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Abstract: The disturbed metabolism of vitamins B1 or B6, which are essential for neurotransmitters
homeostasis, may cause seizures. Our study aims at revealing therapeutic potential of vitamins B1
and B6 by estimating the short- and long-term effects of their combined administration with the
seizure inductor pentylenetetrazole (PTZ). The PTZ dose dependence of a seizure and its parameters
according to modified Racine’s scale, along with delayed physiological and biochemical consequences
the next day after the seizure are assessed regarding sexual dimorphism in epilepsy. PTZ sensitivity is
stronger in the female than the male rats. The next day after a seizure, sex differences in behavior and
brain biochemistry arise. The induced sex differences in anxiety and locomotor activity correspond
to the disappearance of sex differences in the brain aspartate and alanine, with appearance of those
in glutamate and glutamine. PTZ decreases the brain malate dehydrogenase activity and urea in the
males and the phenylalanine in the females. The administration of vitamins B1 and B6 24 h before PTZ
delays a seizure in female rats only. This desensitization is not observed at short intervals (0.5–2 h)
between the administration of the vitamins and PTZ. With the increasing interval, the pyridoxal
kinase (PLK) activity in the female brain decreases, suggesting that the PLK downregulation by
vitamins contributes to the desensitization. The delayed effects of vitamins and/or PTZ are mostly
sex-specific and interacting. Our findings on the sex differences in sensitivity to epileptogenic factors,
action of vitamins B1/B6 and associated biochemical events have medical implications.

Keywords: amino acid neurotransmitter; glutamate; GABA; pentylenetetrazole; vitamin B1; vita-
min B6

1. Introduction

Triggered by abnormal brain activity, generally due to a disbalance between neuronal
excitation and inhibition, seizures are a hallmark of epilepsy, a common and predominantly
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polygenic disease. In more than a half of the cases, the cause of epilepsy remains unknown.
Some epilepsies, called vitamin-dependent, belong to rare genetic disorders caused by
mutations in the genes involved in the metabolism of vitamins B1 and B6 [1–5]. Normal-
ization of the organismal vitamin status in these types of epilepsy has a therapeutic effect,
eliminating seizures that cannot be treated with known anti-seizure medications. Vitamins
B1 and B6 may also contribute to other non-monogenic types of epilepsy. Although the role
of vitamins in the pathology of epilepsy remains poorly understood, a number of enzymes
participating in the metabolism of glutamate and GABA are altered in epilepsy. Those
include not only the known targets of vitamin B6 (transaminases and decarboxylases), but
also the enzymes (e.g., glutamate dehydrogenase (GDH), malate dehydrogenase (MDH),
glutamine synthetase (GS) and others) whose function may be regulated by vitamin B1
beyond the coenzyme action of this vitamin on the thiamine-diphosphate-dependent en-
zymes, such as the dehydrogenases of 2-oxo acids [6–12]. Subclinical hypovitaminosis of
B1 or B6 may arise in patients treated with widely used medications, including anti-seizure
medications [13–16], potentially facilitating the development of non-monogenic epilepsies.
Hence, upon dysfunction in the vitamin metabolism, either acquired or caused by genetic
defects, the administration of vitamins B1 and/or B6 may mitigate epileptic seizures and
their long-standing consequences. This work aims to characterize potential therapeutic
effect of the administration of these vitamins in a rat model of epilepsy, as well as effects of
a seizure on the brain central metabolism dependent on vitamins B1 and B6.

Our study takes into account physiological observations on sexual dimorphism in
epilepsy [17]. To induce a seizure, we employ a widely used model of pentylenetetrazole
(PTZ) administration. Binding to the tert-butylbicyclophosphorothionate site of the GABA-
A receptor chloride channel, PTZ causes disbalance between the excitatory and inhibitory
pathways of neurotransmission [18–21]. Physiological manifestations are analyzed by
characterizing the severity of a seizure and assessing its delayed effect on behavioral and
ECG parameters. To study the potential therapeutic effects of high doses of vitamins, the
administration of vitamins B1 and B6 is combined, in view of the B1-dependent regulation
of B6 metabolism in animals [11]. The administered doses of the vitamins are equivalent
to those known from medical applications in patients. To characterize the molecular
mechanisms and pathways involved, the physiological assessment is combined with the
analysis of the consequences of a seizure for the brain biochemistry. In this part, the vitamin-
dependent enzymes crucial for the brain metabolism of glutamate and GABA [1,2,22–26]
are assayed, and the brain amino acid profiles [23,24] are quantified. As a result, we reveal
sex differences in the sensitivity to PTZ administration, the biochemical markers of such
differences and a dual sex-specific effect of the administration of vitamins B1 and B6 on a
seizure associated with the regulation of the brain PLK activity.

2. Results
2.1. Sex Differences in the Susceptibility of Animals to the Seizure-Inducer PTZ and to the Delayed
Consequences of a Seizure

The scheme of administration of pentylenetetrazole (PTZ) has been selected to mini-
mize mortality, simultaneously achieving a strong manifestation of the clonic and tonic
seizures according to the Racine scale modified for assessment of the PTZ-induced seizure
(see Section 4). Accordingly, the PTZ dose received by individual animals varies depending
on their individual susceptibility (Supplementary Figure S1). Sensitivity of the male and
female rats to the seizure inducer is characterized by an average PTZ dose and the patho-
physiological parameters of the seizure development, shown in Figure 1A. The average
PTZ dose is practically the same for the female and male rats: 58 ± 4 vs. 60 ± 4 mg/kg,
respectively (Figure 1A). However, the mean seizure score is significantly (Mann–Whitney
test, p = 0.05) lower in the male rats compared to the female ones (Figure 1A). In addition,
male rats experience convulsive twitching app. 4 min later (Mann–Whitney test, p = 0.05),
compared to the female rats (Figure 1A). Thus, the obtained results indicate that female
rats are more sensitive to the seizure induction by PTZ than male rats.
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Figure 1. Sex-dependent parameters of the PTZ-induced seizure (A) and its delayed physiological
effects (B) compared to the control animals. The assayed parameters are indicated on the Y axes.
(A)—“Dose” refers to the total PTZ dose received by an animal for the seizure induction; “Mean
seizure score” is determined during the 45 min of the observation; “Latency to twitch” defines the
time to the first myoclonic twitch (three points by the modified Racine scale, see “Materials and
methods”); “Latency to seizure” defines the time to the first tonic seizure (four points by the Racine
scale, see “Materials and methods”). (B)—Behavioral and ECG parameters of the rats the next day
after a seizure compared to the control groups. The parameters of anxiety, exploratory activity and
locomotor activity are obtained from the “open field” test as described in “Materials and methods”.
The ECG parameters include the length of the RR interval, the heart variability rate dX, the RMSSD
and stress (SI) indices, estimated as described in “Materials and methods”. p-values are determined
using the Mann–Whitney test (A) and two-way ANOVA with Tukey’s post hoc test (B) (see Section 4).

The next day after a seizure, the sex differences in anxiety (Tukey’s multiple com-
parisons test, p = 0.02, ANOVA “sex” factor p < 0.01; F(1,33) = 10.08), mainly manifested
in freezing time (Tukey’s multiple comparisons test, p = 0.01, Supplementary Figure S2,
ANOVA “sex” factor p < 0.01; F(1,33) = 8.87) and locomotion (Tukey’s multiple comparisons
test, p = 0.01, ANOVA “sex” factor p < 0.01; F(1,33) = 9.18), arise that are absent in the
control groups (Figure 1B). Obviously, significant sex differences in anxiety and locomotion
after a seizure represent a cumulative effect of minor and statistically insignificant shifts
exhibited by each of the sexes in response to PTZ. This view is confirmed by the two-way
ANOVA pointing to the statistical significance of the factor of sex in the PTZ-induced
changes (Figure 1B). In addition to the behavioral parameters, the potential cardiological
risks of a seizure [27–29] may be estimated by ECG. As seen from Figure 1B, the ECG assay
does not reveal significant changes in the rats after the seizure.

The analysis of the biochemical markers in the cerebral cortex of the rats the next
day after a seizure did not reveal a significant effect of PTZ on the activity of the tested
enzymes of the brains’ neurotransmitter metabolism, with the exception of a decrease in the
MDH activity (Tukey’s multiple comparisons test, p = 0.03) in males (Figure 2). Significant
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(p = 0.01, F(1,33) = 7.16) interaction of PTZ and sex regarding the MDH activity is revealed
by two-way ANOVA, corresponding to the opposite directions of PTZ’s effects on MDH
activity in the male and female rats (Figure 2).
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Figure 2. Delayed effect of the PTZ-induced seizure on the activities of cerebral cortex enzymes in the
male and female rats compared to the control groups. The activities are presented as micromole/min
per g of tissue, with the exception for PNPO, whose activity is in nanomole/min per g of tissue.
p-values are determined using two-way ANOVA with Tukey’s post hoc test (see Section 4).

Of note, the enzymatic reaction rates in vivo depend on the local concentrations of
metabolites, which are far from the saturating concentrations used for assays of maximal
reaction rates of enzymes in vitro. Therefore, the in vivo levels of metabolites are a better
measure of the biological impact of the minor differences in the enzymatic activities,
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determined in vitro (Figure 2). Indeed, the analysis of the levels of free amino acids in
the brain reveals multiple sex-dependent PTZ effects on the metabolites. As seen from
Figure 3, PTZ eliminates the pre-existing sex differences in the levels of aspartate and
alanine, inducing those in the levels of glutamate and glutamine. The sex-specific effects of
PTZ, such as decreases in urea in the brain of male rats, and phenylalanine in the brain of
female rats, are less abundant. Accordingly, the two-way ANOVA indicates that the sex
factor is essential for 12 out of 15 estimated metabolites, while PTZ is essential for only 4
out of 15 metabolites (Figure 3).
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Figure 3. The delayed effect of the PTZ-induced seizures on the levels of amino acids and urea in the
cerebral cortex of the male and female rats compared to the control groups. The content of free amino
acids and urea is in micromoles per g of tissue. p-values are determined using two-way ANOVA
with Tukey’s post hoc test (see Section 4).

In summary, both the sex differences in the levels of free amino acids in the rat
brain and the amino acid levels themselves respond to the action of PTZ. The sex-specific
responses of the brain biochemical parameters (Figures 2 and 3) correspond to the different
sensitivity of the sexes to PTZ (Figure 1A) and the post-seizure induction of behavioral
differences between the sexes (Figure 1B). In particular, the PTZ-induced changes in the
sexually dimorphic pattern of the brain amino acids (Figure 3) correspond well to the
PTZ-induced sex differences in behavior (Figure 1B) and MDH activity (Figure 2).
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2.2. Sex-Dependent Effects of Combined Administration of Vitamins B1 and B6 on the Severity of a
Seizure and Its Delayed Consequences

In females, the combined administration of vitamins B1 and B6 24 h before PTZ
increases the time until the twitching (Tukey’s multiple comparisons test, p = 0.04, ANOVA
“Vitamins” factor p = 0.05; F(1,37) = 4.27), but in males, the parameters of the seizures
remain unaffected (Figure 4A). Thus, the higher the animal susceptibility to the seizure-
inducing action of PTZ (Figure 1A), the greater the animal sensitivity to the protective
action of vitamins against such action (Figure 4A).
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Figure 4. Sex-dependent effects of the administration of vitamins B1 and B6 on the parameters of
the PTZ-induced seizure (A) and its delayed physiological effects (B). The assayed parameters are
indicated on the Y axes and described in more details in Figure 1 and “Materials and methods”.
p-values are determined using two-way ANOVA with Tukey’s post hoc test (see Section 4).

As for the delayed effect of the PTZ-induced seizure on behavior, vitamins slightly
enhance the sex differences arising after the seizure (Figure 4B, Supplementary Figure S3).
This is observed from an increase in significance of the behavioral differences between
the male and female rats after the administration of both PTZ and vitamins (p ≤ 0.02)
compared to similar groups with no administered vitamins (Tukey’s multiple compar-
isons test, p ≥ 0.03) (Figure 4B). Together, these sex differences manifest in ANOVA “sex”
factor significances for anxiety (p < 0.01; F(1,36) = 22.25), exploratory activity (p < 0.01;
F(1,36) = 27.29) and locomotor activity (p < 0.01; F(1,36) = 17.44). No significant effect of
the vitamins on the ECG parameters is observed (Figure 4B).

Biochemical analysis of the rat brain shows no pronounced changes upon the com-
bined action of PTZ and vitamins in comparison with the action of PTZ alone. Two-way
ANOVA analysis of these animal groups reveals only the sex-dependent difference (p = 0.02,
F(1,36) = 6.46) in GDH activity (Figure 5).
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Figure 5. Effects of the administration of vitamins B1 and B6 on the activities of the cerebral cortex
enzymes in the male and female rats the next day after the PTZ-induced seizure. The activities of
enzymes are expressed in micromole/min per g of tissue, with the exception of the PNPO activity,
expressed in nanomole/min per g of tissue. The statistical analysis of the data was performed by the
two-way ANOVA with Tukey’s post hoc test (see Section 4).

Similar to the effects of PTZ alone, upon the combined administration of the vitamins
and PTZ, the brain metabolite levels undergo much more pronounced changes than the
brain enzymatic activities do. When comparing the effects of vitamins in the PTZ-treated
animals (Figure 6) to the action of PTZ on the control animals (Figure 3), the partial reversal
of the PTZ effects by vitamins is remarkable. The PTZ-induced or abrogated sex differences
in the levels of cerebral glutamate, glutamine and alanine (Figure 3) are returned to the
control pattern in the vitamin-supplemented animals exposed to PTZ (Figure 6). This is
accompanied by increases in the levels of glutamate and urea in the vitamin-supplemented
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PTZ males vs. those without vitamins (Figure 6), the effects being opposite to those of
PTZ (Figure 3). However, the PTZ-perturbed sex relationship in the level of aspartate
(Figure 3) is not normalized by the vitamins administration (Figure 6). In the female brain,
the vitamins do not return the phenylalanine level (Figure 6) to its control value, which is
decreased by PTZ (Figure 3). Moreover, the combined administration of vitamins and PTZ
induces additional sex differences in the levels of GABA, histidine, methionine and the
branched-chain amino acids isoleucine and leucine (Figure 6), which are not statistically
significant in either the control or the PTZ-treated rats (Figure 3). Thus, the administration
of vitamins B1 and B6 24 h before PTZ restores sex-dependent levels of some amino acids,
simultaneously enhancing the sex differences in the levels of other amino acids. While the
former effect of the vitamins administration to the PTZ-treated animals is only observed in
the biochemical parameters, the vitamin-induced enhancement of sex differences in the
brain levels of GABA, histidine, methionine, isoleucine and leucine corresponds well to the
enhancement of sex differences in physiological parameters (Figure 4B).
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Figure 6. Effects of the administration of vitamins B1 and B6 to the PTZ-treated animals on the
levels of amino acids and urea in the cerebral cortex of the male and female rats the next day after
the PTZ-induced seizure. The metabolites are indicated on the Y axes, their content is expressed
in micromoles per g of tissue. The statistical analysis of the data was performed by the two-way
ANOVA with Tukey’s post hoc test (see Section 4).
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2.3. Effects of the Administration of Vitamins B1 and B6 to the Animals Not Exposed to PTZ

In view of the revealed enhancement by the vitamins of the delayed PTZ effects,
shown above, the male and female rats not exposed to PTZ, i.e., the control groups, have
been treated with the vitamins according to the same scheme as the PTZ-treated animals
(Supplementary Figure S1). As seen from Figure 7, the female rats are not affected by the
vitamins administration, but the male rats demonstrate an increase in anxiety (Tukey’s
multiple comparisons test, p = 0.05; the “vitamins” factor of the two-way ANOVA p = 0.01;
F(1,33) = 6.97) (Figure 7), mostly contributed by an increase in freezing time (Tukey’s
multiple comparisons test, p = 0.02; the “vitamins” factor of the two-way ANOVA p = 0.02;
F(1,33) = 8.87, Supplementary Figure S4). The administration of the vitamins also leads
to significant sex differences in the central activity, freezing time, grooming acts and
defecation acts (Supplementary Figure S4). No significant effect on the ECG parameters
is observed. Two-way ANOVA reveals the importance of the sex factor in the three
behavioral parameters and the RR interval of ECG (Figure 7), which corresponds well to
the sex-dependent differences, observed in Figure 1B.
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Figure 7. Physiological effects of the administration of vitamins B1 and B6 to the control rats. The
studied parameters are indicated on Y axes and described in detail in Figure 1 and “Materials and
methods”. The statistical analysis of the data was performed by the two-way ANOVA with Tukey’s
post hoc test (see Section 4).

The administration of vitamins to the control rats induces significant sex-dependent
effects on the levels of the enzymatic activities (Figure 8). That is, the administration of
vitamins induces the sexual dimorphism in the levels of GOT, PNPO and GS (Figure 8). A
significant (p = 0.05, F(1,32) = 4.33) effect of the vitamins on the PLK activity regardless of
sex is also revealed by two-way ANOVA (Figure 8). The comparison of the vitamins’ effects
on the amino acid profiles in the control rats (Figure 9) with those after PTZ (Figure 6)
indicate that the vitamins similarly affect the sex relationships in the level of GABA in
both the PTZ-treated (Figure 6) and the control (Figure 9) animals. However, in the PTZ-
treated animals, this effect of the vitamins antagonizes the opposite effect induced by PTZ
(Figure 3). No other significant effects of vitamins on the amino acids levels are observed
in the brain of control rats (Figure 9).
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Figure 8. Effects of the administration of vitamins of B1 and B6 to the control rats on the enzymatic
activities in the rat brains. The activities are expressed in micromole/min per g of tissue, with the
exception for the PNPO activity, expressed in nanomole/min per g of tissue. The statistical analysis
of the data was performed by the two-way ANOVA with Tukey’s post hoc test (see Section 4).
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Figure 9. Effects of the administration of vitamins of B1 and B6 to the control rats on the levels
of amino acids and urea in the rat brain. The content of free amino acids and urea is shown in
micromoles per g of tissue. The statistical analysis of the data was performed by the two-way
ANOVA with Tukey’s post hoc test (see Section 4).

Accordingly, most of the sex effects induced by the combined action of the vitamins
and PTZ on the brain amino acid levels (Figure 6) are not observed upon the action of each
of the factors (Figures 3 and 9), thus arising due to synergistic action of vitamins and PTZ
upon their combined administration.

2.4. Interval between Administration of Vitamins B1/B6 and PTZ Influences the PTZ-Induced
Seizure and Its Consequences in Females

In view of a higher sensitivity of female rats to both PTZ and the anti-seizure action of
the vitamins (Figures 1 and 4), the time-dependence of the administration of vitamins B1
and B6 before PTZ has been studied in female rats, comparing the series of animals with
the “long-term” (24 h) and “short-term” (2 or 0.5 h) intervals between the vitamins and
PTZ administrations (Supplementary Figure S1). In contrast to the anti-seizure action of
the vitamins administered 24 h before PTZ, the administration of vitamins 0.5 or 2 h before
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PTZ enhances the severity of the seizures. The animal group where vitamins have been
administered 0.5 h before PTZ has demonstrated an increased rate of deadly seizures in
contrast to 100% survival in all other groups (see Section 4.4). Stronger seizures in these rats
are confirmed by a lower doze of PTZ causing seizures and an earlier onset of twitching
and tonic seizures, compared to the rats, receiving vitamins 24 h before PTZ (Figure 10A).
The time dependence of the action of vitamins in females confirms an essential difference in
the effects of vitamins administration at a short (2 h) or long (24 h) time interval before PTZ,
underlying the opposite physiological effect of the vitamins in these cases (Figure 10A).
The vitamins administered 0.5–2 h before PTZ, sensitize female rats to the action of PTZ,
while the vitamins administered 24 h before PTZ has an anti-seizure effect.
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Figure 10. Dependence of pathophysiological parameters of the PTZ-induced seizure (A) and
its delayed physiological and biochemical effects (B) in female rats on the interval between the
administration of vitamins B1/B6 and PTZ. The assayed parameters are indicated on the Y axes and
described in “Materials and methods”. The activity of the female brain PLK (micromole/min per
g of tissue) is used as an indicator of biochemical changes. The statistical analysis of the data was
performed by the one-way ANOVA with Tukey’s post hoc test (see Section 4).

The delayed consequences of a seizure in females further confirm the opposite effects
of the vitamins administration 2 and 24 h before PTZ. This is observed as a significant drop
in exploratory activity (mainly because of the effect on the central activity in the “open
field”, Supplementary Figure S5) and an increase in the RR interval of ECG in the rats
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with the short-term vitamins administration compared to the rats which received vitamins
24 h before PTZ or do not receive vitamins at all (Figure 10B). The low level of exploratory
activity in the groups of rats receiving the vitamins 0.5 or 2 h before PTZ (Figure 10B) is
consistent with the parameters of seizures, indicating that administration of vitamins at
these time points sensitizes the female rats to PTZ. Overall, the physiological indicators
of the delayed effects of a seizure are in good agreement with the pathophysiological
parameters of the seizure itself, testifying to the facilitation of a seizure after the short-
term administration of vitamins prior to PTZ and to a protective effect of the vitamins
administered 24 h before a seizure (Figure 10A).

Remarkably, the administration of vitamins 24 h before PTZ results in significantly
(Tukey’s multiple comparisons test, p = 0.05; ANOVA p = 0.04, F(3,22) = 3.36) lower PLK
activity compared to the administration of the vitamins 0.5 h before PTZ (Figure 10B). Thus,
the PLK decrease during the long interval between the administration of vitamins and PTZ
is associated with the protective effect of vitamins against the PTZ-induced seizure.

3. Discussion

In humans, gender differences in epilepsy and underlying molecular mechanisms
remain a well-known challenge for therapeutic approaches [17,30]. The accumulating
data point to significant interactions between the hormonal status and other factors in
epilepsy [17], which should be taken into account to improve the therapy of epilepsy. Not
only do steroid hormones and sexually dimorphic neural networks support differential
susceptibility of males and females to specific epileptogenic factors, but neurosteroids
do as well [31–33]. The most studied neurosteroids allotetrahydrodeoxycorticosterone
and allopregnanolone modulate the function of the GABAA receptor, thus controlling the
neural network excitability, which is perturbed in epileptic seizures [31]. The estrous cycle
in sexually mature females represents an associated challenge, requiring more specific
studies in females. For instance, the term catamenial epilepsy refers to female seizures with
periodic occurrence depending on their menstrual cycle [32]. Mostly, estrous-cycle-related
differences in physiological parameters and stress reactions are observed between the
luteal (metestrus/diestrus) and follicular (proestrus/estrus) phases, which strongly differ
in the levels of sex hormones [34–39]. In our model study, only the female rats in the
luteal phase are included, as they represent the majority under the employed experimental
conditions. Similar to other studies regarding different parameters [34–40], we did not
observe significant differences between the diestrus and metestrus rats, owing to which
they were pooled together. Based on the strongly different hormonal status of the female
rats in follicular phase, compared to those in luteal phase [34–39], it is probable that more
sexual differences could be revealed between the males and females in follicular phase
than were observed in our current work comparing the male rats with the females in luteal
phase. This important question requires further studies.

While most of the clinical and experimental studies in epilepsy focus on seizures
themselves, the delayed consequences of seizures are not at all less important, as the
accumulation of even minor changes in the brain homeostasis may lead to a vicious
cycle deteriorating the patients state with time. Employing the PTZ-induced model of
seizures, we have studied not only the parameters of seizures, but also their physiological
consequences and biochemical basis the day after. By comparison of the seizures in the male
and female rats, we show that the different reaction of the sexes to the seizure-inducing
and protective factors is not always obvious as significant effects in each of the group but
may be manifested as an induction of sex differences, or, contrarily, as the disappearance of
such differences. Both events obviously result from minor sex-specific changes in opposite
directions, which do not reach statistical significance in each sex. The comparison of the
males and females is therefore more powerful to detect the sex-specific effects. Using
this comparative analysis, we have characterized induction or abrogation by PTZ and/or
vitamins of sex differences, absent or pre-existing, correspondingly, in the non-affected
state. The data obtained in this work show that such cumulative effects are observed in
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physiological and/or biochemical parameters, being much more pronounced than the
specific actions of PTZ and/or vitamins in the female or male rats. For instance, in our
study of the action of vitamins on the PTZ-treated animals (Figure 6), eight statistically
significant (p ≤ 0.05 by Tukey’s multiple comparisons test) sex differences in the amino
acid profiles are affected by the vitamins (of those, six arise and two disappear). However,
the statistically significant effects of the vitamins on each sex include only two changes in
the male rats and none in the female rats.

The seizure-induced sexual differences correspond to the differential susceptibility
of the sexes to the delayed consequences of a seizure (Figure 4B). Moreover, the seizure-
induced sexual dimorphism in the level of glutamate suggests a sex-dependent modifi-
cation of further reactivity to the seizure inducer. In this regard, the PTZ-induced sexual
dimorphism in the brain methionine level also deserves attention, as methionine is a precur-
sor of a pro-convulsant homocysteine [41]. Homocysteine levels are higher in the plasma
of males compared to females [42], but their increase is more dangerous to the female brain
than the male brain [43]. In the animals without exposure to PTZ, there is no difference
in the brain methionine level between the males and females (Figure 9). However, the
difference tends to arise after PTZ treatment and becomes statistically significant after the
combined treatment with PTZ and vitamins (Figure 6). The resulting levels of methionine
are higher in females than males, pointing to sex-dependent changes in metabolic pathways
involving homocysteine. Changes in these pathways are known to occur after recurrent
seizures and antiepileptic drugs, which increase plasma homocysteine levels [41].

All together our experiments reveal multiple sex-specific responses to seizures and
therapeutic approaches. Such responses are revealed in the action of PTZ, the delayed
consequences of a seizure and the action of vitamins B1 and B6. Changes in the brain amino
acids provide very sensitive indicators of the cumulative physiological responses, while
the in vitro assays of the brain enzymes reveal the affected parts of metabolic networks.
Compared to the control rats, PTZ action decreases the brain MDH only in the male rats.
Such subtle difference in the functional expression of one out of eleven tested brain enzymes
of the central metabolism (Figure 2) is accompanied by multiple changes in the brain amino
acids, including glutamate (Figure 3), which is of utmost significance in epilepsy.

Thus, delayed consequences of a seizure involve changes in the central metabolism
of the brain. The dependence of such metabolism on vitamins may result in so-called
metabolic epilepsies, often positively responding to administration of vitamins [44]. While
deficiencies in vitamins B1 and B6 due to malnutrition have not been considered an issue in
developed countries for a long time, these states currently occur more and more often as a
result of intensified medical treatments, such as the administration of diuretics, metformin,
antibiotics, chemotherapy and bariatric surgery [13,16,26,45]. Regarding vitamins B1
and B6, seizures are known to arise due to mutations in proteins of their transport and
metabolic transformations, affecting the physiological function of the vitamins [46–49]. In
the diagnosed cases of neonatal epilepsies originating from the pathogenic mutations, the
urgent administration of the required vitamin is essential to prevent not only seizures,
but also the following mental retardation [48–50]. It should be noted, however, that
less pathogenic mutations in the proteins of vitamin metabolism may be compensated
under normal physiological conditions, yet their pathogenicity may increase under stress
and/or medical interventions. This feature may underlie interindividual variations in
developing the vitamins deficiencies promoted by pathophysiological conditions. In such
cases, pharmacological doses/forms of vitamins may be a valuable therapeutic option.
However, unlike vitamin B1, whose high pharmacological doses do not usually have
damaging effects [13], high doses of vitamin B6 are neurotoxic [47] and may induce
seizures [51]. Therefore, in view of our finding of the mutual regulation of metabolism
of vitamins B6 and B1 [11], the anti-seizure action of the combined administration of
both vitamins is studied in this work. Nevertheless, a potentiating effect of the combined
administration of vitamins B1 and B6 on the PTZ-induced seizures is observed in female
rats upon the vitamins’ administration shortly before PTZ (Figure 10). Only in this animal
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group have the deadly seizures occurred (see Section 4.4). In the control male rats, the
vitamins increase anxiety (Figure 7). The negative effects of the combined administration of
B1 and B6 may be ascribed to the action of vitamin B6 in the form of pyridoxal-5′-phosphate,
which are known to induce seizures upon intracerebroventricular administration in rats [51].
Such a view is supported by the transformation of the seizures-sensitizing effect of the
vitamins administration into a protective one along with downregulation of the brain
PLK which synthesizes pyridoxal-5′-phosphate from pyridoxal (vitamin B6) (Figure 10),
and increased sex differences in the B6-dependent enzymes GOT and PNPO after the
vitamins administration to the control animals (Figure 8). The protective effects of the
vitamins introduced 24 h before PTZ also include the vitamins-induced reversal of the PTZ
effects on the sex differences in glutamate, glutamine and alanine. As a result, our data
reveal molecular mechanisms of therapeutic action of vitamins in combating the delayed
consequences of seizures, that warrant further studies.

4. Materials and Methods

Reagents from the following manufacturers were used: thiamine—Serva Electrophore-
sis GmbH, Heidelberg, Germany; pyridoxal—PanReac AppliChem, Barselona, Spain;
glycerol—Biomedicals, LLC, Santa Ana, CA, USA; pentylenetetrazole (PTZ), protease in-
hibitors, buffers and other reagents for the analysis of enzyme activities—Sigma-Aldrich, St.
Louis, MO, USA. Pyridoxine-5′-phosphate was synthesized from pyridoxal-5′-phosphate
(Sigma-Aldrich, St. Louis, MO, USA) as described previously [52]. The solutions were
prepared in Milli-Q deionized water, the salts used were of the highest purity available.

4.1. Animals

The studies were carried out in Wistar rats obtained from the Russian Federation State
Research Center Institute of Biomedical Problems RAS (IBMP)—both males and females,
weighing 250 to 350 g. The animals were kept under standard conditions in cages with
free access to water and food and a light/dark cycle of 12/12 h (the light turned on at
9 a.m.). The adaptation period to the husbandry conditions was two weeks. The age of
the animals at the time of the study was 2.5–3.0 months. According to the vaginal smears
taken an hour before the start of the experiment [53], the female rats were “metestrus” or
“diestrus”. Major contributions of females with these stages of estrous cycle, characterized
by low levels and minimal fluctuations of sex hormones [54,55], to the experimental animal
sample was presumably due to the prolonged duration of these stages (together up to
78 h, i.e., more than 75% of the total duration of the estrous cycle). We did not see any
significant differences between the metestrus or diestrus females, hence the animals were
combined. Animals were distributed randomly between experimental groups. Animals
were killed by decapitation according to the schemes from Supplementary Figure S1, as
usage of anesthetics was incompatible with our study of the brain biochemical changes. A
long-standing research has established multiple interferences of different anesthetics with
metabolic and signaling pathways [56–63]. In view of strong interactions of anesthetics
with the mitochondrial function [56,58,59], neurotransmitter levels [58,61–64] and action of
neuroprotectants [61,64], all studied in our work, euthanasia by decapitation was chosen
as the most suitable method for our studies on adult animals, in accordance with existing
recommendations [63–65]. Given that the other animals are not in the decapitation room,
cutting off the head using guillotine (OpenScience, Moscow, Russia) is considered one of
the least stressful method to kill the animals [63–66]. After each use, the guillotine was
washed thoroughly with water and ethanol, so that no blood smell could stress another
animal. The procedure was done according to recommended protocols [63–66] as described
before [67]. Animal experiments and all the described procedures, including euthanasia
by decapitation, were approved by Bioethics Committee of Lomonosov Moscow State
University (protocol number 69-o from 9 June 2016).
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4.2. Pentylenetetrazole Model of Seizures

Convulsions were induced by intraperitoneal administration of PTZ in saline at
25 mg/kg dose. After PTZ administration, the severity of seizures was visually assessed
according to the modified Racine scale developed for the employed protocol of PTZ
administration [68] (Table 1) for 15 min in individual cages (OpenScience, Moscow, Russia).
During the visual assessment, there were no more than 4 rats in individual cages (2 with
PTZ and 2 without PTZ), arranged so as to allow observation of each of them. Scores were
registered every minute of the observation, and an epileptic seizure of maximum score was
noted for the given minute of observation. If the stages 4–5 on the modified Racine scale
(tonic or tonic-clonic seizures, Table 1) did not develop within 15 min, PTZ was re-injected
at the same dose of 25 mg/kg. The procedure was repeated no more than three times, and
the total PTZ dose thus did not exceed 75 mg/kg. The total time of the seizure observation
was 45 min (Supplementary Figure S1).

Table 1. Modified Racine scale for visual assessment of the severity of PTZ-induced seizures in
rats [69–71].

Score Behavioral Manifestations of Seizures

0 Normal behavior, no abnormality
1 Immobilization, lying on belly
2 Head nodding, facial, forelimb or hindlimb myoclonus
3 Myoclonic twitches, continuous whole-body myoclonus, tail held up stiffly
4 Rearing, tonic seizure, falling down on a side
5 Tonic-clonic seizure, falling down on back, wild rushing and jumping

The mean seizure score was calculated as the average score of the severity of an
epileptic seizure over the entire observation period from the moment of administration of
the first PTZ dose.

4.3. Vitamin Administration

Vitamins B1 (thiamine, 100 mg per kg body weight) and B6 (pyridoxal, 100 mg per kg
body weight) were administered intraperitoneally 24 h before the first PTZ administration
and after the completion of a 45 min follow-up of the PTZ-induced seizures (Supplementary
Figure S1). In the study of the time-dependence of the vitamins effects, performed on the
female rats only, the separate experimental groups received vitamins at varied intervals
before the first PTZ administration, i.e., either 24 or 2 or 0.5 h, and after completion of a
45 min follow-up of the PTZ-induced seizures (Supplementary Figure S1). This vitamin
regimen took into account the results of previous studies on the potential protective effect of
high doses of vitamins both before [72] and after [24] the exposure to stress, when increased
availability of vitamins may provide better stabilization and normalization of the metabolic
state, respectively [73]. Control animals received the injections with equivalent volumes of
physiological solution (0.9% NaCl). Since the seizure occurred before the second injection
of vitamins, only the first injection of vitamins affected the convulsions themselves. Both
the first and the second doses of vitamins affected the delayed consequences of a seizure.

A major part (about 70%) of both vitamins is known to be excreted from the body 24 h
after the injection [74,75]. However, the injections significantly increase the internal pool
of vitamins [76] stored in the liver, where concentrations of thiamine diphosphate and B6
vitamers are higher than in other tissues [14,77].

According to the formula recommended by the US Food and Drug Administration
(http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/
Guidances/ucm078932.pdf; accessed on 19 June 2021), the dose of vitamins B1 and B6 used
in this study on rats (100 mg/kg each of the vitamins) corresponds to a dose of 16 mg/kg,
or 1 g for an average weight of 60 kg, in humans. No toxic or side effects in humans are
known for vitamin B1 at a daily dose of 0.5 g for a month [78]; clinically used injections of
vitamin B1 may be up to 0.5 g three times a day [79]. However, high doses of vitamin B6 are

http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm078932.pdf
http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm078932.pdf
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neurotoxic in humans [75,80], with 2–6 g of vitamin B6 per day resulting in acute sensory
neuropathies [75,81]. Intracerebroventricular administration of pyridoxal-5′-phosphate
and its synthetic analogs led to seizures in rats [51]. At the same time, such effects were
not reported in patients with various B6-dependent syndromes who received 0.5–1.5 g
of vitamin B6 per day [75]. Thus, the dose of vitamins B1 and B6 used in our study are
within the interval of the doses clinically used in megavitamin therapy. In addition, taking
into account the inhibition by vitamin B1 of PLK [11], which produces the coenzyme form
of vitamin B6, the co-administration of vitamins used in this study could reduce the B6
neurotoxicity, potentially linked to production of the coenzyme pyridoxal-5′-phosphate by
PLK.

4.4. Animal Survival

The data on the total number of animals in our experiments and their survival is
summarized in Table 2.

Table 2. Initial number of animals and their survival in each group.

Animal Sex Group n Survival, %

Fe
m

al
es

PTZ 9 100
PTZ +B1,B6 (24 h) 9 100
PTZ +B1,B6 (2 h) 6 100

PTZ +B1,B6 (30 min) 5 60
B1,B6 (24 h) 8 100

Control 9 100

M
al

es

PTZ 10 100
PTZ +B1,B6 (24 h) 12 100

B1,B6 (24 h) 10 100
Control 9 100

4.5. Assessment of Physiological Parameters

To assess the spontaneous behavior of animals in an unfamiliar environment, we used
the Open Field test (OpenScience, Moscow, Russia) [82]. Standard assays and interpreta-
tions of the open-field data were in accordance with the published papers [83–85]. The
round arena made of polyvinyl chloride with a diameter of 97 cm, surrounded by a wall
of 42 cm height, was used (OpenScience, Moscow, Russia). The bottom of the arena was
divided into the two circles equidistant from each other (the diameter of the smaller circle
was 23 cm, the diameter of the larger circle was 60 cm). The ring formed by the larger circle
and the wall of the field was divided into 12 sectors; the ring formed by the larger and
smaller circles was divided into 6 sectors. The animals were put in the center and tested
in complete silence under the light of a 15 W red lamp for three minutes, assessing the
following indicators:

1. locomotor activity—the number of segments passed;
2. rearing acts—the number of stands on the hind limbs;
3. central activity—the number of the intersections of the small and central circles plus

the number of movements from the walls intersecting the larger circle. In animals
that did not move from the center (freezing), this indicator was equal to 0;

4. total freezing time—time when the active behavior was lacking in all the sectors;
5. grooming time;
6. the number of acts of grooming;
7. the number of defecation acts.

In the graphs of Results, the parameters were partly combined as cumulative indices
for exploratory activity and anxiety. The exploratory activity summarized the rearing
acts and central activity; the anxiety summarized freezing and grooming times with the
number of grooming and defecation acts. All parameters used to calculate the cumulative
indicators were assigned arbitrary units, such as, e.g., 1 s of freezing = 1 a.u.; 1 act of
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defecation = 1 a.u., etc. The employed combinations of parameters to characterize anxiety
and exploratory activities were based on the studies showing unidirectional change of
these parameters [83,86–88]. All the particular parameters used for the cumulative indexes,
are presented in Supplementary Figures S2–S5.

According to clinical data, patients with epilepsy have increased risk of sudden death,
most probably due to the seizure-perturbed heart rhythms characterized by ECG, hence the
ECG analysis was employed to estimate the cardiological risks [27–29]. ECG was recorded
using cutaneous electrodes (disposable silver chloride electrodes for recording ECG in
newborns), attached to the right and left on the ventrolateral surface of the animal’s chest.
Prior to this, the skin in these areas was degreased with alcohol and the electrodes were
glued, fastened to the terminals and mounted on a harness of the original design, which
was put on the animal. The connector was linked to a biopotential amplifier having a
frequency range of 10 Hz to 20 kHz. The signal from the electrodes was transmitted to an
E14-440 analog-to-digital converter (L-Card, Moscow, Russia) connected to a computer.
The analog signal was recorded from free-roaming rats using the Powergraph software
(DISoft LLC, Moscow, Russia), digitized at a frequency of 1 kHz and processed using
Spike-C3, Average and Ints software (OpenScience, Moscow, Russia).

The balance of autonomous regulation of heart rate, representing the relative contribu-
tion of the sympathetic and parasympathetic components to the activity of the nervous
system, was assessed in accordance with Baevsky et al. [89]. The following parameters
of the heart rate variability were calculated: average RR interval in a sample, ms; dX—
variance of RR intervals in a sample, ms; parasympathetic, or relaxation, index of the state
of the nervous system—RMSSD; sympathetic, or stress, index of the state of the nervous
system—SI [89,90].

4.6. Preparation of Homogenates of the Rat Cerebral Cortex

Homogenization of the tissue and sonication of homogenates was carried out accord-
ing to the previously published protocol [67].

4.7. Preparation of Tissue Extracts and Quantifications of Metabolites

Methanol-acetate extraction of the rat cerebral cortex and quantification of its amino
acids and urea were done as described before [25,91]. Briefly, frozen cerebral cortices were
homogenized in ice-cold methanol, then acetic acid solution was added, and the proteins
were precipitated. The sodium-citrate buffer system with a Hitachi L-8800 amino acid ana-
lyzer was used according to the manufacturer′s User Manual, as described before [25,91].

4.8. Measurement of Enzymatic Activities

The activities of thiamine-diphosphate-dependent enzyme complexes of 2-oxoglutarate
dehydrogenase and 2-oxoadipate dehydrogenase, as well as the activities of GDH, MDH,
GS and ME were measured as previously described [23]. The activity of the pyruvate
dehydrogenase complex was determined according to a published protocol for the enzyme
assay in tissue homogenates [92]. The activities of aspartate aminotransferase and alanine
aminotransferase were measured according to the method of Reitman and Frankel [93].
All of the above activities were assayed in 0.2 mL of the reaction medium spectrophoto-
metrically in transparent 96-well microplates, using a Sunrise plate reader (Tecan, Grödig,
Austria).

The activity of PLK was measured using a published assay system with several modi-
fications [94]. First, 2–8 µL of a rat cerebral cortex homogenate with a protein concentration
of about 50 mg/mL were added to 0.2 mL of the reaction mixture comprising 50 mM
KH2PO4, pH 6.0; 0.1 mM ZnSO4; 0.2 mM pyridoxal; 2 mM Na2ATP. The mixture was
incubated at 37 ◦C for 90 min, followed by the cooling of the plate on ice for 5 min and
immediate addition of a cold solution of 6 mM hydroxylamine to a final concentration of
1 mM. A control medium without ATP was used as a blank. The fluorescence (ex365 nm
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| em450 nm) was measured 150 s after the hydroxylamine addition during 5 min. The
calculation of the rate of the PLK reaction was carried out as described [94].

Our assay of PNPO was based on the enzymatic production of hydrogen peroxide,
which may be detected in complex biological mixtures by Amplex UltraRed (Thermo
Fisher Scientific, Carlsbad, CA, USA) [95]. The reaction was carried out at 25 ◦C in 0.2 mL
of the reaction mixture comprising 50 mM HEPES, pH 7.4; 50 mM KCl; 10 mM NaCl;
10 µM pyridoxine 5′-phosphate; 5 U/mL horseradish peroxidase; 10 µM Amplex UltraRed
(diluted from 10 mM stock solution in DMSO). To measure the reaction blank, the reaction
medium omitting pyridoxine 5′-phosphate was used. The reactions were started with
3–15 µL of the rat cerebral cortex homogenate. The fluorescence (ex560 nm | em590 nm)
was measured during the 10 min of the reaction.

The fluorescent assays of PLK and PNPO were done in black microplates using a
CLARIOStar plate reader (BMG LABTECH, Ortenberg, Germany).

4.9. Statistical Analysis and Data Presentation

Data were analysed using the GraphPad Prism 7.0 software (GraphPad Software
Inc., San Diego, CA, USA). Individual values of the parameters for each animal, their
median, quartiles and values of the minimum and maximum are shown on the graphs.
Statistical significance of differences between the two groups was assessed using the
Mann–Whitney U-test. Statistical significance of differences upon comparison of more than
two experimental groups was assessed using one-way or two-way analysis of variance
(ANOVA) with Tukey’s post hoc test. The statistical significance at p ≤ 0.05 is shown on
the graphs. The tables below the figures show the ANOVA results for the significance of
factors (significant values of p ≤ 0.05 are in bold) and their interaction. When mentioned
in the text, the ANOVA p-values are also supported by the F-values with the degrees of
freedom, presented as F(DFn, DFd). In all these cases, the F-values were larger than the
corresponding critical values, supporting the significance of the reported results.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ph14080737/s1, Figure S1: Flowchart of physiological experiments in intact rats (A), rats
receiving vitamins B1 and B6 (B), rats receiving PTZ without the vitamins (C), rats receiving PTZ with
the vitamins (D), Figure S2: Sex-dependent parameters of behavior 24 h after PTZ-induced seizure,
compared to the control animals, Figure S3: Sex-dependent effects of the administration of vitamins B1
and B6 on the behavior 24 h after PTZ-induced seizure, Figure S4: Behavioral effects of administration
of vitamins B1 and B6 to the control rats, Figure S5: Dependence of behavioral parameters of the
female rats 24 h after the PTZ-induced seizure on the interval between the administration of vitamins
B1/B6 and PTZ.
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