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Abstract: The CreditRisk+ model is one of the industry standards for the valuation of default risk
in credit loans portfolios. The calibration of CreditRisk+ requires, inter alia, the specification of the
parameters describing the structure of dependence among default events. This work addresses the
calibration of these parameters. In particular, we study the dependence of the calibration procedure
on the sampling period of the default rate time series, that might be different from the time horizon
onto which the model is used for forecasting, as it is often the case in real life applications. The
case of autocorrelated time series and the role of the statistical error as a function of the time series
period are also discussed. The findings of the proposed calibration technique are illustrated with the
support of an application to real data.
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1. Introduction

While the development of modern portfolio credit risk models started in the 1980–1990
decade [1] within the framework of the Basel Accords, it is with the great credit crisis of
2008 [2] that increasing attention started to be paid to the precise determination of the
structure of dependence among default events. It is well established [3] that tails of the
distribution of the value of asset/liabilities portfolios are dominated by the structure of
dependence rather than by the other fundamental components of credit risk (i.e., the
marginal probability and the severity associated with each future default event). The vast
research interest in modeling the structure of dependence resulted in the formalization of
the so-called copula theory [4,5]. This “language” was explicitly adopted by the second
generation of portfolio credit models to describe the dependence among loss events [6–9].

In this regard, the calibration issues raised by a particular structure of dependence (or,
equivalently, the corresponding copula) can be as important as the choice of the structure
itself. Generally, calibrating the dependence structure of a portfolio model is a demanding
task, given the large number of parameters needed to provide a realistic description of the
modeled dependencies, and considering that, on the other hand, historical data are usually
not numerous enough to fill the sample space in a way sufficient for a precise estimation of
the parameters.

In this work, we address a typical real-life problem: how to choose the frequency
of the historical time series of default used to calibrate a classic credit portfolio model,
CreditRisk+, in order to provide the most accurate estimation of the structure of depen-
dence parameters, or, in other words, how the calibration error “scales” with the time series
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frequency. This problem is especially relevant for all the cases when the debtors underlying
a credit portfolio are small/medium enterprises. The lack of market information, such as
CDS spread, stock price, or bond yield, forces to calibrate the model using a reduced-form
approach based on historical cluster data, such as default rate time series associated with
the economic sector of each debtor. This case is typical in activities such as credit insurance,
surety, and factoring. In most cases, publicly available time series have a sampling period
ranging from one to three months (e.g., [10]), while the calibrated CreditRisk+ model is
used on a projection horizon that is at least one year long (e.g., the unwind period required
to quantify a capital requirement both in Solvency 2 and in Basel 3 regulatory frameworks).

CreditRisk+ [11], disclosed in 1997, belongs to the first generation of portfolio credit
risk models of “actuarial inspiration”. Applications of CreditRisk+ to the credit insurance
sector are documented in the literature well before the 2008 financial credit crisis [12,13],
while research activity is still ongoing in the area of actuarial science [14]. At present,
CreditRisk+ is still one of the financial and actuarial industry standards for the assessment
of credit risk in portfolios of financial loans or credit/suretyship policies.

Despite the vast research activity on this model and its calibration, the issue of using
two different time scales for calibration and projection remains not investigated to date.
The research conducted to date on the calibration of CreditRisk+ [14] has addressed the
issues related to the decomposition of a given covariance matrix among the time series,
which is the final necessary step to complete the calibration of the model. However, the
covariance matrix is obtained by the “classical” estimator, under the assumption that the
sampling period of the time series and the projection horizon are equal.

This work shows that calibrating the model at a shorter time scale than the projection
horizon is possible, nontrivial, and convenient. The internal consistency of the CreditRisk+

assumptions when simultaneously imposed at different time scales has been proved and
guarantees that the investigated calibration mode is not ill-posed. However, the form of
the covariance estimator needed to obtain a set of parameters coherent with a specific
projection horizon, using time series with a smaller sampling period, depends on the two
chosen time scales. Indeed, the proposed estimator coincides with the classical one only
when calibration and projection time scales are equal. Finally, we show that calibrating at a
smaller time scale than the projection one provides a more precise estimation of the model
parameters. The estimation error and its dependence on the difference between the two
time scales are discussed.

The article is organized as follows. In Section 2, we summarize assumptions and
features of the CreditRisk+ model. In Section 3, we discuss the internal consistency of
the model assumptions when imposing them to be simultaneously true at different time
horizons. The calibration of the model parameters, which define the dependence structure,
is considered in Section 4. The different degree of precision of the estimators defined at
increasing time scales is discussed in Section 5. The techniques introduced in this work
are applied to a real-world case study in Section 6. The main results are summarized in
Section 7.

2. The CreditRisk+ Model

The CreditRisk+ model is a portfolio model developed by Credit Suisse First Boston
(CSFB) by Tom Wilde [15] and coworkers, first documented in [11] and later widely
discussed in [16]. It is a model actuarially inspired in the sense that losses are due only to
default events and not to other sources of financial risk, e.g., variation of the credit standing
(the so-called “credit migration” effect). CreditRisk+ can be classified as a frequency–
severity model, cast in a single-period framework, with the peculiarity that a doubly-
stochastic process (i.e., the Poisson–Gamma mixture) describes the frequency of default
events. Loss severity is assumed to be deterministic, although this ansatz can be easily
relaxed at the cost of some additional computational burden. However, severity-related
issues can be neglected for what follows.
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The structure of dependence of default events is described using a factor model frame-
work, where factors are unobservable (i.e., latent) stochastic “market” variables, whose
precise financial/actuarial identification is irrelevant since the model integrates on all
possible realizations (“market scenarios”). Therefore, CreditRisk+ can be further classified
into the family of factor models and, in particular, into the subfamily of conditionally
independent factor models, since, conditionally on the values assumed by the factors,
defaults are supposed (by the model) to be independent.

The structure of the model can be summarized as follows. Let N be the number of
different risks in a given portfolio and 1Ii the default indicator function of the i-th risk
(i = 1, . . . , N) over the time horizon (t, T]. The indicator function 1Ii is a Bernoulli random
variable such that

E[1Ii] = qi, var[1Ii] = qi(1− qi), i = 1, . . . , N. (1)

The “portfolio loss” L over the reference time horizon (t, T) is then given by

L =
N

∑
i=1

1IiEi (2)

where each exposure Ei is supposed to be deterministic.
In order to ease the semianalytic computation of the distribution of L, the model

introduces a new set of variables Yi, each replacing the corresponding indicator function 1Ii
(i = 1, . . . , N). The new variables Yi are supposed to be Poisson-distributed, conditionally
on the value assumed by the market latent variables.

Assumption 1 (CreditRisk+ distributional assumption). Given a time horizon (t, T] and a set
of N risky debtors, the number Yi of insolvency events generated by each i-th debtor over (t, T] is
distributed as follows:

Yi ∼ Poisson(pi(Γ)), pi(Γ) := qi ·
(

ωi0 +
K

∑
k=1

ωikΓk

)
(3)

where Γ = (Γ1 . . . ΓK) ∈ RK
+ is an array of independent r.v.’s such that

Γk ∼ Gamma
(

β−1
k , βk

)
, βk ∈ R+ (4)

and the factor loadings ωik are supposed to be all non-negative and to sum up to unity:

ωik ≥ 0, i = 1, . . . , N, k = 0, . . . , K,
K

∑
k=0

ωik = 1, i = 1, . . . , N.
(5)

The Γ parameters set {β1 . . . βK} is equivalent to the classical shape-scale parameteri-
zation {αk, βk} of each Gamma distributed r.v. Γk, after having imposed the assumption
E[Γk] = 1, that is stated in the original formulation of the CreditRisk+ model. Hence, the
k-th scale parameter βk is equal to the variance σ2

k of Γk. Given the independence among
Γk’s, the covariance matrix Σ takes the form

Σ := cov[Γ] = diag
(

σ2
1 . . . σ2

K

)
= diag(β1 . . . βK) (6)

Assumption 1 implies that qi is the unconditional expected default frequency

qi = E[pi(Γ)] =
∫
RK
+

pi(Γ) f (Γ)dΓ1 . . . dΓK, (7)
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where

f (x) =
K

∏
k=1

xαk−1
k

β
αk
k Γ(αk)

e−xk/βk , xk ≥ 0, αk, βk > 0, (8)

and that the identity between the expected values of the original Bernoulli variable 1Ii and
the new Poisson variable Yi is granted:

E[Yi] = E[1Ii] = qi. (9)

The portfolio loss is now represented by the r.v. LY

LY =
N

∑
i=1

Yi · Ei, where Yi|Γ ∼ Poisson(pi(Γ)). (10)

In [11], the distribution of LY is obtained by using a recursive method, further described
in [17]. The accuracy, stability, and possible variants of the original algorithm are discussed
in [16]. The same distribution can be easily computed through Monte Carlo simulation due
to the availability of a dedicated importance sampling algorithm in [18].

Notice that, although the distributions of L and LY differ, the expected value of the
portfolio loss is the same E[L] = E[LY].

In the language of copula functions, the structure of dependence implied by (3)
corresponds [19] to a multivariate Clayton copula, i.e., an Archimedean copula where
latent variables are Gamma-distributed (for the relation between Archimedean copula
functions and factor models see, e.g., ([9] [§2.1])). The copula parameters are the factor
loadings ωik and they can be gathered, taking into account the normalization condition
stated in Assumption 1, in an N × K matrix Ω:

Ω :=

ω11 . . . ω1K
...

. . .
...

ωN1 . . . ωNK

, (11)

which is, for typical values of N and K, much smaller than the N × N covariance matrix
between the default indicators 1I.

Remark 1. This work is specifically focused on improving the estimation of the CreditRisk+ copula
parameters {Ω, Σ}. Further investigations on the properties of CreditRisk+ dependence structure,
apart from those needed for the estimation improvement, and its comparison with the other copulae
are beyond the scope of this study.

As shown in [14], it holds

cov
[
Yi, Yj

]
= qi qj

K

∑
k=1

ωikωjkσ2
k + δijqi, (12)

where δij is the Kronecker delta. Equation (12) allows the calibration of the factor loadings,
and thus of the dependence structure of the CreditRisk+ model, by matching the observed
covariance matrix of historical default time series with model values. However, since
the model is defined in a single-period framework, with a reference “forecasting” time
horizon (t, T], that is typically of 1 year, i.e., T = t + 1, it is not a priori evident how to use
historical time series with a different frequency (e.g., quarterly) in a consistent way, when
calibrating the model parameters. Naively, it is reasonable to expect that the larger the
information provided by the historical time series (i.e., the higher the frequency), the better
the calibration. This issue is addressed in the next sections.
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3. CreditRisk+ Using Multiple Unwind Periods

The original CreditRisk+ formulation, summarized in Assumption 1, defines the
model in a uniperiodal framework, where only one time scale T− t is considered. In this
section, we discuss the internal consistency of the model assumption when imposing it
more than once at distinct time scales. In this context, the expression “internal consis-
tency” means that it is possible and well-posed imposing Assumption 1 to be true at two
distinct time scales. The same applies also considering a slightly modified version of the
CreditRisk+ framework (i.e., imposing Assumption 2, introduced in the following, instead
of Assumption 1).

Extending the original CreditRisk+ formulation to a multiperiod framework enables
the calibration of the model considering a time scale different from the one chosen for
its application. The results presented in this section are applied in the next Section 4 to
estimate the elements of the matrix

A := ΩTΣΩ. (13)

Estimating A is a fundamental step in order to complete the calibration of the model. In
Section 4 estimators are defined using historical series sampled with a period that is not
necessarily equal to the projection horizon on which Σ and Ω are defined. Section 5 shows
the convenience of choosing a sampling period shorter than the projection horizon in order
to evaluate Â.

3.1. The Single Unwind Period Case

As discussed in Section 2, in CreditRisk+ each risk (i.e., debtor) is modeled by a
Poisson distributed r.v. Yi, although the Bernoulli distribution is the natural choice to
represent absorbing events, such as default. Assumption 1 is convenient in terms of
analytical tractability since LY distribution can be computed through a semianalytical
method. However, in order to address the problem of calibrating CreditRisk+ in a “roll-
over” framework, defined by an arbitrary set of time intervals, it is useful to recover the
Bernoulli representation of each debtor by introducing a new r.v. Ỹi := 1IYi>0.

Both the r.v. Yi and its distribution parameter pi(Γ) can take values larger than 1.
This is formally correct, given that Yi ∼ Poisson(pi(Γ)), despite not coping with the
representation of absorbing events, that can occur at most once by definition. The so-called
“Poisson approximation”, introduced by substituting 1Ii with Yi, is numerically sound as qi
approaches to zero—a condition that is well fulfilled in most real world relevant cases.

Indeed, Assumption 1 implies that Ỹi|Γ ∼ Bernoulli( p̃i(Γ)) where the distribution
parameter is

p̃i(Γ) = Prob(Yi > 0|Γ) = 1− exp

[
−qi

(
ωi0 +

K

∑
k=1

ωik Γk

)]
. (14)

It holds by construction

E
[
Ỹi

]
=
∫
RK
+

p̃i(Γ) f (Γ)dΓ1 . . . dΓK. (15)

Computing the integral in (15) and then approximating the term exp[−qiω0] with its second
order Taylor series centered at qi = 0 leads to the following result.

Proposition 1 (Asymptotic equivalence between Bernoulli and Poisson representation of
risks). Let Ỹi := 1IYi>0 where Yi is distributed according to Assumption 1. Then

q̃i := E
[
Ỹi

]
= 1− e−qi ωi0

K

∏
k=1

(
1 + qi ωikσ2

k

)−1/σ2
k . (16)
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Further,

q̃i = qi +O(q2
i )

qi→0+−−−→ qi. (17)

Proposition 1 implies that E[LYi ] ' E[LỸi
], provided that qi � 1. Moreover, the same

result enables also the exact satisfaction of E
[
LYi

]
= E

[
LỸi

]
, in case the stochastic parameter

p̃i(Γ) is redefined through the substitution qi 7→ q′i, where q′i verifies the following modified
version of (16):

E
[
Ỹi(q′i)

]
= 1− e−q′i ωi0

K

∏
k=1

(
1 + q′i ωikσ2

k

)−1/σ2
k
= qi = E[Yi]. (18)

It is worth noticing that the substitution 1Ii 7→ Yi discussed in Section 2 implies the preserva-
tion of the expected value E[L] = E[LY] due to the fact that it is done before the introduction
of the market factors Γ. On the other hand, restoring the Bernoulli representation of each
risk after having introduced the dependence structure requires the results presented in
Proposition 1.

Proposition 1 permits the introduction of a slightly modified version of the CreditRisk+

model that is asymptotically equivalent to the original one stated in Assumption 1. The
equivalence between the two models is further analyzed in the next sections.

Assumption 2 (Modified CreditRisk+ distributional assumption). Given a time horizon
(t, T] and a set of N risky debtors, the number of insolvency events generated by each i-th debtor
over (t, T] is represented by the r.v. Ỹi ∼ Bernoulli( p̃i(Γ)), where the distribution parameter p̃i(Γ)
satisfies (14). Assumptions on market factors Γ and factor loadings Ω remain the same stated in
Assumption 1.

In Assumption 2 the linear dependence of the parameters pi(Γ) from the latent vari-
ables has been replaced with a log link function. Thus, the modified version of CreditRisk+

is also referred to as “exponential” in the following.

3.2. The Multiple Unwind Periods Case

This section investigates the consequences of imposing the internal consistency of
Assumption 1 or Assumption 2 at distinct time scales. Assumptions 3 and 4 are introduced
hereinafter, in order to specify the family of parameters that have to be considered at the
distinct time intervals where the model is applied.

The following assumption guarantees the internal consistency at different time scales
of the classical CreditRisk+ model, defined in Assumption 1.

Assumption 3 (CreditRisk+ parameters at different time scales). Let t ≡ t0, t1, . . . , tm ≡ T
be a partition of the time interval (t, T]. Let Assumption 1 be satisfied over each j-th interval
(tj−1, tj] by the set {Y(j)

i } (i = 1 . . . N), where Y(j)
i is the r.v. representing the i-th risk observed

during the j-th interval and the following holds for the associated set {q(j)
i ; Γ(j); Ω(j)} of parameters

and market factors:

q(j)
i = qi

tj − tj−1

T − t
= constant, (19)

Γ(j)
k ∼ Gamma

(
σ−2

k ξ−1
kj

tj−tj−1
T−t , σ2

k ξkj
T−t

tj−tj−1

)
, (20)

Ω(j) = Ω, (21)

where ξkj ∈ R+.

Further, the following assumption guarantees the internal consistency at different
time scales of the modified version of CreditRisk+ model, introduced in Assumption 2.
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Assumption 4 (Modified CreditRisk+ parameters at different time scales). Let
t ≡ t0, t1, . . . , tm ≡ T be a partition of the time interval (t, T]. Let Assumption 2 be satisfied over
each j-th interval (tj−1, tj] by the set {Ỹ(j)

i } (i = 1 . . . N), where Ỹ(j)
i is the r.v. representing the

i-th risk observed during the j-th interval. The associated set {q(j)
i ; Γ(j); Ω(j)} of parameters and

market factors satisfies the same assumptions stated in Assumption 3.

Finally, for the sake of simplicity, the additional Assumption 5 is introduced, with
regard to the independence among market factors considered at different times. However,
being possible that real-data time series violate Assumption 5, this assumption is weakened
in the following Section 3.3.

Assumption 5 (Non-autocorrelated market factors). Given Assumption 3, let

cov
[
Γ(j)

k , Γ(j′)
k

]
= δjj′var

[
Γ(j)

k

]
. (22)

Considering the assumptions introduced above, we prove that CreditRisk+ is inter-
nally consistent when extended to a roll-over framework.

Theorem 1 (Internal consistency of CreditRisk+ in absence of autocorrelation). Let us
consider a set of risks {Yi} (i = 1 . . . N), observed through a time horizon (t, T], and an arbitrary
partition t ≡ t0, t1, . . . , tm ≡ T of (t, T], such that Assumptions 3 (“CreditRisk+ parameters at
different time scales”) and Assumption 5 (“non-autocorrelated market factors”) are verified with

ξkj = 1 (23)

for each i = 1 . . . N, k = 1 . . . K and j = 1 . . . m. Then {Yi} satisfies Assumption 1 (“CreditRisk+

distributional assumption”) over (t, T].
The statement above remains true replacing Assumption 3 with Assumption 4 (“modified

CreditRisk+ parameters at different time scales”) and Assumption 1 with Assumption 2 (“modified
CreditRisk+ distributional assumption”), ceteris paribus.

The proof of Theorem 1 is reported in Appendix A.1.
This result shows that extending the CreditRisk+ model to a multiperiod framework

is well-posed.

Remark 2. The choice ξ jk = 1 implies no loss of generality, since a different (positive) constant
ξ jk = c is equivalent to redefine the variances of the market factors cσ2

k 7→ σ2
k .

3.3. Internal Consistency and Autocorrelation in Time Series

As shown in Section 2, the dynamics of each parameter pi is induced by the latent
Gamma factors only. Imposing Assumption 5 to any (arbitrarily short) time scale im-
plies that considered time series {Γ(j)

k }j=1,2,... must exhibit zero autocorrelation. Hence
autocorrelation must be completely absent from the historical default frequencies too.

However, this requirement could not be satisfied by the observed time series used in
calibrating the model. Indeed, we need to verify that the model can preserve its internal
consistency if autocorrelation has to be considered.

The purpose of this work is to investigate whether it is possible and convenient to
calibrate the CreditRisk+ model at a time scale that copes with the available historical
data (i.e., the sampling period of the historical time series) instead of using the same time
scale needed for projections (usually bigger). Hence, in case it is not possible to preserve
the internal consistency of the model at each arbitrary time scale, due to the presence of
autocorrelation, it is sufficient to ask that it holds up to the smallest of the two time scales
of interest—the historical sampling period and the projection horizon.
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Let us specialize to the constant mesh case tj − tj−1 = (T − t)/m = δm. This choice
copes with a typical real case, where the sampling period δm of the available historical time
series is constant and the considered projection horizon T − t is a multiple of it. Under
these premises, a weakened version of Assumption 5 is introduced.

Assumption 6 (Autocorrelated market factors). Given Assumption 3, for each k-th latent
variable, considered at the time scale δm, a time-invariant ACF $xk exists, such that

cov
(

Γ(j)
k , Γ(j+x)

k

)
= $xkvar

(
Γ(j)

k

)
. (24)

Furthermore, the following closure with respect to the addition holds

m

∑
j=1

Γ(j)
k ∼ Gamma(αk, βk) (25)

for a couple αk, βk of shape and scale parameters.

Assumption 6 is considered instead of Assumption 5 to state the following alternate
version of Theorem 1.

Theorem 2 (Internal consistency of CreditRisk+ model in presence of autocorrelation). Let
us consider a set of risks {Yi} (i = 1 . . . N), observed through a time horizon (t, T], and a uniform
partition {tj := t + jδm}j=1...m of (t, T] , such that Assumption 3 (“CreditRisk+ parameters at
different time scales”) and Assumption 6 (“autocorrelated market factors”) are verified with

ξkj =

[
1 + 2

m−1

∑
x=1

$xk

(
1− x

m

)]− 1
2

(26)

for each i = 1 . . . N, k = 1 . . . K and j = 1 . . . m. Then {Yi} satisfies Assumption 1 (“CreditRisk+

distributional assumption”) over (t, T].
The statement above remains true replacing Assumption 3 with Assumption 4 (“modified

CreditRisk+ parameters at different time scales”) and Assumption 1 with Assumption 2 (“modified
CreditRisk+ distributional assumption”), ceteris paribus.

The proof of Theorem 2 is reported in Appendix A.2.
Assumption 6 can be either well-posed or ill-posed, depending on the considered

$xk. The trivial case $xk = 0 for each x ∈ Z copes with Assumption 5. Correlated Gamma
variables, as well as the distributional properties of the sum of Gamma variables, have
been intensively studied in the literature, and this is still an active research field [20–23],
due to its relevance for information technology. At least in case of identically distributed
Gamma variables—such as Γ(j)

k in our framework—with ACF obeying to a power-law

$xk = ρ
|x|
k , ρk ∈ (0, 1), (27)

the distribution of the sum Γk is known to be approximately Gamma [20], while more
generical cases imply the sum to be distributed differently [22,23]. Moreover, it is known
that partial sums of independent Gamma variables can be used to generate sequences of
(auto)correlated Gamma variables [21].

Remark 3. The exponential ACF in Equation (27) provides a non-trivial case that satisfies As-
sumption Assumption 6 and, thus, Theorem 2. In the following Section 4.4, Theorem 2 permits
the estimation of A in presence of autocorrelated time series. Equation (27) is then considered in
Section 5.3 to investigate numerically the estimators introduced in Section 4.4. However, to date,



Mathematics 2021, 9, 1679 9 of 30

a general framework is missing to tell whether a given $xk lets the partial sums ∑j Γ(j)
k remain

(approximately) Gamma distributed, with the exception of exponential ACFs.

The estimators introduced in Section 4.4 to consider autocorrelation in time series are
still applicable to an inconsistent framework, provided that at least the latent variables Γk

(defined onto the projection horizon) are Gamma distributed and Γ(j)
k satisfy the mean and

variance requirements implied by Assumption 6 above.

4. Calibration of the Structure of Dependence

The model is calibrated based on a partition of the risks in H homogeneous sets
ch(t), h = 1, . . . , H. In this context “homogeneity” means that two risks belonging to the
same set ch(t) have the same vector of factor loadings ω(h). The sets have an explicit time
dependence since they can change by the occurrence of defaults. On the contrary, the
structure of dependence, defined by ω(h) is supposed to be time-independent.

Hence, solving the calibration problem requires the evaluation of

• H factor loading vectors {ω(h)}h=1...H , that link each of the homogenous clusters to
the K latent variables;

• K volatilities {σk}k=1...K, needed to specify the distribution of each of the latent vari-
ables.

The calibration is achievable by a two-step procedure. Firstly, the matrix A := ΩTΣΩ,
introduced in Section 3, is estimated. Then, A is decomposed under the proper constraints
in order to evaluate Ω and Σ separately. This section describes a method to complete the
first step, providing an estimator of A both for the single and the multiple unwind period
cases, with a moment-matching approach that allows expressing Â as a function of the
covariance matrix among the historical frequencies of default. The second step is addressed
later in Section 6, which provides an example of calibration using a real data set.

Adopting the standard CreditRisk+ Assumption 1, Equation (12) can be used to link
the covariance matrix among the historical frequencies of default with the matrix A. In
Section 4.1, Â is provided in the case of historical frequencies of default, sampled with the
same tenor of the projection horizon. In Section 4.2, Â is generalized to the case of historical
frequencies of default sampled with an arbitrary tenor.

Furthermore, in Section 4.3, Â is determined under the exponential version of the
CreditRisk+ framework, introduced in Assumption 2. Thanks to this modified assumption,
the corresponding functional form of Â is simpler than the one obtained in Section 4.2
based on Assumption 1.

Sections 4.2 and 4.3 cope with Assumption 5, that implies absence of autocorrelation in
time series. The final Section 4.4 uses Assumption 6 instead, generalizing the main results
presented in this section to the case where autocorrelation must be taken into account. In
this case, the simpler form of Â obtained in Section 4.3 comes in handy in the generalization
to the non-trivial ACF case.

4.1. The Single Unwind Period Case

The first case considered is that of a single unwind period (t, T]. For each set ch(t), let
nh(t) := |ch(t)|, Fh := 1

nh(t)
∑i∈ch(t) Yi and Gh := 1− Fh. The expected values of Fh and Gh

are respectively:

qh := E[Fh] =
∑i∈ch(t) qi

nh(t)
, (28)

sh := E[Gh] = 1− E[Fh]. (29)

Remark 4. The slight abuse of notation in (28) is done to avoid the introduction of a new symbol to
represent E[Fh]. However, the letters chosen for indexing risks and cluster (“i” and “h” respectively)
are maintained in the following of this work, clarifying the meaning of the “q” symbol each time it
is used.
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For any pair of sets of risks {h, h′}, the covariance between the default frequencies is:

cov(Fh, Fh′) = E[(Fh − E[Fh′ ])(Fh′ − E[Fh′ ])]

=
1

nhnh′
E

∑
i∈ch

(Yi − qi) ∑
i′∈ch′

(Yi′ − qi′)


=

1
nhnh′

∑
i∈ch

∑
i′∈ch′

cov(Yi, Yi′), (30)

that, using Equation (12), becomes:

cov(Fh, Fh′) =
1

nhnh′
∑

i∈ch

∑
i′∈ch′

(
qiqi′

K

∑
k=1

ωikωi′kσ2
k + δii′qi

)
. (31)

Equation (31) shows the relation between the observed covariance of default frequen-
cies and the factor loadings, describing the structure of dependence of the model.

Moreover, assuming that all risks in a given homogenous set share the same factor
loadings, the above expression simplifies to:

cov(Fh, Fh′) = qhqh′
K

∑
k=1

ωhkωh′kσ2
k + δhh′

qh
nh

(32)

Notice that the second term in Equation (32) is present only when h = h′, and becomes
quickly negligible as nh grows (since qh < 1).

Equation (32) enables the estimation of A over the same time scale T − t used for
projections:

Âhh′ =
1

qhqh′

[
ˆcov(Fh, Fh′)− δhh′

qh
nh

]
. (33)

4.2. The Multiple Unwind Period Case

Let us consider a set of H time series defined using a constant step δm = (T − t)/m.
As done in Section 2, each variable introduced in Section 4.1 for the time interval (t, T]
can be redefined over each of the considered time intervals. Namely, in the following
we use the set of observables quantities {Fh, Gh, qh, sh}, measured either over (t, T] or
(tj−1, tj = tj−1 + δm] or a generic time interval (t, t′]. For the latter two cases, we introduce

the notation {F(j)
h , G(j)

h , q(j)
h , s(j)

h } and {Fh(t, t′), Gh(t, t′), . . . }, respectively. Further, the
variables

Fmh := 1−
m

∏
j=1

[
1− F(j)

h

]
, (34)

Gmh :=
m

∏
j=1

G(j)
h = 1− Fmh (35)

are introduced.
In CreditRisk+, Fh(t, t′) arises from a doubly stochastic process, since each absorbing

event is generated conditioned to the latent systematic factors. For the sake of simplicity, we
neglect the idiosyncratic uncertainty brought by each Yi(t, t′). In fact, for nh(t) large enough,
the Bernoulli (or Poisson) r.v.’s contributions to the variance of Fh(t, t′) are dominated by
the contribution of Γ(t, t′). This permits the following assumption.

Assumption 7 (Large clusters). For each cluster ch (h = 1 . . . H) and each time interval
(t, t′] ⊆ (t, T] it holds

var
[
Fh(t, t′)|Γ(t, t′)

]
= 0 .
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Then the following holds:

Proposition 2 (CreditRisk+ scale-invariance law). Let us consider a set of risks
{Yi} (i = 1 . . . N), observed through a time horizon (ta, tb] and classified into a set of homogenous
clusters ch (h = 1 . . . H). Let Assumption 3 (“CreditRisk+ parameters at different time scales”),
Assumption 5 (“non-autocorrelated market factors”) and Assumption 7 (“large clusters”) hold with
ξkj = 1 for each (t, T] ⊆ (ta, tb] and for each uniform partition t ≡ t0 < t1 < · · · < tm ≡ T of
(t, T], (m ∈ N∗). Then, the couple Fh(t, T), Fh′(t, T) satisfies the conservation law

[cov(Fh(t, T), Fh′(t, T)) + sh(t, T)sh′(t, T)]
1

T−t = constant. (36)

for each pair of clusters ch, ch′ and each (t, T] ⊆ (ta, tb].

The proof of Proposition 2 is reported in Appendix A.3.
Proposition 2 is one of the main results of this work. It allows to build an estimator

of cov(Fh(t, T), Fh′(t, T)) using default frequencies F(j)
h defined on a different time scale

δm. The dependence upon m of the precision of the covariance estimator is discussed in
Section 5.

Indeed, applying Proposition 2 to Equation (33), it is possible to calibrate the de-
pendence structure of the CreditRisk+ model, by first determining the elements of the A
matrix as

Ahh′ =
1

qhqh′

[(
cov

(
F(j)

h , F(j)
h′

)
+ s(j)

h s(j)
h′

)m
− shsh′ − δhh′

qh
nh

]
(37)

for any j = 1, . . . , m, and then decomposing A, thus obtaining a separate estimate of
the

{
Ω, σ2

Γ
}

parameters. The SNMF decomposition can be performed, e.g., by using the
technique described in [14].

4.3. The Exponential Case

In this section the problem of calibrating the dependence structure is addressed using
the exponential form of the model introduced in Assumptions 2 and 4. Theorem 1 proves
that also the exponential form remains consistent when considering multiple unwind
periods. Since now Ỹi variables are used instead of the corresponding Yi, the frequencies Fh
and their complements Gh are replaced by F̃h and G̃h, defined by the substitution Yi 7→ Ỹi in
Fh and Gh definitions, respectively. Furthermore, it is convenient to introduce the following

Lh := − qh
q?h

ln G̃h (38)

where

q?h := − ln
∑i∈ch(t) e−qi

nh(t)
. (39)

The notation introduced in Section 4.2 for {Fh, Gh, qh, . . . } are extended to the exponential
case as well. Hence, the sets of symbols {F̃h(t, t′), G̃h(t, t′), . . . } and {F̃(j)

h , G̃(j)
h , . . . } are also

used. The log link function that relates p̃i and Γ simplifies the form of the scale invariariance
law presented in Proposition 2. Indeed, in this case the following holds.

Proposition 3 (Modified CreditRisk+ scale-invariance law). Let us consider a set of risks {Ỹi}
(i = 1 . . . N), observed through a time horizon (ta, tb] and classified into a set of homogenous clusters
ch (h = 1 . . . H). Let Assumption 4 (“modified CreditRisk+ parameters at different time scales”),
Assumption 5 (“non-autocorrelated market factors”) and Assumption 7 (“large clusters”) hold with
ξkj = 1 for each (t, T] ⊆ (ta, tb] and for each uniform partition t ≡ t0 < t1 < · · · < tm ≡ T of
(t, T], (m ∈ N∗). Then Lh(t, T), Lh′(t, T) obey to the conservation law

1
T − t

cov[Lh(t, T), Lh′(t, T)] = constant (40)
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for each pair of clusters ch, ch′ and each (t, T] ⊆ (ta, tb].

The proof of Proposition 3 is reported in Appendix A.4.
Proposition 3 states a conservation law for the modified version of the model, like-

wise Proposition 2 in the original (i.e., Poisson–Gamma) CreditRisk+ framework. The
form obtained for the LHS of Equation (40) is simpler than the corrisponding LHS of
Equation (36). In general, this framework results to be more tractable than the original
model. This is especially useful when estimating A given a non-trivial ACF, as shown in
the next Section 4.4.

In this case, A can be estimated as

Ahh′ =
1

qhqh′
cov[Lh, Lh′ ] =

1
q?hq?h′

cov
[
ln
(

1− F̃h

)
, ln
(

1− F̃h′
)]

(41)

where we have neglected the contribution of cov(Ỹi, Ỹi) ∝ 1
nh(t1)

' 0. Definition (38) and
Proposition 3 imply

Ahh′ =
m

q?(j)
h q?(j)

h′

cov
[
ln
(

1− F̃(j)
h

)
, ln
(

1− F̃(j)
h′

)]
(42)

for each j = 1 . . . m.

4.4. Handling Autocorrelated Time Series in Calibration

In this section a generalization of estimators in Equations (37) and (42) is provided, in
case Assumption 5 has to be replaced with Assumption 6 due to the presence of autocor-
relation in time series. We preliminarily report below a second order approximation that
comes in handy to generalize Equation (37).

m

∏
j=1

E
[

G(j)
h G(j)

h′

]
=

m

∏
j=1

(
1− q(j)

h − q(j)
h′ + E

[
F(j)

h F(j)
h′

])
= 1−

m

∑
j=1

(
q(j)

h + q(j)
h′

)
+

m

∑
j=1

E
[

F(j)
h F(j)

h′

]
(43)

+ ∑
j<j′

∑
h,h′=1,2

q(j)
h q(j′)

h′ + . . .

We now consider again the relation between cov(Fmh, Fmh′) and cov
(

F(j)
h F(j)

h′

)
implied by

Proposition 2, under the presence of autocorrelation for the latent variables. Unlike in
Section 3.2, in this case covariance terms at delay |j− j′| ≥ 1 cannot be nullified.

cov(Fmh, Fmh′) = E

[
m

∏
j=1

G(j)
h G(j)

h′

]
− shsh′

= 1−
m

∑
j=1

(
q(j)

h + q(j)
h′

)
+ ∑

j<j′
∑

h,h′=1,2
E
[

F(j)
h F(j′)

h′

]
(44)

+
m

∑
j=1

E
[

F(j)
h F(j)

h′

]
− shsh′ + . . .
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Replacing Equation (43) into Equation (44), we have

cov(Fmh, Fmh′) =
m

∏
j=1

E
[

G(j)
h G(j)

h′

]
+ ∑

j<j′
∑

h,h′=1,2
cov

[
F(j)

h F(j′)
h′

]
− shsh′ + O3 (45)

where O3 is a compact notation for the sum of all the terms of order 3 or greater. Given

that O3
q→0−−→ 0, the approximation O3 ≈ 0 is numerically sound in practice and implies the

following generalization of Ahh′ in Equation (37)

Ahh′ ≈ 1
qhqh′

[(
cov

(
F(j)

h , F(j)
h′

)
+ s(j)

h s(j)
h′

)m
+ AC(L)

hh′ − shsh′ − δhh′
qh
nh

]
, (46)

where the autocorrelation term AC(L) is defined as

AC(L)
hh′ :=

m−1

∑
x=1

(m− x)
(

cov
[

F(j)
h F(j+x)

h

]
+ cov

[
F(j)

h′ F(j+x)
h′

]
+ 2cov

[
F(j)

h F(j+x)
h′

])
. (47)

This completes the extension of the linear case presented in Section 4.2 to autocorrelated
time series.

The exponential case—introduced in Section 4.3—turns out to be more tractable, since
the linear structure implied by Proposition 3 allows us to avoid approximations similar to
the one applied to extend the linear case above. Indeed, only the simplification implied by
Assumption 5 must be abandoned, implying

cov[Lh, Lh′ ] = m cov
[

L(j)
h , L(j)

h′

]
+

m−1

∑
x=1

2(m− x)cov
[

L(j)
h , L(j+x)

h′

]
. (48)

This is implied by the fact that L(j)
h are still identically distributed for the same h but not

independent. Hence, the estimator in Equation (42) becomes

Ahh′(t, T) = m
q?(j)

h q?(j)
h′

cov
[
ln
(

1− F̃(j)
h

)
, ln
(

1− F̃(j)
h′

)]
+ AC(E)

hh′ (49)

where

AC(E)
hh′ := 1

q?(j)
h q?(j)

h′

m−1

∑
x=1

2(m− x)cov
[
ln
(

1− F̃(j)
h

)
, ln
(

1− F̃(j+x)
h′

)]
(50)

5. The Advantage of a Short Sampling Period

Let us consider a ∆t-long projection period and a set of historical time series of defaults
that span a (past) time interval of length n∆t. Typical examples can be ∆t = 1 year and
5 ≤ n ≤ 20. Moreover, let the historical time series be sampled with a period δm, which is m
times smaller than ∆t (i.e., δm := ∆t/m). Considering ∆t = 1 year, realistic assumptions are
m = 4 (quarterly time series) or m = 12 (monthly time series). Therefore, the considered
time series are defined over m× n intervals of length δm, defined by a schedule t0, . . . , tm×n.

This section discusses the precision improvement achievable by calibrating the model
on historical default time series with a period smaller than the time horizon on which the
calibrated model is applied. Indeed, the statistical error on the determination of A depends
on m, i.e., on the sampling frequency of the observations, as shown in Section 5.1. Further,
given Assumption 7 (“large clusters”), the statistical error can be written as a closed-form
function of m, as σ2

k approaches to zero (k = 1 . . . K). In the following, the assumption
of “small” volatilities is referred to as “Gaussian regime”, because it implies Γk∼̇N (1, βk)
(k = 1 . . . K), as discussed in the proof of Theorem 3.
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As in the previous Sections 3 and 4, both the standard CreditRisk+ framework
(Assumptions 1 and 3) and the modified “exponential” version (Assumptions 2 and 4)
are discussed hereinafter.

In applications where ch’s are scarcely populated or σk’s are not negligible, Theorem 3
is not guaranteed to cope with observations. This case is addressed in Section 5.2, where the
robustness of the closed-form expression (54) is investigated by Monte Carlo simulations.

A numerical approach is maintained in Section 5.3 as well, where the estimation error
of Â at different time scales is measured in presence of autocorrelation, following the
generalization introduced in Sections 3.3 and 4.4. In this case, the exponential version of
the model comes in handy: indeed, it is observed that the error on the estimator introduced
in (46) (i.e., standard CreditRisk+ version) does not decrease at increasing m, while the
opposite is true for the estimator presented in (49) (i.e., exponential CreditRisk+ version).

In Section 4, the Â estimator has been presented in multiple versions, depending
on the considered model (standard or exponential version of CreditRisk+), the chosen
sampling period δm and the presence or absence of autocorrelation. Thus, it is worth
introducing a compact notation to identify the different versions of Â.

The expressions for Ahh′ presented in (37) and (46) are addressed as “linear” estimators
(as opposed to “exponential”) in the following. In these cases the symbol Â(L,m)

hh′ is used,
where L stands for “linear” and m = (T − t)/δm is the ratio between the projection and
calibration time scales.

On the other hand, the expressions for Ahh′ presented in (42) and (49) are addressed
as “exponential” estimators and so the symbol Â(E,m)

hh′ is used.

For the sake of brevity, when L or E is omitted, Â(m)
hh′ refers to both the cases and, when

m is omitted, Âhh′ refers to the m = 1 case.
The improvement in statistical precision with respect to the estimate with no subsam-

pling, can be quantified by the following ratio:

ε[Â(m)
hh′ ] :=

√√√√var
[

Â(m)
hh′

]
var
[
Âhh′

] . (51)

Symbol ε
(m)
hh′ and its further specifications ε

(L,m)
hh′ := ε[Â(L,m)

hh′ ] and ε
(E,m)
hh′ can be used as well.

The last short notation that results to be convenient in the following is

c(Lm)
hh′ := cov

[
F(j)

h , F(j)
h′

]
+ s(j)

h s(j)
h′ , (52)

c(Em)
hh′ := cov

[
L(j)

h , L(j)
h′

]
. (53)

where F(j)
h , L(j)

h and s(j)
h (j = 1 . . . m) are i.i.d. variables quantified using a sampling

period δm.

Remark 5. The notation “Â” refers to the fact the covariances involved in the definitions must be
replaced with the corresponding sample estimators, when applying A(m)

hh′ to historical time series.
The same applies to the symbol ĉ.

5.1. Precision of Â at Different Time Scales under the Gaussian Regime

The following result quantifies the precision gain of performing CreditRisk+ model
calibration by historical time series available at increasing sampling frequencies. As
anticipated, the precision of the estimated parameters increases as the sampling period
decrease. This result holds under Assumption 7, in the limit σ → 0+ and considering
absence of autocorrelation. The cases where some nh is small (i.e., it does not verify
Assumption 7) or where some σk is not negligible are addressed numerically in the next
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Section 5.2—showing that the precision is still increasing as shorter sampling periods are
considered. The introduction of autocorrelation is addressed in Section 5.3.

Theorem 3 (Estimation errors under Gaussian regime). Let us consider a set of risks, observed
through a time interval (t0, t] and classified into a set of homogenous clusters ch (h = 1 . . . H).
Let Assumption 3 (“CreditRisk+ parameters at different time scales”), Assumption 5 (“non-
autocorrelated market factors”) and Assumption 7 (“Large clusters”) hold with ξkj = 1 for a given
uniform partition t0 < t1 < · · · < tj < · · · < tm×n ≡ t of (t0, t], (tj − tj−1 = δm; m, n ∈ N∗).
Let Â be the estimate of A needed to calibrate the CreditRisk+ model in order to project losses
over the time horizon (t, T], such that (t− t0)/(T − t) = n and (T − t)/(δm) = m. Then the
following is true for Â(m)

hh′ :

ε
(m)
hh′

σ→0+−−−→
√

n− 1
m · n− 1

(54)

Equation (54) remains true also considering Assumption 4 (“modified CreditRisk+ parameters at
different time scales”) instead of Assumption 3.

The proof of Theorem 3 is reported in Appendix A.5.

5.2. Beyond the Gaussian Regime: Numerical Simulations

In this section we verify that both the estimators Â(E,m)
hh′ and Â(L,m)

hh′ are more precise
at increasing m. The closed-form results obtained in the Gaussian regime, discussed
in Section 5.1, hold when the factor volatilities σΓ are much less than 1. Increasing σk
(k = 1, . . . , K) the Gaussian regime becomes less satisfactory and the difference of precision
amongst determinations with different values of m becomes smaller. However, the error of
Â(m)

hh′ remains monotonically decreasing in m, even far from the Gaussian regime conditions.
We considered a case study with a two-factors market (Γk, k = 1, 2). The couple of

systematic factors induces the dependence between two populations of risks, as per the
weights reported in Table 1.

Table 1. Matrix of weights used for the numerical simulations.

k 0 1 2

ω1k 0.30 0.40 0.30
ω2k 0.50 0.25 0.25

The volatilities (σk, k = 1, 2) associated to the factors are chosen according to seven
different scenarios (indexed by iσ), respectively as

σΓ := 2iσ
(

2.5 · 10−2

5.0 · 10−2

)
, iσ = 0 . . . 6. (55)

For each scenario, the distributions of the estimators Â(E,m)
12 and Â(L,m)

12 (m = 1 . . . 12) have
been determined using 105 simulations of {F1(t, n1), F2(t, n2)} where t ∈ (t0, t0 + n∆t]
(n = 10) and nh (h = 1, 2) is the number of risks belonging to each cluster. For both
estimators the dynamic Fh(t, nh) is that reported in (14). All risks belonging to the same
cluster are supposed to have the same unconditioned intensity of default

qi(t, t + ∆t) = −
1
∆t

log(0.99), i = 1, . . . , nh, h = 1, 2. (56)

To investigate the additional contribution to the error σ
[
Â12
]
, generated by the finiteness of

each cluster, different values of nh have been considered. In particular, the number of claims
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per each elementary temporal step δm = 1/m is extracted from a binomial distribution
with parameter

nh ∈
{

103, 2.5 · 103, 5 · 103, 104, 2.5 · 104, 5 · 104
}

, h = 1, 2. (57)

For simplicity’s sake, it is assumed that each defaulted risk is instantly replaced by a new
risk, keeping the population of each cluster constant in time. Finally, the case nh = ∞
(absence of binomial source of randomness) is also considered.

Figure 1 shows the behaviour of ε
[

Â(m)
12

]
as a function of m, comparing various choices

of σΓ. In this case we are not considering yet the contribution to error due to the finite
population (nh = ∞ for each cluster h). Equation (54) (red curve) is almost perfectly
verified by the least volatility scenario (σΓ = (2.5, 5.0) · 10−2). At increasing volatility
values (brighter curves), the gain in precision obtained at higher m is reduced, as well as
the accordance with Equation (54).
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Figure 1. Precision gain ε
(m)
12 , as a function of m and iσ. The left and right plots show the values of

ε
[

Â(E,m)
12

]
and ε

[
Â(L,m)

12

]
respectively, as a function of m, for each volatility scenario (iσ = 0, . . . , 6),

each depicted with darker to brighter curves, in the nh = ∞ assumption. The red curve is the

theoretical value of ε
[

Â(m)
12

]
in the Gaussian regime.

Since the transformation of ε
[

Â(m)
12

]
moving away from the Gaussian regime (i.e., in-

creasing |σΓ|) is smooth, estimating A12 with m > 1 remains convenient even for [σΓ]k & 1,
despite the fact that Equation (54) is not verified anymore.

Comparison between the left and the right panel of Figure 1 shows that the above
argument holds both in the linear and in the exponential case. This fact is also verified for
all the other results of this section.

The results shown in Figure 1 are numerically checked against the case of finite
portfolio populations: we tested each of the nh declared in Equation (57). Even the smallest
size considered (i.e., nh =103—Figure 2), that is affected by the largest binomial contribution
to the error, leads to results comparable to the ones observed in the nh = ∞ case. The size
nh =103 is considered to be a limiting value for a realistic case.

We simulated the distribution of the estimator Â(m)
12 as a function of m, testing all the

possible combinations of σΓ and nh declared in Equations (55) and (57). Figure 3 reports
an example of the results. All the other considered (nh, σk) couples resulted to have a
similar behavior. The visual comparison between E[Â(m)

12 ] (blue “X” symbol) and A12 level

(red horizontal line) shows that indeed Â(m)
12 is unbiased, both in the linear and in the

exponential case (Equations (37) and (42) respectively). The dispersion around the mean
reduces at increasing m, in agreement with both Equation (54) and the numerical results in
Figures 1 and 2.

As implied by Figures 2 and 3, the number of risks nh does not play a relevant role
(if any) in computing the ratio ε

[
Â(m)

12

]
, while the absolute value of the standard error

σ
[

Â(m)
12

]
is sensitive to the size of the portfolio.
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This fact is confirmed by the results shown in Figure 4, where the estimates of σ
[

Â(m)
12

]
have been arranged as functions of nh at fixed σΓ and m values. As expected, the standard
error is greater when considering smaller nh values, while the dependence on nh of the
error disappears quickly as approaching nh → ∞.
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Figure 2. ε[Â(E,m)
12 ] and ε[Â(L,m)

12 ] as a function of m, considering increasing iσ (from darker to brighter curve)

and nh = 103. The red curve is the theoretical value of ε
[

Â(m)
12

]
as a function of m in the Gaussian

regime. For σ1, σ2 � 1 the analytical result is perfectly satisfied. However, ε
[

Â(L,m)
12

]
is shown to be a

decreasing function of m in general. Comparing this result with the nh = ∞ case, we can state that

ε
[

Â(L,m)
hh′

]
is almost insensitive to nh (h = 1, 2).
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Figure 3. Boxplot of Â(E,m)
12 and Â(L,m)

12 distributions, as a function of m. The red horizontal line represent

the true value of A12 and the blue X’s stand for the average value of Â(m)
12 .
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Figure 4. σ[Â(E,m)
12 ] and σ[Â(L,m)

12 ] as a function of nh. Decreasing m values are considered from darker
to brighter curve.

5.3. Estimation Error in Presence of Autocorrelation

In Section 5.2 the precision gain at increasing m is measured in absence of autocor-
relation. In this section, the same numerical simulations are re-performed, introducing
autocorrelation and comparing the results against the theoretical estimation of ε. The effect
of autocorrelation on ε is discussed in Appendix B.

The numerical setup introduced above in Section 5.2 has been maintained, with a
further assumption about ACF. Indeed, we assume that each latent variable (k = 1, 2) obeys
to the following ACF law, discussed in Section 3.3

$xk = ρ|x|, m = 12
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where the considered ρ values are 0.05 and 0.5. For m′ < 12 cases, we have considered

ACF’s resulting for the latent variables time series Γ̃(j′)
k obtained by the clustering operation

Γ̃(j′)
k ≡ m′

m ∑
j

Γ(j)
k , j = 1 + m

m′ (j′ − 1) . . . m
m′ j
′

given the aforementioned ACF law at 1/m time scale. Since the contribution of the finite
population to the error has been shown to be neglectable in Section 5.2, simulations in
presence of autocorrelation have been performed under nh = ∞ assumption only.

Figure 5 shows that the estimator Â(E,m)
hh′ remains more precise at increasing m, even

in presence of autocorrelation. The analytical results obtained in the Gaussian regime (i.e.,
theoretical superior and inferior estimates of ε—dashed and solid red lines in Figure 5),
discussed in Appendix B, are in good agreement with the numerical results obtained in the
considered set up. All the empirical measures of ε are included between the two theoretical
limits (yellow areas).
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Figure 5. Precision gain in presence of autocorrelation. ε[Â(E,m)
12 ] (exact—left panels) and ε[Â(L,m)

12 ] (2nd
order approximation—right panels), for each volatility scenario (iσ = 0, . . . , 6, depicted with darker
to brighter curves), for ρ = 0.05 (top) and ρ = 0.5 (bottom). The yellow area includes all the values
between the maximum (dashed red line) and the minimum (solid red line) expected from the results
of Appendix B. The frontier ε = 1 (dotted line) allows to check the presence of a precision gain at
m > 1.

Moreover, precision gain (i.e., ε < 1) at m > 1 is also possible when using the estimator
ε
[

Â(L,m)
12

]
, introduced in Equation (46). However, due to the approximation introduced

in this case, the estimator is not convenient (i.e., ε > 1) in the majority of the considered
configurations.

6. An Application to Market Data

This section provides an example of the calibration technique applied to a real-world
data set. The calibration technique is applied to a set of historical time series of bad loan
rates supplied from the Bank of Italy. “Bad loan” is a subcategory of the broader class
“Non-Performing Loan” and it is defined as exposures to debtors that are insolvent or in
substantially similar circumstances [24].

In particular, the chosen data set is composed of the quarterly historical series TRI30496
(m = 4) over a five year period (from 1 January 2013 to 31 December 2017, n = 5, ∆t = 1).
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The data are publicly available at [10]. The time series are supplied by the customer
sector (“counterpart institutional sector”) and geographic area (“registered office of the
customer”). The latter, in the example, is held fixed to a unique value that corresponds to
the whole country (Italy). Tables 2 and 3 report the definition of the 6 different clusters and
their main features.

Table 2. Definition of the clusters h = 1, . . . , 6 used in data set TRI30496.

Cluster Index h Sector Code Description

1 600 Consumer households
2 S11 Non-financial companies

3 S12BI7 Financial companies other than
monetary financial institutions

4 S13 General government
5 S14BI4 Producer households

6 S15BI1 Non-profit institutions serving
households and unclassifiable units

Table 3. Main features of the considered historical time series over the period 1 Gen 2013–31 Dec
2017. ph (h = 1, . . . , 6) is the yearly average bad loan rate; σh is the volatility associated to each ph;
〈nh〉 is the average number of borrowers.

h 1 2 3 4 5 6

ph 0.0119 0.0352 0.0255 0.0056 0.0259 0.0088
σh 0.0010 0.0042 0.0023 0.0014 0.0022 0.0010
〈nh〉 269,515 407,602 3191 5416 132179 4020

By inspection of Table 3, it is possible to perform a rough estimate of σΓ. Equation (14)
implies that the following holds for coefficients of variation CVh (h = 1, . . . , H ≡ 6):

CVh :=
σh
ph
'

K

∑
k=1

ωhk[σΓ]k

Furthermore, the normalization requirement over the factor loadings ωhk implies

K

∑
k=1

ωhk . 1

Hence we can state that 〈CV〉 := 1
H ∑h CVh has the same order of magnitude of 1

K ∑k[σΓ]k.
Since 〈CV〉 ' 0.124, results in Section 5.2 suggest that this data set is not far from the
Gaussian regime and so there is an appreciable increase of precision in estimating A(0, 1)
with m > 1.

Â(0, 1) is estimated by applying Equation (42) over a one-year period. The results
obtained for Â(E,m)(0, 1) (m = 1, 4) are reported in Table 4.

Table 4. Values of Â(E,m)(0, 1) (m = 4 left, m = 1 right) obtained from the quarterly historical series
TRI30496 over the period 1 Gen 2013–31 Dec 2017. Results are expressed in 10−2 units.

0.53 0.28 0.33 0.36 0.41 0.48 0.68 0.40 0.36 1.01 0.56 0.73
0.28 0.59 0.48 0.61 0.43 0.40 0.40 1.50 0.98 1.26 0.87 −0.16
0.33 0.48 0.67 0.52 0.43 0.40 0.36 0.98 0.87 0.78 0.72 0.27
0.36 0.61 0.52 7.80 0.48 0.33 1.01 1.26 0.78 6.50 1.10 0.66
0.41 0.43 0.43 0.48 0.47 0.54 0.56 0.87 0.72 1.10 0.74 0.47
0.48 0.40 0.40 0.33 0.54 1.53 0.73 −0.16 0.27 0.66 0.47 1.35
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The elementwise precision gain for m = 4, ε
[

Â(E,4)(0, 1)
]
, obtained under the Gaus-

sian regime assumption, is shown in Table 5. This result is obtained applying definition (51)
and Equation (A25) both to the cases m = 4 and m = 1. Equation (A25) has been shown to
be valid under the Gaussian regime, discussed in Section 5.1.

In this case, the preliminary decomposition of Â(E,4)(0, 1), that would be needed using
the Monte Carlo method discussed in Section 5.2, is not needed.

Table 5. The elementwise precision gain ε
[

Â(E,4)(0, 1)
]

associated with results reported in Table 4.

0.36 0.26 0.37 0.41 0.33 0.39
0.26 0.18 0.24 0.30 0.23 0.33
0.37 0.24 0.35 0.43 0.30 0.45
0.41 0.30 0.43 0.55 0.37 0.52
0.33 0.23 0.30 0.37 0.29 0.42
0.39 0.33 0.45 0.52 0.42 0.52

According to Equation (54), the elements of ε
[

Â(E,4)(0, 1)
]

reported in Table 5 should
be all approximately equal to 0.46, since they should depend only on the couple m, n
(m = 4 and n = 5 in this case). However, in a real world case like the one considered,
the assumption of zero autocorrelation is satisfied with a different precision by each time
series ph(t). Furthermore, the estimated covariance matrices might need to be regularized
(indeed the Higham regularization algorithm [25] was used both for m = 1 and m = 4
series). Hence, a different ratio for each element (h, h′) = 1, . . . , 6 is justified. Nonetheless,
it is worth noticing that all the ratios reported in Table 5 have the same order of magnitude
of the predicted value 0.46.

Knowledge of the historical number of risky subjects nh(t) for each cluster (h = 1, . . . , 6)
at each observation date (t = 1/4, 2/4, . . . , 5) allows to take into account the binomial con-
tribution to the error σ

[
Â(E,m)(0, 1)

]
, both for m = 4 (quarterly series) and m = 1 (yearly

series), although the finiteness of the population does not add a relevant contribution to
the error, as already observed in Section 5.2.

Table 6 provides Monte Carlo estimation of σ
[

Â(E,m)(0, 1)
]
(m = 1, 4), which con-

siders also the role of nh(t). Since the values in Table 6 provide a measure of the error in
the determination of Â(E,m)(0, 1), it turns out that the estimates reported in Table 4 are
elementwise consistent one with the other.

Table 6. σ
[

Â(E,m)(0, 1)
]

(m = 4 left, m = 1 right). These are the elementwise errors of the estimators

reported in Table 4. The results above are expressed in 10−2 units.

0.11 0.12 0.19 0.44 0.11 0.31 0.41 0.25 0.41 1.09 0.24 0.64
0.12 0.20 0.29 0.64 0.13 0.40 0.25 0.86 0.72 1.47 0.50 0.97
0.19 0.29 1.38 1.08 0.21 0.69 0.41 0.72 1.75 2.31 0.49 1.53
0.44 0.64 1.08 5.12 0.49 1.60 1.09 1.47 2.31 9.11 1.20 3.40
0.11 0.13 0.21 0.49 0.13 0.34 0.24 0.50 0.49 1.20 0.29 0.79
0.31 0.40 0.69 1.60 0.34 3.25 0.64 0.97 1.53 3.40 0.79 4.65

The Monte Carlo estimation of σ
[

Â(E,m)(0, 1)
]
, as done in Section 5.2, requires the a

priori knowledge of the true dependence structure W, σΓ. Since this is a case study, we
do not have an a priori parameterization of the calibrated model. Hence, we have used
Ŵ, σ̂Γ estimated from Â(E,4)(0, 1) instead, as a proxy of the “true” model parameters. The
computation of Ŵ, σ̂Γ from Â(E,4)(0, 1) is discussed below.

In order to complete the CreditRisk+ calibration, we have to decompose Â and find
the factor loadings matrix Ŵ together with the vector of systematic factors variances
σ̂2

Γ. To do so, we use the Symmetric Non-negative Matrix Factorization (SNMF), an
iterative numerical method to search an approximate decomposition of Â which satisfies the
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requirements of the CreditRisk+ model over Ŵ (i.e., all elements ωhk > 0 and ∑k ωhk = 1).
The application of SNMF to CreditRisk+ is discussed in detail in [14]. In the following, we
give evidence only of the implementation details necessary to address this case study.
Being an iterative method, SNMF requires an initial choice of matrixes

Û0 := ŴUΣ̂1/2,

V̂0 := Σ̂1/2ŴV ,

such that Â = Û0V̂0. It is not required that Û0 = V̂T
0 , nor all the elements of Û0 and V̂0

have to be positive. We set Û0, V̂0 from the eigenvalues decomposition of Â(E,4)(0, 1).
For the considered data set, the eigenvalues decomposition returned the set of eigen-

values and eigenvectors reported in Table 7.

Table 7. Set of eigenvalues σ̃k and eigenvectors ω̃k obtained by the eigenvalues decomposition of
Â(E,4)(0, 1), as reported in Table 4.

ω̃k k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

0.06 −0.34 0.13 0.84 0.00 0.39
0.10 −0.33 0.43 −0.38 −0.65 0.36
0.09 −0.36 0.52 −0.26 0.72 0.06
0.98 0.17 −0.07 0.01 0.01 0.00
0.08 −0.38 0.22 0.19 −0.22 −0.84
0.07 −0.68 −0.69 −0.20 0.06 0.07

σ̃2
k 0.08 0.02 0.01 2.9 · 10−3 1.4 · 10−3 0.3 · 10−3

We use the ω̃, σ̃ notation to address the quantities over which the normalization
requirement of CreditRisk+ has not been imposed yet.

Since more than the 95% of variance is explained by the first three eigenvectors, we
reduced the dimensionality of the latent variables vector to be K = 3. Hence we define

Û0 = [ω̃1, ω̃2, ω̃3] · diag(σ̃1, σ̃2, σ̃3)

=



1.80 5.29 1.15
2.78 5.18 3.71
2.51 5.58 4.46

27.79 −2.65 −0.57
2.33 5.88 1.93
2.07 10.58 −5.96

 · 10−2

and V̂0 = ÛT
0 . In general, SNMF aims to minimize iteratively the cost function

∣∣Â− ÛV̂
∣∣2 + α

∣∣∣Û − V̂T
∣∣∣2

where | · | is the Frobenious norm, eventually weighted, and α is a free parameter to weight
the asymmetry penality term. Further details on the method are available in [14]. The
application of SNMF method, together with the normalization constraint over the factor
loadings, leads to the result reported in Table 8.
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Table 8. The complete set of parameters Ŵ, σ̂2
Γ necessary to specify the dependence structure in

CreditRisk+ model, obtained by the eigenvalues decomposition of Â(E,4)(0, 1), as reported in Table 4.

k 0 1 2 3

ω1k 0.67 0.04 0.29 0.00
ω2k 0.07 0.07 0.27 0.59
ω3k 0.00 0.06 0.28 0.66
ω4k 0.13 0.87 0.00 0.00
ω5k 0.63 0.06 0.31 0.00
ω6k 0.29 0.04 0.67 0.00

σ2
k 0.103 0.031 0.010

A reasonable economic interpretation supports the set of parameters resulting from the
calibration process described above. Indeed, factor loadings associated with the “general
government” sector (h = 4) are completely distinct from the ones of the other sectors
(i.e., this is the only sector mainly depending on the k = 1 factor): this fact copes with
the different nature of the public entities from the ones belonging to the other considered
sectors. Furthermore, “companies” (h = 2, 3) share approximately the same dependence
structure. The same applies when considering “households” (h = 1, 5). Finally, the
“institutions serving households” sector (h = 6) shares the same latent factor (k = 2) but
shows a different balance between idiosyncratic and systematic factor loadings compared
to “households”, that is coherent with the nature of a sector strongly linked to “household”
sectors, despite not being completely equivalent.

Results in Table 8 have been used to quantify the estimation errors reported in Table 6.

7. Conclusions

In this work, we have investigated how to calibrate the dependence structure of the
CreditRisk+ model, when the sampling period δm of the (available) default rate time series
is different from ∆t—the length of the future time interval chosen for the projections.

Preliminarily, we proved that CreditRisk+ remains internally consistent when impos-
ing the underlying distributional assumption to be simultaneously true at different time
scales (Theorem 1). The model internal consistency is robust against the introduction of
autocorrelation, depending on the considered ACF form (Theorem 2).

Then the problem has been approached in terms of moment matching, providing two
asymptotically equivalent formulations for estimating the covariance matrix A amongst
the systematic factors of the model (Propositions 2 and 3). The choice between the two
estimators of A, provided in Equations (37) and (42), depends on the functional form (linear
or exponential) that links the probability of claim/default and the latent variables. Both
the estimators are explicitly dependent on the ratio ∆t/δm, allowing for the calibration
of the model at a time scale that is different from the one chosen for applying the cali-
brated model. Both the estimators have been generalized to autocorrelated time series in
Equations (46) and (49), although only the latter (i.e., exponential case) is an exact result,
while a second-order approximation has been adopted for the linear case.

Furthermore, calibrating the model on a shorter time scale than the projection horizon
has been proved to be convenient in terms of reduced estimation error on Â. Analytical
expressions for the error are provided in the Gaussian regime (i.e., small variances of
the latent variables) by Theorem 3. In contrast, the case of increasing variance has been
investigated numerically, confirming that, in general, the precision of the calibration is
higher when employing historical data with a shorter sampling period. It has been verified
that the convenience of calibrating the model at short time scales also remains in the
presence of autocorrelation, although this is guaranteed only in the exponential framework,
where an exact correction term is available.
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Finally, the techniques presented in this work are shown to be numerically sound when
applied to a real, publicly available data set of Italian bad loan rates.
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Appendix A. Proofs

This section reports the proofs of theorems and propositions presented in this study.

Appendix A.1. Proof of Theorem 1

Proof. Firstly, the statement is proved considering Assumptions 1 and 3.
Assumption 3 implies by construction that {Y(j)

i }j=1...m is a set of Poisson r.v.’s, which
are mutually independent, conditionally on the realization of {Γ(j)}j=1...m . Poisson distri-
bution is closed with respect to addition. Hence

m

∑
j=1

Y(j)
i |Γ

(j) ∼ Poisson(piΣ), (A1)

where the distribution parameter is

piΣ =
m

∑
j=1

qi
tj−tj−1

T−t︸ ︷︷ ︸
q(j)

i

(
ωi0 +

K

∑
k=1

ωikΓ(j)
k

)
. (A2)

Equation (20) in Assumption 3, the choice ξkj = 1 and the scaling property of Gamma
distribution imply that

tj−tj−1
T−t Γ(j)

k ∼ Gamma
(

σ−2
k

tj−tj−1
T−t , σ2

k

)
(A3)

Furthermore, Assumption 5 and the fact that independent Gamma r.v.’s with the same
scale parameter are closed with respect to addition imply that

m

∑
j=1

tj−tj−1
T−t Γ(j)

k ∼ Gamma
(

σ−2
k , σ2

k

)
. (A4)

Hence ∑m
j=1

tj−tj−1
T−t Γ(j)

k ≡ Γk and so ∑m
j=1 Y(j)

i ≡ Yi. This implies that {Yi} satisfies
Assumption 1 over (t, T].

The proof above can be extended to the exponential case, i.e., when considering
Assumptions 2 and 4 instead of Assumptions 1 and 3. The form of parameter piΣ in (A2)
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can be obtained also can be obtained also from Assumption 4. In fact, the substitution
Y(j)

i 7→ Ỹ(j)
i implies that Ỹi ∼ Bernoulli( p̃i) where

ln(1− p̃i) = ln
m

∏
j=1

(
1− p̃(j)

i

)
=

m

∑
j=1

qi
tj−tj−1

T−t

(
ωi0 +

K

∑
k=1

ωikΓ(j)
k

)
. (A5)

Considering Equation (A5) instead of (A2), the proof presented above holds for the Ỹi
representation of risks, ceteris paribus, implying that {Ỹi} satisfies Assumption 2 over
(t, T].

Appendix A.2. Proof of Theorem 2

Proof. The same arguments that lead to (A2) or to (A5) in proof of Theorem 1 are still valid
in this case. Hence, it suffices to prove that mean and variance of the latent variable

Γ′k :=
m

∑
j=1

tj − tj−1

T − t
Γ(j)

k =
1
m

m

∑
j=1

Γ(j)
k

remain consistent with CreditRisk+ requirements, stated in Assumption 1. It holds
E[Γ′k] = 1, since E[Γ(j)

k ] = 1. Moreover, the coefficient ξ jk compensates the bias intro-

duced in var
[
Γ′k
]

by the fact that Γ(j)
k (j = 1 . . . m) are autocorrelated according to the

ACF $xk:

var

[
m

∑
j=1

Γ(j)
k

]
=

m

∑
j=1

var
[
Γ(j)

k

]
+

m

∑
j=1

∑
j′ 6=j

cov
[
Γ(j)

k , Γ(j′)
k

]

= var
[
Γ(1)

k

] (
m + 2

m−1

∑
x=1

(m− x)$xk

)
︸ ︷︷ ︸

mξ−2
kj

which implies var
[
Γ′k
]
= σ2

k directly.
The fact that Γ′k is Gamma distributed is imposed in Assumption 6, implying that

Γ′k ≡ Γk and so that Assumption 1 is satisfied.

Appendix A.3. Proof of Proposition 2

Proof. Given a time interval (t, T] ⊆ (ta, tb] and a uniform partition (j = 1 . . . m) over
(t, T], Assumptions 3 and 5 imply that {Yi} satisfies Assumption 1 over (t, T] by Theorem 1.
Assumption 7 guarantees the convergence of Fh to E[Fh|Γ] and of F(j)

h to E[F(j)
h |Γ

(j)], where
we recall that Fh = Fh(t, T).

For any interval (t, T] ⊆ (ta, tb] and any pair of clusters ch, ch′ , definitions (34), (35)
and Assumption 5 imply that the covariance between Fmh and Fmh′ is given by

cov(Fmh, Fmh′) =
m

∏
j=1

[
cov

(
F(j)

h F(j)
h′

)
+ s(j)

h s(j)
h′

]
− shsh′ (A6)

Since all the considered subintervals (tj−1, tj] have the same length δm = tj − tj−1, the

frequencies F(j)
h are i.i.d., so that the above expression simplifies to:

cov(Fmh, Fmh′) + shsh′ =
[
cov

(
F(j)

h , F(j)
h′

)
+ s(j)

h s(j)
h′

]m
(A7)

for any j = 1, . . . , m.
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Each cluster ch is supposed to be homogenous by definition, i.e., ω(i) = ω(h) for each

risk Yi ∈ ch. Hence, distributional Assumptions 1 and 3 imply that both Fh
nh(t)→∞−−−−−→ E[Fh|Γ]

and F(j)
h

nh(tj)→∞
−−−−−→ E[F(j)

h |Γ
(j)] are sample estimators of the parameters ph(Γ) := qh(ωh0 +

∑k ωhkΓk) and p(j)
h (Γ(j)) respectively, leading to the equivalence relation

Fmh = Fh = q̂h

(
ωh0 +

K

∑
k=1

ωhkΓk

)
, (A8)

therefore both Fmh(t, T) and Fh(t, T) are estimators of the default frequency for the (t, T]
interval. Thus, Equation (A7) can be rewritten as:

cov(Fh, Fh′) + shsh′ =
[
cov

(
F(j)

h , F(j)
h′

)
+ s(j)

h s(j)
h′

]m
(A9)

and, since m = (T − t)/δm,

[cov(Fh, Fh′) + shsh′ ]
1/(T−t) =

[
cov

(
F(j)

h , F(j)
h′

)
+ s(j)

h s(j)
h′

]1/δm
. (A10)

To complete the proof, let (t, T] and (t′, T′] be two subintervals of (ta, tb], such that
(T − t)/(T′ − t′) ∈ Q. Hence, GCD{T − t; T′ − t′} =: δ ∈ R+ exists. δ can be used
as the mesh to define two uniform partitions over the two considered intervals.

Given these partitions, (A10) can be applied both to T − t and to T′ − t′, leading to

[cov(Fh(t, T), Fh′(t, T)) + sh(t, T)sh′(t, T)]1/(T−t) =[
cov

(
Fh(t′, T′), Fh′(t

′, T′)
)
+ sh(t′, T′)sh′(t

′, T′)
]1/(T′−t′)

and completing the proof. The requirement (T − t)/(T′ − t′) ∈ Q can be easily weakened
by the convergence of finite continued fractions with an increasing number of terms, until
the desired degree of precision is reached.

Appendix A.4. Proof of Proposition 3

Proof. Given a time interval (t, T] ⊆ (ta, tb] and a uniform partition (j = 1 . . . m) over (t, T],
Assumptions 4 and 5 imply that {Ỹi} satisfies Assumption 2 over (t, T] by Theorem 1.

Assumption 7 guarantees the convergence of Lh to E[Lh|Γ], where we recall that
Lh = Lh(t, T). Furthermore, it holds by definition that E[Lh|Γ] = ph(Γ), where the notation
ph has been introduced in the proof of Proposition 2.

The same apply to L(j)
h (j = 1 . . . m) for each uniform partition of (t, T] considered;

indeed, Assumption 7 implies L(j)
h → E[L(j)

h |Γ
(j)] = p(j)

h (Γ).

Since ph(Γ) = ∑m
j=1 p(j)

h (Γ(j)) and given that the partition is uniform, it holds

Lh = mL(j)
h for each j = 1 . . . m. Since m := (T − t)/δm, we have

1
T − t

Lh =
1

δm
L(j)

h (A11)

Assumption 5 and Equation (A11) imply that

1
T − t

cov[Lh, Lh′ ] =
1

δm
cov[L(j)

h , L(j)
h′ ] (A12)

for each considered pair of clusters ch, ch′ . The proof is completed by the same argument
used in proof of Proposition 2, after Equation (A10).
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Appendix A.5. Proof of Theorem 3

Proof. Assumptions 3 and 5 and ξkj = 1 imply Assumption 1 by Theorem 1. The same
theorem implies Assumption 2 in case Assumption 4 is considered instead of Assumption 3,
ceteris paribus. Furthermore, Assumptions 3, 5 and 7 and ξkj = 1 imply that

Â(L,m)
hh′ =

1
qhqh′

[(
ĉ(Lm)

hh′

)m
− shsh′ − δhh′

qh
nh

]
(A13)

by Proposition 2, for any j = 1 . . . m and h, h′ = 1 . . . H. Analogously, considering
Assumption 4 instead of Assumption 3, it holds

Â(E,m)
hh′ =

m
qhqh′

ĉ(Em)
hh′ (A14)

by Proposition 3, for any j = 1 . . . m and h, h′ = 1 . . . H.
The next step of the proof is showing that Γk∼̇N (1, βk) in the limit σk → 0+. In fact,

both Assumptions 3 and 4 state that

Γ(j)
k ∼ Γ

(
1

mβk
, mβk

)
, E

[
Γ(j)

k

]
= 1, var

[
Γ(j)

k

]
= mβk, j = 1, . . . , m.

Hence their probability densities dFk(x) satisfy the following:

dFk(x) ∝ x(mβk)
−1−1 exp

(
−(mβk)

−1x
)

dx (A15)

Since it holds (mβk)
−1 − 1

σk→0+−−−−→ (mβk)
−1, we have

lim
σk→0+

dFk(x) ∝ exp
(

ln x− x
mβk

)
dx. (A16)

By introducing the auxiliary variable x′ := x − 1 and replacing ln(1 + x′) with the first
three terms of its Maclaurin series, relation (A16) can be equivalently written as

lim
σk→0+

dFk
(
x(x′)

)
∝ exp

(
− x′2

2mβk

)
dx′ (A17)

In the limit σk = βk → 0+, Equation (A17) implies that

Γ(j)
k ∼ N

(
µ = 1, σ2 = mβk

)
. (A18)

Hence it holds that each F(j)
h is normally distributed, with variance mσ2

h := m ∑k ωhkβk—

when considering the linear case (i.e., Assumptions 1 and 3). Analogously, also each L(j)
h is

normally distributed in the exponential case (i.e., Assumptions 2 and 4).
Considering the market factors—as well as the historical observations of default

frequency—as normal random variables is relevant to prove the theorem, since it implies
that the covariance matrix estimators ĉ(Lm) and ĉ(Em) are Wishart distributed. Hence the
variance associated to a given matrix element is

var
[
ĉ(m)

hh′

]
=

m2

m · n− 1

(
ρ2

hh′ + 1
)

σ2
h σ2

h′ (A19)

in both linear and exponential cases. In the exponential case Equation (A19) is equivalent
to the following

var
[
ĉ(Em)

hh′

]
=

1
m · n− 1

[(
c(Em)

hh′

)2
+ c(Em)

hh c(Em)
h′h′

]
(A20)
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while the same is not true in the linear case. Given Equation (A19), it is possible to prove
Equation (54) separately in the two cases.

Proof in the linear case. Proposition 2 implies

var
[

Â(L,m)
hh′

]
=

1

(qhqh′)
2 var

[(
ĉ(Lm)

hh′

)m]
=

1

(qhqh′)
2

[(
E
[(

ĉ(Lm)
hh′

)2
])m
−
(

E
[
ĉ(Lm)

hh′

])2m
]

=
1

(qhqh′)
2

[(
var
[
ĉ(Lm)

hh′

]
+
(

E
[
ĉ(Lm)

hh′

])2
)m
−
(

E
[
ĉ(Lm)

hh′

])2m
]

(A21)

In the limit σ → 0+ the binomial above can be replaced with its leading term. Hence

var
[

Â(L,m)
hh′

]
=

1

(qhqh′)
2 var

[
ĉ(Lm)

hh′

](
E
[
ĉ(Lm)

hh′

])2(m−1)
(A22)

By applying Equation (A19) we have

var
[

Â(L,m)
hh′

]
=

1

(qhqh′)
2

m2

m · n− 1

(
ρ2

hh′ + 1
)

σ2
h σ2

h′

(
c(Lm)

hh′

)2(m−1)

=
1

(qhqh′)
2

1
m · n− 1

ρ2
hh′ + 1
ρ2

hh′

(
c(Lm)

hh′ − s(j)
h s(j)

h′

)2(
c(Lm)

hh′

)2(m−1)
(A23)

Applying Proposition 2 once again we have
(

c(Lm)
hh′

)2m
=
(

c(L1)
hh′

)2
. Furthermore, we have

s(j)
h s(j)

h′

(
c(Lm)

hh′

)2(m−1) σ→0+−−−→
(

s(j)
h s(j)

h′

)2m
= s2

hs2
h′ . Hence it holds

var
[

Â(L,m)
hh′

]
=

1

(qhqh′)
2

1
m · n− 1

ρ2
hh′ + 1
ρ2

hh′

[(
c(L1)

hh′

)2
− s2

hs2
h′

]
(A24)

and thus the ratio var
[

Â(L,m)
hh′

]
/var

[
Â(L,1)

hh′

]
verifies Equation (54), completing the proof for

the linear case.
Proof in the exponential case. Equation (A20) and Proposition 3 imply

var
[

Â(E,m)
hh′

]
=

m2

(qhqh′)
2 var

[
ĉ(Em)

hh′

]
=

m2

(qhqh′)
2

1
m · n− 1

[(
c(Em)

hh′

)2
+ c(Em)

hh c(Em)
h′h′

]
=

1

(qhqh′)
2

1
m · n− 1

[(
c(E1)

hh′

)2
+ c(E1)

hh c(E1)
h′h′

]
(A25)

The latter implies that in case m = 1 we have

var
[

Â(E,1)
hh′

]
=

1

(qhqh′)
2

1
n− 1

[(
c(E1)

hh′

)2
+ c(E1)

hh c(E1)
h′h′

]
(A26)

Hence, the ratio var
[

Â(E,m)
hh′

]
/var

[
Â(E,1)

hh′

]
verifies Equation (54), completing the proof for

the exponential case.

Appendix B. Covariance Estimation Error in Presence of Autocorrelation

In this section a generalization of Equation (54) is provided, considering the presence
of autocorrelation. Only the exponential case is discussed, because a closed form for Â(E,m)

hh′
is still available when autocorrelation has to be considered—while only a second order
approximation has been computed for the linear case Â(L,m)

hh′ .
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A comparison between Equations (41) and (49) allows us to generalize Proposition 3.

c(E1)
hh′ = mc(Em)

hh′ + 2
m−1

∑
x=1

(m− x)xc(Em)
hh′ (A27)

where
xc(Em)

hh′ := cov
[

L(j)
h , L(j+x)

h′

]
(A28)

It holds by definition

c(Em)
hh′ =

qhqh′

m2

K

∑
k=1

ωhkωh′kvar
[
Γ(j)

k

]
xc(Em)

hh′ =
qhqh′

m2

K

∑
k=1

ωhkωh′kcov
[
Γ(j)

k , Γ(j+x)
k

]
Hence, Assumption 6 implies

E
[

x ĉ(Em)
hh′

]
= E

[
qhqh′

m2

K

∑
k=1

ωhkωh′k$xkvar
[
Γ(j)

k

]]
= x $̃hh′ (A29)

where

x $̃hh′ :=
∑K

k=1 w̃khh′$xk

∑K
k=1 w̃khh′

; w̃khh′ := ωhkωh′kmξ2
k σ2

k (A30)

Furthermore, applying Equation (A19), it follows that

var
[

x ĉ(Em)
hh′

]
=

1
m · n− 1

(
E
[

x ĉ(Em)
hh′

]2
+ E

[
ˆcov
[

L(j)
h , L(j)

h

]]
E
[

ˆcov
[

L(j+x)
h′ , L(j+x)

h′

]])
=

1
m · n− 1

(
x $̃2

hh′

(
c(Em)

hh′

)2
+ c(Em)

hh c(Em)
h′h′

)
= var

[
ĉ(Em)

hh′

]
−

1−x $̃2
hh′

m · n− 1

(
c(Em)

hh′

)2
(A31)

Equation (A29) leads to another version of Equation (A27)

c(Em)
hh′ = 1

m

(
1 + 2

m−1

∑
x=1

(1− x
m )x $̃hh′

)−1

c(E1)
hh′ (A32)

From Equation (49) we have

var
[

Â(E,m)
hh′

]
=

m2

(qhqh′)
2 var

[
ĉ(Em)

hh′ + 2
m−1

∑
x=1

(1− x
m )x ĉ(Em)

hh′

]
(A33)

Equation (A33) implies that var
[

Â(E,m)
hh′

]
depends on the correlation matrix $

(ĉ)
xx′ among the

considered covariance estimators x ĉ(Em)
hh′ (x = 0, 1, . . . ), as shown below by choosing an

equivalent expression for the RHS:

var
[

Â(E,m)
hh′

]
=

m2

(qhqh′)
2

m−1

∑
x,x′=0

$
(ĉ)
xx′ xshh′ x′shh′ (A34)

where

xshh′ := (2− δ0x)(1− x
m )(var

[
x ĉ(Em)

hh′

]
)

1
2 (A35)
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In case the covariance estimators are independent from each other (i.e. $
(ĉ)
xx′ = δxx′ ), an

inferior limit to the considered variance is obtained

var
[

Â(E,m)
hh′

]
≥ m2

(qhqh′)
2

(
var
[
ĉ(Em)

hh′

]
+ 4

m−1

∑
x=1

(1− x
m )2var

[
x ĉ(Em)

hh′

])
(A36)

Equation (A31) can be substituted into Equation (A34). Hence, RHS of inequality (A36)
becomes

var
[
ĉ(Em)

hh′

]
m2

(qhqh′)
2

[
1 + 4

m−1

∑
x=1

(1− x
m )2

(
1− 1−x $̃2

hh′
m·n−1 cv−2

[
ĉ(Em)

hh′

])]

where the notation cv[·] stands for the coefficient of variation.
(c(Em)

hh′ )2 and var
[
ĉ(Em)

hh′

]
can be expressed by using Equation (A32). Hence Equation (A36)

can be used to estimate an inferior limit to ε
[

Â(E,m)
hh′

]
in the gaussian regime. A superior limit

for the same quantity can be computed as well, imposing $
(ĉ)
xx′ = 1 for each considered x, x′.

Remark A1. Equation (A34) does not converge to (A25) in the limit $xk → 0 ⇒ x $̃hh′ → 0.
This copes with the fact that assuming $xk = 0 in Equation (A25) implies a lesser error than
measuring it.
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