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A B S T R A C T   

The Cancer Genome Atlas database offers the possibility of analyzing genome-wide expression RNA-Seq cancer 
data using paired counts, that is, studies where expression data are collected in pairs of normal and cancer cells, 
by taking samples from the same individual. Correlation of gene expression profiles is the most common analysis 
to study co-expression groups, which is used to find biological interpretation of -omics big data. The aim of the 
paper is threefold: firstly we show for the first time, the presence of a “regulation-correlation bias” in RNA-Seq 
paired expression data, that is an artifactual link between the expression status (up- or down-regulation) of a 
gene pair and the sign of the corresponding correlation coefficient. Secondly, we provide a statistical model able 
to theoretically explain the reasons for the presence of such a bias. Thirdly, we present a bias-removal algorithm, 
called SEaCorAl, able to effectively reduce bias effects and improve the biological significance of correlation 
analysis. Validation of the SEaCorAl algorithm is performed by showing a significant increase in the ability to 
detect biologically meaningful associations of positive correlations and a significant increase of the modularity of 
the resulting unbiased correlation network.   

1. Introduction 

The advent of RNA-seq studies has revolutionized the field of gene 
expression data analysis allowing a sequencing-based technology able to 
provide more precise and reliable quantification of relative RNA levels. 
Such new technology avoids many limitations of microarrays, such as 
the possibility of studying alternative splicing and isoform expression 
with low background noise and a much larger range of values [1]. Gene 
expression data are often used to detect differentially expressed genes 
between two conditions to obtain information on the genes that are 
involved in the biological process of interest. 

Recently, the importance of design studies where expression data are 
collected in pairs, e.g., in normal and cancer cells, by taking samples 
from the same individual, has been addressed in the relevant literature 
(see, for example [2], and the references cited therein). Noteworthy, The 
Cancer Genome Atlas database (TCGA) [3], among others, offers the 
possibility of analyzing genome-wide expression data (including miR-
NAs and other non-coding RNAs) using paired counts. The advantages 
are many and highly significant in biological terms: paired data allows 
to mitigate the effects of the high biological and technical noise and to 
better define a patient-specific gene expression profile (signature), 

potentially able to characterize the specific condition of a single patient 
by providing valuable information on the disease state and progression 
[4]. Moreover, it has been proved that paired data studies substantially 
increase the statistical power of the analysis [5]. 

Most importantly, a disease can be molecularly characterized with 
higher accuracy for every single individual by considering its “log-fold 
change” value along genes, that is the log2 of the ratio between 
expression values in cancer and in normal conditions. It is also worth 
noting that the use of log2-fold change values can effectively mitigate the 
bias caused by the compositional nature of RNA-seq data [6], which is 
another good reason to use paired data in gene expression analysis. 
Indeed, the disease-specific “gene expression profile” is at the root of 
precision medicine that, by integrating many sources of omics and 
clinical data such as the protein-protein interaction network [7], aims to 
provide a personalized treatment based on such specific molecular 
signature [8]. 

In many diverse research areas of life sciences like plant sciences, 
pharmacology, oncology, etc. a routine analysis is the study of changes 
in gene expression along different conditions. Such conditions include 
treatment groups [9], time series kinetics [10,11], cancer development 
[12], mutant analysis [13], stress response [14] and many others. Here 
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we focused on genome-wide gene expression data obtained by groups of 
patients in two conditions, like, for example, pre- and post-treatment or 
normal and transformed tissues (as in the TCGA database). The available 
data are usually organized in rows (genes) and columns (patients), in the 
two conditions under investigation. 

Correlation of gene expression profiles is probably the most common 
analysis to study co-expression [15] and it is usually computed using 
Pearson’s or Spearman’s coefficient on samples taken in several 
different conditions. It is worth noting that the choice of the appropriate 
correlation measure for the case of interest is a very important topic. For 
example, significant improvement of correlation (SIC) method has been 
successfully obtained by Iqbal et al. [16] for the identification of the 
effect of a drug on cell image. The construction of large gene 

co-expression networks [17] is a widely used data analysis technique 
[18–20] based on the ‘guilt-by-association’ assumption that a high 
(positive or negative) correlation value between pairs of gene expression 
profiles, may indicate the presence of a common underlying mechanism 
where genes are involved in the same biological process or function 
[21]. 

When performing correlation analysis, one must keep in mind a very 
important distinction between the case of comparing different organ-
isms in the same condition (e.g., patients having the same disease 
phenotype) and that of comparing different conditions for the same 
organism (e.g., the same cell line or tissue treated with different com-
pounds). In the first case, we expect the gene expression profile along 
genes for each patient in the same condition to be positively correlated, 

Fig. 1. Patients’ expression profiles are positively correlated. Distribution of the Pearson’s correlation between pairs of patients in the same pathological 
condition. Normal and cancer cells for: A) breast cancer (BRCA) B) colon adenocarcinoma (COAD) and C) renal clear cell carcinoma (KIRC). Data are taken from the 
TCGA database. 

Fig. 2. The correlation matrix heatmap shows a strong relationship between regulation (mean log-fold change) and correlation. A) The four heatmaps 
represent the Spearman correlation values between genes using three different normalization methods (FPKM, DESeq2, and edgeR) for breast cancer TCGA data and a 
randomized data matrix. Genes are arranged in the order of decreasing values of M2LFC, so that the first (upper) block represents the upregulated genes and the 
second (lower) block represents downregulated genes. The picture makes it clear that a strong pattern due to a relationship between M2LFC and correlation, is 
present. Pairs of up/up or down/down-regulated genes appear to be predominantly positively correlated, whilst pairs of up/down-regulated genes appear to be 
predominantly negatively correlated. This pattern is independent of the normalization method used for RNA-seq data (FPKM, DESeq2, and edgeR). B) The bar plots 
report the percentage of the six motifs for each of the four cases considered in panel A. The first three motifs account for about 80% of all the motifs for any 
normalization method. The comparison with the motif distribution of the randomized matrix case (bottom-right sub-panel) shows that the first three motifs account 
for 50% of all the motifs distribution. By contrast, the distribution in real data is dominated by the first three motifs. 
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since the underlying assumption is that there is a “typical” profile 
(molecular signature) for each specific disease phenotype [22] and that 
differences among individuals are mainly due to various sources of 
technical and biological inter-personal variation. By contrast, in the 
second case, we do not expect a particular sign for the correlation values 
between pairs of conditions, simply because the assumption is that a 
different response for each condition is awaited. In other words, when 
studying – as in our case – groups of patients having the same disease in 
two conditions (e.g., normal/cancer cells), we can assume the distribu-
tion of the correlation between pairs of patients in the same condition to 
be highly skewed toward positive values. Indeed, this is exactly the case 
in real data, as shown for the sake of illustration in Fig. 1, for three 
cancers gene expression values taken from the TCGA database. 

The identification of differentially expressed genes (DEGs), i.e., genes 
with a high and significant absolute value in the log2 fold change, and 
the finding of positively correlated subnetworks (often called “modules” 
[18]), provides valuable information on a biological process under study 
but from a very different perspective. DEGs are considered “relevant” 
under the assumption that “large” changes in gene expression, say from 
normal to cancer, might be good indicators of their active role in the 
biological process under investigation. By contrast, highly correlated 
groups of genes may – or may not – be highly expressed, since correla-
tion values depend exclusively on the shape – not on the magnitude – of 
the gene expression profile across different patients. In other words, 
correlation reveals biologically meaningful links among genes by 
exploiting the inherent interpersonal variability, whilst differential 
expression utility is based on the amplitude (as opposed to shape) of the 
gene expression value (typically the mean of the log2 fold changes). 
Having this important difference in mind, one may ask whether there is 
a specific relationship between correlation and differential expression 

(regulation). The general answer is no. As a matter of fact, it is 
straightforward to think of situations in which all possible combinations 
of up/down regulated and positive/negative correlated genes are 
conceivable. In other words, we cannot state a priori that expression and 
co-expression are linked and, therefore, we must assume in general that 
co-expression (usually measured by correlation) and expression levels of 
two generic genes are independent. Consequently, the presence of a link 
between the two is worth investigating from a biological perspective. 

As stated above, given the a priori independence of differential 
expression and correlation and, most importantly, their different inter-
pretation, it is very important to study them together to gain synergistic 
biological insight using their integration. Not surprisingly, the study of 
the relationship between correlation and expression has recently 
attracted some researchers [23–30]. 

As stated above, here we considered RNA-seq paired data and 
computed the log2-fold change of cancer vs. normal cells for each tran-
script and each patient. Moreover, we evaluated the relationship (if any) 
between the mean log2-fold change (ML2FC) of two given genes and 
their correlation values using the Spearman’s coefficient (details on the 
data and methods used in this analysis, normalization and pre- 
processing are reported in the “Methods” section), which is known to 
be robust to outlier presence and effective also for non-normal distri-
butions. A very simple analysis that can be readily performed is to 
consider, for example, the top 500 upregulated the top 500 down-
regulated genes and draw the heatmap of the log2-fold change (ratio) by 
sorting genes in order of decreasing ML2FC values. The resulting plots 
are reported in Fig. 2A. 

The heatmaps in the figure point towards the presence in the data of 
a large bias due to the strong relationship between the ML2FC of two 
genes and their correlation sign. Precisely, if the two given genes are 

Fig. 3. Differential expression is (a priori) independent of correlation. The six motifs M1-M6 of all possible combinations of up/down regulation and positive/ 
negative correlation are represented. Note that it is possible to uniquely classify each link of a correlation network and, therefore, an associated network decom-
position can be performed. By contrast, a node may belong to more than one motif. 
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both up- or both down-regulated, their correlation is likely to be posi-
tive. Otherwise, if they have an opposite regulation (one is up the other 
is down, or vice versa), a negative correlation is expected instead. We 
have called this property the “regulation-correlation bias”. Now, inevi-
tably the question arises whether this is a biological feature or an artifact 
of the data. Here, it is formulated for the first time the hypothesis that 
this is indeed an artifact, i.e., a bias in the data which is tightly related to 
the spurious correlation of ratios effect [31], identified by Karl Pearson 
since 1897 [32]. To support this interpretation, a mechanism that may 
generate this bias is presented here together with the SEaCorAl (biaS of 
rEgulAtion-CORrelation removAL) algorithm, able to significantly 
reduce such bias in RNA-seq paired data of patients’ groups. Finally, 
validation of the SEaCorAl algorithm is performed by showing a sig-
nificant increase in the ability to detect biologically meaningful associ-
ations of positive correlations and a significant increase of the 
modularity of the resulting unbiased correlation network. 

2. Methods 

In the previous introductory section, we discussed the properties of 
the correlation matrix resulting from RNA-seq paired data of groups of 
patients. The basic features described above can be summarized as fol-
lows: 1) patients’ profiles are positively correlated and 2) the correlation 

sign between pairs of genes is tightly linked to their gene expression 
status (up- or down-regulated), i.e., the regulation-correlation bias is 
present. The first is certainly a feature with strong biological roots. 
There it is widely agreed that the gene expression profile – although 
being an incomplete picture in time and space of the cell condition – is 
highly informative and specific of a given disease state. Indeed, as re-
ported by Ross et al. [22], gene expression of 60 cell lines and approx-
imately 8000 human genes were collected, and cell lines with common 
tissue of origin showed similar gene expression profiles. Interestingly, 
cell lines derived from non-small lung carcinoma and breast tumors 
were scattered across different branches of the dendrogram, suggesting a 
heterogeneous expression pattern [22]. From a broader perspective, 
molecular pathology is now become indispensable to inform complex 
disease diagnosis, prognosis, and therapeutic strategies in day-to-day 
clinical practice. For example, the use of next-generation sequencing 
technologies for molecular profiling is having a deep impact in virtually 
all fields of medical research where physicians are challenged with the 
complexity of data interpretation. 

As regards the second property, i.e., the regulation-correlation bias, 
here we support the hypothesis that it is the result of a bias in gene 
expression data, independent of the RNA-Seq normalization used (see 
Fig. 2A) and resulting in an artifactual relationship between regulation 
(ML2FC) and correlation. The correlation-regulation bias can be well 

Fig. 4. A toy story: the idealized mechanism of regulation-correlation bias formation. A) the panel shows the prototypical (reference) gene expression profile of 
the ML2FC using paired data, assuming to have three upregulated genes (positive ML2FC) and three downregulated genes (negative ML2FC). B) Panel B illustrates 
the building of an ideal patients’ group by aggregation, assuming that the resulting in silico patients have the same disease phenotype characterized by the profile 
depicted in panel A. By construction, the correlation between all pairs of patients is equal to one. C) An example of the mechanism producing the bias that affects the 
data: two patients profiles (columns) are multiplied by a positive constant value, say 2 for the first, and 0.5 for the second one. The effects of this multiplication of the 
entire column (patient) are to generate correlations between rows, positive values between up- or down-regulated genes, and negative values between up and down- 
regulated genes. D) The idealized data matrix is plotted on an x/y axis where patients are represented on the x-axis and ML2FC values are represented on the y-axis. 
The type of correlation among genes described above appears more clearly. E) The panel shows the resulting gene/gene correlation matrix where in position (i,j) the 
correlation value between gene i and gene j is present. The resulting symmetric correlation matrix pattern is the same as that observed in real data (see Fig. 2A). F) 
The correlation network: nodes are genes and the red color represents up-regulated genes, the blue color represents down-regulated genes and grey links represent 
negative correlations. 
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described using a 2-node network motif. In fact, in a signed network (i.e., 
links with a sign) composed of signed nodes (the sign of a node is that of 
its ML2FC), a classification of all the possible network motifs, depicted 
in Fig. 3, can be obtained as follows:  

• Motif M1. ↑↑+: upregulated/upregulated/positively correlated.  
• Motif M2. ↓↓+: downregulated/downregulated/positively 

correlated.  
• Motif M3. ↑↓− or ↓↑− : upregulated/downregulated/negatively 

correlated.  
• Motif M4. ↑↓+ or ↓↑+: upregulated/downregulated/positively 

correlated.  
• Motif M5. ↑↑− : upregulated/upregulated/negatively correlated.  
• Motif M6. ↓↓− : downregulated/downregulated/negatively 

correlated 

Using these basic building blocks, we can perform a network 
decomposition by classifying each link in the network as one of the six 
possible motifs (obviously, nodes may belong to more than one motif). 
Most notably, as illustrated in Fig. 2B, in a real correlation network, the 
motifs are usually not equally represented, since some of them (M1, M2, 
and M3) occur more often than the others. 

To prove the existence of this bias in RNA-seq paired data, we present 
a bias generation statistical consistent with the available experimental 
evidence previously shown. Using such a model, we define a bias 
removal (or reducing) algorithm (called SEaCorAl). Finally, to prove its 
effectiveness, we provide two validations using the biological properties 
provided by gene annotations (gene ontology biological process, mo-
lecular function, and cellular component, KEGG pathways, GSEA 
collection) and the modularity structure of the correlation network 
(discussed in the “Results and discussion” section). 

Identifying the regulation-correlation bias: the bias generation sta-
tistical model. 

The artifactual mechanism that may generate the above-discussed 
bias in RNA-seq paired data (and the corresponding removal algo-
rithm) must be able to explain the following facts highlighted in the 
previous section: 1) patients’ profiles are positively correlated, 2) motifs 
M1 (↑↑+), M2 (↓↓+) and M3 (↑↓− or ↓↑− ) are largely over-represented. 
To show the hypothesized underlying bias generating mechanism, we 
start with an idealized process illustrated in Fig. 4. 

Such a statistical model hypothesizes that the main cause for the 
regulation-correlation bias is due to the fact that the fold-change values 
along all genes (profile) for pairs of patients are not proportional one to 
the other, with the same proportionality constant. To clarify this key 
point, one can consider the scatterplot of two pairs of patients: if the 
slope of the regression line is not equal, the kind of bias shown in Fig. 2A 
shows up. Indeed, this is exactly what can be seen in real data, as in the 
illustrative example depicted in Fig. 5. 

Most importantly, we note that differences in the proportionality 
constant between pairs of patients’ profiles are biologically implausible. 
It does not make sense that the profile of a patient is such that its positive 
expression values (upregulation) are, say, the double of another patient 
with the same disease and, at the same time, its negative values 
(downregulation) are the double negative. This line of reasoning 
immediately leads us to the obvious conclusion that the hypothesis of a 
“reference” (or prototypical) gene expression profile of a disease 
phenotype, implies the proportionality constant between any pair of 
patient’s profiles to be equal to one. Indeed, the evidence of a molecular 
signature characterizing complex diseases, like cancer, auto-immune 
diseases, and diabetes, suggests that relevant genes must be expressed 
at the same levels in patients having the same pathological phenotype. 

As a final comment, we note that the proposed bias mechanism can 
simultaneously explain the presence of both positive and negative 
spurious correlations and the strong relationship between regulation 
and correlation observed in real data, i.e., what we have called the 
regulation-correlation bias. Spurious correlations arise from the pres-
ence of a different expression level distribution across patients, and the 
regulation-correlation bias shows up due to the presence of negative and 
positive values obtained by computing the logarithm of the fold ratio. 
Upregulated genes result in positive values and, down-regulated ones, 
result in negative values and, consequently, the sign of the expression 
change leads to both positive and negative correlation, as pictorially 
illustrated by Fig. 4. 

2.1. Contrasting the regulation-correlation bias: the SEaCorAl algorithm 

To try and develop a methodology to contrast the impact of the 
regulation-correlation bias just identified, we need to formalize the 
idealized process described in the previous section and derive an algo-
rithm for effective bias removal. The formal steps to the generation of 

Fig. 5. Different slopes cause the regulation-correlation bias. Using real data (breast cancer, TCGA), the picture shows A) an example of two pairs of patients 
whose regression lines have different slopes. Such difference can cause the kind of bias discussed here and illustrated by Fig. 2A. B) The panel shows the slope 
distribution of all patient pairs. It is worth noting that the slopes significantly deviate from the unit value as they range from 0.3 to 1.5. 
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the bias, starting from a reference disease-specific gene expression 
profile, are illustrated in Fig. 6 and fully described in the next paragraph. 

To obtain the SEaCorAl algorithm and try to remove the bias, we first 
formally defined each step of the process and then derived a formula that 
provides a correction of the original data aiming to obtain unbiased data 
to be used for correlation analysis. Let n be the number of genes and p the 
number of patients available. The reference profile, to be estimated from 
data, is the following: 

⎛

⎝
|

vr
|

⎞

⎠ ∈ Rn×1  

which is a vector of length n and each element represents the expression 
change characterizing an ideal patient affected by the disease of interest, 
i.e., its molecular profiling. To model the real situation in which data 
from several patients are available, we simply use the same vector to 
represent each of them, aiming to obtain an idealized data matrix (no 

Fig. 6. The bias generation model assumed by the SEaCorAl algorithm. As discussed in the text, the bias generation process starts (step 1) with a single reference 
profile (or reference pseudo-patient) and obtains the data for a group of patients by aggregation of identical profiles (step 2). Then, each column of the aggregated 
matrix Vr is multiplied by an (unknown) constant value to be estimated from the data. We considered, to gain generality, a linear affine transformation, i.e., a 
multiplication of the profile plus a constant value (step 3). Formally, this transformation is defined by multiplying the data matrix Vr by a diagonal matrix M and by 
adding a diagonal matrix B, where M and B must be estimated from data. Then, a noise term is introduced to account for differences from patients (step four) to get 
the final in silico data matrix. The last panel shows the correlation matrix resulting from the artificial data matrix Ds which resembles those shown in Fig. 2A. 

Fig. 7. The “cleaning” effects of the SEaCorAl al-
gorithm on the gene correlation matrix. The figure 
shows the result of the proposed regulation- 
correlation bias removal algorithm on three cancers 
dataset of RNA-Seq paired gene expression values. 
Precisely, paired fold change data from breast cancer 
(BRCA), colon adenocarcinoma (COAD), and renal 
clear cell carcinoma (KIRC) are reported. In all cases, 
visual inspection immediately confirms that the 
regulation-correlation relationship is highly reduced 
by the application of the un-biasing procedure. Two 
biological validations of the SEaCorAl algorithm for 
all datasets are provided in the “Results and discus-
sion” section.   

M. Petti et al.                                                                                                                                                                                                                                    



Computers in Biology and Medicine 135 (2021) 104567

7

interpersonal variation included at this stage). Accordingly, the aggre-
gated reference data matrix is composed of p identical reference profiles 
vectors as follows: 

Vr =

⎛

⎝
| ⋯ |

vr ⋯ vr
| ⋯ |

⎞

⎠ = Vr ∈ Rn×p  

thus obtaining a matrix with p identical columns, one for each available 
patient. Then, we introduce an additive stochastic term η to account for 
inter-personal variability, a multiplicative coefficient diagonal matrix M 
and an additive term B to account for differences among columns (pa-
tients). Formally, this step can be expressed as an affine linear trans-
formation of the reference data matrix, that is: 

Ds =VrM + B + η (1)  

where 

M =

⎛

⎜
⎜
⎝

m1 0 ⋯ 0
0 ⋱ ⋮
⋮ ⋱ 0
0 ⋯ 0 mp

⎞

⎟
⎟
⎠ ∈ Rp×p, B =

⎛

⎝
b1 ⋯ bp
⋮ ⋯ ⋮
b1 ⋯ bp

⎞

⎠ ∈ Rn×p  

with m1, ⋯,mp > 0, b1, ⋯, bp ≥ 0. Matrices M and B are unknown and 
must be estimated from the available gene expression data matrix D: 

D=

⎛

⎝
| ⋯ |

d1 ⋯ dp
| ⋯ |

⎞

⎠

containing the log2 fold change paired data. As an estimation of the 
reference vector vr, we averaged expression change values of all avail-
able patients from data: 

vr =
1
p

∑p

i=1
di 

Then, we replaced the theoretical data matrix Ds in equation (1) with 
the real data matrix D to obtain an estimate of the unknown matrices M 
and B using a least square estimate. Precisely, we considered each col-
umn of equation (1): 

di =mivr + bi + ηi (2)  

and obtained least-square estimates of the slopes mi and of the intercepts 
bi. By doing so for any i, we got estimates M̃ and B̃ of matrices M and B. 
Then, using such estimated matrices we could obtain from equation (1) 
the reference matrix Vr, i.e., the unbiased data matrix Du. In conclusion, 
by inverting equation (1), we have: 

Du =
(

D − B̃
)

M̃
− 1

(3)  

where M̃ and B̃ are the (least square) estimates of matrices M and B 
obtained from equation (2). Formulas (2) and (3) define the SEaCorAl 
algorithm which consists of solving (1) for any i and obtain matrices M̃ 
and ̃B and then using (3) to get the unbiased data matrix Du to be used for 
subsequent correlation analysis. By construction, matrix Du is such that 
the proportionality constant between any pair of patients is the same 
and equal to one. To have a preliminary qualitative view of the Results 
produced by the algorithm, three illustrative examples of the application 
of the SEaCorAl algorithm to cancer data from TCGA, are reported in 
Fig. 7, where the “cleaning” effect of the methodology on the original 
gene correlation matrix, is visible. The next section is devoted to a sys-
tematic validation of the algorithm using 10 cancer datasets from TCGA 
database. 

3. Results and discussion 

3.1. First validation: associations of positive correlations with gene 
function 

Many gene expression studies show that positive correlations be-
tween profiles are much more common than negative correlations and 
that they are likely to be associated with functional relatedness [33]. For 
example, in Ref. [34] 60 large human data sets have been collected and 
functional relevance of positive correlations has been reliably detected. 
They found a substantial number of positively correlated expression 
patterns occurring in multiple independent data sets. Positive correla-
tions between pairs of gene expression profiles indicate the tendency of a 
“cooperative” behavior that may be due to several reasons. For example, 
a positive correlation is often observed when gene products are involved 
in the same biological process, as in the case of enzymes needed to 
activate a specific metabolic pathway, or when correlated genes code for 
subunits of the same protein complex. 

In this section, given the above mentioned biological significance of 
positive correlations, we describe a first validation of the SEaCorAl al-
gorithm by considering that, if the un-biasing procedure defined by the 
SEaCorAl algorithm is effective, a statistically significant increase of the 
association between positive correlations of a genes pair and their 
common functional annotations, should be obtained. In other words, the 
ability of the algorithm to remove spurious correlations can be evaluated 
by measuring the percentage of positively correlated genes having a 
common functional annotation. Such percentage must be higher in the 
unbiased data than in the original one to prove the effectiveness of the 
SEaCorAl algorithm. To this end, we considered five common annota-
tions: gene ontology [35] biological process (BP), molecular function 
(MF), cellular component (CC), the KEGG pathways database [36], and 
the GSEA molecular signature defined by the so-called “hallmark gene 
set” [37]. 

The most widely used measure of gene co-expression is the Pearson 
or Spearman correlation coefficient that quantifies the extent to which 
genes increase or decrease together across patient expression change 
values. A positive value is expected when such values increase or 
decrease in parallel and, a negative value is expected when an opposite 
behavior is present. Both Pearson and Spearman correlation coefficients 
measure the strength and direction of association between the gene pair 
of interest. Here, to measure co-expression, we used the Spearman 
correlation coefficient which assesses monotonic relationships and, as 
such, less sensitive to non-normal distributions and outliers. As a first 
step of the validation procedure, we considered all pairs of genes having 
a significant Spearman’s positive correlation (adjusted p-value less than 
0.05) and computed the percentage of such gene pairs with a common 
annotation, for each of the five types mentioned above. We, therefore, 
obtained a percentage of successes in predicting a common annotation 
from a significant Spearman’s positive correlation, using the original 
and the unbiased dataset (SEaCorAl), and computed the associated 
variation between those two percentages. 

As a second step of the validation procedure, to assess the statistical 
significance of the observed increase, we needed to compare percent-
ages associated with lists of different lengths. Using the same threshold 
for positive correlations (adjusted p-value less than 0.05), we got (as 
expected) a larger number of pairs in the original dataset than in the 
unbiased one. Let TB be the number of significant Spearman’s positive 
correlations for the original dataset and PB be the number of those pairs 
having a common given annotation for the original dataset. Analo-
gously, we defined TUB and PUB for the un-biased (SEaCorAl) dataset, 
and in all cases considered, we found that TUB < TB but we obtained 
better predictions for the un-biased case (SEaCorAl), i.e., PUB/TUB > PB/ 
TB for all datasets. To evaluate a p-value, we repeated 100.000 times the 
random sampling of TUB elements drawn from the original list of TB 
elements, obtaining for each iteration i, a number Ri of annotated pairs. 
Then, we computed the fraction (percentage) of success Ri/TUB and 
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therefore obtained a distribution of values from which we derived mean 
μ and variance σ by sample estimates. Finally, a p-value was computed, 
assuming a normal distribution, using the usual formula: 

p=
∫∞

X

1̅̅
̅̅̅

2π
√ e− x2

2 dx  

where 

X =
PUB/TUB − μ

σ 
The Results, reported in Fig. 8, clearly show that the percentual 

variation of successful prediction is always an increase, for all datasets 
and annotations, i.e., they are significantly greater in the unbiased than 
in the original dataset. Moreover, for all types of annotations, signifi-
cances are very high, with only 4 cases out of 50, of non-significant 
increases (i.e., p-value greater than 0.05). 

As a final comment for this section, we note that the un-biasing 
procedure does not provide good performance for the liver cancer 
(LIHC) dataset. In our opinion, this may be due to the fact that a large 
proportion of the patients may have pre-cancerous whole liver damage 
like cirrhosis, so that the “normal” cells may be heavily affected by the 
pre-existing disease. 

3.2. Second validation: modularity of the correlation network 

Modularity is a key feature of living systems. Every cellular event, 
such as signaling or DNA replication, is the result of the presence of 
“modules” composed of several molecular devices or regulatory struc-
tures, coordinately interacting directly or indirectly [38]. Indeed, at the 
molecular scale, the presence of modules is often described as an 

ensemble of gene products highly coordinated at the functional level, 
interacting physically and subject to co-regulation [39,40]. Moreover, 
modularity may support evolutionary forces and sustain change. The 
organization of functions in discrete modules (possibly partially over-
lapped) provide robustness to change but permit changes by modifica-
tions of the interconnections among modules. This is key to allow 
evolvability in uncertain and noisy environments and, at the same time, 
maintain adaptability [38,41]. Modularity is an omnipresent property of 
genomic data of all living systems which can be found in many kinds of 
experimental datasets, such as protein-protein or protein-DNA in-
teractions, gene expression measurements, and many others [42]. Using 
network science terminology, modularity is often referred to as having a 
“community structure”, i.e., their vertices are organized into groups, 
called communities, clusters, or modules. The identification of modules 
in a network may provide useful information on how it is organized by 
emphasizing regions with a sort of “degree of autonomy” or “self--
organization” within the network. 

The co-expression network is usually built using correlation and – as 
already stated in the introduction – is a very common analysis to infer 
biological properties from module detection [18]. Modularity of the 
correlation network reflects the modularity of the structural organiza-
tion of living systems since modules of correlated gene profiles (as in the 
case under study here) are associated with common cellular function-
ality. Given the biological relevance of modularity, in this section, we 
validated the SEaCorAl algorithm by showing that its application to gene 
expression profiles of patients’ groups, significantly increased the 
modularity of Spearman’s correlation network. In other words, the 
application of the SEaCorAl un-biasing algorithm resulted in a correla-
tion network that is more consistent with modularity, a fundamental 
biological feature of the living matter. 

The modularity structure of a network and identification of com-

Fig. 8. First validation of SEaCorAl: 
increased biological significance of 
Spearman’s positive correlations. The 
figure shows a dot plot where, for each 
TCGA cancer dataset considered, the per-
centual increase of annotations found in 
positive correlations is represented by the 
size of the dots. The color of the dots rep-
resents p-values. The picture makes clear 
that the SEaCorAl algorithm greatly im-
proves the biologically significant relation-
ship between the presence of a positive 
correlation between two genes and the 
presence of common functionality.   
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munities can be formally characterized in many ways. The most widely 
used one is the “modularity measure” defined as the fraction of edges 
that belong to the given communities minus the expected fraction 
whether links were randomly distributed. Community finding algo-
rithms using the modularity measure are based, for example, on 
maximum likelihood or on a local greedy approach. To quantify the 
modularity of a network, we referred to the above-mentioned modu-
larity measure due to Newman [43] who defined the following measure 
Q: 

Q=
1

2m
∑

vw

[

Avw −
kvkw

2m

]

δ(Cv,Cw)

where m is the number of links, ki is the degree of node i, Aij is the (i,j) 
element (weight) of the adjacency matrix of the network and Ci indicates 
the community to which node i belongs. Modularity Q is a property of 
the entire network and takes values in [-1/2,1]. Large values of Q 
indicate a high modularity of the network. A commonly used algorithm 
for finding modules (or communities) is the so-called Louvain algorithm 
[44] which provides a partition of the network in dense modules by 
maximizing Q. Since, in our case, also negative weights (correlations) 
are present, we used the Louvain algorithm to maximize a slightly 
modified version of the modularity measure Q proposed by Rubinov and 
Sporns that includes negative weights [45]. The Louvain method for 
community detection has been designed to identify communities from 
large networks and it was created by Blondel et al. [44] from the Uni-
versity of Louvain. The method is a greedy optimization method. The 
basic idea of the algorithm is to initially search for small communities by 
optimizing modularity on a local base and, then each of them is grouped 
into a single one and, the first step is repeated until the modularity 
measure stops growing. 

To compare the Spearman’s correlation network (adjust p-value 
threshold less than 0.05) obtained from the original and the un-biased 
(SEaCorAl) dataset, we took into account that the un-biasing 

procedure maintains the number of nodes but reduces the number of 
spurious correlations and, therefore, the number of links in the corre-
lation network. It is known that the modularity measure is heavily 
affected by link density [46] and, therefore, a considered an adjusted 
formula to be able to compare networks with different densities. To this 
end, we resorted to Ref. [47], where it is proved that modularity scales 
proportionally with the square of link density. Consequently, as a 
modularity measure to compare networks with different link densities, 
we considered a density scaled modularity defined as follows: 

Qa =
Q
̅̅̅̅
dl

√

where Q is the usual modularity measure and dl is the links’ density of 
the network. 

To assess the statistical significance of the Results, for a given 
threshold (adjusted p-value less than 0.001), we obtained a random 
Spearman’s correlation network for both the original and the unbiased 
dataset by randomly rewiring the weighted links, thus preserving both 
nodes’ degree and link density. Degree preserving randomization is a 
technique widely utilized in network analysis to evaluate whether 
changes in a network could not be related to a biological property but to 
its intrinsic topology. Then, we computed the density scaled modularity 
for the random networks and found that the values obtained by 
repeating the randomization, for both the original and the unbiased 
dataset, led to a distribution with zero variance (less than 2.2 × 10− 308) 
and therefore, every difference from the random case can be considered 
statistically significant. Accordingly, we considered two correction 
terms Qrnd and dl, the first to avoid the bias of the network topology and 
the second to account for network link density. Accordingly, the cor-
rected modularity measure is the following: 

Qa =
Q − Qrnd

̅̅̅̅
dl

√

where Qrnd is the modularity measure obtained using the degree and link 
density preserving network randomization (rewiring). The Results, for 
both the original and the un-biased (SEaCorAl) datasets, are reported in 
Fig. 9 where in all cases, the density scaled modularity of the correlation 
network obtained using unbiased data is higher than those using the 
original dataset. 

3.3. Data preparation 

We downloaded RNA-seq raw counts data from the TCGA portal 
(https://www.cancer.gov/tcga) on February 2021 of 10 cancers having 
at least 30 patients with paired data: BRCA (breast invasive carcinoma), 
COAD (colon adenocarcinoma), HNSC (head and neck squamous cell 
carcinoma), KIRC (kidney renal clear cell carcinoma), KIRP (kidney 
renal papillary cell carcinoma), LIHC (liver hepatocellular carcinoma), 
LUAD (lung adenocarcinoma), LUSC (lung squamous cell carcinoma), 

Fig. 9. Second validation of SEaCorAl: increased modu-
larity of the correlation network. The figure shows the 
density scaled modularity of the correlation networks con-
structed using the original and the unbiased (SEaCorAl) 
datasets for ten TCGA cancers. In all cases, the density scaled 
modularity is larger after the application of the SEaCorAl 
algorithm. In some cases, this difference is quite consistent 
(see KIRC and THCA datasets). The differences are statisti-
cally significant, as explained in the text.   

Table 1 
Number of patients available with paired data and number of outlier patients 
removed from the TCGA datasets described in the paper, using the Grubbs’ test, 
for each dataset.  

Dataset Number of patients available 
with paired data 

Number of patients removed using 
the Grubbs’ test 

BRCA 112 2 
COAD 41 0 
HNSC 43 1 
KIRC 72 7 
KIRP 31 0 
LIHC 50 0 
LUAD 57 0 
LUSC 49 0 
PRAD 52 3 
THCA 58 4  
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PRAD (prostate adenocarcinoma) and THCA (thyroid carcinoma). The 
raw counts were normalized using the DESeq2 procedure [48]. For each 
dataset, we first removed genes having a number of zero values greater 
than 10% of all the available data. Second, we computed the mean of the 
paired log2 fold change (ML2FC) on the non-zero values for each gene 
and select the top 500 up-regulated and the top 500 down-regulated, as 
to have 1000 genes ordered by decreasing ML2FC. The q-values 
(adjusted p-values for multiple testing using the Storey method) for all 
selected genes and all datasets are always less than 10− 6. Using this list 
of genes, for each dataset, we removed those patients having a large 
number of negative correlations with other patients. Precisely, we 
computed the Pearson correlation of all pairs of patients and obtained, 
for each patient, the number of other patients having a negative corre-
lation with an adjusted p-value less than 0.05. Then, we considered the 
distribution of these values and removed outlier patients using the 
Grubbs test procedure [ [49]]. Table 1 reports the number of removed 
patients for each dataset. 

4. Conclusion 

In this paper, we have discussed a computational issue arising in 
RNA-seq paired data of patients’ groups. We found, in real experimental 
data, a “regulation-correlation bias”, which is a relationship between the 
regulation status of two genes (up or down) and their correlation sign. 
We hypothesized that the origin of this relationship may not be related 
to an underlying biological process but to an artifact of the RNA-seq 
paired data. Accordingly, we have proposed a simple idealized mecha-
nism (analogous to the so-called “spurious correlation of ratios”) able to 
generate the same regulation-correlation pattern observed in real data 
and proposed a sort of “reverse” procedure, the SEaCorAl algorithm, to 
remove (or reduce) such bias. To validate our findings, we showed that 
the known association between positive correlation and function of a 
gene pair, becomes significantly more evident after the application of 
the un-biasing procedure proposed in this paper. Moreover, we showed 
that also modularity of the corresponding correlation network signifi-
cantly increases. We believe that the same bias may arise also in un- 
paired data and that this regulation-correlation bias may affect the 
biological significance of many correlation analyses of gene expression 
data. To assess these points, further investigations are certainly needed. 
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