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Abstract: This work aims to evaluate the Flexibility Potential that a residential household can
effectively provide to the public grid for participating in a Demand Response activity. In detail, by
using 14 dwellings electrical data collection, an algorithm to simulate the Load Shifting activity over
the daytime is implemented. That algorithm is applied to different scenarios having considered
the addition of several technical constraints on the end users’ devices. In such a way, more realistic
demand-side management actions are implemented in order to assess the Flexibility Potential
deriving from the loads shifting. Basically, by performing simulations it is possible to investigate how
the household appliances real operating conditions can reduce the theoretical Flexibility Potential
extent. Starting from a Flexibility Price-Market-based Strategy, this work simulates the shifting over
the day and night-time of some flexible loads, i.e., the shiftable and the storable ones. Specifically, all
instants where load curtailments and enhancements occur over the typical day, the flexibility strategy
effectiveness in terms of percentage, the power and energy that are potentially flexible, are evaluated.
All the simulations are performed only for residential consumers to evaluate the actual dwellings
Flexibility Potential in the absence of any electrical storage and production systems. The outcomes
of these simulations show an average Theoretical Flexibility reduction, which is calculated as the
fraction of appliances’ cycles shifting over the total ones, equal to 53%, instead of 66%; in a single
dwelling, a maximum variation equal to 29% has been registered. In the end, the monthly average
shifted energy per dwellings decreases from 27 to 18 kWh, entailing 32.5% off.

Keywords: residential users; demand response; flexible loads shifting scenarios

1. Introduction

The European Union long-term strategic vision concerns a detailed analysis of all those
actions to be undertaken for a greenhouse gasses zero emissions economy within 2050. The
outlined scenarios provide the use of Renewable Energy Sources (RES) on large-scale [1].
However, a large quantity of electricity produced by non-programmable RES, may cause
electrical grid management problems, due to potential mismatch between energy supply
and energy demand [2].

An efficient balancing method is represented by the Demand-Side Management activi-
ties (DSM), which have the goal of encouraging consumers to modify their electrical energy
use, either reducing their consumptions or shifting the power uptakes towards off-peak
hours; in detail, among the DSM activities, a great interest was addressed to the Demand
Response (DR) [3], which aims at reshaping the users’ power demand profiles according to
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the grid requirements. DR helps public service enterprises and users to reduce peak power
demand and the energy prices variability [4], converting the users into load management
market active participants [5].

From a literature overview, it emerged how the DSM strategies implementation was
adopted very often to improve energy and economic savings in big industrial sites; Notwith-
standing, in the recent years, an increasing attention to the potential role of residential
sector in the flexibility market has been paid. Even though costly ICT infrastructures to
send signals from or towards the individual house are required, several research activi-
ties were focused on developing less expensive components and sensors to make them
accessible and handy in the medium short term. Additionally, potential incentive schemes
have been proposed in order to improve the end-users’ profitability and to contribute to a
wider deployment.

The growing interest in the implementation of DR programs to dwellings is basically
due to the high energy needs in the building sector; indeed, in the EU member states, the
real estate energy needs accounted for 40.3% of total consumption; namely, the building
stock alone accounted for 26.1% of total energy consumptions, in accordance with data
referred to 2018 [6]. It is noteworthy that a part of residential consumption is electrical,
and only a fraction of can be considered appropriate to be used flexibly. Having said
this, a great potentiality is represented by all those buildings equipped with electric heat
generators; the positive effect magnitude on overall consumption is strongly related to the
climatic zone (i.e., outdoor temperature and relative humidity), to the buildings’ envelope
as well as to the occupancy rate [7].

Several research projects addressed the issue associated to the identification of the
most proper methodology to assess the buildings’ potential of flexibility [8]. For instance,
the authors in Ref. [9] proposed a predictive model to accurately schedule both the users
and the energy resources which can be deferred over the day. The buildings’ thermal
mass can be reputed as a potential storage medium [10,11]. Indeed, that mass, which is a
specific feature of each dwelling, it can store a certain amount of heat by either postponing
or anticipating the operating time schedule of heating and cooling systems. In such a
way, the indoor thermal comfort conditions can be kept under control to the standard
set point [12]. Among the different available options to handle the load flexibility, the
so-called Power-to-X strategies are currently offering good perspectives. Usually, the X
letter is used as an umbrella terms to indicate the electricity conversion, hailing from the
renewables’ overcapacity, into different useful energy forms. Referring to the building
sector, Power-to-Power, Power-to-Heat and Power-to-Gas are considered, by the scientific
community, as the most promising and suitable options in the short-medium term [13–16].
However, cheaper and reliable storage devices, such as PCMs (Phase-change Materials),
pressurized gas vessels, batteries and the electro-fuels injection into NG pipelines, have to
be effectively embedded within the existing energy scenarios [17]. On the other hand, the
recent literature, dealing with how to conveniently store heat in the residential sector, is
strongly oriented to analyse the widespread electric heat pumps application for serving
the end users in terms of Domestic Hot Water production (DHW as well [18]).

In accordance with the mentioned research indications, and based on what has
emerged when applying the management strategy proposed in a previous work [19],
different scenarios have been built. Specifically, they also include several constraints, in
order to evaluate their effects on the dwellings’ flexible potential. The study is based on
a measurement campaign carried out over two years (2018–2019) related to 14 sample
dwellings representing the middle regions Italian building stock; that cluster was chosen
by selecting the most frequent typologies within a database consisting of 751 real dwellings.
The database was built over the last three years by collecting a wide group of information,
such as geometrical characteristics, building materials and energy bills.

Having said this, the authors deem that their contribution to the knowledge in this
research topic is substantially the methodological approach, which integrates on-field
measurements with a simulation process; more specifically, the authors attempt to identify
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how the DSM strategies effectiveness drift away from theoretical values once realistic
technical constraints on devices operation have been considered in calculation model.
By combining several tools for statistical analysis, the dwellings’ electrical loads have
been analysed, classified, filtered, and then processed to verify the realistic flexibility.
Moreover, this study aims at contributing to identify the potential role of Italian residential
sector within the long-term strategy of progressively transforming the end users’ energy
consumptions. Indeed, a high electrification degree is well recognised as one of the most
important drivers in the energy transition, towards an efficient RES integration within the
national grid.

2. Materials and Methods

An effective DR program implementation generally needs an accurate knowledge of
what a generic dwelling can offer, in terms of shiftable loads, for participating in such a
strategy. Considering a single household, the flexibility potential is low and discontinuous
very often; nevertheless, by gathering several dwellings it is possible to mitigate such
discontinuities and to flatten the flexible loads amount over specific time spans. In so doing,
building clusters or districts can fruitfully contribute to the electrical systems management
along with improving their own safety and reliability issues [20].

The loads classification based on their intrinsic nature [21] can be useful only for
preliminary analysis (see Figure 1), providing to designers with a flexibility amount over-
estimation: (i) all those loads deemed as flexible in accordance with the classification
might be not-flexible related to the specific management strategy [22,23]; (ii) other loads
might be not-flexible caused by different technical constraints related to the household
appliances [24]. Those ones, can be eventually imposed by a building energy management
system (e.g., BEMS) [25]. This latter, including several probes, sensors, transducers and
interfaces, is characterised by a purchase price ranging between 1000 and 4000 € as the
household size increases together with technical requirements, specifications and remote
controls [26].

Figure 1. Flexible Loads quantification process.

In this work, the management strategy developed in a previous project of the same
authors [19], are considered; this strategy was defined comparing the power demand
profiles of a buildings cluster with the Italian hourly electricity price. In so doing, all those
moments over the day, in which clusters should reduce or enhance their electrical uptakes,
were detected. Consequently, optimized and reshaped power demand profiles, sorted by
months and days typology, were built (i.e., weekdays, Saturdays, non-working days), as
reported in Tables A1–A3 of Appendix A.
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Seven technical constraints have been identified (see Table 1) and they can be outlined
as follows: (C1) is a maximum flexibility window of 24 h [27]; (C2) is the maximum
withdrawable power from the grid as a function of delivery contracts related to the end
user typology; (C3) the dwelling occupancy for some appliances operation (vacuum cleaner,
iron, etc.) [28]; (C4, C5) account for the working sequence of different appliances (washing
machine, tumble dryer, dishwasher); (C6) takes into account the correlation between the
users stochastic behaviour and the heating and cooling systems operation [29]; (C7) refers
to different user settings imposed to avoid the satisfaction level lessening (of users themself
and neighbours), e.g., for night-time noises.

Table 1. Operative bonds to the appliances working.

Constraints (C) Criterium Definition

C1 Flexibility window Maximum shifting within 24 h ahead

C2 Maximum power at the meter
(detachment conditions)

P > 14.0 kW for τ > 2 s
P > 4.2 kW for τ > 2 min

P > 3.3 kW for τ > 182 min

C3 Vacuum cleaner and Iron using Occupancy in dwelling

C4 Tumble Dryer and Washing Machine TD operation within 3 h from WM cycle end

C5 Dish Washer End of operation within next meal

C6 Heating and Cooling
Occupancy within the next 4 h

(i.e., switching on within the previous 4 h
from the original starting)

C7 No noise in the night-time No appliances shifting towards night-time
between 12:00 a.m. and 06:00 a.m.

Starting from the theoretical classification (S0), four scenarios were simulated with
the aim of quantifying the flexible loads in the dwellings. Each scenario is characterised
by the application of the aforementioned management strategy, along with the different
constraints set and by the different impositions of the bond conditions set out above (see
Table 2). The simulations were implemented using the Excel environment, with Macros
written in Visual Basic for Applications (VBA).

Table 2. Simulated scenarios.

Scenario (S) Criterium

S0 Theoretical Classification

S1 Load Shifting Strategy Simulation;
No constraint Applied

S2 Load Shifting Strategy Simulation;
constraints V1, V2, V3 Applied

S3 Load Shifting Strategy Simulation;
constraints V1, V2, V3, V4, V5, V6 Applied

S4 Load Shifting Strategy Simulation;
constraints V1, V2, V3, V4, V5, V6, V7 Applied

The theoretical classification (S0) is based on a preliminary analysis carried out on
the sample dwellings. It allows to estimate the flexibility in a “steady” way, once all of the
flexible appliance cycles have been considered shiftable only by their nature; that implicitly
means families are totally willing to participate in a DR program [21].

As regards the management strategy (S1) application, general flexible cycle hourly
allocations and load shifting requests (i.e., “Load Reduction Time”; “Load Increase Time”)
were analysed and correlated, according to what is reported in Appendix A, Tables A1–A3);
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as a result, some loads have been considered not-flexible. In detail, loads belonging to that
category are all those off-takes occurring at the right hourly allocation (cycle load in “Load
Increase Time” o “No Load Variation”), together with the non-shiftable ones due to the
lack of “Load Increase Time” subsequent requests.

The addition of further constraints, such as S2, S3 and S4, limits load amount to be
shifted, owing to the incompatibility between some hourly allocation “Load Increase Time”
and scenario’s constraints.

The flexible loads were characterised by considering, for each working cycle of any
appliances, the following parameters: (i) the starting time, (ii) the cycle duration; (iii) the
consumed energy (EFlex); (iv) the maximum power (Pmax).

The strategy and constraints application effects were evaluated by several indica-
tors able to describe and summarize the flexibility amount in terms of statistical and
energy values:

• Real Flexibility (RF) is the effective fraction of the executed load shifting, respect to the
appliance total cycles tally (see Equation (1));

• Energy Shift (ES) is the shifted energy consumption deriving from the adopted actions
(see Equation (2));

• Peak Shaving (PS) is the maximum achievable peak reduction by the load shifting, in
terms of power, between the scenario Sx and the theoretical one without shifting (S0)
(see Equation (3)).

RFSx =
NFlex,Sx

N f lex, S0
. (1)

ESSx = ∑ EFlex,Sx (2)

PSSx = Max(Pmax,S0 − Pmax,Sx) (3)

where:

• NFlex,S0 is the total tally of flexible cycles before applying both strategy and constraints
(i.e., it corresponds to scenario S0);

• NFlex,Sx represents the number of effective executed load shifting, due to the scenario
Sx application;

• Pmax,S0 . indicates the maximum registered power (in the time span of 15 min) before
applying the strategy and constraints (i.e., scenario S0);

• Pmax,Sx represents the maximum registered power (in the time span of 15 min), hailing
from scenario Sx application, at the same time in which the Pmax,S0 value occurs.

The first indicator (RF) was expressly defined for the present analysis; the remaining
two (ES, PS) were widely used in literature to evaluate the flexibility in the residential sector
and to define the political implications of different scenarios in the energy markets [30].
They were also combined with the cost reduction assessment [31] and they were included
for defining power storage management strategies [32].

The explained procedure was applied to 14 sample dwellings of 751, selected by
the use of a categorizing algorithm [19]. Therefore, they are considered as archetypes
representing part of the Italian residential sector and their main features are outlined
in Appendix B. In such dwellings, some sensors were installed to monitor the electrical
consumption (Appendix B, Table A4) and a measurement campaign was carried out over
2018–2019.

The methodology application has been preceded by data elaboration process of the
acquired measurement. Indeed, the sensors sampling time and data collection is about
5 s. The post-processing phase was performed in order to calculate average values over
15 min, according to the common Distributor’s energy meters: Thus, all of calculations and
analyses were carried out with these average values.
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3. Results and Discussions
3.1. Flexible Loads by Classification

Using a data collection questionnaire [21], the required information for simulating
dwellings energy consumptions and for classifying loads were obtained. Specifically,
collected data refer to the physical and geometrical dwelling characteristics, to plant equip-
ment, to building occupancy, to household appliances typology and to their utilization
(Appendix B, Tables A5 and A6). However, the selected archetypes show a modest elec-
trification degree, equal to 36.8%; furthermore, all of samples have a NG-based heating
system; only one dwelling shows a DHW production by heat pump system; in 9 dwellings
cooling system are installed for the air conditioning of some rooms (2 units per dwelling on
average). All the dwellings are equipped with washing machine; a dishwasher is installed
only in 11 dwellings, while the tumble dryer only in 4 dwellings; there are also some
not-flexible appliances, such as ICTs, personal care items, refrigerators, ovens and kitchen
appliances and others with a marginal usage. Among those, the vacuum cleaner and the
iron are available in all dwellings and in 11 of them, respectively.

In the selected archetypes live different family typologies, in terms of composition,
to adequately represent the Italian residential sector. The distribution can be summarised
as follows: 3 households composed by 2 kids, a working parent and a non-working one;
2 households composed by 2 kids and 2 working parents; 4 households composed by 1 kid
and 2 working parents; 2 households composed by 2 workers; one household composed
by a single worker; 2 households composed by 2 non-workers.

Based on the data collection, some preliminary analyses were performed in order to
identify the appliance cycles main features and the household’s habits. In detail, a trend
for the most energy-intensive appliances, characterised by the longest operation times,
was detected: (i) the dishwasher shows an average starting operation time, in all cases
and over the all months, occurring at 5:30 p.m. with an average variance of +4:30 h (40th
percentile) and −1:30 h (60th percentile); (ii) the washing machine is commonly switched
on close to 2:15 p.m. with an average variance of +1:30 h (40th percentile) and −1:45 h (60th
percentile); the air conditioner usage is very diversified between the dwellings (different
duration cycles, different temperature set-points) with an average starting operation time
around 5:15 p.m. and an average variance of ± 4:15 h. The remaining appliances show a
higher variability and a lower cyclic nature. Therefore, it is not easy to identify a unique
trend, exception for a large frequent time span occurring between 11:00 a.m. and 5:00 p.m..
Anyway, it is clear how the users’ working habits strongly affect appliance usage. Indeed,
the electrical loads are mostly concentrated between 5:00 p.m. and 10:00 p.m., since
the variance from the average value is greatly shifted towards the early evening hours.
For instance, air conditioners and other minor appliances are dependent on the house
occupancy; dishwashers must clean up dishes for dinner; washing machines and tumble
dryers, if any, typically operate in the evening. Consequently, the power demand profiles
related to the archetypes show peak values close to these hours, consistently with the
national power demand profile [19].

The annual average daily profile of flexible loads related to the archetypes are depicted
in Figures 2–4. It can be noticed how those loads are generally concentrated in the afternoon,
exception for the weekdays (see Figure 2), where they are available early in the morning or
after dinner.
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Figure 2. Archetypes average daily flexible loads profiles over the weekdays.

Figure 3. Archetypes average daily flexible loads profiles over the Saturdays.

Figure 4. Archetypes average daily flexible loads profiles over non-working days.
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Referring to plotted data in Figures 3 and 4, it emerges how each archetype is char-
acterised by different values of flexible power associated to the appliances’ cycles. Even
though a great variability occurs, a common trend in the usage has been found early in the
morning, at lunchtime and after dinner.

Based on collected data, Table 3 shows the archetypes energy characterisation as a
result of the applied methodology. Such a characterisation has been used to preliminary
estimate the flexible loads extent, according to scenario S0. The averaged values of Flexible
Loads and Non-Flexible Loads are equal to 811 kWh/y and 1333 kWh/y, respectively.

Table 3. Archetypes reference parameters.

Parameters
Archetype

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14

NFlex,S0 840 379 1030 172 1365 1261 1019 246 633 289 1868 650 984 504

Flexible Loads
(NFlex,S0) [kWh/y] 858 294 660 355 1758 927 661 188 1096 728 866 1366 957 637

Non-Flexible
Loads [kWh/y] 2648 1024 1085 879 1298 1000 1099 881 2384 1218 1049 1754 1439 959

3.2. Flexible Loads by Strategy & Scenario: Real Flexibility

The simulated scenarios are characterised by the management strategy application
together with different constraints setting up (see Table 2); by adding those technical
limitations, the dwellings’ capacity to participate in flexibility mechanisms is lessened.

The RF indicator use allows the authors to properly examine each scenario proposed
by the authors. Indeed, once the RF variations associated to the archetypes over different
months are known, it is possible to provide a realistic overview of potential flexibility.
Table 4 summarises NFlex,Sx annual values for the selected archetypes, when the proposed
scenarios have been accounted for.

Table 4. Archetypes NFlex,Sx by applying the Load Shifting strategy.

Parameters
Archetype

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14

NFlex,S0 840 379 1030 172 1365 1261 1019 246 633 289 1868 650 984 504

NFlex,S1 432 236 526 83 753 534 769 160 334 194 1218 494 581 315

NFlex,S2 430 236 520 83 740 425 765 160 334 194 1216 492 560 315

NFlex,S3 339 236 201 83 661 386 684 160 265 167 1216 463 466 266

NFlex,S4 304 222 195 81 609 322 636 138 257 144 1037 414 367 259

According to what is reported in Table 4, the annual RF values vs. archetypes, with
changes in scenarios, were calculated and are plotted in Figure 5. From data, it emerges
how the more restrictive constraints applied in S2, S3 and S4 scenarios, lead to significant
reductions of RF values.
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Figure 5. RF: archetype annual average values.

Specifically, RF’s decrease from an average value of 66% once no limitation is applied
in scenario (S1), to 53% taking into account all constraints in S4; moreover, a strong
RF reduction has been registered between scenario S2 (RF = 62%) and S3 (RF = 56%),
since limiting the energy-intensive appliances (i.e., washing machine, dish washer, air
conditioner) hinders an effective load shifting of their cycles. Furthermore, that reduction
is higher for those archetypes characterised by low RF values (e.g., #1, #3, #5, #6, #13). It
is due to the fact that they largely use such appliances, and they are more affected by the
constraint’s introduction than the other archetypes.

Table 5 reports the NFlex,Sx monthly values in each scenario, having considered the
14 archetypes combination (i.e., summing all their contributions).

Table 5. Monthly NFlex,Sx by applying the Load Shifting strategy.

Parameters
Months

Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec

NFlex,S0 1878 1065 872 1235 924 640 792 597 1088 547 680 934

NFlex,S1 1220 693 589 795 603 404 301 234 561 356 425 515

NFlex,S2 1205 693 586 777 601 395 282 188 501 354 423 515

NFlex,S3 906 634 510 619 514 358 262 160 470 329 369 456

NFlex,S4 677 578 464 510 467 325 250 158 433 295 326 409

Figure 6 depicts the monthly RF values for each scenario, when archetypes have been
gathered. Here too, RF reductions have been registered owing to the increasing limitations
set up, according to S2, S3 and S4. Additionally, months belonging to the summertime are
usually characterised by lower values than the others.
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Figure 6. RF: monthly average values.

These RF reductions over the summertime depend mostly on the cooling systems
operation, since the load shifting of air conditioner cycles is generally not feasible, due to
the lack of suitable Load Reduction Time.

Thus, Figure 6 shows how, in June, July and August, the RF values are less sensitive
to the introduction of S4 constraints. That behaviour is caused by climatic and time-delay
factors, hailing from the larger photovoltaic power release in the national grid, and from
lighting loads postponement. Moreover, the great number of Load Increase Time periods,
occurring in 10:00 a.m. up to 4:00 p.m., shrinks the loads shifting needs towards night-time.

More generally, where the Load Reduction Time periods are frequent, the RF is
strongly penalised by applying the S4 features. Indeed, needs of loads shifting towards
night-time are greater, but S4 constraints do not allow that.

3.3. Flexible Loads by Strategy & Scenario: Energy Shift

It is important to highlight that RF is a relative value accounting only for appliance
cycles. Therefore, it is not an exhaustive indicator for directly comparing each other the
selected archetypes. For that purpose, a thorough analysis on loads peculiarities must be
carried out. In such a way, it is possible to identify how often, the archetypes showing low
RF, can provide higher flexibility in terms of energy shift (ES). For instance, referring to
Figure 7, the archetypes number #6 and #13 are characterised by quite low ES values.

In the same way as before, for the RF indicator, Figure 8 depicts the ES average monthly
values, when the archetypes have been clustered and constraint scenarios changed. That
chart points out remarkable reductions in ES values over the summertime, owing to
different operating mode of flexible appliances.

The archetypes’ ES scattering values, sorted by months for a fixed scenario, are
reported in Figures 9–12.

Comparing those charts, it is possible to recognise a progressive lowering in ES statis-
tical distribution values over the year, as more technical limitations are added. In detail,
that reduction is greater where the ES values are higher, since shifted loads are generally
much more, and hence, from a statistical point of view, even the unshifted loads are higher.
Additionally, that issue repeats often in the winter months, where the ES third quartile
amount to 26 kWh/month/dwelling, and peaks can get to 43 kWh/month/dwelling. By
changing scenarios, those values go down until −32.5%, starting from an annual average of
27 kWh/month/dwelling up to 18 kWh/month/dwelling. Indeed, a high decrease is reg-
istered in wintertime, especially between the S1 and S4 scenarios. In that case, the average
monthly values associated to January lessen from 40 to 17 kWh/month/dwelling. Differ-
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ently, the reduction in the summertime is smaller, because of the modest amount of available
flexibility, such as in June, where ES decreases from 19 to 14 kWh/month/dwelling.

Figure 7. Archetypes average annual values of Monthly Energy Shift, with changes in constraint scenarios.

Figure 8. Clustered archetypes average Monthly Energy Shift, with changes in constraint scenarios.

The average values of monthly reduction, caused by applying technical constraints
C1, C2 and C3 for simulating the S2 scenario, are not significant; conversely, the extreme
limits of scattering values must be considered relevant (see Figure 10).

Introducing all of the restrictions associated to scenario S3, which mostly influence the
energy-intensive appliances, the ES reductions become more evident. That feature espe-
cially occurs over the wintertime, where the ES values are greater, as reported in Figure 11.
On the other hand, the average monthly variability values are mitigated, showing lower
fluctuations over the whole year.
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Figure 9. ES: Scenario 1, monthly average values.

Figure 10. ES: Scenario 2, monthly average values.

Thereafter, when the most restrictive limitations are introduced by the S4 scenario,
the ES monthly variability, in terms of both average and extreme scattering values, is
characterised by a further lessening along with a more flattened trend. Such a behaviour,
it is due to the fact that, the current technical constraints deny loads shifting through the
night time (see Figure 12).

3.4. Flexible Loads by Strategy & Scenario: Peak Shaving

The Peak Shaving indicator trends (i.e., PS) have been clearly plotted in Figures 13
and 14. It is worth noticing that PS is defined as the maximum registered power reduction,
over a 15-min time span. That indicator is calculated for each archetype as well as for
the clustered version. In so doing, it is possible to evaluate firstly the flexibility system
potential, and secondly, to identify the number of minimum users able to provide the
grid DSO with specific DSM parameters and references. Moreover, from Figure 13, it is
possible to distinguish those archetypes using the most energy intensive appliances, so that
greater DSM services might be potentially provided to the grid. In Figure 14, the monthly
variation shows a modest reduction only in the summertime. The PS variability between
the simulated constraint scenarios remains almost constant, highlighting the nature of
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this indicator. Indeed, it indicates a maximum value instead of an average one, as for
the previous indicators. In detail, PS indicator small and quite negligible reductions are
detected by applying the different scenarios, namely: 1678 W for S1, 1677 W for S2, 1612 W
for S3, 1592 W for S4.

Figure 11. ES: Scenario 3, monthly average values.

Figure 12. ES: Scenario 4, monthly average values.

The PS scattered values associated to the archetypes, sorted by months, are plotted in
Figures 15–18. Those charts represent the maximum shaved power distribution, caused by
the scenario Sx application. From data analysis, it is possible to conclude that the higher
variations correspond to the lower PS values. That feature entails that some archetypes
keep constant their PS values over the year, while the others are characterised by lower PS,
generally over the summertime. Moreover, in Figure 15, it can be noticed how the median
monthly values do not exceed the threshold of 2000 W, which mostly range between 1500 W
and 1900 W.
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Figure 13. PS: archetype annual average values.

Figure 14. PS: monthly average values.

Figure 15. PS: Scenario 1, monthly average values.
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Figure 16. PS: Scenario 2, monthly average values.

Figure 17. PS: Scenario 3, monthly average values.

Figure 18. PS: Scenario 4, monthly average values.
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Thus, Figure 16 reports the PS variation owing to the S2 scenario application. Com-
paring these data with those related to the S1 scenario, small differences are registered,
exception for the minimum values of the monthly scattering plot.

That issue is emphasised further within the chart associated to the S3 scenario (see
Figure 17), where the minimum values further decrease (first quartile), hence the PS
variation range increases (e.g., in February).

The same trend is confirmed by the S4 scenario (see Figure 18), where a modest
lessening in the maximum values, together with the median and the average, occur. The
average annual values drift away, starting from 1777 W for the S1 scenario, towards 1600 W
for the S4 scenario.

4. Conclusions

This work aims at defining and quantifying the real flexibility offered by a building
cluster, in the Italian residential sector, to the national grid. In so doing, that cluster can
participate in a demand response program in accordance with a Flexibility Price-market-
based Strategy. Extrapolating and exploiting data collection, hailing from an experimental
campaign carried out on 14 reference dwellings, over two years, a Load Shifting Strategy
has been applied. Additionally, some theoretical indicators have been presented and
extensively discussed on the basis of a real case study. Then, four different scenarios
have been built by imposing several technical constraints on the household appliances,
accounting for operation contemporaneity, building occupancy, cycles time sequences etc.
All of scenarios are characterised by a growing limitation degree in the Load Shifting
strategy, which consequently causes considerable reduction of Real Flexibility capacity that
a building cluster can provide.

In order to evaluate the potential reduction hailing from the realistic constraints, a
reference scenario S0 has been built. It represents the theoretical Flexibility potential. In
detail, scenario S1 includes only the Load Shifting Strategy application; in scenarios, S2–S4
seven technical constraints have been added. Starting from the RF average value over
the year equal to 66%, it decreases up to 53%, with seasonal differences which get the
lowest values in July and August. RF values up to 80%, can be provided by some sample
dwellings. Notwithstanding, when buildings are clustered, the virtuous end users’ habits
can be mitigated, leading to lower flexibility capacity associated to the residential sector.

Other indicators have been calculated, and one of these is the ES (energy amount effec-
tively moved over the day deriving from the Load Shifting strategy). Monthly average val-
ues of ES decrease from 12 to 8 kWh/month/dwelling, due to the more restrictive scenario
application (i.e., S4). ES peak values have been calculated and 35 kWh/month/dwelling
has been accomplished. The PS indicator has been calculated too: values close to 1600 W,
with a low sensitivity to the different scenarios, show moderate effects in terms of power
reduction; nevertheless, by gathering some dwellings, it is possible to get to higher PSs for
providing the grid with an efficient strategy to reshape the load curve.

The main outcomes from simulation can be outlined as follows:

• The RF value shrinks as the constraints number increases; starting from S1 to S4 the
registered RFs are equal to 66%; 62%; 56%; 53%, respectively.

• The ES value decreases by changing scenarios; from S1 to S4, 27; 26; 21; 18 kWh/month/
dwelling, have been registered, respectively.

• The value of PS does not significantly decrease, from S1 to S4, e.g., 1678 W; 1677 W;
1612 W; 1592 W, respectively.

• The appliances’ cycles are mostly shifted in the afternoon, between 4:00 p.m. and
8:00 p.m.; the time span in which they are moved is close to the late evening and
night-time. As regards the S4 scenario, the loads shifting occurs early in the morning
(after 6:00 a.m.).

• The Dish Washer and Washing Machine cycles that generally are shifted, have an
energy consumption approximately equal to 1 kWh/cycle.
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• In the summertime (from June to September) flexibility is on the average lower than
in the other months, in terms of both RF and ES, because of the different composition
of summer loads (e.g., lighting, air conditioning).

• The indicators values reduction is stronger in S2 and S3 rather than in the other
scenarios. That is due to the restrictive limitations addition which have been applied
to the energy-intensive appliances.

This article is presented based on the actual data of 14 homes, which are characterised
by a low electrification degree; among those, only one reference home is equipped with a
photovoltaic plant. New scenarios are being developed dealing with dwellings which use
heat pumps for heating and DHW purpose, and which have self-generation hailing from
PV along with batteries pack. In these cases, self-generation and storage devices constitute
further constraints compared to those examined in this article. As a result, the flexibility
potential that each individual dwelling can offer to the electric spot market will be reduced.
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Appendix A

Table A1. Strategy to optimise the load shifting: weekdays; (−2, Green) Strong Load reduction; (−1, Light Green) Weak
Load re-duction; (0, White) No Load variation; (1, Light Red) Weak Load increase; (2, Red) Strong Load increase.

Months
Hours

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
January 1 2 2 2 2 2 1 −1 −2 0 0 0 1 0 0 −1 0 −1 −1 −2 −1 −1 0 0

February 2 2 2 2 2 2 −1 −1 −1 0 0 1 1 1 1 −1 −1 −1 −1 −2 −2 −1 0 0
March 1 2 2 2 2 2 −1 −1 −1 0 0 1 1 1 0 −1 −1 0 −1 −2 −2 −1 0 0
April 1 2 2 2 2 2 1 −1 −1 0 0 0 1 1 0 0 −1 −1 −1 −2 −2 −2 −1 0
May 1 2 2 2 2 2 1 −2 −1 0 0 0 1 0 0 0 −1 0 −1 −2 −2 −2 −1 0
June 1 2 2 2 2 2 1 −1 0 0 0 1 1 0 0 −1 −1 −1 −1 −2 −2 −2 −1 0
July 0 1 2 2 2 2 2 1 0 0 0 0 1 0 0 −1 −1 −1 −2 −2 −2 −2 −1 0

August −1 1 2 2 2 2 2 1 0 0 1 1 1 0 0 −1 −1 −2 −1 −1 −2 −2 −1 −1
September 1 2 2 2 2 2 1 −1 0 −1 0 0 1 1 0 −1 −1 −1 −1 −2 −2 −1 0 0

October 2 2 2 2 2 2 1 −1 −1 −1 0 0 1 1 1 −1 −1 −1 −1 −2 −2 −1 0 0
November 2 2 2 2 2 2 1 −1 −1 0 0 −1 1 1 0 −1 −1 −1 −1 −2 −1 0 0 0
December 2 2 2 2 2 2 1 −1 0 −1 0 0 1 1 −1 −1 −1 −2 −2 −2 −1 0 0 0
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Table A2. Strategy to optimise the load shifting: Saturdays. (−2, Green) Strong Load reduction; (−1, Light Green) Weak
Load reduction; (0, White) No Load variation; (1, Light Red) Weak Load increase; (2, Red) Strong Load increase.

Months
Hours

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
January 1 2 2 2 2 2 1 0 0 −1 −1 0 1 0 0 0 −1 −1 −2 −2 −2 −1 −1 1

February 1 1 2 2 2 2 1 0 0 −1 −1 0 1 0 0 0 −1 −1 −1 −1 −2 −1 −1 1
March 0 1 1 2 2 1 0 0 0 −1 −1 1 0 0 0 0 0 0 0 −2 −2 −2 −1 0
April 0 1 1 1 2 1 0 0 0 −2 −1 1 0 0 0 0 0 0 0 −2 −2 −2 −1 0
May 0 0 1 2 2 2 1 0 0 −1 0 0 0 0 0 0 0 0 −1 −1 −2 −2 −1 1
June 0 0 0 1 1 1 1 1 0 −1 0 1 0 0 0 0 0 0 −1 −2 −2 −2 −2 0
July 0 0 0 0 1 1 1 1 0 −1 0 0 0 0 0 0 0 0 −1 −1 0 0 0 −1

August −1 0 0 0 1 1 1 1 0 1 1 0 1 0 0 0 0 −1 0 −1 −2 −1 −2 −1
September 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 1 0 −1 −1 −2 −2 −2 −1 1

October 0 0 1 1 2 1 0 0 −1 −1 0 1 0 0 0 1 0 −1 0 −2 −2 −1 0 0
November 1 1 1 2 2 2 1 0 0 −1 −1 0 0 0 0 0 −2 −2 −1 −1 −2 −1 0 1
December 1 1 2 2 2 2 2 0 0 −1 −1 0 1 1 0 −1 −2 −2 −1 −2 −2 −1 0 0

Table A3. Strategy to optimise the load shifting: non-working days. (−2, Green) Strong Load reduction; (−1, Light Green)
Weak Load reduction; (0, White) No Load variation; (1, Light Red) Weak Load increase; (2, Red) Strong Load increase.

Months
Hours

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
January 0 1 2 2 2 2 2 2 1 1 −1 −1 −1 0 0 0 −2 −1 −1 −2 −2 −2 −1 1

February 0 1 2 2 2 2 1 1 0 0 −1 0 0 0 0 0 −1 0 −1 −2 −2 −2 −2 0
March −1 1 2 2 2 2 1 1 1 −1 −1 −1 0 1 0 0 −1 0 0 −2 −2 −1 −1 0
April 0 1 1 1 1 0 0 0 0 −1 0 0 0 1 1 1 0 0 −1 −2 −2 −2 −2 −1
May 0 0 1 2 1 0 1 1 0 0 −1 0 0 0 0 0 0 1 0 −1 −2 −2 −2 −1
June 0 0 0 1 1 1 2 1 1 1 −1 1 1 0 0 0 −1 −1 −1 −2 −2 −2 −2 −1
July −1 0 0 0 0 1 2 1 1 0 1 1 1 0 0 0 0 −1 −1 −1 −2 −1 −1 0

August 0 0 0 0 1 0 1 1 1 1 1 0 1 0 0 0 0 −1 −1 −1 −1 −2 −1 −1
September 0 0 1 2 2 2 0 1 1 −1 0 1 0 0 0 0 0 −1 −2 −2 −2 −2 −1 0

October 0 1 1 2 2 2 1 1 0 −1 −1 0 0 0 0 0 0 0 −1 −2 −2 −2 −1 0
November 1 2 2 2 2 2 2 1 1 1 −1 0 0 0 −1 −1 −1 −1 −2 −2 −2 −2 −1 0
December 1 1 2 2 2 2 2 1 1 −1 −1 −1 −1 1 1 −1 −2 −1 −2 −2 −2 −2 −1 1
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Appendix B

Figure A1. Control kit layout.

Table A4. Control kits configuration for the archetypes.

Function Device
Archetype

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14

Energy box Gateway 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Monitoring

Electricity meters 1 1 1 1 2 1 1 1 1 1 1 1 1 2

Multi-sensors
(temperature,

presence, brightness)
5 6 6 4 6 6 4 4 7 6 3 9 7 7

Windows/doors
opening and closing

detectors
7 8 6 5 8 8 5 5 10 10 6 9 12 9

Control
Smart Valves 6 5 0 4 3 6 5 3 8 6 0 0 7 0

Smart Plugs 4 3 4 4 3 4 4 3 3 4 3 5 3 6

Smart Switches 1 0 0 0 1 1 1 1 1 1 0 1 0 0

Table A5. Archetypes appliances and characteristics.

Archetype Floor Surface [m2] Heating and DHW * Cooling * PV Array WM ** DW ** TD **

#1 49 NCB 2 HP 7; 5; A+ 6; 7; A

#2 101 NCB 1 HP 10; 2.5; A

#3 100 NCB 1 HP 7; 5; A+

#4 50 NCB 1 HP 7; 1.5; A+ 5; 0.5; A

#5 100 CB + HP 4 HP 7; 4; A++ 5; 4; A 5; 4; A

#6 65 CB 3 HP 7; 6; A 12; 3.5; A 7; 0.5; B

#7 65 NCB 1 HP 7; 5; A+ 6; 7; A

#8 60 CB 7; 2; A++ 12; 1.5; A+

#9 95 NCB 2 HP 7; 5; A+++ 12; 8; A+



Energies 2021, 14, 3080 20 of 21

Table A5. Cont.

Archetype Floor Surface [m2] Heating and DHW * Cooling * PV Array WM ** DW ** TD **

#10 102 NCB 1 HP 7; 3; A+ 14; 5; A

#11 67 CB 10; 5; B 6; 5; B

#12 134 CB 7; 6; A 14; 7; A 6; 3; B

#13 124 CB 5; 4; A 12; 7; A+

#14 123 NCB + solar collectors 3.9 kW 5; 4; A 12; 7; A+

* NCB: Non-Condensing Boiler; CB: Condensing Boiler; HP: Heat Pump; ** WM: Washing machine; DW: Dishwasher; TD: Tumble dryer;
Capacity, cycles per week, Energy Class.

Table A6. Family composition of each archetype.

Archetype Occupants * Description

#1 4; (1; 3; 4; 4) Family with two teenage children and one unemployed parent

#2 2; (0; 0; 2; 2) Commuter Workers

#3 4; (0; 3; 4; 4) Family with school-aged children, and one part-time working parent

#4 1; (0; 0; 1; 1) Commuter Worker

#5 4; (1; 3; 4; 4) Family with school-aged children, and one home parent

#6 4; (1; 3; 4; 4) Family with school-aged children and babies, and one unemployed parent

#7 3; (0; 0; 3; 3) Family with a baby and commuter parents

#8 2; (1; 1; 2; 2) Commuter worker, awaiting employment

#9 3; (1; 2; 3; 3) Family with a school-aged child, and one commuter worker

#10 2; (0; 1; 2; 2) Family of commuter workers

#11 3; (0; 2; 3; 3) Family with a school-aged child, and two commuter workers

#12 4; (0; 1; 4; 4) Family with two adult children, two commuter parents

#13 2; (0; 1; 2; 2) Family with a school-aged child, and two commuter workers

#14 2; (2; 2; 2; 2) Two Pensioners

* Number of occupants; (8 a.m. to 1 p.m.; 1 p.m. to 7 p.m.; 7 p.m. to 12 a.m.; 12 a.m. to 8 a.m.).
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