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Abstract—Natural Language Video Description (NLVD) has
recently received strong interest in the Computer Vision, Nat-
ural Language Processing (NLP), Multimedia, and Autonomous
Robotics communities. The State-of-the-Art (SotA) approaches
obtained remarkable results when tested on the benchmark
datasets. However, those approaches poorly generalize to new
datasets. In addition, none of the existing works focus on the
processing of the input to the NLVD systems, which is both
visual and textual. In this work, it is presented an extensive study
dealing with the role of the visual input, evaluated with respect
to the overall NLP performance. This is achieved performing
data augmentation of the visual component, applying common
transformations to model camera distortions, noise, lighting,
and camera positioning, that are typical in real-world operative
scenarios. A t-SNE based analysis is proposed to evaluate the
effects of the considered transformations on the overall visual
data distribution. For this study, it is considered the English
subset of Microsoft Research Video Description (MSVD) dataset,
which is used commonly for NLVD. It was observed that this
dataset contains a relevant amount of syntactic and semantic
errors. These errors have been amended manually, and the
new version of the dataset (called MSVD-v2) is used in the
experimentation. The MSVD-v2 dataset is released to help to
gain insight into the NLVD problem.

Index Terms—Video Description, Multimodal Data, Input
Preprocessing.

I. INTRODUCTION

V ISUAL AND TEXTUAL data-based tasks [1] are re-
ceiving growing interest in many research communities.

Some studied problems are visual content retrieval based on
natural language queries [2]–[5], text-guided video summa-
rization [6], [7], story understanding [8], and visual content
description [9]–[11]. This paper tackles the video description
problem (NLVD). This is particularly interesting both for its
research challenges and for its numerous possible applications.
These include automatic video captioning of web content,
automatic generation of the Descriptive Video Service (DVS)
track of movies, products for the visually impaired and the
blind, effective human-machine interaction, service and collab-
orative robotics applications, and video surveillance to name
a few. The approaches developed to address this problem are
data-driven. In the training phase, the NLVD systems receive
as input a video stream and an associated description, that
is a sentence in natural language. In the test phase, those
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Fig. 1: Natural Language Video Description systems are
trained on videos and associated captions. In the test phase,
these systems are expected to produce a relevant and syntac-
tically correct sentence describing unseen videos.

systems are expected to output a descriptive sentence given
a video (Fig. 1). The quality of the produced description is
difficult to assess objectively [12], [13]. Nevertheless, to obtain
a quantitative evaluation, the common practice is adopting
metrics designed for NLP tasks such as machine translation
and summarization, and for image description. The SotA
approaches obtained good results on the benchmark datasets in
terms of evaluation metrics. However, the human performance
in terms of the same metrics is still significantly higher (see
TABLE IV). Another issue with the current NLVD methods is
that both training and test are performed on the same dataset.
The recent work by Cascianelli et al. [14] outlined the poor
generalization capabilities of those algorithms when tested on
a new dataset. This may limit their practical applicability.

The recently growing interest in NLVD is accompanied
by intense activity of design and collection of new datasets
suitable for studying the problem. The most commonly used
datasets for NLVD are the Montreal Video Annotation dataset
(M-VAD) [15], the Max Plank Institute of Informatics Movie
Description dataset (MPII-MD) [16], the Microsoft Video
Description Corpus (MSVD) [17] and the Microsoft Research
- Video to Text dataset (MSR-VTT) [18]. These datasets are
generic in the depicted actions and featured actors in the
scene. The M-VAD and the MPII-MD contain snippets from
movies, which typically have high resolution. The MSVD and
the MSR-VTT, instead, include videos from YouTube, which
thus have a more varied quality. In this respect, these two
latter datasets seem more suitable for the study of NLVD
systems able to generalize. However, it is not guaranteed
that they capture the high variability of the video quality
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(e.g., color channels, resolution) in the problem. This is an
obstacle to the deploy of NLVD systems in applications such
as surveillance and service robotics, where the characteristics
of the camera and its position in the scene differ from scenario
to scenario. From a textual standpoint, in the M-VAD and
MPII-MD, the videos are paired with the associated sentence
from the script or the transcribed DVS track. Therefore, these
datasets lack in diversity of the possible description for each
video. This also has a drawback in the evaluation procedure
since using the standard evaluation metrics can be to some
extent misleading [19]. In the MSVD and MSR-VTT, there are
several descriptions for each video (on average 43 in the first
dataset, 20 in the other,) collected via the Amazon Mechanical
Turk (AMT) service. Since they better capture the different
ways to describe the same video, these two datasets seem more
suitable to study NLVD. However, not only SotA methods still
perform poorly on them, but also humans obtain not perfect
performance scores (see TABLE IV and TABLE VII). In the
sight of these considerations, this study is conducted using the
MSVD dataset.

It is well known that the quality of the training data is crucial
for the performance of NLVD algorithms. Therefore, it is
important to use the most reliable datasets, deeply analyse their
characteristics, and design the training input properly. Input
preprocessing is a well-known good practice for effectively
training machine learning algorithms [20]–[22]. For example,
via data augmentation the training set can be automatically
enlarged, thus providing more samples to the algorithm. This
reduces the overfitting and increases the generalization capa-
bility of the model. Further, via data cleansing outliers and
incorrect samples are removed, thus the distribution of the
dataset should better represent the problem. This reduces the
training time and increases the accuracy of the models. To the
best of our knowledge, the role of the input has been neglected
so far for NLVD systems. In our opinion, this aspect should be
deeply explored for two main reasons: to allow improving the
generalization capabilities and to gain further insights into the
problem and thus design NLVD algorithms more judiciously.
In the sight of this, the purpose of this work is to tackle
the following practical issues: 1) to quantify the performance
improvement due to input preprocessing; 2) to provide some
practical guidelines for a rational selection of suitable input
augmentation strategies.

For this study, the benchmark MSVD dataset is considered,
and a standard encoder-decoder NLVD system is designed. A
number of visual transformations are then applied to the videos
in the dataset. The selection of the most appropriate appear-
ance transformations for visual data augmentation is guided
both by a data-driven analysis based on t-SNE [23]. Further,
since the transformed videos have to preserve the original se-
mantic content, the augmentation strategies have been selected
among those that do not affect the relation between the video
and the associated description. In the experimentation, it was
observed that the MSVD dataset contains a relevant number
of syntactic and semantic errors. This suggested to (manually)
amend these inconsistencies producing an improved dataset,
called MSVD-v2. This new dataset is used in addition to
the original one in the experiments, to evaluate the effects of

training the NLVD system with more consistent textual data.
The remainder of the paper is organized as follows. In

Section II the related work is overviewed. In Section III the
poposed approach is explained. In Section IV the result of an
extensive experimental study are reported and discussed. In
Section V the conclusions are traced.

II. RELATED WORK

The NLVD problem is attracting the interest of many
research communities, from the Computer Vision [15] and
NLP [23] community to the Multimedia [10], [11], [24]
and Autonomous Robotics ones [14]. The early proposed
approaches to NLVD consist in addressing the task as template
filling [17], [23], [25] or description retrieval [11], [26].

The most recent and most popular approach to NLVD is
treating the problem as a machine translation one [27], from
a video sequence to a natural language sentence, using and
encoder-decoder architecture. The frames of the video are usu-
ally subsampled and processed by one or more Convolutional
Neural Network (ConvNet) to extract a visual descriptor for
the frame. Object recognition ConvNets and action recognition
ConvNets are commonly used and combined together to obtain
a good representation of the frames. Integrating the Optical
Flow is also a used strategy [28]. Another recently proposed
approach [29] consists in representing the video frames via a
sequential vector of locally aggregated descriptor (SeqVLAD)
layer, that combines a VLAD encoding and a recurrent-
convolutional network. The SeqVLAD framework aggregates
the intra-frame spatial information and the inter-frame motion
information. The frames descriptors are used to encode the
video. The econding can be obtained directly by mean pooling
the features, as done, e.g., in [30], or, more effectively, via
an RNN-based encoder. Typically, is used an LSTM-based
encoder. This can be a single LSTM [31], a bidirectional
LSTM (BiLSTM) [32], or a multilayer LSTM [33]. Using the
GRU in the encoder is less common [14]. The video encoding
is then fed to the sentence decoder together with the ground
truth sentence, word-by-word. The words in the ground truth
sentences are used to form a vocabulary for the dataset. The
words in the caption are represented as vectors in a Word
Embedding (WE) [34], [35]. The WE is usually learned during
the training of the NLVD system [36], or in some cases is a
pretrained WE, as in [37]. The decoder is trained to predict the
probability of each word in the vocabulary to be the next one
in the sentence based on the video encoding and the previous
words in the sentence. At each step, the most probable word
is emitted, and the process stops when an End-Of-Sequence
(<EOS>) tag is emitted. The decoder is designed to be a
recurrent architecture. The LSTM is the preferred choice,
either as a single block [19] or in a multilayer LSTM-based
architecture [28]. Some works [14], [33], [38] employ the GRU
as the main block of the decoder.

To improve the performance, attention mechanisms are
employed at different points of the encoder-decoder system. In
particular, at each word generation step, the decoder takes as
input the video features weighted according to their relevance
to the next word, based on the previously emitted words
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[31], [32], [38], [39]. With the same principle, in [40] the
attention mechanism is applied to the mean-pooled features
from a predefined number of objects tracklets in the video.
In [41], the textual information is used to select Regions-
of-Interest (ROIs) in the video frames, whose descriptors
are combined with those of the global frame in a Dual
Memory Recurrent Model. An alternative strategy to combine
visual and textual information is reshaping the feature vectors
into circulant matrices and combining them to extract the
multimodal relation among the two different modalities [42],
or builnding multimodal matching tensor of sequential data
[43]. The attention mechanism can be implemented as an
additional layer in the encoder-decoder architecture or can be
integrated into the gating strategy of the decoder, as done in
[10]. Recent trends include training multitask NLVD models
[44], [45], using a reinforcement-learning framework [46],
[47], or a cycle learning framework [48].

Devising a SotA NLVD system is beyond the scope of this
paper. Here, the focus is on the input to these systems and the
effects of its preprocessing on the NLVD performance. The
study is conducted considering a simple yet effective NLVD
encoder-decoder architecture.

a) Input Preprocessing: Data-driven approaches, such as
Deep Learning-based ones, heavily depend on the quality of
the training data, in terms of effectiveness, achieved represen-
tation power, and generalization capability. For this reason,
attention is usually put on properly preprocessing the input
to those algorithms [21]. Data augmentation at the visual
level is a well-known strategy to improve the performance
of algorithms for many Computer Vision tasks. Emblematic is
the case of [49], where the generalization capabilities of the
AlexNet ConvNet increased by training the model on altered
images. To be beneficial for the training, the applied alterations
should be carefully designed to capture the characteristics of
the data of the problem. In this work, it is proposed for the first
time visual data augmentation for NLVD, taking into account
the characteristics of the videos captured by the camera in
various application scenarios, and maintaining the relation
with the associated descriptions.

In the recent work in [50], it is presented style augmentation
as a novel strategy to perform visual data augmentation ex-
ploiting a style transfer network [51]. In particular, the texture,
contrast, colour and illumination of the image is altered,
but shapes and semantic content are preserved. This strategy
has been found effective for improving the performance on
classification tasks, domain transfer and depth estimation.
Style transfer via neural networks was introduced by Gatys
et al.in [52], and many other works followed this approach
for transforming images with the style of paintings [51], [53],
[54] or other photorealistic images taken under completely
different conditions [55]. The content representation and the
style representation of the input image are extracted from a
pre-trained ConvNet. In particular, the content is represented
by the feature responses in higher layers, and the style is rep-
resented by the feature correlations of multiple lower layers.
Content and style are modelled by two separate terms of the
loss function, minimized to synthesise the new image having
the desired style and content. Following the novel approach

of [50], in this work style augmentation is tested for NLVD.
In the NLP literature, data augmentation has been proposed

to enlarge the training corpora automatically. For example,
the authors of [56] performed textual data augmentation by
replacing words with their synonyms from WordNet [57] for
ConvNet-based models for ontology classification, sentiment
analysis, and text categorization. In [58] the focus was on
Natural Language Normalization and it was addressed the
problem of small datasets for that. The authors trained a ma-
chine translation architecture on a small normalization dataset
and translated in an unnormalized form a bigger corpus of
standard text. With this, the authors were able to augment the
small text normalization datasets. In [59], data augmentation
for machine translation was performed, targeting rare words.
The authors trained an LSTM language model to alter both
source and target sentences in a parallel corpus. This way, they
maintained the relation between the two sentences in the two
languages. Doing the same for NLVD is not straightforward
because one of the two ”languages” is visual. Few works
on NLVD operate at input level. In [40] data augmentation
is proposed at the sentence level. The authors proposed to
enrich the sentence part of the MSR-VTT with sentences from
the MSVD. These sentences are selected based on the visual
similarity between the associated videos in the two datasets.
However, once included in the MSR-VTT, the sentences are
paired with fake videos, i.e., all-zeros vectors. Thus, this
approach does not maintain the relation between video and
text. In this paper, a new version of a benchmark dataset
is presented. The sentences associated with the videos have
been manually checked and corrected in case of errors, thus
maintaining their semantic relatedness to the videos.

III. PROPOSED APPROACH

To study the role of the input in the NLVD problem a
basic encoder-decoder architecture is designed, and a standard
benchmark dataset, namely the MSVD [17], isn considered.
In this section, it is described the NLVD system, the video
augmentation strategy, and the text checking procedure that
led to the amended version of the dataset.

First of all, it is instructive to briefly overview the standard
evaluation metrics used for NLVD systems and throughout
this study to guide the design choices. These metrics are:
BLEU [60], in its 4-gram variant; ROUGE [61] in its Longest
Common Subsequence (LCS) variant; METEOR [62]; CIDEr
[12].

Call n-gram a sequence of n consecutive words. Given a
candidate sentence A and a reference sentence B to compare:
• The ratio of the number of n-grams in A that are mapped

to n-grams in B to the total number of n-grams in A is
the n-gram precision.

• The ratio of the number of n-grams in A that are mapped
to n-grams in B to the total number of n-grams in B is
the n-gram recall.

BLEU is a precision-oriented metric designed for machine
translation evaluation. To obtain the score, n-gram precision
is calculated considering n-grams up to length four. BLEU
correlates well with human judgement on the quality of the
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translation when evaluated on the entire test set, but poorly at
the sentence level.

ROUGE is a recall-oriented metric designed for summa-
rization evaluation. It is based on the idea that a candidate
summary should ideally overlap the reference summary. This
metric has three variants, depending on the sentences compar-
ison strategy adopted. In the NLVD literature, it is used the
variant that considers the longest common sequence (LCS),
called ROUGEL. All ROUGE variants correlate well with
human judgement.

METEOR is a precision and recall-based MT evaluation
metric. For its computation, unigrams in the candidate and
reference sentences are matched based on their exact form,
i.e., if the unigrams are the same word, stemmed form, i.e.,
if the unigrams have the same root, and meaning, i.e., , if
the unigrams are synonyms. Then, unigram precision and
unigram recall are calculated based on the found matches,
and the F-mean is obtained, weighing the recall more than the
precision. In addition, a multiplicative factor is used to reward
identically ordered contiguous matched unigrams. METEOR
correlates better than unigram precision, unigram recall and
their harmonic combination, with human judgement also at
the sentence level.

CIDEr is a metric designed to assess the quality of the
description of an image. It is based on the cosine similarity
between n-grams in the candidate description and in the set of
reference descriptions associated to the image. Each n-gram
is weighted using a Term Frequency-Inverse Document Fre-
quency (TF-IDF) strategy. This metric is designed to correlate
well with human judgement on the image description quality,
thus is particularly suitable for the task of NLVD.

The possible values for all the above metrics span from 0 to
1. For all but CIDEr, these are reported using values from 0 to
100. The values of the CIDEr metric are reported between 0
and 1000. This is done to make the CIDEr values of the same
order of magnitude as those of the other metrics. In fact, even
SotA approaches obtain very low scores in terms of the CIDEr
metric.

A. Basic Encoder-Decoder NLVD System

Outperforming the SotA is beyond the scope of this paper,
thus a simple yet effective encoder-decoder architecture is
designed and used. This helps in better highlighting the effects
of the input preprocessing on the performance. Its pictorial
representation is in Fig. 2. In the following, the model is
referred to as Basic Encoder-Decoder Description System
(BEDDS).

The video frames are sampled one every five. On the
sampled frames, the output of the last fully connected layer of
the ResNet50 [63] and the C3D [64] ConvNets is computed.
The choice of these two SotA ConvNets is the result of a
preliminary ablation study and confirms the results reported,
e.g., in [28], [48] on the benefits of using very deep object
recognition ConvNets and including the temporal information
either via action recognition ConvNets or Optical Flow. This
allows capturing both the appearance and the movement in
the frame. In this study, it has been used ResNet50 instead

B4 RL M C
BEDDS (VGG16) + WE + VE 41.5 66.8 30.4 60.7
BEDDS (VGG16) + WE 41.2 67.0 30.9 57.1
BEDDS (VGG16) + WE - GRU enc. 41.9 67.5 30.6 54.1
BEDDS (ResNet50+C3D) + WE 45.0 69.2 32.3 66.7
BEDDS (ResNet50+C3D) + WE - GRU enc. 43.9 69.1 32.9 69.9
BEDDS (ResNet50+C3D) + GloVe finetuned 43.6 69.0 32.3 69.9
BEDDS (used for the study) 45.1 69.4 32.9 70.0

TABLE I: Preliminary ablation study on the encoder-decoder
architecture used for this study on the MSVD. B4 stands for
BLEU4, RL for ROUGEL, M for METEOR, and C for CIDEr.
Bold indicates the best performance.

of its deeper variants to limit the computational cost of the
experiments. Note that for the C3D vector it is considered
a sliding window centered in the sampled frame containing
16 frames. The outputs of the ConvNets are concatenated to
form the feature vector x∗ describing the frame. This vector
is 2048+4096-dimensional. As a result, the input video is
represented by the sequence of feature vectors describing its
N frames (x0, x1, ..., xN ). Usually, in the NLVD literature,
the visual feature vectors are mapped in a lower dimensional
space via a learnt linear transformation (VE). In the NLVD
architecture used for this study, it has been decided not to
perform this mapping operation in the sight of the preliminary
study whose results are reported in TABLE I.

The sentence words are converted to lower-case, and the
punctuation is removed. The Begin-Of-Sequence (<BOS>)
and the <EOS> tags are prepended and appended respectively
to the sentence. Afterwards, the so preprocessed sentence is
tokenized, and the tokens form the dataset vocabulary D. Some
SotA NLVD approaches include in the vocabulary only those
words that appear in the dataset with a minimum frequency.
For this study, it is decided to include all the words in the
vocabulary to exclude the effects of the additional minimum
frequency hyperparameter on the performance. The words in
the dataset are represented using the 300-dimensional GloVe
[34], [35] WE, pre-trained on a six billion words corpus. In
many SotA architectures the WE is learned from scratch or a
pretrained WE is finetuned during the training of the NLVD
system. In this study, all these strategies for the WE have
been tested, and the pretrained GloVe WE led to the best
performance (see TABLE I.) In addition, with this choice, the
overall model has fewer parameters to train. Note that in case
a word in the dataset has not a corresponding vector in the
GloVe embedding, a 300-dimensional random valued vector
is assigned to it. In general, such words are either proper
nouns, typos or very rare words. In fact, their amount decreases
from ∼2600 to ∼130 after the textual data cleansing procedure
described in III-C. As a result, the input sentence is represented
by the sequence of embedding vectors corresponding to its L
words (y0, y1, ..., yL).

The frames feature vectors are fed, one at a time, to the
encoder LSTM [65]. Using the LSTM as the main block of
the encoder in the NLVD systems is a common practice. In
the case of this study, the choice was guided by a preliminary
study in which the LSTM and the GRU have been compared as
main block of the encoder. The study (see TABLE I) confirmed
the results of [14] in that the two blocks are equivalent in terms
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Fig. 2: Architecture of the encoder-decoder model used in this study. Recurrent layers are depicted as unfolded graphs for
explanatory purpose. The ResNet50 and C3D ConvNets extracts features from the video frames, which are the input to the
LSTM encoder. The final state of the encoder and the GloVe embedding of the words in the caption are the input to the GRU
decoder, which generates the output description one word at a time until it emits the <EOS> tag.

of overall performance. Although GRU has fewer parameters,
for this work it is decided to use an LSTM-based encoder,
because this is the common strategy in the NLVD literature.
The LSTM is a Deep-RNN able to handle both long and
short-term temporal dependencies between serial data. It has
an inner memory cell cn and a gating strategy to update
the memory cell value and produce the output he

n, based on
the current input xn, and the previous state cn−1 and output
he
n−1. In particular, the new memory cell value is obtained

by combining the previous value, multiplied by the forget
gate fn, and a candidate new state c̃n, multiplied by the input
gate in. This is to modulate how much to forget the previous
value, and how much to update the current value with the new
information. The output is obtained by multiplying the current
memory cell with the output gate, that modulates how much
memory to expose for the output. More formally, the LSTM
used as the encoder in this study is defined by the following
equations (1)-(6).

fn = σ(Wfxn + Ufhe
n−1 + bf ) (1)

in = σ(Wixn + Uihe
n−1 + bi) (2)

on = σ(Woxn + Uohe
n−1 + bo) (3)

c̃n = tanh(Wcxn + Uche
n−1 + bc) (4)

cn = fn � cn−1 + in � c̃n (5)

he
n = on � tanh(cn) (6)

where the W∗s, the U∗s, and b∗s are learnable weight matrices
and bias vectors, σ is the sigmoid function, tanh is the hy-
perbolic tangent function, and � is the element-wise product.

The last output of the encoder, which represents the en-
tire video, is passed to the decoder as its first state, i.e.,
he
N = hd

0
.
= v. The first input to the decoder is the WE of

the <BOS> token, the subsequent inputs are the WE of the
words in the sentence, which terminates with the WE of the
<EOS> token. In this work, the decoder is a GRU [66]. The
GRU is a more recent Deep-RNN, able to deal with both long
and short-term time dependencies between the elements in a
sequence. Different from the LSTM, it has not a memory cell,
and its output corresponds to its inner state hd

l . Similar to the

LSTM, the state is calculated via a gating strategy using the
current input yl and the previous state hd

l−1. First, a candidate
state h̃

d

l is computed from the current input and the previous
state, multiplied by the reset gate rl. This gate controls how
much of the old state to forget in the candidate new state.
Afterwards, the state is updated, also obtaining the output.
To this end, the previous state and current candidate state are
combined after being multiplied by the update gate zl. This
gate controls how much of the old state to maintain and how
much of the current candidate state to use in the new state.
More formally, the GRU used as the decoder in this study is
defined by the following equations (7)-(10).

rl = σ(Wryl + Urhd
l−1 + br) (7)

zl = σ(Wzyl + Uzhd
l−1 + bz) (8)

h̃
d

l = tanh(Whyl + Uh(rl � hd
l−1) + bh) (9)

hd
l = (1− zl)� hd

l−1 + zl � h̃
d

l (10)

where the W∗s, the U∗s, and b∗s are learnable weight matrices
and bias vectors.

At each step, the decoder outputs the state hd
l . This is

multiplied by a weight matrix WD to obtain the output vector
ŷl. From this, the output word is selected from the vocabulary
using the softmax function, that models the probability that
the output word is the next one in the description, i.e., :

Pr(ŷl | v, y0, y1, ..., yl−1) ∼
eŷl∑

y∈D
ey

(11)

In the training phase, the objective is to maximize the log-
likelihood of the words over the sentence, i.e.,

max
W

L∑
l=1

logPr(ŷl | v, y0, y1, ..., yl−1) (12)

where W denotes all the parameters of the model.
In the test phase, the input to the GRU decoder at each step

is the previous word emitted, and the decoding process stops
automatically when the <EOS> token is emitted as the most
probable token.
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Training videos Training samples B4 RL M C
200 8182 33.0 63.7 27.6 36.3
400 16221 35.4 65.6 29.3 48.7
600 24599 41.6 66.3 29.6 52.4
800 32606 42.0 68.0 31.1 58.4

1000 41035 44.8 69.2 32.5 68.1
1200 49158 45.1 69.4 32.9 70.0

TABLE II: BEDDS model performance on the MSVD depend-
ing on the number of training videos. B4 stands for BLEU4,
RL for ROUGEL, M for METEOR, and C for CIDEr. Bold
indicates the best performance.

B. Data Augmentation to Study the Role of the Visual Input

For the training of Deep Neural Networks, the availability of
a large number of training samples is critical. NLVD systems
are no exception, as it can be read from TABLE II. This is
a first reason to perform data augmentation for enlarging the
training set via videos alteration. In addition, these systems
lack in the generalization capability, as observed from [14].

In this work, to study the generalization capabilities and
the performance of the designed NLVD system under not
ideal characteristics of the visual input, it is proposed to apply
alterations to the videos in the MSVD that could reflect some
operating conditions of cameras in real-world scenarios. In
fact, when the video captioning system is used in a specific
application context (e.g., for a greyscale surveillance camera
placed above the monitored scene) some considerations on the
characteristics of the images can be traced (the images will be
greyscaled, keystone distorted, possibly blurred, occasionally
very dark or very bright, etc.) According to those considera-
tions, altered videos can be included in the dataset used for
training or fine-tuning the captioning system.

The transformations applied in this study are the following:
• Grayscale conversion, to model grayscale cameras, which

are largely used e.g., for surveillance and robotics appli-
cations.

• Gaussian blur, to model the occasional out-of-focus op-
erating condition.

• Keystone distortion, to model the not optimal position
of the camera in the scene. In fact, e.g., flying drones
and surveillance cameras are usually above the scene,
while e.g., small terrestrial robots, kids, or users seated
underneath a stage are below the scene. In this work, this
distortion has been implemented using the perspective
transform.

• Brightness enhancement and reduction, to model the
different illumination conditions that may be encountered
in the application scenario.

• Salt & Pepper noise, to generally represent low-quality
images from cheap cameras.

Each of them is applied, to different degrees of severity, to all
the videos on the MSVD. Exemplar applied transformations
are reported in Fig. 3.

In addition, the videos have been transformed in the style
of some artistic paintings. This was motivated by the fact that
the strategy to perform data augmentation via style transfer
has been found beneficial for many Computer Vision tasks

[50]. In this study, the effectiveness of style augmentation for
NLVD is investigated. In particular, the approach of [67] has
been adopted to transform the videos directly. The applied
approach builds on the style transformation network in [53]
and uses the instance normalization proposed in [54] instead
of batch normalization. The artistic styles selected are those of
Pablo Picasso’s ’La Muse’, Leonid Afremov’s ’Rain Princess’,
Edvard Munch’s ’The Scream’, Francis Picabia’s ’Udnie’,
Katsushika Hokusai’s ’The Great Wave off Kanagawa’, and
William Turner’s ’The Wreck of a Transport Ship’. Some
examples are reported in Fig. 4.

The applied alterations, either classical or artistic, do not
modify the semantic content of the video. In fact, when
selecting the transformations, those that would have affected
the semantic content of the video have not been considered.
For example, cropping, which is a typically applied visual data
augmentation strategy, has not been considered to avoid the
risk of cropping out something described in the caption.

C. Data Cleansing to Study the Role of the Textual Input

Providing high-quality training sentences to NLVD models
is critical to achieving good performance. Among the available
datasets for studying NLVD, in this study the popular MSVD
[17] is adopted. This is the English portion of the dataset
presented by Chen and Dolan [68] for paraphrase evaluation.
The authors asked AMT workers to describe with a complete,
grammatically-correct sentence a short segment of various
video clips from YouTube, focussing on the main actor and
action depicted. The annotators had the option to watch the
entire clip or only the segment to describe, with or without the
audio, and could also choose the language for the description.
In case English was not the native language of the annotator,
the suggestion was given to use the Google translation service.
These aspects made possible the collection of low-quality
descriptions. Therefore, the authors organized the annotation
process in two tasks to describe the same videos. Each
annotator performed the first task. According to the quality
of the English descriptions provided during the first task, the
authors manually granted the best annotators with the access
to the second task. Finally, however, the resulting dataset
collected the descriptions from both the tasks: ∼50k from the
first task and ∼30k from the second task.

Despite the instructions and the quality assessment proce-
dure, the English portion of the MSVD contains syntactically
and semantically incorrect descriptions. An example is re-
ported in Fig. 5. Therefore, for this work, a task involving 21
users has been prepared, in which it has been asked to the users
to check and correct all the captions of the MSVD. Note that
simply removing the sentences with errors would have reduced
the performance, as can be observed from TABLE III. For this
reason, it has been preferred to amend the errors. Each caption
correction has been double checked. For the task, four types
of errors have been defined, and the annotators had to find
and correct them. The types of errors, ranked based on their
severity, are:

1. unsuitability, i.e., the sentence has no meaning, is ill-
formulated, or in general, does not respect the instructions
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3: Example of visual alterations applied to the training videos in the MSVD. 3a is an original image from the video. 3b is
the grayscale converted image. 3c is the blurred image. 3d is the image with applied gaussian noise (salt and pepper noise). 3e
and 3f are the image with two keystone distortions applied. 3g is the brightness reduced image. 3h is the brightness enhanced
image.

(a)

(b) (c) (d)

(e) (f) (g)

Fig. 4: Example of visual style transfer applied to the training videos in the MSVD. 4a is an original image from the video.
4b is the image in the style of the Picasso’s painting ’La Muse’. 4c is the image in the style of the Afremov’s painting ’Rain
Princess’. 4d is the image in the style of the Munch’s painting ’The Scream’. 4e is the image in the style of the Picabia’s
painting ’Udnie’. 4f is the image in the style of the Hokusai’s painting ’The Great Wave off Kanagawa’. 4g is the image in
the style of the Turner’s painting ’The Wreck of a Transport Ship’.

given in the original task of [68]. These sentences have
been replaced with other correct descriptions of the same
video.

2. hallucination, i.e., the sentence describes actors or actions
or objects that do not appear in the video. These errors
have been corrected double-checking the video.

3. syntactic, i.e., the sentence contains a grammatical error
or a typo. These errors have been amended.

4. proper noun, i.e., the sentence contains a proper noun,
which cannot be inferred by the video but comes from
the experience of the annotator. The proper nouns have
been removed or replaced with a common one.

In the test subset, the annotators labelled the errors in

Fig. 5: Examples of captions with errors associated with a
video in the MSVD.
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Training captions
per video Training samples B4 RL M C

1 1200 10.9 39.1 14.7 84.5
5 6000 29.8 56.7 24.1 84.7
10 12000 35.3 61.2 26.9 78.9
∼43 49158 45.1 69.4 32.9 70.0

TABLE III: BEDDS model performance on the MSVD de-
pending on the number of training captions per video. B4

stands for BLEU4, RL for ROUGEL, M for METEOR, and
C for CIDEr. Bold indicates the best performance.

B4 RL M C
MSVD 60.10±6.49 77.52±5.27 43.61±3.59 124.30±20.54

MSVD-v2 65.40±4.60 81.93±2.70 47.45±1.72 148.64±16.75

TABLE IV: Human performance on the MSVD in its original
version from [17], [68] and checked version from this work,
MSVD-v2. B4 stands for BLEU4, RL for ROUGEL, M
for METEOR, and C for CIDEr. Bold indicates the best
performance.

addition to correcting them. In case of multiple errors, the
annotators labelled the caption giving priority to the most
severe type of error. From this process, it emerged that the
24.62% of the captions in the test set contained one or more of
the errors just described. The 49.20% of them had syntactical
errors, 27.10% were unsuitable descriptions for the associated
video, the 12.18% contained hallucinations, and the 11.52%
proper nouns.

To gain insights into the MSVD, both the original one from
[17], [68] and the one obtained for this study, referred to as
MSVD-v2, the average human performance has been mea-
sured as follows. For each video, a ground truth sentence has
been considered the predicted description, and the performance
scores have been calculated similarly to what done for the
automatic NLVD models. This procedure has been repeated
23 times since each video in the test subset of the MSVD
is associated with at least 23 captions. Finally, the mean and
standard deviation of the scores have been calculated. The
human performance changes after checking the text part of the
dataset as reported in TABLE IV. In particular, the mean value
increases for all the scores and the variance decreases. This
is no surprise considering the high number of detected and
amended errors. In fact, the considered metrics are based on
the similarity of words and groups of words in the compared
sentences, and the dissimilarity due to the errors has been
removed (or significantly reduced.) The values of the scores
are not perfect because of the natural diversity in the possible
ways to describe each video.

The obtained MSVD-v2 dataset is available online1.

IV. EXPERIMENTS AND RESULTS

In this section, the implementation details of the experi-
mental setup used in this study are reported, and the obtained
results are presented and discussed. The BEDDS model de-
scribed in III-A has been used as the baseline for observing

1http://sira.diei.unipg.it/supplementary/input4nlvd2018/

the effects of the visual data augmentation and textual data
cleansing preprocessing steps.

A. Implementation Details

1) Architecture Details: The dimension of the hidden state
of the Encoder LSTM and GRU and the Decoder GRU has
been set to 1000. When used, the learnt WE maps the words in
a 300-dimensional space, and the VE maps the feature vectors
in a 500-dimensional space. The vocabulary D has been built
using the training and validation subsets of either the MSVD
and MSVD-v2 datasets. In the first case, it consists of 10 160
words, in the second case, of 6428 words.

For the training, the Stochastic Gradient Descent algorithm
has been employed, with learning rate set to 0.1 and kept
constant. The batch size has been set to 64 samples. As the
early stopping criterion, the METEOR score on the validation
set has been used (similar to what done, e.g., in [48], [69].)
In particular, the training has been stopped if the value of the
METEOR score did not increase for ten consecutive epochs. In
the test phase, the best model in terms of the METEOR score
has been used. On average, the training ends in ∼40 epochs
for the models trained the original dataset, ∼20 for the style
augmented dataset, and ∼15 for the classically augmented
dataset. This resulted respectively in ∼3h, ∼24h, and ∼48h
for training the PyTorch implementation of the models on an
NVIDIA Titan XP graphic card.

2) Visual Data Augmentation Details: Additional to the
transformations described in V, in the test phase only it
has been applied vertical flipping and contrast reduction and
enhancement, with multiplicative factors 2 and 0.5 respec-
tively. Apart from style transfer, vertical flipping and greyscale
conversion, for all the applied transformation a parameter can
be set to vary their severity. Different values of the parameters
have been chosen for the transformations to the videos in the
training set, and others for the tranformations to the test set
only. In particular:
• The kernel size ρ of the gaussian blur has been set to 12,

15, and 17 in training phase, and 5, 7, 10, and 20 in test
phase only.

• The ratio between the top width wtop and the bottom
width wbottom of the image for the keystone distortion
has been set to 5/2, 3, 2/5, and 1/3 in the training phase,
and 3/2, 2, 2/3, and 1/2 in the test phase only.

• The enhancement and reduction factors for the brightness
alteration have been set respectively to 2 and 0.2 in the
training phase, and to 5, 7, and 0.5, 0.7 in the test phase
only.

• The probability p that a pixel is affected by the Salt &
Pepper noise has been set to 0.01, 0.05, and 0.1 in the
training phase, and to 0.5, 0.7 in the test phase only.

B. Results

1) Effects of Visual Data Augmentation: The performance
of the BEDDS model trained on the original training videos
of the MSVD has been evaluated on the MSVD original
test videos, and on the same videos altered as explained in
IV-A2, to evaluate its generalization capability with respect
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to different visual conditions. The performance decreases
proportionally with the intensity of the various transformations
applied. This indicates that the model lacks robustness to
unseen appearances of the scene.

The BEDDS model has been trained also on an augmented
MSVD, obtained as explained in III-B and IV-A2. The re-
sulting models are referred to as BEDDS-VA, in case of
training on classically altered videos, and BEDDS-ST in case
of training on style transformed videos. The comparison of the
three models on the MSVD dataset is reported in TABLE V
and in TABLE VI.

When tested on the original test videos of the MSVD,
the performance the BEDDS-VA model is inferior to that
of the BEDDS model trained on the original training videos
only. However, on the test videos altered with the same
transformations as in the training set, the BEDDS-VA model
outperforms the BEDDS model in terms of all the metrics.
Also for the BEDDS-VA model, the performance decreases
proportionally with the intensity of the various transformations
applied, but the performance drop is smaller than that of
the BEDDS model trained on the original videos only. On
test videos altered with unseen transformations, including
style transfer, the BEDDS-VA model outperforms the BEDDS
model in the majority of cases. This is particularly true for
the performance in terms of the CIDEr metric, which is the
one that by design better captures the human consensus on
the quality of image descriptions. The cases in which the
performance of the BEDDS model are comparable or superior
to that of the BEDDS-VA model are those of transformations
that do not significantly alter the appearance of the video,
such as vertical flipping and small keystone distortion. This
suggests that the BEDDS model is biased on the appearance
of the training videos.

The BEDDS-ST model outperforms the BEDDS and
BEDDS-VA models when tested on the style transformed
videos and on severe Salt & Pepper noise alteration with
probability of altered pixel set equals to 0.07. However, in
the majority of the other cases, its performance is inferior to
that of the other models. This suggests that, different from
other Computer Vision tasks as classification under domain
shift and depth estimation, performing style transfer for visual
data augmentation is not effective for the NLVD task.

Some intuitions on this behaviour can be gained observing
the data distribution obtained via the t-SNE analysis [70]
depicted in Fig. 6. The points represent the ResNet50 features
extracted from the fifth frame of each video in the MSVD
dataset, both original and altered as described in III-B. Recall
that the ResNet50 features capture the appearance of the
frames. From the t-SNE plots, it can be observed that the
style transformed frames form separate clusters, which do not
overlap with the other data points. Some of the classically
altered frames are grouped together, e.g., those altered via Salt
& Pepper noise, severe Gaussian blur, and brightness variation.
In such cases, the BEDDS-VA model outperforms the BEDDS
model. The transformations that do not severely alter the
appearance of the videos result in points that are distributed
as those corresponding to the original frames. Therefore, in
such cases, the BEDDS model performs comparably or better

than the BEDDS-VA model. In applicative scenarios, the
same analysis can be performed on videos captured under the
specific operating conditions. This can guide the selection of
the most appropriate visual transformations to apply to videos
to include in the dataset for training or finetuning the NLVD
system.

Furthermore, the performance of the BEDDS, BEDDS-VA,
and BEDDS-ST models have been tested without retraining on
the MSR-VTT dataset. This dataset has characteristics similar
to those of the MSVD dataset, in terms of visual quality
of the videos and number and quality of the captions, since
both contain videos from YouTube with multiple captions per
videos, collected via the AMT service. The results of this
comparison are reported in TABLE VII. The performance of
the three models are comparable, and all below the human
performance on the same dataset, calculated as done for the
MSVD dataset in III-C.

These results suggest that with the visual data augmentation
preprocessing step the model can deal better with appearance
changes. However, the recently proposed style augmentation
approach results less effective than classical alterations in the
context of NLVD. In addition, the robustness with respect to
appearance conditions of specific applications can be further
increased by training the NLVD models on videos altered
accordingly.

2) Effects of Textual Data Cleansing: The BEDDS model
has been trained on either the MSVD and the MSVD-v2
dataset, obtained as explained in III-C. The resulting model
is referred to as BEDDS-TC. Both the variants have been
tested on the two datasets. The BEDDS-TC model outperforms
the BEDDS model on both datasets in terms of all metrics
but CIDEr on the MSVD (69.8 for BEDDS-TC and 70.0
for BEDDS.) The results of this study are reported in TA-
BLE VIII. The same trend can be observed also when testing
on the MSR-VTT dataset, as observed from TABLE VII.

Considering only the performance gain obtained in terms of
evaluation metrics is limiting and can be misleading for inves-
tigating the effects of training with high-quality textual data.
Therefore, the descriptions produced by the two models have
been compared further, from a qualitative point of view. The
complete corpus of results is available online2. As expected,
there are cases where one model outputs a correct description
while the other a completely wrong one. Nevertheless, both the
BEDDS-TC and the BEDDS models produce correct detailed
descriptions for the same videos. It is interesting to focus
on the cases where the BEDDS model outputs an erroneous
detailed description. Some examples are reported in Fig. 7 for
the MSVD dataset, and in Fig. 8 for the MSR-VTT dataset.
In such cases, the descriptions from the BEDDS-TC model
are more generic but still correct. However, metrics based on
n-gram similarity rather than semantic consistency, like those
used in the NLVD evaluation, cannot properly capture this
aspect. In addition, synonyms and hypernyms can be penalized
[71]. This can explain the little performance gain achieved with
textual data cleansing in terms of such metrics. In the sight of
this and of the considerations in III-C on the syntactic and se-

2http://sira.diei.unipg.it/supplementary/input4nlvd2018/
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BEDDS BEDDS-VA BEDDS-ST
Alteration B4 RL M C B4 RL M C B4 RL M C

In
B

E
D

D
S-

VA
Tr

ai
ni

ng
an

d
Te

st
Ph

as
e None (i.e., Original videos) 45.1 69.4 32.9 70.0 43.5 69.2 32.6 69.7 42.5 68.1 31.6 62.7

Greyscale Conversion 40.4 66.6 30.7 57.8 43.5 69.1 32.0 66.3 40.1 66.9 30.4 59.1
Gaussian Blur with ρ = 12 39.2 65.6 29.6 50.6 41.4 68.6 30.9 64.0 37.7 64.8 28.5 46.8
Gaussian Blur with ρ = 15 36.4 64.5 28.3 44.3 40.5 66.6 30.4 59.6 35.0 63.4 27.3 41.1
Gaussian Blur with ρ = 17 34.8 63.3 27.4 39.3 43.2 68.6 31.7 67.1 33.3 62.7 26.7 37.6

Keystone Distortion wtop/wbottom = 2/5 40.3 67.2 30.9 59.1 43.2 68.6 31.7 70.2 36.0 64.0 28.3 47.5
Keystone Distortion wtop/wbottom = 1/3 38.9 66.6 30.4 56.0 40.0 67.7 30.8 61.9 34.1 63.3 27.1 40.4
Keystone Distortion wtop/wbottom = 5/2 39.1 66.7 30.2 59.5 41.5 67.6 31.1 66.3 37.3 64.5 28.3 50.0
Keystone Distortion wtop/wbottom = 3 36.3 65.3 28.8 48.8 40.7 66.9 29.4 59.7 34.3 62.7 26.7 43.7

Brightness Reduction ×0.2 38.7 64.9 29.0 53.8 42.1 68.3 31.2 64.6 38.0 65.0 28.8 53.9
Brightness Enhancement ×2 39.2 67.1 30.5 57.3 42.0 67.8 31.2 64.0 37.3 65.3 29.2 54.0

Salt & Pepper noise with p = 0.01 26.5 59.9 24.3 36.3 40.4 66.6 31.0 62.6 33.7 62.8 27.1 43.2
Salt & Pepper noise with p = 0.05 22.7 58.7 23.1 26.4 39.2 65.9 30.0 54.6 30.5 61.5 25.6 32.8
Salt & Pepper noise with p = 0.1 22.9 58.7 23.1 23.8 38.0 65.4 29.4 53.2 28.2 59.9 24.5 29.3

In
Te

st
Ph

as
e

O
nl

y

Vertical Flipping 44.5 69.4 32.9 70.3 43.4 69.1 32.3 68.3 40.6 67.2 30.8 58.6
Gaussian Blur with ρ = 5 44.4 69.0 32.2 68.5 43.6 69.1 32.4 69.9 41.5 67.6 30.8 58.6
Gaussian Blur with ρ = 7 43.2 68.1 31.5 62.5 42.7 68.7 32.0 67.8 40.3 67.0 30.6 56.2

Gaussian Blur with ρ = 10 41.4 67.0 30.7 57.3 42.5 68.3 31.9 66.5 39.6 65.9 29.4 51.7
Gaussian Blur with ρ = 20 32.2 61.7 26.2 32.9 38.4 65.4 29.3 54.9 31.7 61.8 25.8 32.0

Keystone Distortion wtop/wbottom = 2/3 44.3 69.1 32.6 67.8 43.6 69.4 32.3 70.8 42.7 67.8 31.6 62.0
Keystone Distortion wtop/wbottom = 1/2 42.8 68.5 31.7 64.5 40.9 67.8 31.6 71.5 39.1 66.0 29.9 53.9
Keystone Distortion wtop/wbottom = 3/2 45.4 69.5 32.6 69.8 43.5 69.5 32.5 69.8 42.4 67.9 31.5 64.9
Keystone Distortion wtop/wbottom = 2 41.4 67.9 31.3 64.3 43.1 68.7 32.1 69.8 39.7 65.8 29.6 57.7

Brightness Reduction ×0.5 44.2 69.2 32.3 68.2 43.4 69.1 32.5 70.7 41.4 67.8 31.0 61.8
Brightness Reduction ×0.7 45.1 69.4 32.8 71.6 46.6 69.2 32.6 74.2 41.4 67.9 31.2 61.6

Brightness Enhancement ×5 24.0 57.7 23.1 29.1 27.1 59.2 24.4 33.3 25.2 57.4 23.2 26.8
Brightness Enhancement ×7 19.4 55.2 21.2 18.2 21.5 55.2 21.8 21.2 18.9 53.4 20.2 16.9

Salt & Pepper noise with p = 0.5 10.0 52.7 18.6 2.8 15.4 52.2 17.8 7.8 12.8 52.6 19.0 3.2
Salt & Pepper noise with p = 0.7 8.4 51.9 18.6 1.8 9.7 49.0 14.7 2.0 10.4 53.9 21.0 2.1

Contrast Reduction ×0.5 44.0 68.5 31.8 64.7 42.8 69.0 31.9 68.1 42.3 67.8 31.2 62.4
Contrast Enhancement ×2 41.5 67.5 30.9 60.9 41.9 68.6 31.6 65.6 38.7 66.1 29.7 57.7

TABLE V: Performance of the BEDDS, BEDDS-VA, and BEDDS-ST models on differently altered test videos of the MSVD,
used both in training and test phase or in test phase only. B4 stands for BLEU4, RL for ROUGEL, M for METEOR, and C
for CIDEr. Bold indicates the best performance.

mantic errors in the MSVD, we believe that using the MSVD-
v2 dataset to train and test the NLVD algorithms is reasonable
because it contains better quality ground truth captions. This
is confirmed by the average human performance estimation on
the MSVD and MSVD-v2 datasets. As mentioned in III-C, its
mean value is higher on the amended dataset, and the variance
is smaller. Neither human performance can be perfect for this
task, due to its intrinsic subjectivity. However, the improved
performance after the textual data cleansing suggests that the
MSVD-v2 dataset represents a more reliable benchmark than
the MSVD for the NLVD task. Finally, the comparison of the
performance on original and the amended datasets highlights
the importance of the consistency of the textual component
when designing an NLVD system.

V. CONCLUSION

In this work, it has been presented a study to evaluate the
performance of NLVD systems in case the video input dataset
is augmented with transformed video derived from the original
ones applying common transformations. For this purpose,
extensive studies have been performed on the benchmark
MSVD dataset and on a refined version specifically amended

for this study (the MSVD-v2 dataset.) The experiments have
been carried out using a simple yet effective NLVD encoder-
decoder architecture.

The results of the analysis reveal that the visual data
augmentation generally provides improvements in terms of
robustness to appearance changes. In particular, considering
the CIDEr score, which by design correlates with the human
judgment on image description, the model trained on the
augmented videos obtains an average +4.5% performance
improvement with peaks up to +22.0% for severe Gaussian
blur, when tested on videos altered using a different set
of transformations compared to those used in the training
set. As expected, this improvement is more significant when
the NLVD model is tested on videos altered with the same
transformation used in the training set (+12.7% on average,
with peaks up to +29, 4% for severe alterations as keystone
distortion and Salt & Pepper noise.) This suggests that, when
applying the NLVD system in a real-world scenario, it is
beneficial to train or finetune the system with videos altered
according to the visual conditions typical of the specific
application. In this work, it has been shown that some insights
on the utility of the specific input transformations can be
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BEDDS BEDDS-VA BEDDS-ST
Style B4 RL M C B4 RL M C B4 RL M C

Original videos 45.1 69.4 32.9 70.0 43.5 69.2 32.6 69.7 42.5 68.1 31.6 62.7
Picasso’s La Muse 10.3 43.4 16.4 7.6 13.6 51.3 19.2 7.2 31.9 61.8 26.5 38.9

Afremov’s Rain Princess 18.5 51.1 19.9 20.6 13.9 48.2 19.2 12.4 34.8 63.3 26.8 44.0
Munch’s The Scream 27.9 60.5 25.5 36.9 27.8 60.5 25.4 38.5 38.9 65.8 29.6 54.4

Picabia’s Udnie 23.0 57.2 23.1 21.6 23.0 57.8 23.2 21.4 35.5 64.2 27.9 48.0
Hokusai’s The Great Wave off Kanagawa 22.9 57.9 22.8 24.6 24.2 58.4 24.1 26.9 38.8 65.5 29.1 50.8
Turner’s The Wreck of a Transport Ship 25.4 59.3 23.6 30.2 26.6 60.5 24.8 34.8 38.2 65.3 28.9 52.8

TABLE VI: Performance of the BEDDS, BEDDS-VA, and BEDDS-ST models on the test videos of the MSVD, transformed
in different artistic styles. B4 stands for BLEU4, RL for ROUGEL, M for METEOR, and C for CIDEr. Bold indicates the
best performance.
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Fig. 6: Distribution of the frames in the MSVD dataset, altered with classical alterations and style transfer. 6a contains the
points associated to the original frames and to all the altered frames. 6b contains the points associated to the original frames
and to the style transformed frames used for training the BEDDS-ST model. 6c contains the points associated to the original
frames and to the frames altered with the classical alterations in the training set of the BEDDS-VA model. 6d contains the
points associated to the original frames and to the altered frames used only for test.
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B4 RL M C
BEDDS 16.9 42.7 16.3 9.6

BEDDS-VA 16.9 42.2 16.0 9.0
BEDDS-ST 16.9 42.1 16.0 8.6
BEDDS-TC 17.5 43.0 16.5 9.3

Humans 23.4 ± 3.6 44.7 ± 1.2 23.5 ± 0.7 31.2 ± 1.6

TABLE VII: Performance of the BEDDS, BEDDS-VA, and
BEDDS-ST models on the original test videos of the MSR-
VTT. B4 stands for BLEU4, RL for ROUGEL, M for ME-
TEOR, and C for CIDEr. Bold indicates the best performance
of the models. For completeness, the human performance are
also reported.

B4 RL M C

MSVD
BEDDS 45.1 69.4 32.9 70.0

BEDDS-TC 45.8 70.1 33.1 69.8

MSVD-v2
BEDDS 44.6 69.2 32.6 68.7

BEDDS-TC 45.5 70.0 33.1 79.5

TABLE VIII: Performance of the BEDDS and BEDDS-TC
models on the two versions of the MSVD, original and
checked (MSVD-v2). B4 stands for BLEU4, RL for ROUGEL,
M for METEOR, and C for CIDEr. Bold indicates the best
performance.

gained using a t-SNE analysis. Specifically, the videos altered
via transformations that do not severely change the appearance
are distributed as the original videos, while those altered
with severe transformations (such as Salt & Pepper noise,
severe Gaussian blur and brightness variation) are grouped
in separate clusters. For those latter cases, data augmentation
brings to a significant improvement in the performance of
the NLVD system. Finally, it was observed that the BEDDS-
TC model, trained on the refined MSVD-v2 dataset, provides
more generic but correct captions, refelcted in a performance
improvement in terms of all the evaluation metrics.
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