εw(0)|p, b̂
ξ
ε

ε

}
+ âξε|Dξ

εϕ(0)|p|zεξ − wεξ|p.

Eventually, from (Hpw3) we deduce that for every ξ ∈ Zn there holds

min
{
âξε|Dξ

εz(0)|p, b̂
ξ
ε

ε

}
= âξε min

{
|Dξ

εz(0)|p, b̂
ξ
ε

âξεε

}
≤ âξε min

{
|Dξ

εz(0)|p, γ

ε|ξ|

}
,

and the same estimate holds with w in place of z. Since moreover

|Dξ
εϕ(0)|p ≤ sup

l∈Zε(Ωi)
k∈{1,...,n}

|Dk
εϕ(l)|p for every ξ ∈ Zn with i+ εξ ∈ Ω, (5.6)

we obtain φεi ({vj}j∈Zε(Ωi)) ≤ Rεi (z, w, ϕ) with

Rεi (z, w, ϕ) =
∑
ξ∈Zn
i+εξ∈Ω

âξε(γ + 1)
(

min
{
|Dξ

εz(0)|p, γ

ε|ξ|

}
+ min

{
|Dξ

εw(0)|p, γ

ε|ξ|

}

+ sup
l∈Zε(Ωi)
k∈{1,...,n

|Dk
εϕ(l)|p|zεξ − wεξ|p

)
.

It then suffices to remark that (2.6) is satisfied due to (5.3) to conclude.
Summarizing we find that the energy densities φεi satisfy all hypotheses of Theorem 3.1 but (H2).

We observe that (H2) would be immediately fulfilled if we required that for every ξ ∈ Zn, every
ε > 0, and every i ∈ Zε(Ω) the function fξε (i, ·) : Rd → [0,+∞) was increasing in the sense that

fξε (i, ζ1) ≤ fξε (i, ζ2) for all ζ1, ζ2 ∈ Rd with |ζ1| ≤ |ζ2|. (5.7)

We conclude this section on pairwise interactions by showing that Condition (5.7) above can be
replaced by a weaker condition that requires (5.7) essentially only for “large gradients”. More in
detail, we assume that there exists cmon > 0 such that for every ξ ∈ Zn, every ε > 0, and every
i ∈ Zε(Ω) there holds

fξε (i, ζ1) ≤ fξε (i, ζ2) for all ζ1, ζ2 ∈ Rd with cmon|ζ1| ≤ |ζ2| and |ζ2| ≥
1

ε|ξ|
. (5.8)

Then, following the lines of [26, Lemma 4.1] one can show that the discrete energies Fε almost
decrease along the truncation operators Tk defined in Section 2, which is enough to obtain Theo-
rem 4.3. This can be done using the following lemma

Lemma 5.1. Let Fε be as in (5.1) and suppose that fξε satisfy (5.2), Hypotheses (Hpw1)–(Hpw3)
and (5.8). Let η > 0 and let N ∈ N be sufficiently large such that

2M max{γ, 1}max{na , 2}
N

< η. (5.9)
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Moreover, let β ≥ 3 be such that β ≥ cmon + 1, and given k > 0 let k1, . . . , kN+1 > 0 be such that

k1 ≥ k, km+1 ≥ βkm for all m ∈ {1, . . . , N}, (5.10)

so that in particular ‖Tkmu‖L∞ ≤ kN+1 and Tkmu = u a.e. on {|u| ≤ k} for every u ∈ L1(Ω;Rd).
Then, for every A ∈ Areg(Ω), every ε > 0 sufficiently small (depending on A) and every u ∈
Aε(Ω;Rd) there exists m̂ ∈ {1, . . . , N} (possibly depending on A, ε, u) and a constant cn > 0 such
that

Fε(Tkm̂u,A) ≤ (1 + η)Fε(u,A) + η(|A|+ cnHn−1(∂A) + 1) (5.11)

Proof. Let η,N, k, k1, . . . , kN+1 be as in the statement, let A ∈ A(Ω), ε > 0 and u ∈ Aε(Ω;Rd).
For every m ∈ {1, . . . , N} we have Dξ

εTkmu(i) = Dξ
εu(i) if |ui| ≤ km and |ui+εξ| ≤ km and

Dξ
εTkmu(i) = 0 if |ui| ≥ km+1, |ui+εξ| ≥ km+1. Moreover, |Dξ

εTkmu(i)| ≤ |Dξ
εu(i)| for every i, ξ.

Thus, from (5.2) we deduce that

Fε(Tkmu,A) ≤
∑

i∈Zε(A)

|ui|≤km

∑
ξ∈Zn,i+εξ∈Ω

|ui+εξ|≤km

εnfξε (i,Dξ
εu(i))

+
∑

i∈Zε(A)

km<|ui|<km+1

∑
ξ∈Zn
i+εξ∈Ω

εn min
{
âξε|Dξ

εu(i)|p, b̂
ξ
ε

ε

}
+

∑
i∈Zε(A)

∑
ξ∈Zn,i+εξ∈Ω

km<|ui+εξ|<km+1

εn min
{
âξε|Dξ

εu(i)|p, b̂
ξ
ε

ε

}

+
∑

i∈Zε(A)

|ui|≤km

∑
ξ∈Zn,i+εξ∈Ω

|ui+εξ|≥km+1

εnfξε (i,Dξ
εTkmu(i)) +

∑
i∈Zε(A)

|ui|≥km+1

∑
ξ∈Zn,i+εξ∈Ω

|ui+εξ|≤km

εnfξε (i,Dξ
εTkmu(i)). (5.12)

If i ∈ Zε(A) and ξ ∈ Zn are such that |ui| ≤ km and |ui+εξ| ≥ km+1, then (5.10) and the choice of
β ensure that

|Dξ
εu(i)| ≥ km+1 − km

ε|ξ|
≥ (β − 1)km

ε|ξ|
≥ (β − 1)

|ui|
ε|ξ|
≥ cmon|Dξ

εTkmu(i)|, (5.13)

hence fξε (i,Dξ
εTkmu(i)) ≤ fξε (i,Dξ

εDu(i)), and a similar argument holds in the case |ui| ≥ km+1

and |ui+εξ| ≤ km. Moreover, summing up over m and using (Hpw3) we obtain

N∑
m=1

( ∑
i∈Zε(A)

km<|ui|<km+1

∑
ξ∈Zn
i+εξ∈Ω

εn min
{
âξε|Dξ

εu(i)|p, b̂
ξ
ε

ε

}
+

∑
i∈Zε(A)

∑
ξ∈Zn,i+εξ∈Ω

km<|ui+εξ|<km+1

εn min
{
âξε|Dξ

εu(i)|p, b̂
ξ
ε

ε

})

≤2 max{γ, 1}
∑

i∈Zε(A)

∑
ξ∈Zn
i+εξ∈Ω

âξεε
n min

{
|Dξ

εu(i)|p, 1

ε|ξ|

}
, (5.14)

and we estimate the term on the right-hand side of (5.14) by splitting the sum into four terms as
follows. For every δ > 0 we set Aδ := {x ∈ A : dist(x, ∂A) > δ}, and we choose δ0 > 0 such that
for all δ ∈ (0, δ0] there holds Hn−1(∂Aδ) ≤ Hn−1(∂A) + 1. We then estimate the sum in (5.14) via∑

i∈Zε(A2
√
nε)

∑
ξ∈Zn

i+εξ∈A2
√
nε

âξεε
n min

{
|Dξ

εu(i)|p, 1

ε|ξ|

}
+

∑
i∈Zε(A\A2

√
nε)

∑
ξ∈Zn
i+εξ∈Ω

âξεε
n min

{
|Dξ

εu(i)|p, 1

ε|ξ|

}
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i∈Zε(Aδ0 )

∑
ξ∈Zn

i+εξ∈Ω\A2
√
nε

âξεε
n min

{
|Dξ

εu(i)|p, 1

ε|ξ|

}
+

∑
i∈Zε(A2

√
nε\Aδ0 )

∑
ξ∈Zn

i+εξ∈Ω\A2
√
nε

âξεε
n min

{
|Dξ

εu(i)|p, 1

ε|ξ|

}
,

and we estimate the terms above separately. The first sum can be bounded using a local version of
Lemma 3.7. In fact, the arguments in Lemma 3.7 (see also [1, Lemma 3.6]) show that∑

ξ∈Zn
âξε

∑
i∈Zε(A2

√
nε)

i+εξ∈A2
√
nε

εn min
{
|Dξ

εu(i)|p, 1

ε|ξ|

}
≤
∑
ξ∈Zn

âξε
∑

i∈Zε(A)

εn min
{ n∑
k=1

|Dk
εu(i)|p, 1

ε

}

≤ n

a

∑
ξ∈Zn

âξεFε(u,A). (5.15)

Moreover, for ε sufficiently small we have∑
i∈Zε(A\A2

√
nε)

∑
ξ∈Zn
i+εξ∈Ω

âξεε
n min

{
|Dξ

εu(i)|p, 1

ε|ξ|

}
≤
∑
ξ∈Zn

âξεε
n−1#Zε(A \A2

√
nε)

≤M(cnHn−1(∂A) + 1). (5.16)

To estimate the third sum we observe that for i ∈ Zε(Aδ0) and ξ ∈ Zn the inclusion i+εξ ∈ Ω\A2
√
nε

implies that ε|ξ|∞ > δ0
2 for ε small enough. In addition, according to (2.5) we can choose Mη > 0

such that for ε small we have both
∑
|ξ|∞>

Mη√
n

âξε <
δ0
2 and δ0

2ε >
Mη√
n

, so that

∑
i∈Zε(Aδ0 )

∑
ξ∈Zn

i+εξ∈Ω\A2
√
nε

âξεε
n min

{
|Dξ

εu(i)|p, 1

ε|ξ|

}
≤ 2

δ0
εn#Zε(Aδ0)

∑
|ξ|∞>

Mη√
n

âξε ≤ |A|. (5.17)

Finally, for every i ∈ Zε(A) we set αε(i) := sup{α ∈ N : i+ εαQ ⊂ A}. Thanks to the choice of δ0,
for ε small we can estimate the fourth term via∑

i∈Zε(A2
√
nε\Aδ0 )

∑
ξ∈Zn

i+εξ∈Ω\A2
√
nε

âξεε
n min

{
|Dξ

εu(i)|p, 1

ε|ξ|

}

≤
∑
α∈N

εn−1#{i ∈ Zε(A2
√
nε \Aδ0) : αε(i) = α}

∑
|ξ|∞≥α2

âξε ≤ (cnHn−1(∂A) + 1)M (5.18)

Eventually, gathering (5.12)–(5.18) and averaging over m ∈ {1, . . . , N}, for ε sufficiently small
(depending on A) we find m̂ ∈ {1, . . . , N} such that

Fε(Tkm̂u,A) ≤ Fε(u,A) +
2M max{γ, 1}

N

(n
a
Fε(u,A) + |A|+ 2cnHn−1(∂A) + 2

)
,

which thanks to (5.9) yields (5.11). �

As in [26, Lemma 4.2], under the assumptions of Lemma 5.1 one can show that for every A ∈
Areg(Ω) and every u ∈ GSBV p(Ω;Rd)∩L1(Ω;Rd) there exists m̂ ∈ {1, . . . , N} such that F ′′(u,A) ≤
(1 + η)F ′′(u,A) + η(|A|+ cnHn−1(∂A) + 1), which still allows us to obtain Theorem 3.1.

We also observe that the analysis carried out in Section 3 can be adapted with minor changes to
the case where in (5.2) aξε|ζ|p and âξε|ζ|p are replaced by aξε(|ζ|p − 1) and âξε(|ζ|p + 1) (see e.g., [1]
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and [20] or [26]). Then the relaxed monotonicity assumption (5.8) would allow us to consider, e.g.,
energies of the form

Fε(u) =
∑

i∈Zε(Ω)

εn
n∑
k=1

min
{

(|Dk
εu(i)| − 1)p,

1

ε

}
,

which are prototypical energies not satisfying (H2) and in particular with a set of non-trivial mini-
mizers.

5.2. Multibody weak-membrane energies. A prototypical example of functionals Fε as in (2.3)
where the interaction-energy densities φεi do not depend only on pairwise interactions of i with i+εξ
but on multiple interactions of i with i+ εξ1, . . . , i+ εξN for some N ∈ N are so-called generalized
weak-membrane energies, that have been studied in detail in [38]. In our setting a generalized
weak-membrane energy can be written as in (2.3) with φεi given by

φεi ({zj}j∈Zε(Ωi)) := fε

(
i,

∑
ξ∈Z1(LQ)

∑
j∈Zε(εLQ)
j+εξ∈εLQ

cξ|Dξ
εz(j)|p

)
, (5.19)

where L ∈ N is the maximal range of interaction, cξ ≥ 0 for every ξ ∈ Z1(LQ), and for every ε > 0
and i ∈ Zε(Ω) the function fε(i, ·) : [0,+∞)→ [0,+∞) is increasing and satisfies

min
{
aiεt,

biε
ε

}
≤ fε(i, t) ≤ min

{
âiεt,

b̂iε
ε

}
, (5.20)

for some aiε, â
i
ε, b

i
ε, b̂

i
ε ≥ 0. By construction the functions φεi satisfy (H1) and (H2). To ensure that

Hypotheses (H3)–(H6) are fulfilled we assume that the following holds.

(Hwm1) There exist a, â, b, b̂ ∈ (0,+∞) such that aiε ≥ a, biε ≥ b, âiε ≤ â, b̂iε ≤ b̂ for every ε > 0 and
every i ∈ Zε(Ω);

(Hwm2) for every k ∈ {1, . . . , n} there holds cek > 0.

The uniform bounds on âiε in (Hwm1) together with the upper bound in (5.20) imply that (H3)
holds true with c1 := âmax{cξ : ξ ∈ Z1(LQ)}(#Z1(LQ))2, while thanks to the uniform bounds on
aiε, b

i
ε in (Hwm1), (Hwm2), the lower bound in (5.20) and the monotonicity of fε(i, ·) Hypotheses

(H4) is satisfied with c2 := min{a, b}min{cek : 1 ≤ k ≤ n} > 0.
Moreover, the mild-nonlocality condition (H5) holds true by construction, since only finite-range

interactions are taken into account. More precisely, in view of (Hwm1) we can choose the sequence
cj,ξε,α in (H5) as

cj,ξε,α :=

{
max{â, b̂}cξ if α < L, ξ ∈ Z1(LQ), j ∈ Zε(εLQ),

0 otherwise,

which satisfies (2.4) and (2.5).
Eventually, for every z, w : Zε(Ωi) → Rd and every cut-off ϕ : Zε(Ωi) → [0, 1] we can combine

(5.5) and (5.6) with the upper bounds in (5.20) and (Hwm1) to deduce that

φεi ({ϕjzj + (1− ϕj)wj}j∈Zε(Ωi)) ≤ max{â, b̂}
∑

ξ∈Z1(LQ)

cξ

( ∑
j∈Zε(εLQ)
j+εξ∈εLQ

sup
l∈Zε(Ωi)
k∈{1,...,n}

|Dk
εϕ(l)|p|zεξ − wεξ|p
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+ min
{
|Dξ

εz
j |p, 1

ε

}
+ min

{
|Dξ

εw
j |p, 1

ε

})
,

which gives (H6) by setting cj,ξε := max{â, b̂}cξ for ξ ∈ Z1(LQ), j ∈ Zε(εLQ) and cj,ξε := 0
otherwise.

Under the above assumptions the functionals Fε defined according to (2.3) with φεi as in (5.19)
satisfy all the assumptions of Theorem 3.1 and thus Γ-converge up to subsequences to a free-
discontinuity functional of the form (3.1). We eventually give sufficient conditions under which the
sequence (Fε) satisfies the assumptions of Theorem 4.3. The first condition is εK-periodicity of fε
in i, that is fε(i+ εKek, ·) = fε(i, ·) for every k ∈ {1, . . . , n}, every ε > 0 and every i ∈ Zε(Ω). We
then extend fε to Zε(Rn)× [0,+∞) by periodicity and in the same way we extend φεi to (Rd)Zε(Rn) .

Moreover, we can assume that aiε, â
i
ε, b

i
ε, b̂

i
ε are εK-periodic in i. We finally show that (Hψ1)–(Hψ3)

are satisfied if we assume that in addition for every i ∈ Z1([0,K)n) there exist ai, bi > 0 such that

aεiε → ai, âεiε → ai and bεiε → bi, b̂εiε → bi as ε→ 0, (5.21)

that is, the functions fε(i, ·) approach a single truncated potential. By periodicity (5.21) extends
to i ∈ Zn. We claim that the required functions ψbi , ψ

s
i : (Rd)Zn → [0,+∞) are obtained by setting

ψbi ({zj}j∈Zn) := ai
∑

ξ∈Z1(LQ)

∑
j∈Z1(LQ)
j+ξ∈LQ

|Dξ
1z(j)|p,

ψsi ({zj}j∈Zn) :=

{
0 if zj = z0 for every j ∈ Z1(LQ),

bi otherwise.

First note that (Hψ3) is automatically satisfied. We next establish (Hψ1). Let η > 0, Λ > 0 and

suppose that z : Zn → Rd is such that |∇1,Lz|(0) < Λ. Set zjε := εz
j
ε for every j ∈ Zε(Rn). Arguing

as in Lemma 4.5 to establish (Hb7) we deduce that∑
ξ∈Z1(LQ)

∑
j∈Zε(εLQ)
j+εξ∈εLQ

cξ|Dξ
εzε(j)|p =

∑
ξ∈Z1(LQ)

∑
j∈Z1(LQ)
j+ξ∈LQ

|Dξ
1z(j)|p < 2p−1 max

ξ∈Z1(LQ)
cξ(1 + #Z1(LQ))Λp

(5.22)

Let us choose ε̄ = ε̄(η,Λ) > 0 sufficiently small such that

Λ0 := 2p−1 max
ξ∈Z1(LQ)

cξ(1 + #Z1(LQ))Λp ≤ b

âε
, |aεiε − ai| ≤

η

Λ0
, |âεiε − ai| ≤

η

Λ0
, (5.23)

for every ε ∈ (0, ε̄ and every i ∈ Z1([0,K)n). The first condition in (5.23) together with (5.22) and
(Hwm1) ensure that

aεiε
∑

ξ∈Z1(LQ)

∑
j∈Zε(εLQ)
j+εξ∈εLQ

cξ|Dξ
εzε(j)|p ≤

bεiε
ε

for every i ∈ Zn.

Thus, (5.20) gives

aεiε
∑

ξ∈Z1(LQ)

∑
j∈Zε(εLQ)
j+εξ∈εLQ

cξ|Dξ
εzε(j)|p ≤ φεεi({zjε}j∈Zε(Rn)) ≤ âεiε

∑
ξ∈Z1(LQ)

∑
j∈Zε(εLQ)
j+εξ∈εLQ

cξ|Dξ
εzε(j)|p,
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which in view of the second and third estimate in (5.23) and (5.22) finally gives

|ψbi ({zj}j∈Zn)− φεεi({zjε}j∈Zε(Rn))| < η.

It remains to show that ψsi satisfies (Hψ2). We start by choosing Λ > 0 such that

Λp min
1≤k≤n

cek

ĉ1np−12p
>
b̂

a
, (5.24)

where ĉ1 is the constant provided by Lemma 4.4. Moreover, given η > 0 we choose ε̂ = ε̂(η) small

enough such that |bεiε − bi| < η, |b̂εiε − bi| < η for every ε ∈ (0, ε̂) and every i ∈ Z1([0,K)n). Let

ε ∈ (0, ε̂) and suppose that z : Zn → Rd satisfies ε
1−p
p |∇1,Lz|(0) ≥ Λ. Then Lemma 4.4 together

with Jensen’s inequality yield

Λp ≤ ε1−p|∇1,Lz|p(0) ≤ ε1−pĉ1n
p−12p

n∑
k=1

∑
j∈Z1(LQ)
j+ek∈LQ

|Dk
1z(j)|p.

In particular, the rescaled functions ẑε obtained by setting ẑε := z
j
ε for every j ∈ Zε(Rn) satisfy

n∑
k=1

cek
∑

j∈Zε(εLQ)
j+εek∈εLQ

|Dk
ε ẑε(j)|p ≥ ε−p min

1≤k≤n
cek

n∑
k=1

∑
j∈Z1(LQ)
j+ek∈LQ

|Dk
1z(j)|p ≥

Λp min
1≤k≤n

cek

ĉ1np−12p
1

ε
,

hence the choice of Λ in (5.24) and (Hwm1) ensure that

bεiε
ε

= min
{
aεiε

n∑
k=1

cek
∑

j∈Zε(εLQ)
j+εek∈εLQ

|Dk
ε ẑε(j)|p,

1

ε

}
≤ φεεi({ẑjε}j∈Zε(Rn)) ≤

b̂εiε
ε

for every i ∈ Zε(Rn). Eventually, since ε ∈ (0, ε̂(η)), this gives

bi − η ≤ bεiε ≤ εφεεi({ẑjε}j∈Zε(Rn)) ≤ b̂εiε ≤ bi + η.

If on the other hand z : Zn → Rd is such that |∇1,Lz|(0) = 0 we obtain

φεεi({ẑjε}j∈Zε(Rn)) = 0 = ψsi ({zj}j∈Zn)

for every i ∈ Zn, and we conclude that the functions ψsi satisfy (Hψ2).

5.3. Weak membrane with long-range small-tail interactions. In [13] the author studies the
asymptotic behavior of weak-membrane energies of the form

Fε(u) =
∑
ξ∈Z

∑
i∈Zε(Ω)
i+εξ∈Ω

ερε(εξ − i) min
{
|Dξ

εu(i)|2, 1

ε

}
, (5.25)

where Ω ⊂ R is an open, bounded interval. Assuming only a locally uniform summability condition
for the functions ρε : εZ → [0,+∞) it is shown that the Γ-limit is a non-local integral functional.
Moreover, the author provides examples of specific functions ρε including very long-range interac-
tions with small tails, for which the Γ-limit is a (local) free-discontinuity functional. Among them
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are the discrete functionals as in (5.25) with ρε : εZ→ [0,+∞) given by

ρε(t) :=


1 if t = ε,
√
ε if t = εb 1√

ε
c,

0 otherwise,

which are shown to Γ-converge to the functional

F (u) =

∫
Ω

|u′|2 dt+
∑
t∈Su

min{1 + |u+(t)− u−(t)|2, 2}.

We observe that thanks to our very mild non-locality condition (H5) the above example can be
recast in our framework by setting

φεi ({zj}j∈Zε(Ωi)) := min
{∣∣∣zε − z0

ε

∣∣∣2, 1

ε

}
+
√
εmin

{∣∣∣zεb 1
ε c − z0

ε2b 1√
ε
c

∣∣∣2, 1

ε

}
.

Indeed, note that φεi satisfies (H1)–(H4) for every ε > 0 and every i ∈ Zε(Ω). Moreover, (H5) is
satisfied with the sequence (cj,ξε,α) defined by setting

cj,ξε,α :=


1 if α ≤ 2, j = 0, ξ = 1,
√
ε if α ≤ 2b 1√

ε
c, j = 0, ξ = b 1√

ε
c,

0 otherwise.

The sequence (cj,ξε,α) fulfills the required summability condition (2.4), since

∑
α∈N

∑
j∈Zε(R)

∑
ξ∈Z

cj,ξε,α = 2 +

2b 1√
ε
c∑

α=1

√
ε ≤ 4 for every ε > 0.

Moreover, the decaying-tail condition (2.5) is satisfied since cj,ξε,α = 0 for every α > 2b 1√
ε
c. Thus, for

every η > 0 the sequence (Mε
η ) can be chosen independently of η as Mε

η = 2b 1√
ε
c, which satisfies the

constraint εMε
η → 0 as ε → 0. Eventually, (H6) can be verified by using expression (5.5) together

with the convexity of z 7→ zp and the subadditivity of the min.
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