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Abstract
Objectives To evaluate the accuracy of a data-driven approach, such as machine learning classification, in predicting dis-
ability progression in MS.
Methods We analyzed structural brain images of 163 subjects diagnosed with MS acquired at two different sites. Participants 
were followed up for 2–6 years, with disability progression defined according to the expanded disability status scale (EDSS) 
increment at follow-up. T2-weighted lesion load (T2LL), thalamic and cerebellar gray matter (GM) volumes, fractional 
anisotropy of the normal appearing white matter were calculated at baseline and included in supervised machine learning 
classifiers. Age, sex, phenotype, EDSS at baseline, therapy and time to follow-up period were also included. Classes were 
labeled as stable or progressed disability. Participants were randomly chosen from both sites to build a sample including 
50% patients showing disability progression and 50% patients being stable. One-thousand machine learning classifiers were 
applied to the resulting sample, and after testing for overfitting, classifier confusion matrix, relative metrics and feature 
importance were evaluated.
Results At follow-up, 36% of participants showed disability progression. The classifier with the highest resulting metrics had 
accuracy of 0.79, area under the true positive versus false positive rates curve of 0.81, sensitivity of 0.90 and specificity of 
0.71. T2LL, thalamic volume, disability at baseline and administered therapy were identified as important features in predict-
ing disability progression. Classifiers built on radiological features had higher accuracy than those built on clinical features.
Conclusions Disability progression in MS may be predicted via machine learning classifiers, mostly evaluating neurora-
diological features.
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MD-NAWM  Mean diffusivity of normal appearing 
white matter

AUC   Area under the curve

Introduction

Clinical progression and disability accumulation are highly 
heterogeneous in all phenotypes of multiple sclerosis (MS) 
[1]. The variability of the disease course is guided by inflam-
mation, axonal degeneration and remyelination phenomena 
[2], but how these phenomena influence the course of the 
disease is not yet clear. Several disease modifying treatments 
are now available to improve long-term prognosis of patients 
with MS [3]. However, choosing the right treatment is still a 
challenge for clinicians who need to balance the drug safety 
profile with the risk of disability progression on individual 
basis.

Neuroimaging techniques are powerful tools to investi-
gate MS [4] and Magnetic Resonance Imaging (MRI) find-
ings are considered good predictors of conversion from clini-
cally isolated syndrome (CIS) to clinically definite MS [5], 
as well as of long-term disability [6, 7]. Several MRI studies 
have highlighted various aspects of tissue damage in MS [8] 
demonstrating a prognostic role of T2-hyperintense lesions, 
global and cortical atrophy [9], as well as that of damage 
to some key structures, such as thalamus [10] and cerebel-
lum [11, 12]. Among these, lesion burden appeared to be a 
relevant predictor of long-term cognitive outcome [13] and 
disease progression [14]. Further factors anticipating dis-
ability progression in MS have been shown to be structural 
and microstructural damage in the cerebellum [15], thalamus 
[16] and normal appearing white matter (NAWM) [17].

Recently, machine learning (ML) techniques have been 
applied to analyze clinical and radiological data in MS. 
Indeed, ML classifications represent a valuable tool for 
predicting conversion from CIS to MS [18] and to reliably 
distinguish patients with MS from healthy subjects [19]. 
Classifiers were also able to identify brain regions, and 
both functional and structural connections relevant to better 
understand the disease [19].

Till now, ML techniques have been applied mainly for 
diagnostic purpose and the utility of those tools for the pre-
diction of disability progression has not been explored yet. 
This point is crucial in MS management, considering that 
identifying patients with higher risk of disability progression 
might promptly recognize subjects who may benefit from a 
more aggressive therapeutic approach.

We hypothesized that a data-driven approach on clinical 
and MRI data may predict disability progression in single 
subjects with MS. We tested this hypothesis in this pilot 
study, applying ML classifiers built on clinical data and neu-
roradiological features. Moreover, we investigated among 

clinical and neuroradiological features what ML classifiers 
are able to identify the most important factors in predicting 
disability progression in MS.

Materials and methods

A flowchart showing the methods of this work is proposed 
in Fig. 1. A detailed step-by-step description of all the pro-
cedures follows.

Sample selection

Study protocols were approved by the ethical committee of 
Policlinico Umberto I/Sapienza University (Rome, Italy, Site 
1) and Ethics Committee for Biomedical Activities “Carlo 
Romano” of Federico II University (Naples, Italy, Site 2) as 
appropriate. All subjects provided written informed consent.

We analyzed clinical and MRI data of subjects with MS 
collected by two centers: the Human Neuroscience Depart-
ment of Sapienza University (Site 1) and the MS center of 
the Federico II University (Site 2).

From both sites, clinical evaluations were performed 
between 2010 and 2018, while all MRI acquisitions were 
performed between 2010 and 2015. MS patients were 
included according to the following selection criteria: diag-
nosis of MS according to the Mc Donald’s criteria [20, 
21]; age between 18 and 70 years; clinical assessment and 
MRI examination not more than one month apart; clinical 
follow-up available after a minimum of 2 years from the 
MRI examination. On both visits, patients were examined 
by expert neurologists assessing the clinical status via the 
Expanded Disability Status Scale (EDSS). At the follow-up 
examination, disability progression was defined as 1.5-point 
increase for patients with a baseline EDSS of 0, 1 point for 
scores from 1.0 to 5.0, and 0.5 points for scores equal or 
higher than 5.5 [22].

Finally, at both sites patients underwent a MRI scan with a 
3 T system (Verio, Siemens equipped with a 12-channelhead 
coil at Site 1; Trio, Siemens, equipped with a 8-channel head 
coil at Site 2), including tridimensional (3D) T1-weighted 
(-w); T2-w, either dual echo or FLAIR; diffusion-w images. 
Detailed information on acquisition parameters are reported 
in Supplementary Materials.

MRI data analysis

T2-weighted lesion load (T2LL) was calculated indepen-
dently by three expert operators, with five to eleven years 
of experience, who identified the hyperintense WM lesions, 
using a semi-automatic technique (Jim, Xinapse System, 
Leicester, UK; http:// www. xinap se. com). In the two sites, a 
lesion mask common to all patients was built including brain 

http://www.xinapse.com
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areas presenting lesions in at least the 10% of the sample 
[23].

Gray (GM) and white (WM) matter volumes were cal-
culated via SIENAX, implemented in FSL environment 
(https:// fsl. fmrib. ox. ac. uk/ fsl/ fslwi ki/), while thalamic 

volumes (calculated as the sum of right and left) were 
obtained via FSL FIRST. Cerebellar lobules, summed to 
obtain total cerebellar volume, were identified and calcu-
lated using the Spatially Unbiased Infratentorial Toolbox 
(SUIT, http:// www. diedr ichse nlab. org/ imagi ng/ suit. htm), 

Fig. 1  Flowchart of the methods. a MRI preprocessing. From 3D-T1-
weighted images cerebellar volume was calculated via SUIT, tha-
lamic volume using FSL’s FIRST and gray matter and white matter 
volumes via FSL’s SIENAX. On the T2-weighted images lesions 
were identified and segmented using JIM, to calculate the lesion load. 
By combining lesion and white matter masks, we calculated the nor-
mal appearing white matter mask for each subject. From diffusion-
weighted images both fractional anisotropy and mean diffusivity 
maps were calculated, and results and were combined with the nor-
mal appearing mask previously obtained to extract microstructural 
metrics of the normal appearing white matter. b Feature selection. 

Clinical and neuroradiological, were selected together with binary 
classes (stable patients = 0, patients with disease progression = 1) 
and a random feature and used to describe the sample of patients 
with multiple sclerosis. c Machine learning classifier. After hav-
ing checked features for co-linearity, a random forest classifier was 
applied 1000 times feature built on both clinical and radiological fea-
tures, clinical features alone, radiological features alone. Out-of-Bag 
test was used to avoid overfitting and performances were evaluated 
via the confusion matrix of the surviving classifiers. DWI diffusion-
weighted images, GM gray matter, WM white matter, FA fractional 
anisotropy, MD mean diffusivity

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
http://www.diedrichsenlab.org/imaging/suit.htm
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implemented in SPM12. Lastly, GM, WM, thalamic and 
cerebellar volumes were normalized to the scaling factor 
(obtained in SIENAX) to account for head size.

Diffusion maps were generated using the DTI_fit model, 
part of the FSL Diffusion Toolbox (http:// www. fmrib. ox. 
ac. uk/ fsl/ fdt). Combining the results of FA, or MD, for 
each patient with WM mask and the image of the common 
lesions, we obtained individual maps of the FA, or MD, for 
NAWM, that were further averaged to obtain a single value 
for FA-NAWM and MD-NAWM [23].

Statistical analyses

Statistical analyses were performed with Matlab R2018b 
(https:// it. mathw orks. com/). Group comparison between 
clinical and radiological features of the two sites was per-
formed using a χ-square to test sex, MS phenotype and dis-
ability progression, while a Mann–Whitney non paramet-
ric test was used for the remaining variables (age, disease 
duration, EDSS at baseline, time between visits, T2LL, GM, 
WM, thalamic and cerebellar volumes, as well as FA- and 
MD-NAWM values).

To avoid data redundancy and reduce variance in clas-
sifier performances, we investigated features’ co-linearity 
of clinical (age, sex, phenotype, disease duration, EDSS at 
baseline, time between visits and therapy at baseline) and 
neuroradiological (T2LL, GM, WM, thalamic and cerebel-
lar volumes, FA- and MD-NAWM) features using a partial 
correlation analysis. Specifically, we performed partial cor-
relation between each pair of features controlling for all the 
remaining features. For all analyses, a significance threshold 
was set for p < 0.01 without multiple comparison correc-
tion that allowed us to be conservative in the removal of 
confounding effects.

ML classifiers

ML classifiers were performed and analyzed with Python, 
via the browser version of Jupyter Notebook application 
(https:// jupyt er. org/). We used a supervised ML technique 
and identified two binary classes: patients who were sta-
ble (negative output, 0) and patients who worsened in dis-
ability (positive output, 1) at the follow-up visit. We built a 
matrix whose rows represented patients and columns repre-
sented features. For each patient, features included clinical 
and neuroradiological data, MR acquisition site and class. 
A last column consisting of a randomly generated variable 
was added to the matrix. We applied a random forest algo-
rithm for 1000 times and evaluated the confusion matrices 
of resulting classifiers.

In each of the 1000 classifiers, we used features calcu-
lated on samples from both sites to evaluate classifier per-
formances. Patients from both sites were randomly selected 

to obtain the same numerosity in both classes (50% stable 
and 50% with disease progression patients) to avoid bias 
due to class numerosity. To train the ML classifier we ran-
domly selected 80% of the sample with the same numerosity 
of stable and with disease progression patients and left the 
other 20% for validation. To avoid overfitting, we calculated 
each classifier accuracy both on the validation set and in a 
subsample of the training set and considered in the following 
analysis only classifiers showing differences in accuracies 
smaller than 0.02, i.e. Out-of-Bag test. The 0.02 threshold 
was selected being reasonably low to allow considering the 
results of the Out-of-Bag test and the training to be consist-
ent, since there is no typical value reported in the literature, 
at the best of our knowledge.

Classifier performances were evaluated via accuracy, 
area under the true positive versus false positive rates curve 
(AUC), sensitivity (true positive rate) and specificity (true 
negative rate). Within each classifier including both clinical 
and neuroradiological features, permutation importance was 
calculated for each feature and for the random variable: only 
parameters whose importance was higher than the random 
variable’s importance, were considered actually relevant in 
the classifier.

Results

Sample selection

Average and standard deviation of clinical and neuroradio-
logical features for the entire sample built from the two sites, 
as well as for both Site 1 and Site 2 separately, are reported 
in Table 1.

In the entire sample, participants were 39.66 ± 10.23 years 
old, range [19.50–70.30], with 104 females and 59 males. 
Of these 163 subjects, at baseline 122 patients had a relaps-
ing–remitting form of MS, while the remaining 41 patients 
had a progressive form. Patients showed a disease dura-
tion of 9.90 ± 8.06 years, range [0.00–37.00], with a time 
between visits that was 3.93 ± 0.95 years, range [2–6]. At the 
follow-up examination, disease progression was observed 
in 58 over 163 patients (35.6% of the sample), whose EDSS 
distributions at baseline and at follow-up were respectively 
3.5 [0.0–7.0] and 4.5 [1.5–7.0], while in the remaining 105 
patients the EDSS remained stable at 3.0 [0.0–7.5].

Since patients who remained stable at follow-up were 
about 2/3 of both samples, and we aimed at balancing size 
of classes, at each of the 1000 performed models we picked 
all the patients who experienced disability progression from 
both sites’ sample and also randomly picked an equal num-
ber of patients who remained stable, reaching a final number 
of 72 participants from Site 1 and 44 participants from Site 
2.

http://www.fmrib.ox.ac.uk/fsl/fdt
http://www.fmrib.ox.ac.uk/fsl/fdt
https://it.mathworks.com/
https://jupyter.org/


Journal of Neurology 

1 3

Feature selection

Due to differences in demographic and clinical character-
istics of participants between the two sites, we performed 
correlation analysis in the two samples separately. We found 
a number of features, which were inter-correlated, in both 
Site 1 and Site 2 samples (Tables 2, 3). After removing inter-
correlated features (disease duration, MD-NAWM values, 
GM and WM volumes), ML classifiers included age, sex, 
disease phenotype, EDSS score and therapy at baseline, time 
between visits as clinical features, while T2LL, thalamic 
and cerebellar volumes and FA-NAWM were included as 
neuroradiological features.

ML classifiers

Out of 1000 classifiers built on both clinical and neurora-
diological features, 162 classifiers had a difference between 
the accuracy calculated in the validation set and in the sub-
sample of the training set smaller than 0.02. Accuracy, AUC, 
sensitivity and specificity on these 162 classifiers are dis-
played in Fig. 2. The classifier with the highest resulting 
metrics proved to have an accuracy = 0.79, an AUC = 0.81, 

with a sensitivity and a specificity of 0.90 and 0.71, respec-
tively (Table 4).

Then we tested separately classifiers built on neurora-
diological features alone (T2LL, FA-NAWM, thalamic and 
cerebellar volume) and clinical features alone (age, sex, 
disease phenotype, EDSS score and therapy at baseline, 
time between visits). For the latter separated analyses, we 
followed the same procedure implemented to analyze neu-
roradiological and clinical features together, i.e. balancing 
the numerosity of class 0 and class 1, adding a random fea-
ture and validating for overfitting via the Out-of-Bag test. 
We found that classifiers built on neuroradiological features 
were more accurate and sensitive than those built on clini-
cal features or on mixed clinical-neuroradiological features, 
showing better accuracy, AUC, sensitivity and specificity 
values (Table 4; Fig. 3).

To have a better depiction of features’ role in predicting 
disability progression, we further investigated the impor-
tance of each feature within each classifier built on both 
clinical and radiological features. T2LL was recognized as 
important feature in predicting disability progression in all 
the performed classifiers. EDSS and therapy at baseline were 
important in the 55% and 72% of the classifiers. Thalamic 
volume and FA-NAWM were important in 39% and 29% of 

Table 1  Clinical and neuroradiological features

Clinical and neuroradiological features of Site 1 and Site 2 samples. Mann–Whitney test was used to test significant differences between groups. 
Significant differences are highlighted in bold font
Std standard deviation, F female; M male; RR relapsing remitting form; P progressive form, EDSS expanded disability status scale, T2LL T2 
lesion load, GM Gray Matter, WM White Matter, FA-NAWM fractional anisotropy of normal appearing white matter, MD-NAWM mean diffusiv-
ity of normal appearing white matter
*χ-square statistics was used
**Median [range]

All subjects (Site 
1 + Site 2)

Subjects at Site 1 Subjects at Site 2 Between sites comparison

Average (std) Average (std) Average (std) z- (p-value)

Number 163 105 58 –
Age [years] 39.66 (10.23) 38.29 (9.75) 42.13 (10.68) − 2.43 (0.02)
Sex (F/M) 104/59 80/25 24/34 19.61 (0.001)*
Phenotype (RR/P) 122/41 85/20 37/21 5.84 (0.02)*
Disease duration [years] 9.90 (8.06) 8.27 (7.97) 12.87 (7.40) − 3.85 (0.001)
EDSS at baseline 3.0 [0.0–7.5]** 2.0 [0.0–7.5]** 3.5 [2.0–7.5]** − 5.48 (0.001)
Time to follow-up [years] 3.93 (0.95) 4.2 (0.93) 3.38 (0.72) 6.56 (0.001)
Therapy (1st line, 2nd line, none) 53, 65, 45 32, 31, 42 21, 34, 3 –
Disability progression (Yes/No) 58/105 36/69 22/36 0.22 (0.64)*
T2LL [ml] 9.02 (10.31) 6.77 (6.94) 13.26 (13.62) − 4.47 (0.001)
GM Volume [ml] 719.69 (92.18) 737.38 (84.62) 687.662 (97.32) 3.48 (0.001)
WM Volume [ml] 733.98 (96.91) 768.98 (84.31) 670.638 (85.94) 6.14 (0.001)
Thalamic Volume [ml] 17.64 (3.21) 18.04 (3.22) 16.92 (3.10) 2.54 (0.001)
Cerebellar Volume [ml] 113.66 (13.88) 110.016 (12.92) 120.25 (13.22) − 4.28 (0.01)
FA-NAWM 0.40 (0.06) 0.43 (0.03) 0.33 (0.3) 10.45 (0.001)
MD-NAWM ×  10−3 0.75 (0.05) 0.73 (0.07) 0.80 (0.04) − 8.68 (0.001)
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the classifiers respectively. All the other radiological and 
clinical features were found to be more important than the 
random feature in a negligible number of classifiers (less 
than 10%, see Fig. 4).

Discussion

We showed that MRI measures alone may predict disability 
progression with the highest accuracy, even in respect to the 
combination of neuroradiological and clinical features. We 
are prone to explain this last result as outsourcing from the 
risk of overfitting. Indeed, the risk of overfitting was higher 
in the classifiers including both clinical and neuroradiologi-
cal features due to the numbers of features and subjects and 
allowed fewer classifiers to survive in respect to the original 
amount.

Even if we expect that combining both clinical and MRI 
data may predict clinical outcome at best [24], the role of 
neuroradiological features seems to be of primary relevance 
suggesting a more informative independent charge in respect 
to clinical features alone.

To strengthen the generalizability of the models obtained 
by the ML classifiers [25], we included in the study features 
characterizing subjects recruited in two sites, visited by four 
different clinicians and whose MRI were acquired with two 
different MR systems. As well, the observed subject sam-
ples covered wide ranges of age and disease severity. There-
fore, our results may be generalizable and not site-specific, 
despite recruitment and acquisition protocols from the two 
sites may have produced differences in feature estimation. 
Further, we approached our research question with a super-
vised method, i.e. implementing classification algorithms, 
and it prevented us to perform less sophisticated methods 
like principal component analysis.

As Lew et al. [26] showed, ML algorithms may predict 
2-year disability worsening in subjects with progressive dis-
ease. Our results extend the previous data, confirming the 
utility of a ML approach also for subjects in an earlier stage 
of the disease or with a lower level of disability. This is 
particularly relevant in this population of MS patients when 
clinicians have the opportunity to choose among several 
pharmacological treatments with different mechanism of 
actions and efficacy outcomes. Indeed, to identify disease 
features to drive neurologist in their choices is still a matter 
of debate across literature, given the absence of definitive 
shared prognostic factors of treatment choose and response 
[27].

Although we reached 79% of diagnostic accuracy, our 
results showed that our model was unable to provide the 
excellence [28]. Different reasons could explain this finding, 
ranging from a relatively small sample size to the not-linear 
relation between structural damage and disability, as it is Ta
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quantified by the EDSS [29]. Nevertheless, it has to be con-
sidered that a sample size of 116 subjects may be enough to 
model disability progression from clinical and radiological 
features, as previously found [23, 30, 31]. Furthermore, our 
analysis included only parameters of structural brain dam-
age, while the association between clinical findings and radi-
ological extent of involvement is generally poor and known, 
given the clinico-radiological paradox in MS [32].

With regards to MRI data, our results indirectly confirm 
the importance of T2LL in predicting disease worsening, 

a variable known to influence both the disease course [24] 
and its progression [14, 33]. In particular, following the first 
episode of the disease, T2LL is helpful to identify those 
patients at risk of developing an aggressive form of MS 
[34]. This underlines how our result can help physicians 
in selecting those patients that can benefit from an early 
and more efficacy therapy. A recent study by Bakshi and 
colleagues found that baseline brain parenchymal fraction, 
but not T2LL, may be a good predictor of 5-year disability 
worsening [35]. A possible explanation to this discrepancy 
could be researched in the different clinical endpoint. In 
particular, authors considered longitudinal difference in the 
EDSS score as a disability marker, while we considered dis-
ability progression as defined in Rìo et al. [22]. Further, our 
results confirm the prognostic role of thalamus, whose meas-
urement is reliable and comparable among centers, in MS 
[36]. Indeed, thalamic involvement in MS has been widely 
investigated using different approaches, with thalamic atro-
phy and function associated with poorer motor and cognitive 
performances [37, 38]. A recent and extensive work in 1417 
subjects with MS identified key regions with early atrophy 
such thalamus consistently across MS phenotypes, exploring 

Fig. 2  Metrics of classifier built on clinical and radiological features. 
Histogram of accuracy (ACC) and area under the true positive versus 
true negative rate curve (AUC), sensitivity and specificity obtained 

from the 150 classifiers, surviving the Out-of-Bag test, performed on 
the sample features. On the y-axis number of classifiers is displayed

Table 4  Metrics

Accuracy, area under the true positive versus true negative curve 
(AUC), sensitivity and specificity of the best performing machine 
learning classifier built on all clinical and radiological features, and 
either on clinical or radiological features. N represents the number of 
classifiers surviving the Out-of-Bag test

N Accuracy AUC Sensitivity Specificity

ALL 162 0.79 0.81 0.90 0.71
Radiological 329 0.92 0.92 0.92 0.91
Clinical 128 0.71 0.72 0.69 0.75
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Fig. 3  Metrics of classifier built on radiological/clinical features. His-
tograms of accuracy (ACC) and area under the true positive versus 
true negative rate curve (AUC), sensitivity and specificity, surviving 

the Out-of-Bag test obtained from the 309 classifiers built on neuro-
radiological features (top) and the 128 classifiers built on clinical fea-
tures (bottom). On the y-axis number of classifiers is displayed
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the sequence of GM atrophy and revealing the potentiality 
of therapeutic strategy adjustment based on the staging of 
patients [10, 39]. Finally, FA-NAWM values also proved to 
be a significant contributor to clinical progression in MS, in 
line with the established knowledge about the association 
between axonal loss and clinical deficit in MS [40], as well 
as that aberrant diffusivity measures in the NAWM may pro-
vide information in the relapsing remitting form of MS [41].

Lastly, in our analysis, both disability and therapy at 
baseline emerged as clinical features relevant to disability 
progression. In particular, therapy response is individual and 
depends on many factors, including age, phenotype and dis-
ability at treatment start [42], and is known to influence both 
disease course [43] and disability accumulation [44].

Limitations

As mentioned before, a limitation of our study relies in the 
relatively small sample size, which might have affected the 
performance of ML classifiers in the prediction of MS dis-
ability, limiting their diagnostic accuracy. The small sam-
ple size also prevented us from using an independent test 
set to report final results [25]. Further, we used EDSS as 
index of disability. Even if depending mainly on walking 
ability, EDSS is widely used as disability measure [45]. 
More in general, the major limitation of this study has to be 
researched in its retrospective nature. For this reason, future 
prospective studies, properly designed to evaluate with addi-
tional techniques (e.g. fMRI, MTR, qMRI) other aspects 

of brain involvement, as well as other CNS structures (e.g. 
spinal cord) are strongly warranted, to verify our model and 
possibly increase its diagnostic accuracy.

Conclusion

ML classifiers built on clinical and neuroradiological fea-
tures may predict disability progression in subjects with MS 
at individual level with accuracy almost reaching a value of 
80%. Among the MRI variables, T2LL and thalamic volume 
were the most important features in the prediction of dis-
ability progression, while disability and therapy at baseline 
were the most relevant features among the clinical variables. 
The implementation of classifiers based on neuroradiologi-
cal and clinical features may aid clinicians to predict if a 
single subject may be prone to disability progression and 
consequently to tailor the treatment.
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