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Abstract
The ensemble Kalman filter method can be used as an iterative particle numer-
ical scheme for state dynamics estimation and control-to-observable identifi-
cation problems. In applications it may be required to enforce the solution to
satisfy equality constraints on the control space. In this work we deal with this
problem from a constrained optimization point of view, deriving corresponding
optimality conditions. Continuous limits, in time and in the number of particles,
allows us to study properties of the method. We illustrate the performance of
the method by using test inverse problems from the literature.
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1. Introduction

We are concerned with the following abstract inverse problem or parameter identification
problem

y = G(u) + η (1)

where G : X → Y is the (possible nonlinear) forward operator between the finite dimensional
Hilbert spaces X = R

d and Y = R
K , with d, K ∈ N, u ∈ X is the control, y ∈ Y is the observa-

tion and η is observational noise. Typically, η is not explicitly known but only information
on its distribution is available. Throughout the paper we assume that η ∼ N (0,Γ−1), i.e.
the observational noise is normally distributed with zero mean and given covariance matrix
Γ−1 ∈ R

K×K . Given noisy measurements or observations y and the known mathematical model
G, we are interested in finding the corresponding control u. Inverse problems, in particular in
view of a possible ill-posedness, have been discussed in vast amount of literature and we refer
to [1] for an introduction and further references.
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We are interested in particle methods for solving numerically (1). In particular, in the fol-
lowing we will investigate the ensemble Kalman filter (EnKF). While this method has already
been introduced more than ten years ago [2], recent theoretical progress have been done both
for the continuous time limit [3–7] and the mean-field limit on the number of the ensemble
members [8–11].

Solving inverse problems or identification problems arising in realistic applications usually
requires to consider constraints on the unknown control, as well as on the data. This has been
demonstrated in the recent literature in several research fields, as for instance in weather fore-
casting [12], milling process [13] and process control [14]. Including constraints in Kalman
filtering is usually done via optimization techniques, see e.g. [15]. Recently, algorithms for
the ensemble Kalman filter for constrained problems have been studied in [16, 17]. In particu-
lar, in [16] the authors propose to solve the constrained compromise step for all the ensemble
members that do not fulfill the constraints. However, we notice that no optimality conditions
have been formally derived and that the solution of a large number of constrained optimization
problems may be required. Instead, in [17] the authors focus on linear box-constraints and, via
a projection-based method, derive a new variant of the EnKF and study the continuous time
limit.

Here, we follow a similar approach to [16] by incorporating equality constraints in the com-
promise or update step of the unconstrained EnKF. Using the Lagrange theory for optimization
problems, we derive first order necessary optimality conditions and discuss the link to game
theory. The formulation of the optimality conditions shows that the unconstrained EnKF auto-
matically satisfies linear equality constraints. Our analysis is therefore mainly focused to the
case of nonlinear equality constraints. Under suitable scaling assumptions, we then compute
the corresponding continuous time limit of the optimality conditions, which leads to a system
of differential algebraic equations (DAEs). This reformulation allows us to perform an analysis
of the method. A further continuous limit is analyzed in the mean-field limit, i.e. in the regime
of infinitely many ensembles.

The main contributions can be summarized in the following points:

• We explicitly derive the ensemble Kalman update for inverse problems which automat-
ically encapsulates and satisfies general nonlinear equality constraints. In this way, we
avoid the possible solution of many constrained optimization problems for those ensemble
members which do not satisfy the constraints.

• We compute and analyze the corresponding continuous limits, in time and in the number
of the ensemble members, of the constrained ensemble Kalman update formula.

The paper is organized as follows. In section 2 we briefly review the derivation of the EnKF
and then we compute first order necessary optimality conditions for the constrained optimiza-
tion problem, assuming only equality constraints. In section 3 we study continuous limits, in
time and in the number of ensembles, of the optimality conditions, providing an analysis for
the resulting system of DAEs and mean-field equation. In section 4 we investigate the ability
of the method to provide solution to an inverse problem with two types of equality constraints.
Finally, we summarize the results in section 5. We report in appendix A detailed elaboration
of computations in the proof of proposition 2.5. Appendix B is aimed to list the most used
mathematical symbols throughout the paper.

2. Ensemble Kalman filter for constrained problems

A particular numerical method for solving (1) is the ensemble Kalman filter (EnKF), which has
been originally introduced to estimate state variables, parameters, etc of stochastic dynamical
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systems. The estimations are based on system dynamics and measurement data that are possibly
perturbed by known noise. Therefore, in order to apply the EnKF to the inverse problem (1),
this is usually rewritten as a partially observed and artificial dynamical system based on state
augmentation, e.g. see [16, 18, 19].

Let us introduce the new variable w = G(u), so that (1) can be reformulated as

w = G(u)

y = w + η.

Taking yn+1 = y and ηn+1 = η as the given data and the given noise, respectively, we obtain
the following dynamical system:

un+1 = un

wn+1 = G(un)

yn+1 = wn+1 + ηn+1.

(2)

Remark 2.1. We stress the fact that here n is an artificial time index, while in the case of a
dynamic inverse problem physical time is included in G. Moreover, in the following we keep
the notation yn+1 even if we consider the free noise case where no perturbation in time is added
to the initial noisy observation.

In the following we briefly recall the derivation of the EnKF. We use a compact formulation
of the artificial dynamic process by defining v = (u, w)ᵀ ∈ R

d+K , Ξ(v) = (u,G(u))ᵀ ∈ R
d+K

and the observational matrices H = [0, I] ∈ R
K×(d+K), H⊥ = [I, 0] ∈ R

d×(d+K). We note that
Hv = w and H⊥v = u. Then, we rewrite (2) in the typical setting where the EnKF is applied
for the solution of the inverse problem (1):

vn+1 = Ξ(vn)

yn+1 = Hvn+1 + ηn+1.
(3)

Let us introduce {v j,n}J
j=1 the J particles (ensembles) at time n. The objective of the EnKF is to

reach a compromise vj,n+1 between the background estimate v̂ j,n+1 of the model and additional
information provided by data yn+1, for each ensemble member. The state of the particles at time
n + 1 is predicted using the dynamics model (3) to obtain

v̂ j,n+1 = Ξ(v j,n), j = 1, . . . , J. (4)

Let Cn+1 ∈ R
(d+K)×(d+K) be the empirical covariance matrix characterizing the uncertainties

on predictions v̂ j,n+1. We have

Cn+1 =
1
J

J∑
k=1

(v̂ j,n+1 − v̂n+1) ⊗ (v̂ j,n+1 − v̂n+1), v̂n+1 =
1
J

J∑
k=1

v̂ j,n+1.

It is also easy to check that

Cn+1 =

[
Cn+1

uu Cn+1
uw

Cn+1ᵀ
uw Cn+1

ww

]
(5)
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where, using the definition of Ξ,

Cn+1
uu =

1
J

J∑
k=1

(u j,n − un) ⊗ (u j,n − un), Cn+1
uw =

1
J

J∑
k=1

(u j,n − un) ⊗ (G(u j,n) − Gn)

Cn+1
ww =

1
J

J∑
k=1

(G(u j,n) − Gn) ⊗ (G(u j,n) − Gn)

are the empirical covariance matrices depending on the ensemble set {u j,n}J
j=1 at iteration n

and on {G(u j,n)}J
j=1, i.e. the image of {u j,n}J

j=1 at iteration n, and where we define by un and

Gn the mean of {u j,n}J
j=1 and {G(u j,n)}J

j=1, namely

un =
1
J

J∑
j=1

u j,n, Gn =
1
J

J∑
j=1

G(u j,n).

Remark 2.2. The empirical covariance matrix of the ensembles is in fact computed by
information at iteration step n. However, we keep the notation Cn+1

uu .

The compromise that is sought should have vj,n+1 close to v̂ j,n+1 and Hvj,n+1 close to yn+1.
Then vj,n+1 is defined by the solution of the following minimization problem:

v j,n+1 = arg min
v
J j,n(v) :=

1
2
‖yn+1 − Hv‖2

Γ−1 +
1
2
‖v − v̂ j,n+1‖2

Cn+1 . (6)

Here, we recall that Γ−1 ∈ R
K×K is the covariance matrix characterizing the uncertainties on

data yn+1 and that we assume η ∼ N (0,Γ−1). Throughout the work, we also assume that Γ−1

is positive definite. We notice that the first term of J j,n(v) corresponds to the least squares
functional Φ given by

Φ(u, y) :=
1
2
‖Γ 1

2 (y − G(u))‖2. (7)

Further, J j,n(v) can be written as

J j,n(v) =
1
2

vᵀ
(

HᵀΓH + Cn+1−1
)

v −
(

Cn+1−ᵀ
v̂ j,n+1 + HᵀΓᵀyn+1

)ᵀ
v + J

(8)

whereJ collects all the terms independent of v. The EnKF update formula is derived by impos-
ing first order necessary condition∇vJ j,n(v) = 0. For an extensive discussion, we refer e.g. to
[16, 19]. In particular, we point-out here that the derivation of the EnKF update formula through
(8) requires that the empirical covariance Cn+1 is positive definite. This is a strong assumption
which cannot be guaranteed in a general fashion and it is usually overcame by introducing
a shifting of Cn+1 as Cn+1

ε = Cn+1 + εI, where I ∈ R
(d+K)×(d+K) is the identity matrix, and

study the limit of ε→ 0. We refer to [16]. For the derivation of the EnKF update formula for
constrained problems we will follow this approach, see proposition 2.5 in the following section.

We recall here that in order to help the reader, we report a list of the main mathematical
symbols in appendix B.
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2.1. Equality constraints on the control space

We consider imposing equality constraints in the space of the control and formulate those as

A(u) = 0Rm (9)

where A is the vector valued differentiable operatorA : u ∈ R
d 	→ A(u) ∈ R

m, containing the
m � d constraint values.

Remark 2.3. Throughout the paper, we use the subscript (�), � = 1, . . . , N, to denote the �th
component of vectors and vector-valued functions on R

N .

Let JA =
[
∇uA(1), . . . , ∇uA(m)

]ᵀ
be the m × d Jacobian matrix of the operatorA. In order

to satisfy constraint qualification for equality constraints, we require that if u∗ is a feasible
point then JA(u∗) has full rank, i.e. m. In other words, u∗ is a regular point of the constraint.

Theorem 2.4 (see [20, 21]). If u∗ is a feasible point and JA(u∗) is a full rank matrix,
the constraint qualification LICQ holds at u∗. Hence, the Lagrange multipliers theorem gives
necessary optimality condition.

In order to formulate the constrained optimization problem associated to the minimization
of (8), we define also the extension of the operator A to the space R

d+K as Ã : v ∈ R
d+K 	→

Ã(v) = A(H⊥v) ∈ R
m. Then observe that the Jacobian JÃ ∈ R

m×(d+K) of the operator Ã is
JÃ = [JA, 0] with 0 ∈ R

m×K since ∂v(�)A(k) = 0, for � = d + 1, . . . , d + K and k = 1, . . . , m.
Moreover, if u∗ is feasible and JA(u∗) has rank m, then JÃ(u∗) has also rank m.

The optimization step becomes then

min
v
J j,n(v), subject to Ã(v) = 0Rm , j = 1, . . . , J. (10)

It is clear that (10) requires to solve J constrained optimization problems sequentially, at each
iteration step n. We point out that the objective functional (8) is convex.

Proposition 2.5. Let vj,n+1 be an optimal solution to the constrained optimization problem
(10) for a given j and n, satisfying the constraint qualification for the differentiable equality
constraint defined by Ã. Then uj,n+1 = H⊥vj,n+1 satisfies the first order necessary optimality
conditions

u j,n+1 =u j,n + Cn+1
uw (Cn+1

ww + Γ−1)−1(yn+1 − G(u j,n)) + Cn+1
uw (Cn+1

ww + Γ−1)−1

× Cn+1ᵀ
uw Jᵀ

A(u j,n+1)λ j,n+1 − Cn+1
uu Jᵀ

A(u j,n+1)λ j,n+1

A(u j,n+1) =0Rm . (11)

Proof. We apply Lagrange multiplier technique to the objective J j,n
ε (v) defined by (8) with

shifting of the empirical covariance Cn+1 	→ Cn+1
ε :=Cn+1 + εI, where I ∈ R

(d+k)×(d+K) is
the identity matrix and ε > 0. Then we study the limit ε→ 0. We observe that, thanks to the
shifted matrix, HᵀΓH + Cn+1−1

ε is strictly positive definite. Consequently, the objective J j,n
ε

is strongly convex and there is existence and uniqueness of the solution to the minimization
problem.

Detailed computations required in the following proof are given in appendix A.
The constrained minimum of J j,n

ε (v) corresponds to a stationary point of the Lagrangian
function

L(v,λ) = J j,n
ε (v) + λᵀÃ(v)
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where the vector λ ∈ R
m contains the Lagrange multipliers. Variations of the Lagrangian

function L with respect to v and λ are

∇vL(v,λ) =
(

HᵀΓH + Cn+1−1

ε

)
v −

(
HᵀΓᵀyn+1 + Cn+1−1

ε v̂ j,n+1
)
+ (λᵀJÃ(v))ᵀ

∇λL(v,λ) = Ã(v).

If (v j,n+1,λ j,n+1) ∈ R
d+K × R

m is an optimal solution then it satisfies ∇vL(v j,n+1,λ j,n+1) =
0
Rd+K and ∇λL(v j,n+1,λ j,n+1) = 0Rm , that are the first order necessary optimality conditions.

Due to the assumption of a regular point, the system of optimality conditions is determined.
In particular, imposing ∇vL(v j,n+1,λ j,n+1) = 0

Rd+K , it is possible to determine

v j,n+1 =
(

HᵀΓH + Cn+1−1

ε

)−1 (
HᵀΓyn+1 + Cn+1−1

ε v̂ j,n+1
)

−
(

HᵀΓH + Cn+1−1

ε

)−1
Jᵀ
Ã(v j,n+1)λ j,n+1. (12)

Now we apply the Woodbury matrix identity to the term multiplying v̂ j,n+1 and to the last term
in (12), cf appendix A. Instead, for the term multiplying yn+1 in (12) we observe that

(
HᵀΓH + Cn+1−1

ε

)−1
HᵀΓ = Cn+1

ε Hᵀ(HCn+1
ε Hᵀ + Γ−1

)−1
.

Then we get, cf appendix A,

v j,n+1 = v̂ j,n+1 + Cn+1
ε Hᵀ(HCn+1

ε Hᵀ + Γ−1
)−1

(yn+1 − Hv̂ j,n+1)

−
(

Cn+1
ε − Cn+1

ε Hᵀ(HCn+1
ε Hᵀ + Γ−1

)−1
HCn+1

ε

)
Jᵀ
Ã(v j,n+1)λ j,n+1.

(13)

If we multiply the previous equation by the observation matrix H⊥ and compute the limit
ε→ 0, we obtain the update formula for the control, cf appendix A:

u j,n+1 = u j,n + Cn+1
uw (Cn+1

ww + Γ−1)−1(yn+1 − G(u j,n))

+ Cn+1
uw (Cn+1

ww + Γ−1)−1Cn+1ᵀ
uw Jᵀ

A(u j,n+1)λ j,n+1 − Cn+1
uu Jᵀ

A(u j,n+1)λ j,n+1,

coupled to A
(
u j,n+1

)
= 0Rm , which provide a set of necessary optimality conditions for the

constrained optimization problem (10). �

Observe that control update (11) is the classical ensemble Kalman filter update formula,
given by the first two terms in the right-hand side, perturbed by the last two terms due to
the constraint (9). Moreover, (11) depends also on the multipliers and their values must be
determined as part of the solution.

Corollary 2.6. Consider the assumptions of proposition 2.5. If the feasible set is convex,
then the optimization problem (10) is convex, and this implies that the necessary optimality
conditions (11) are also sufficient. In particular, this holds true for affine equality constraints.
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2.1.1. A game theory viewpoint and existence results. Proposition 2.5 is stated for a fixed
ensemble member j at a fixed iteration n, by assuming that the other ensembles play a role
of parameters in the optimization problem. This is closely related to the fact that problem
(10) can be seen from a game theoretic point of view. In fact, if we interpret each ensemble
member j ∈ {1, . . . , J} as a player which chooses a control variable vj,n+1 in its set of feasible
controls given by the constraint Ã

(
v j,n+1

)
= 0 while seeking to minimize its payoff function

J j,n which depends, via the covariance matrix Cn+1, on all other players’ controls at iteration
n, i.e. v−j,n, cf remark 2.2. Here, we indicate v−j,n+1 = {vk,n+1 : k = 1, . . . , J, k �= j}. Observe
that each player has no knowledge on the strategy adopted by other players. Moreover, we
notice that we are in presence of a repeated game.

In a non-cooperative and simultaneous game, we recall that {vj,n+1 : j = 1, . . . , J} repre-
sents a Nash equilibrium if for every v satisfying the constraint one has J j,n

(
v, v− j,n+1

)
�

J j,n
(
v j,n+1, v− j,n+1

)
, for j = 1, . . . , J.

In general, a Nash equilibrium may not exist and need not to be unique. Conditions for the
existence of Nash equilibrium are recalled in the following theorem.

Theorem 2.7 (Nikaidô and Isoda [22]). Let Γ = {Xi, fi}N
i=1 be a game with nonempty,

compact and convex strategy sets Xi ⊂ R
ni and continuous payoff functions fi : Xi → R, which

are quasiconvex in xi for every fixed x−i for all i = 1, . . . , N. Then Γ has (at least) one Nash
equilibrium.

We recall that quasiconvexity is implied by convexity. Then the Nikaidô and Isoda theorem
is satisfied for problem (10) if the feasible set is convex. In fact, the payoff function (8) is convex
since HᵀΓH + Cn+1−1

is positive semidefinite, and consequently J j,n is quasiconvex for each
j = 1, . . . , J. In particular, there exists at least one equilibria for affine equality constraints. For
further references, we refer to [23–25].

2.2. The case of linear equality constraints

Let us assume that the constraint A on the control space is linear. Then we can write A (u) =
Au, with A ∈ R

m×d. In this case we need to assume that A ∈ R
m×d is a full row rank matrix

in order to have satisfied the condition of regular point. The linearity of the equality constraint
guarantees an expression to evaluate the multipliers explicitly by substituting the update for-
mula given in (11) into the constraint (9). The following result holds true in the case of linear
equality constraints.

Proposition 2.8. Let A : Rd → R
m be a linear operator and {u j,0}J

j=1 be a set of initial
ensembles such that A

(
u j,0

)
= 0Rm . Let {u j,n+1}J

j=1 be the ensemble set computed via the
unconstrained ensemble Kalman filter update. Then A

(
u j,n+1

)
= 0Rm , ∀j = 1, . . . , J.

Proof. We prove the statement by induction on n. Notice that JA = Aᵀ since the constraint
is linear. It is easy to check that if {u j,n}J

j=1 satisfy the constraint then Cn+1ᵀ
uw Aᵀ = 0RK×m and

Cn+1ᵀ
uu Aᵀ = 0

Rd×m . Then the update formula given in (11) reduces to

u j,n+1 = u j,n + Cn+1
uw

(
Cn+1

ww + Γ−1
)−1 (

yn+1 − G(u j,n)
)

which represents the unconstrained ensemble Kalman filter formula. Substituting into the
constraint we have Au j,n+1 = Au j,n = 0Rm since also ACn+1

uw = 0Rm×K . �

We point-out that the previous result is a direct consequence of the well-known subspace
property of the classical unconstrained EnKF formula, which states that the ensemble iterates
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Figure 1. Application of the unconstrained ensemble Kalman filter based on the discrete
formulation, assuming that the control function satisfies a linear equality constraint given
as symmetry with respect to x = π

2 .

are a linear combination of the initial ensemble members, namely they stay in the subspace
spanned by the initial ensemble [19].

We provide an experimental evidence of the result in proposition 2.8. We consider the
inverse problem of finding the force function of a linear elliptic equation in one spatial dimen-
sion assuming that noisy observation of the solution to the problem are available. This is a
standard problem in the mathematical literature on the EnKF for inverse problems, e.g. see [6,
16, 19].

The problem is prescribed by the following one dimensional elliptic PDE

− d2

dx2
p(x) + p(x) = u(x), x ∈ [0, π] (14)

endowed with boundary conditions p(0) = p(π) = 0. We assign a continuous exact control
u(x), being symmetric with respect to x = π

2 , namely u(x) = u(−x + π). Introducing a uniform
mesh consisting of d = K = 28 equidistant points on the interval [0,π], we let u† ∈ R

d be the
vector of the evaluations of the control function u(x) on the mesh. Noisy observations y ∈ R

K

are simulated as

y = p + η = Gu† + η,

where G ∈ R
K×d is the finite difference discretization of the continuous linear operator defin-

ing the elliptic PDE (14). For simplicity we assume that η is a Gaussian white noise, more
precisely η ∼ N (0, γ2I) with γ ∈ R

+ and I ∈ R
d×d is the identity matrix. We are interested

in recovering the control u† ∈ R
d from the noisy observations y ∈ R

K only.
Let us consider u(x) = sin(3x), ∀x ∈ [0, π]. In figure 1 we show the solution to this problem

provided by the unconstrained ensemble Kalman filter. The initial ensemble set {u j,0}J
j=1 is

artificially built in order to satisfy symmetry with respect to x = π
2 , after being sampled from a

Brownian bridge, e.g. as in [6]. This implies that m = d
2 = 27 constraints are taken into account.

We solve the inverse problem by updating the ensemble members with

u j,n+1 = u j,n + Cn+1
uw

(
Cn+1

ww + Γ−1
)−1 (

y − G(u j,n)
)

for J = 100 and a noise level γ = 0.01. The filter method converges, meeting the discrepancy
principle in very few iterations, and allowing each ensemble member and the corresponding
mean to satisfy the constraint.

Proposition 2.8 guarantees that the constrained optimization problem (10) is solved by the
unconstrained ensemble Kalman filter when the constraint A is linear, independently on the
linearity of the model G. As consequence, analysis and continuous limits of the ensemble

8
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Kalman filter with linear equality constraints coincide with the recent results [4, 6, 7, 10, 11]
for unconstrained problems, and in the following we will focus on nonlinear constraints only.

3. Continuous limits of the constrained ensemble Kalman filter

In this section we investigate continuous limits of the constrained version of the ensemble
Kalman filter, when nonlinear equality constraints are taken into account. These limits allow
us to reformulate the fully discrete filter into the framework of ordinary and partial differential
equations, thus making the method computationally simpler and amenable to an analysis of its
properties.

3.1. Continuous time limit

In order to compute the continuous time limit equation, we make the following assumptions,
see e.g. [6, 11].

Scaling assumption 1. The covariance matrix Γ−1, accounting for uncertainties due to
data, is scaled by a scalar parameter Δt.

Scaling assumption 2. The multipliers λj,n+1 are scaled as Δtλj,n+1.

We notice that the second assumption is in fact not restrictive since multipliers are unique
up to a multiplicative constant.

Proposition 3.1. Under the scaling assumptions 1 and 2, the constrained ensemble Kalman
filter (11) formally converges to the semi-explicit system of differential algebraic equations
(DAEs)

d
dt

u j = CuwΓ
(
y − G(u j)

)
− CuuJᵀ

A
(
u j
)
λ j

0Rm = A
(
u j(t)

)
,

(15)

in the limit Δt → 0+.

Proof. Using the scaling assumptions, the solution (11) to the constrained optimization
problem can be reformulated as

u j,n+1 = u j,n +ΔtCn+1
uw (ΔtCn+1

ww + Γ−1)−1
(
yn+1 − G(u j,n)

)
− ΔtCn+1

uu Jᵀ
A
(
u j,n+1

)
λ j,n+1 +R

(
u j,n+1,λ j,n+1

)
(16)

where R is a term of order O(Δt2), in fact

R(u j,n+1,λ j,n+1) = Δt2Cn+1
uw (ΔtCn+1

ww + Γ−1)−1Cn+1ᵀ
uw Jᵀ

A(u j,n+1)λ j,n+1.

Now we interpret the parameter Δt as an artificial time step for the iteration, i.e. we take
Δt ∼ N−1

t where Nt is the maximum number of iterations. Assume then uj,n ≈ uj(nΔt) and

9



Inverse Problems 36 (2020) 075006 M Herty and G Visconti

λj,n ≈ λj(nΔt) for n � 0 and j = 1, . . . , J. Computing the limit Δt → 0+, (16) is a first order
implicit–explicit approximation of the following system of ordinary differential equations
(ODEs):

d
dt

u j = CuwΓ(y − G(u j)) − CuuJᵀ
A(u j)λ j, j = 1, . . . , J. (17)

Imposing that the constraint needs to be satisfied at each time t > 0, we obtain the system of
DAEs (15) endowed with initial conditions u j,0 = u j(0) ∈ R

d such that A(u j,0) = 0Rm . �
In the previous proposition we have seen (11) as first order implicit–explicit time discretiza-

tion of (15). However, we stress again the fact that Cn+1
uu is actually computed with information

at time level n, and therefore explicitly, while it appears in the term which is treated implicitly.
Nevertheless, Cn+1

uu can be written in terms of the average quantities, which typically change
in a small time scale, justifying therefore the use of an explicit evaluation.

Corollary 3.2. Assume that G = G, with G ∈ L(Rd ,RK), with L(Rd,RK) space of linear
operators mapping R

d to R
K. The DAE system (15) can be written in terms of the gradient of

the least squares functional Φ (7), obtaining

d
dt

u j = −Cuu(∇uΦ(u j, y) + Jᵀ
A(u j)λ j)

0Rm = A(u j(t)).
(18)

Proof. Due to the linearity of the model G, we observe that Cuw = CuuGᵀ and use
∇uΦ(uj, y) = −GᵀΓ(y − Guj) to rewrite (15) as (18). �

In view of the discussion in section 2.2, it is easy to show that in the case of a linear equality
constraint A(u) = Au ∈ R

m, the DAE system (18) reduces to

d
dt

u j = −Cuu∇uΦ(u j, y) (19)

which is the preconditioned gradient flow equation for the least square functional Φ, studied
e.g. in [4, 6, 7]. We expect that (19) still allows each ensemble member to satisfy the linear
constraint if the initial condition is feasible, again as consequence of the subspace property of
the EnKF which holds also in the continuous dynamics [6].

We observe that the differential equation in (18) can be written as

d
dt

u j = −Cuu∇uΨ(u j,λ j, y)

Ψ(u j,λ j, y) = Φ(u j, y) +
m∑

k=1

λ j
(k)A(k)(u j)

(20)

and therefore it still has the structure of a preconditioned gradient type flow, where the flow Φ
is perturbed along the direction of a linear combination of the constraints. However, while Φ is
convex,Ψ is not necessarily convex even if the constraint is since the method lacks information
about the sign of the multipliers.

3.1.1. Analysis in the case of a linear model. DAE systems are usually characterized by two
indices, namely the perturbation index and the differentiation index. Special DAEs are the
Hessenberg-type, having the property that perturbation and differentiation indices coincide.
In particular, a DAE is said to be of high order index if their perturbation and differentiation

10
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indices are greater than or equal to 2. Under suitable sufficient conditions it is possible to
guarantee that a DAE has indices equal to 1 [26].

Proposition 3.3. Let I = [t0, T] ⊂ R, t0 < T be a compact time interval. Let x : I → R
dx

and y : I → R
dy . Consider the semi-explicit DAE system

d
dt

x(t) = f(t, x(t), y(t)),

0
R

dy = g(t, x(t), y(t)).

Assume that

(a) f is Lipschitz continuous with respect to x and y with Lipschitz constant Lf uniformly with
respect to t;

(b) g is continuously differentiable and Jy
g = [∇yg1, . . . , ∇ygdy]ᵀ is non-singular and

bounded for all (t, x, y) ∈ I × R
dx × R

dy .

Then, the semi-explicit DAE system has perturbation index 1. If additionally the inverse
of Jy

g is bounded for all (t, x, y) ∈ I × R
dx × R

dy , then the semi-explicit DAE system has
differentiation index 1.

Using proposition 3.3, the following results hold true for (18), in which we recall that the
dependence of the algebraic equation on the multipliers is given implicitly by the differential
variables, namely A(u j(t)) is in fact A(u j(t;λ j)).

Corollary 3.4. Consider the semi-explicit DAE system (18) for each fixed j = 1, . . . , J.
Assume that condition (b) in proposition 3.3 holds for the vector valued functionAwith respect
to the algebraic variables λ. Then, system (18) has perturbation index 1. If additionally the
inverse of Jλ j

A is bounded for all (u j,λ j) ∈ R
d × R

m, then system (18) has differentiation index
1.

Proof. Continuous differentiability of the vector valued function A with respect to the
dynamical variable uj gives a sufficient condition to the right-hand side of the dynamical
equation in (18) to be Lipschitz continuous with respect to uj andλj, for each fixed j = 1, . . . , J.
Then, the statement follows as application of proposition 3.3. �

Corollary 3.5. For each fixed j = 1, . . . , J, consider the DAE system (18) with initial
condition uj(0) = uj,0. Let (ũ j, λ̃ j) be the solution of the perturbed system

d
dt

ũ j = −Cũũ∇ũΨ(ũ j, λ̃ j, y) + δ1(t), ũ j(0) = ũ j,0

0Rm = A(ũ j) + δ2(t)

on t ∈ [0, T] ⊂ R and with Ψ defined in (20). Then, under the assumptions of corollary 3.4,
∃L1, L2 � 0 such that the following bound holds true:

11
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‖u j(t) − ũ j(t)‖ �
(
‖u j,0 − ũ j,0‖+ T

(
L1L2 max

0�τ�t
‖δ2(τ )‖+ max

0�τ�t
‖δ1(τ )‖

))
× exp (L1(1 + L2)t)

Proof. The assumptions of corollary 3.4 guarantee that the implicit function theorem can
be applied to the algebraic equation 0Rm = A(ũ j) + δ2. Therefore, we can solve for λ j ∈ R

m,
∀t ∈ [0, T], ũ j ∈ R

d , obtaining λ̃ j = Λ(ũ j, δ2). Moreover, Λ is locally Lipschitz continuous
with respect to ũ j and δ2 with Lipschitz constant L2. Then for the multipliers we get the
bound

‖λ j(t) − λ̃ j(t)‖ = ‖Λ(u j(t), 0Rm ) −Λ(ũ j(t), δ2)‖ � L2
(
‖u j(t) − ũ j(t)‖+ ‖δ2(t)‖

)
.

Let L1 be the Lipschitz constant of the right-hand side of the dynamical equation. We
have

‖u j(t) − ũ j(t)‖ � ‖u j,0 − ũ j,0‖+ L1

∫ t

0
‖u j(τ ) − ũ j(τ )‖

+ ‖λ j(τ ) − λ̃ j(τ )‖ dτ + ‖
∫ t

0
δ1(τ ) dτ‖

� ‖u j,0 − ũ j,0‖+ L1 (1 + L2)
∫ t

0
‖u j(τ ) − ũ j(τ )‖ dτ

+ L1L2

∫ t

0
‖δ2(τ )‖ dτ +

∫ t

0
‖δ1(τ )‖ dτ.

Then the statement follows easily by application of the Gronwall’s lemma. �

The DAE system (18) is derived by starting from the first order necessary optimality condi-
tions stated in proposition 2.5. We recall that these conditions are also sufficient if the feasible
set is convex, see corollary 2.6. Now we study the large time behavior of the solution of the
DAE system (18).

Let us introduce the following notation. We define m(t) and m(t) be the mean and the second
moment of the ensembles, respectively, at time t � 0, namely

m(t) =
1
J

J∑
j=1

u j(t), m(t) =
1
J

J∑
j=1

u j(t) ⊗ u j(t).

Further, for each j = 1, . . . , J, we define

e j(t) = u j(t) − m(t), r j(t) = u j(t) − u∗ (21)

be the ensemble spread and the residual to a value u∗, respectively. We observe that the
evolution in time of m and m are governed by

12
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d
dt

m(t) =
1
J

J∑
j=1

d
dt

u j(t) = −1
J

J∑
j=1

Cuu
(
∇uΦ(u j, y) + Jᵀ

A(u j)λ j
)

= −Cuu

⎛⎝∇uΦ

⎛⎝1
J

J∑
j=1

u j, y

⎞⎠+
1
J

J∑
j=1

Jᵀ
A(u j)λ j

⎞⎠
= −Cuu

⎛⎝∇uΦ(m, y) +
m∑

k=1

1
J

J∑
j=1

λ j
(k)∇uA(k)(u j)

⎞⎠ ,

d
dt

m(t) =
1
J

J∑
j=1

u j(t) ⊗ u j(t) =
2
J

J∑
j=1

(
d
dt

u j(t)

)
⊗ u j(t)

= −2
J

J∑
j=1

Cuu
(
∇uΦ(u j, y) + Jᵀ

A(u j)λ j)⊗ u j(t)

= −2Cuu

⎛⎝∇uΦ

⎛⎝1
J

J∑
j=1

u j ⊗ u j, y ⊗ 1
J

J∑
j=1

u j

⎞⎠+
1
J

J∑
j=1

Jᵀ
A(u j)λ j ⊗ u j

⎞⎠
= −2Cuu

⎛⎝∇uΦ
(
m, y ⊗ m

)
+

1
J

J∑
j=1

Jᵀ
A(u j)λ j ⊗ u j

⎞⎠

(22)

where we have used the linearity of ∇uΦ. While the evolution in time of ej is governed by

d
dt

e j(t) = −Cuu

(
GᵀΓGe j + Jᵀ

A(u j)λ j − 1
J

J∑
�=1

Jᵀ
A(u�)λ�

)

= −Cuu

(
GᵀΓGe j +

m∑
k=1

λ j
(k)∇uA(k)(u j) −

m∑
k=1

1
J

J∑
�=1

λ�
(k)∇uA(k)(u�)

)
,

(23)

j = 1, . . . , J, respectively. The covariance matrix can be written in terms of the mean and the
second moment of the ensembles as

Cuu(t) :
(
u1(t), . . . , uJ(t)

)
∈ R

d × · · · × R
d 	−→ m(t) − m(t) ⊗ m(t) ∈ R

d×d.

(24)

Equations (22) and (23) are coupled with J algebraic equations imposing the validity of the
constraint for each ensemble member. In particular, we stress the fact that the systems for
the ensemble mean, second moment and spread are not closed, due to the presence of the
multipliers and since the constraint is nonlinear and needs to be satisfied by each ensemble
member. This requires the knowledge of the evolution in time of the ensembles. Further, it is
not ensured that the mean of the ensemble satisfies the constraint.
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We prove the following results for the residuals in the space of the control.

Proposition 3.6. Let u j,0 ∈ R
d be an initial condition of the DAE system (18) such that

A(u j,0) = 0Rm , for all j = 1, . . . , J. Then there exists a steady state (u j,∞,λ j,∞) ∈ R
d × R

m of
the DAE dynamics which is a KKT point of the minimization problem

min
u∈Rd

Φ(u, y) subject to A(u) = 0Rm

for a given y ∈ R
K. Moreover, if A(u) = 0Rm is a convex feasible domain, then u j,∞ provides

a first order approximation of u∗ being an optimal solution of the minimization problem.

Proof. We have that a steady state (uj,∞,λj,∞) of the DAE system (18) solves

0
Rd = ∇uΦ(u j,∞, y) +

m∑
k=1

λ j,∞
(k) ∇uA(k)(u j,∞), 0Rm = A(u j,∞).

For a given y ∈ R
K , this is a KKT system and they are the first order necessary optimal-

ity conditions for uj,∞ as solution to the minimization problem minu∈RdΦ(u, y) subject to
A(u) = 0Rm . If the set A(u) = 0Rm is convex, the KKT conditions are also sufficient. Then
uj,∞ is a solution of the minimization problem. �

Since the typical estimator of the EnKF is provided by the mean of the ensemble, we discuss
properties of the ensemble mean.

Proposition 3.7. Let u0 = {u j,0}J
j=1 be an initial condition of the DAE system (18) such that

A(u j,0) = 0Rm , for all j = 1, . . . , J. Then there exists a steady state (m∞,λ1,∞, . . . , λJ,∞) ∈
R

d × R
m × · · · × R

m of the dynamical system (22) of the first moment m which is a KKT point
of the minimization problem

min
u1,..., uJ

Φ(m, y) subject to A(u1) = · · · = A(uJ) = 0Rm

for a given y ∈ R
K. Moreover, if A(u) = 0Rm is a convex feasible domain, then m∞ provides

a first order approximation of an optimal solution of the minimization problem.

Proof. We have that a steady state (m∞,λ1,∞, . . . , λJ,∞) of (22) solves

0
Rd = ∇uΦ(m∞, y) +

m∑
k=1

1
J

J∑
j=1

λ j,∞
(k) ∇uA(k)(u j,∞), 0Rm = A(uJ,∞) = · · · = A(u1,∞)

where the uj,∞’s are the steady states of (18). For a given y ∈ R
K , this is a KKT system and

they are the first order necessary optimality conditions for m∞ as solution to the minimization
problem minuΦ(m, y) subject to A(u1) = · · · = A(uJ) = 0. If the set A(u) = 0Rm is convex,
the KKT conditions are also sufficient. Then m∞ is a solution of the minimization problem. �

Remark 3.8. The optimization problems in propositions 3.6 and 3.7 are the same if the
constraint is linear.

From proposition 3.7 it is clear that the steady state of the mean of the ensembles depends on
the steady states of the ensembles. Moreover, proposition 3.7 does not guarantee that the mean
of the ensembles at equilibrium satisfies the constraint. A sufficient condition to guarantee that
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A(m∞) = 0Rm is that the KKT point belongs to the set C∞
uu = 0

Rd×d , which is a set of possible
equilibria for (18) and (22). In fact, we note that a concentration of the particles at any point
of Rd is a stationary solution of the dynamics. In this case ‖ej,∞‖ = 0, for all j = 1, . . . , J.
Therefore the question whether or not all the equilibria are necessary in the kernel of C∞

uu is to
be discussed. This is true in the unconstrained ensemble Kalman filter as proved in [11].

The following counterexample shows that not all the equilibrium solutions of (18) belong
to the set Cuu = 0

Rd×d . We consider the case of a one-dimensional control and two ensembles
u, v ∈ R, so that d = 1 and J = 2. In addition, we take a scalar quadratic and convex constraint
A(u) = 1

2 h1u2 + h2u, with h1 > 0. In order to study the steady state of the mean and the second
moment of the ensembles, we need to couple the evolution equation (22) with the system of
DAEs (18), obtaining

d
dt

u = −Cuv (−GᵀΓ(y − Gu) + h1λu + h2λ) ,

d
dt
v = −Cuv (−GᵀΓ(y − Gv) + h1μv + h2μ) ,

0 = A(u) = A(v),

d
dt

m = −Cuv

(
−GᵀΓ(y − Gm) +

h1

2
(λu + μv) + h2 (λ+ μ)

)
,

d
dt

m = −2Cuv

(
−GᵀΓ(ym − Gm) +

h1

2

(
λu2 + μv2

)
+ h2 (λu + μv)

)
.

(25)

Here, λ and μ are the two multipliers related to u and v, respectively. We compute the steady

states of (25) by solving u̇ = 0, v̇ = 0, A(u) = 0, A(v) = 0, ṁ = 0, ṁ = 0 obtaining the null-
clines in the phase space (u, v,λ,μ, m, m). Solutions are provided by either Cuv = m − m2 = 0
or

u = (GᵀΓG + h1λ)−1 (GᵀΓy − h2λ) ,

v = (GᵀΓG + h1μ)−1 (GᵀΓy − h2μ) ,

m = (GᵀΓG)−1

(
GᵀΓy − h1

2
(λu + μv) − h2

2
(λ+ μ)

)
,

m = (GᵀΓG)−1

(
GᵀΓym − h1

2

(
λu2 + μv2

)
− h2

2
(λu + μv)

)
,

(26)

where λ and μ are solutions A(u) = 0 and A(v) = 0, respectively. The equilibrium or fixed
points are the intersections of the nullclines and therefore the question becomes whether or not
(m, m) always belongs to the set where m − m2 = 0. It is easy to observe that this is possible
if and only if λ = μ, since then

m = (GᵀΓG + h1λ)−1 (GᵀΓy − h2λ) ,

m = (GᵀΓG + h1λ)−1 (GᵀΓy − h2λ) m.

We can then conclude that this counterexample shows that, even in the simplest one-
dimensional setting, the constrained EnKF provides feasible solutions to the constrained
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optimization problem which do not collapse. This consideration opens the question on guar-
anteeing that the collapse of the ensemble to the mean occurs, i.e. the equilibria lie on the set
where ‖ej,∞‖ = 0, for j = 1, . . . , J.

A sufficient condition for the existence of a monotonic decay to a bound for the ensemble
spread is guaranteed by the following result, which holds in the space of the control.

Proposition 3.9. Let u j,0 ∈ R
d, j = 1, . . . , J, be an initial condition of the DAE system (18)

such that A(u j,0) = 0Rm . Assume that A : Rd → R
m is convex and quadratic. Then the quan-

tity 1
J

∑J
j=1 ‖e j(t)‖2 is decreasing in time and thus in particular we have 1

J

∑J
j=1 ‖e j(t)‖2 �

1
J

∑J
j=1 ‖e j(0)‖2, for t � 0, provided that λj(t) = Λ(t) � 0, ∀j = 1, . . . , J and t > 0.

Proof. For the sake of simplicity we consider a scalar constraint, i.e. m = 1. To prove the
statement, it is sufficient to show that 1

2
d
dt

1
J

∑J
j=1 ‖e j(t)‖2 � 0. Using (23), we compute

1
2

d
dt

1
J

J∑
j=1

‖e j(t)‖2 =
1
J

J∑
j=1

〈
e j(t),

d
dt

e j(t)

〉

=− 1
J

J∑
j=1

〈
e j(t), CuuGᵀΓGe j(t)

〉

− 1
J

J∑
j=1

〈
e j(t), Cuu

(
λ j∇uA(u j) − 1

J

J∑
�=1

λ�∇uA(u�)

)〉
.

Let us consider the first term in the right-hand side. Using the structure of Cuu we have

−1
J

J∑
j=1

〈
e j(t), CuuGᵀΓGe j(t)

〉
= − 1

J2

J∑
k, j=1

〈
e j(t), ek(t)

〉 〈
ek(t), GᵀΓGe j(t)

〉
.

Since GᵀΓG is symmetric and positive semidefinite, it is possible to find a set of eigenpairs
(μi, vi)d

i=1 with μi � 0 and vi orthonormal basis such that e j =
∑d

i=1 α
i jvi, ∀j = 1, . . . , J, and

GᵀΓGvi = μivi, for all i = 1, . . . , d. Then

− 1
J2

J∑
k, j=1

〈
e j(t), ek(t)

〉 〈
ek(t), GᵀΓGe j(t)

〉
= − 1

J2

J∑
k, j=1

(
d∑

i=1

√
μiαikαi j

)2

� 0.

For the second term in the right-hand side, using the assumption λj(t) = Λ(t) � 0 and the
convexity of the constraint, we obtain

−1
J

J∑
j=1

〈
e j(t), Cuu

(
λ j∇uA(u j)− 1

J

J∑
�=1

λ�∇uA(u�)

)〉
= −Λ

J

J∑
j=1

〈
e j(t), Cuu∇uA(e j)

〉
� 0.

�
Under stronger assumptions, it is possible to prove convergence of the residual in the control
space.

Proposition 3.10. Let u j,0 ∈ R
d, j = 1, . . . , J, be an initial condition of the DAE sys-

tem (18) such that A(u j,0) = 0Rm . Assume that A(u) = 0Rm is a convex feasible domain
and A : Rd → R

m is convex and quadratic. Assume that GᵀΓG is positive definite. Then
limt→∞

1
J

∑J
j=1 ‖r j(t)‖2 = 0, provided that λj(t) = Λ(t) � 0, ∀j = 1, . . . , J and t > 0.
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Proof. By assumption GᵀΓG is positive definite and thus we have a unique global minimizer
u∗ of the constrained minimization problem

min
u∈Rd

Φ(u, y) subject to A(u) = 0Rm

for a given y ∈ R
K . For simplicity and without loss of generality we consider the case of a

scalar constraint, i.e. m = 1. We study

d
dt

1
2J

J∑
j=1

‖r j(t)‖2 =
d
dt

1
2J

J∑
j=1

‖u j(t) − u∗‖2 =
1
J

J∑
j=1

〈
u j(t) − u∗,

d
dt

u j(t)

〉

=− 1
J

J∑
j=1

〈
u j(t) − u∗, Cuu

(
∇u(u j, y) + λ j∇uA(u)|u=u j(t)

)〉

=− 1
J

J∑
j=1

〈
u j − u∗, CuuGᵀΓG(u j − u∗)

〉

− Λ

J

J∑
j=1

〈
u j − u∗,λ jCuu∇u

(
A(u)|u=u j −A(u∗)

)〉
< 0.

�
The assumptions that GᵀΓG and the empirical covariance Cuu are positive definite are strong
and in general not satisfied. To deal with the positive definiteness of Cuu usually a constant or
time-dependent inflation of the covariance is considered [4, 17, 27].

3.2. Continuous limit in the number of ensembles

Typically, the EnKF method is applied for a fixed and finite ensemble size. It is clear that the
computational and memory cost of the method increases with the number of the ensembles, but
there is a substantial gain in accuracy. The analysis of the method was also studied in the large
ensemble limit, see e.g. [8–11, 28–31]. In this limit a slow down of the ensemble spread has
been observed. In this section, we derive the corresponding mean-field limit of the continuous
time equation (18) and provide an analysis of the resulting PDE equation.

We follow the classical formal derivation to formulate a mean-field equation of a particle
system, see [32–35]. Let us denote by

f = f (t, u,λ) : R+ × R
d × R

m → R
+ (27)

the compactly supported on R
d × R

m probability density of the pair (u,λ) at time t and
introduce the following moments of f at time t with respect to u and λ, respectively, as[

m1(t)
Λ1(t)

]
=

∫∫
Rd×Rm

[
u
λ

]
f (t, u,λ) du dλ,

[
m2(t)
Λ2(t)

]
=

∫∫
Rd×Rm

[
u ⊗ u
λ⊗ λ

]
f (t, u,λ) du dλ

(28)

Since (u,λ) ∈ R
d × R

m, the empirical measure is given by

f (t, u,λ) =
1
J

J∑
j=1

δ(u j − u)δ(λ j − λ). (29)
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This formulation allows for a representation of the covariance operator (24) as

C(t) =
∫∫

Rd×Rm
u ⊗ u f (t, u,λ) du dλ−

∫∫
Rd×Rm

u f (t, u,λ) du dλ
∫∫

Rd×Rm
u f (t, u,λ) du dλ

= m2(t) − m1(t) ⊗ m1(t) � 0.

Let us denote ϕ(u,λ) ∈ C∞
0 (Rd × R

m) a test function. We compute

d
dt

〈 f ,ϕ〉 = d
dt

∫
Rd

1
J

J∑
j=1

δ(u − u j)δ(λ j − λ)ϕ(u,λ) du dλ

= −1
J

J∑
j=1

∇uϕ(u j,λ j) · C
(
∇uΦ(u j, y) + Jᵀ

A(u j)λ j
)

= −
∫∫

Rd×Rm
∇uϕ(u,λ) · C

(
∇uΦ(u, y) + Jᵀ

A(u)λ
)

f (t, u) du dλ

coupled to the mean-field of the algebraic constraint. Finally the mean-field kinetic equation
corresponding to the DAE system (18) reads:

∂t f (t, u,λ) −∇u ·
[
C(t)(∇uΦ(u, y) + Jᵀ

A(u)λ) f (t, u,λ)
]
= 0∫∫

Rd×Rm
A(u) f (t, u,λ) du dλ = 0Rm .

(30)

Proposition 3.11. Let f(t, u,λ) be a solution in distributional sense of the mean-field
equation (30) at t > 0 for compactly supported initial probability distribution f(t = 0, u,λ).
Then, f(u,λ) = δ(u − v)δ(λ− μ) is a steady state solution in distributional sense of (30)
provided that either C = 0

Rd×d or (v,μ) is a KKT point of the minimization problem

min
u∈Rd

Φ(u, y) subject to A(u) = 0Rm .

Proof. Let ϕ(u,λ) ∈ C∞
0 (Rd × R

m) be a test function. Then, weak steady state solutions,
say f∞(u,λ), to (30) satisfy formally∫∫

Rd×Rm
∇uϕ(u,λ) · C

(
∇uΦ(u, y) + Jᵀ

A(u)λ)
)

d f∞(u,λ) = 0∫∫
Rd×Rm

ϕ(u,λ)A(u) d f∞(u,λ) = 0Rm

Substituting f∞ with f(u,λ) = δ(u − v)δ(λ− μ), we easily obtain that the above conditions are
satisfied when either C = 0

Rd×d or ∇uΦ(u, y)|u=v = −
(
Jᵀ
A(u)λ

)
|u=v,λ=μ and simultaneously

A(u)|u=v = 0Rm . �

The previous proposition states that, as in the discrete case, not all the steady states are in
the kernel of C due to the presence of the multipliers.

It is clear that the mean-field equation (30) does not provide a closed differential system of
the moments. In order to show an energy decay estimate, we perform a preliminary moment
analysis in the simple setting of a one-dimensionalcontrol and scalar constraint. Thus, similarly
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to the previous section, we assume that (u,λ) ∈ R× R and consider a strictly convex quadratic
constraint A(u) ∈ R. We write

∇uΦ(u, y) = b1u + b2, ∇uA(u) = h1u + h2, h1 > 0.

Then by the second equation in (30) we have

0=
∫∫

R2

(
1
2

h1u2 f (t, u,λ) + h2u f (t, u,λ)

)
du dλ =

1
2

h1m2(t) + h2m1(t)

which implies the following link between the first and the second moment due to the constraint:

m2(t) = −2
h2

h1
m1(t). (31)

Then, it suffices to study the evolution of the first moment in order to obtain information on
the evolution of the second moment. Using the first equation in (30) we derive the following
evolution equation for the first moment:

d
dt

m1(t) = −C
∫∫

R2
∇uΦ(u, y) f (t, u,λ) du dλ− C

∫∫
R2

(h1uλ f (t, u,λ) + h2λ f (t, u,λ)) du dλ.

(32)

The evolution of the multiplier is computed from (30) obtaining for each k � 0

d
dt

∫∫
R2
λk f (t, u,λ) du dλ = 0 ⇒

∫∫
R2
λk f (t, u,λ) du dλ =

∫∫
R2
λk f0(u,λ) du dλ =: Λk.

For an arbitrary small positive quantity ε we have∫∫
R2

(
√
εu)

λ√
ε

f (t, u,λ) du dλ � ε

2
m2(t) +

1
2ε

Λ2.

Using the above relation and (31), from (32) we obtain the following bound for the evolution
equation of the first moment:

d
dt

m1(t) � LεC(t)

(
m1(t) +

Kε

Lε

)
, Lε = εh2 − b1, Kε = −b2 −

h1

2ε
Λ2 − h2Λ1

with Lε < 0 for ε sufficiently small. Defining m̃1(t) = m1(t) + Kε
Lε

, by application of the
Gronwall lemma we have

d
dt

m̃1(t) � LεC(t)m̃1(t) ⇒ m̃1(t) � m̃1(0) exp

(
Lε

∫ t

0
C(τ ) dτ

)
→ 0.

Finally,

m1(t) � −Kε

Lε
=

∣∣∣∣Kε

Lε

∣∣∣∣
and the mean is hence bounded. Consequently, also the second moment m2 is bounded by the
relation (31). This shows that, according to proposition 3.11, not necessarily all the steady
states are Dirac distributions on R

d × R
m.
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4. Numerical experiments

The simulations are performed for the case of linear models G by solving the system of DAEs
(18). The details on the scheme and on the setting of the experiments are as follows. Many
numerical methods for DAEs are known and based on Runge–Kutta and BDF methods, see
e.g. the monographs [36, 37]. Here, for the sake of simplicity, we employ straightforwardly
first order implicit–explicit (IMEX) time integration coupled to Newton’s method. The IMEX
discretization of (18) with time step Δt then reads as

u j,n+1 = u j,n −ΔtCn
uu∇uΦ(u j,n, y) −ΔtCn

uuJA(u j,n+1)λ j,n+1

0Rm = A(u j,n+1).
(33)

This represents a possible high dimensional system of nonlinear equations for u j,n+1 ∈ R
d

and λ j,n+1 ∈ R
m, for j = 1, . . . , J, to be solved at each time integration step n. Inspired by the

derivation of (18) we consider the covariance matrix Cuu computed explicitly at time level n.
This is motivated by the fact that Cuu can be written in terms of moments. Observe that then
the IMEX discretization is (18) in the limit Δt → 0+.

The differential point of view allows us to employ an adaptive time step to avoid stability
issues. In the numerical experiments we use

Δt � 1
maxi

(
| ( R(μi)|

)
where the μi’s are the eigenvalues of Cn

uuGᵀΓG. As we observe that Cn
uuGᵀΓG is characterized

by large spectral radius at initial time that reduces over time, the adaptive computation of Δt
allows also to reach equilibrium in less time steps compared to the choice of a fixed Δt.

We are interested to solve the inverse problem described in section 2.2 aimed to find the
force function of the linear elliptic equation in (14). This is a typical example used in the
mathematical literature to test the property of the ensemble Kalman filter [6, 11, 16, 19]. We
consider the same setup as in section 2.2, but in this case we take into account a nonlinear
constraint. In particular, we focus on a scalar (m = 1) quadratic constraint A : Rd → R of the
form A(u) = 1

2 uᵀAu + uᵀb, with A ∈ R
d×d and b ∈ R

d given. In this setting, the gradient of
A is linear, ∇uA = Au + b. Therefore, (33) can be explicitly solved by u j, n+1 obtaining

u j,n+1 =
(
I +Δtλ j,n+1Cn

uu

)−1 (
u j,n −ΔtCuu∇uΦ(u j,n, y) −Δtλ j,n+1Cuub

)
,

(34)

where I ∈ R
d×d is the identity matrix. Then, the scalar multiplier λ j,n+1 is computed by solv-

ing the nonlinear equation A(u j,n+1) = 0 for each j = 1, . . . , J at each integration step. The
multipliers are finally inserted into (34) to determine the final update of the feasible ensembles
at time level n + 1.

In each example the exact force function is chosen as u(x) = sin(πx) and then suitable mod-
ified in order to satisfy the constraint. Also, the initial condition u j(0) = u j,0 on the ensembles
satisfies the constraints. The vector b, characterizing the linear term in the constraint, is always
randomly sampled from a Gaussian distribution with zero mean and standard deviation 1

2 .
Information on the simulation results is presented in the following norms

E(t) =
1
J

J∑
j=1

‖e j(t)‖2, R(t) =
1
J

J∑
j=1

‖r j(t)‖2 (35)
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at each iteration, where the quantities ej(t) and rj(t) are the spread and the residual of the
ensembles, respectively, as defined by (21). The residual is measured by taking u∗ as the truth
solution u†.

Another additional important quantities is given by the misfit which allows to measure the
quality of the solution at each iteration. The misfit for the jth sample is defined as

ϑ j(t) = Gr j(t) − η, (36)

where G is again the finite difference discretization of the continuous linear operator defining
the elliptic PDE (14). By using (36) we finally look at

ϑ(t) =
1
J

J∑
j=1

‖ϑ j(t)‖2. (37)

Driving this quantity to zero leads to over-fitting of the solution. For this reason, usually
it is suitable introducing a stopping criterion which avoids this effect. In the following we
will consider the discrepancy principle which check and stop the simulation if the condi-
tion ϑ � ‖η‖2 is satisfied, with η measurement noise as described in the problem setup in
section 2.2.

4.1. Quadratic convex constraint

The first situation we consider is the case of a strictly convex constraint by taking A = I ∈
R

d×d, i.e.,

A(u) =
d∑

k=1

u2
(k) + b(k)u(k).

In order to allow the force function u(x) to satisfy the constraint, we artificially modify it

on the grid introduced on the domain [0, π]. In particular, we determine {u(k)}
d
2
k=1 in such

a way u2
(k) + b(k)u(k) = −u2

(d−k+1) − b(d−k+1)u(d−k+1), for k = 1, . . . , d
2 . The initial ensembles

are sampled from a multivariate normal distribution and then also artificially modified to satisfy
the constraint. We consider the same setup as in section 2.2, thus a noise level γ = 0.01, d =
K = 28.

In figure 2 we compute the solution obtained with J = 160 ensembles. The left plot shows
the solution p(x) of the PDE (14) and noisy observations. The reconstruction of p(x) is provided
in the center panel and it is obtained by using the mean of the ensembles represented in the right
panel. The gray areas gives information on the spread due to the ensembles. The constrained
ensemble Kalman filter accurately reconstructs both the control and its projection through the
PDE model.

The analysis of the solution is performed with three values of the ensemble size J ∈
{40, 80, 160}, see figure 3. In particular, we consider the behavior in time of the residual,
the misfit, the ensemble collapse and the value of the constraint computed on the ensem-
ble mean. We observe that increasing the value of the ensembles allows a more accurate
reconstruction. In fact, the solution is able to meet the discrepancy principle, i.e. the mis-
fit reaches the noise level, and the residual values decreases. However, the collapse to the
mean slows down causing the increase of the ensemble spread. This in turn does not allow
the mean to satisfy exactly the constraint when the simulation stops due to the discrepancy
principle.
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Figure 2. Solution provided by the constrained ensemble Kalman filter using J = 160
ensembles on the strictly convex nonlinear constraint.

Figure 3. Time evolution of the residual (top left), the misfit (top right), the ensemble
collapse (bottom left) and the value of the constraint computed on the ensemble mean
(bottom right) for the strictly convex nonlinear constraint.

In figure 4 we show the evolution of the minimum value of the multipliers, noticing that it
remains always positive. Moreover, the spread of the multipliers to their mean decays to zero.
This two results justify the ensemble spread observed in figure 3 and reflect the analysis pro-
vided in section 3.1.1, cf the discussion after proposition 3.7 and the statement of proposition
3.9
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Figure 4. Time evolution of the minimum value of the multipliers (left) and of the
multipliers spread around their mean (right) for the strictly convex nonlinear constraint.

Figure 5. Solution provided by the constrained ensemble Kalman filter using J = 160
ensembles on the non-convex nonlinear constraint.

4.2. Quadratic non-convex constraint

The second situation we consider is the case of a non-convex constraint by taking A =[
I 0
0 −I

]
∈ R

d×d. Then the constraint reads as

A(u) =

d
2∑

k=1

u2
(k) + b(k)u(k) +

d∑
�= d

2+1

b(k)u(k) − u2
(�).

We use the same setup as in section 4.1. Now the force function u(x) is artificially modified

to satisfy the constraint by determining {u(k)}
d
2
k=1 in such a way u2

(k) + b(k)u(k) = u2
(d−k+1) −

b(d−k+1)u(d−k+1), for k = 1, . . . , d
2 . We proceed similarly for the initial ensembles.

In figure 5 we compute the solution obtained with J = 160 ensembles. The left plot shows
the solution p(x) of the PDE (14) and the noisy observations. The reconstruction of p(x) is
provided in the center panel and it is obtained by using the mean of the ensembles represented in
the right panel. The gray areas gives information on the spread due to the ensembles. Compared
to the previous example, here we notice that the ensembles are widely spread around the exact
control function, cf the right plot in figure 5. The method does not reproduce a very accurate
control function but the application of the model still allows to obtain a good reconstruction of
the solution.

We perform the analysis of the method with five values of the ensemble size J ∈
{40, 80, 160, 320, 640}, see figure 6. Again we consider the behavior in time of the residual, the

23



Inverse Problems 36 (2020) 075006 M Herty and G Visconti

Figure 6. Time evolution of the residual (top left), the misfit (top right), the ensemble
collapse (bottom left) and the value of the constraint computed on the ensemble mean
(bottom right) for the non-convex nonlinear constraint.

misfit, the ensemble collapse and the value of the constraint computed on the ensemble mean.
We observe that the ensemble spread is decreasing in time very slowly, even with a small num-
ber of ensembles. This result also affects the value of the constraint computed on the mean of
the ensembles, which is far from zero. The residual shows a decreasing behavior in time only
with very large number of ensembles. However, in all cases the misfit is able to meet the noise
level and therefore the discrepancy principle holds. These results can be motivated by the use
of a non-convex constraint, and the method is providing a solution which minimizes the least
square functional but the mean does not exactly satisfy the constraint.

5. Summary and perspectives

In this paper, inspired by [16], we have focused on the formulation of the ensemble Kalman
filter to solve constrained inverse problems. We have worked in the setting of optimization
theory deriving first order necessary optimality conditions for the case of equality constraints
in the space of the controls. We have observed that the method relaxes to the unconstrained
one when linear equality constraints are considered. Therefore, we have mainly focused on
nonlinear constraints and analyzed the method by computing continuous limits, in time and in
the regime of infinitely many ensembles. The numerical results have shown that the method is
able to provide solution to constrained inverse problems with quadratic convex and non-convex
equality constraints.
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We recall that in order to set up the mathematical formulation of the problem studied in
this work, we have considered finite dimensional Hilbert spaces and equality constraints. As
future perspectives it would be of interest to extend this study to arbitrary and possibly infinite
dimensional Hilbert spaces, and to consider also inequality constraints.
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Appendix A. Detailed computations in the proof of proposition 2.5

• Woodbury matrix identity:

(M + UNV)−1 = M−1 − M−1U(N−1 + VM−1U)−1VM−1,

for all matrices M, U, N, V.

• Application of the Woodbury matrix identity to
(

HᵀΓH + Cn+1−1

ε

)−1
:(

HᵀΓH + Cn+1−1

ε

)−1
= Cn+1

ε − Cn+1
ε Hᵀ(Γ−1 + HCn+1

ε Hᵀ)−1
HCn+1

ε

• From equation (12) to equation (13):

v j,n+1 =
(

HᵀΓH + Cn+1−1

ε

)−1 (
HᵀΓyn+1 + Cn+1−1

ε v̂ j,n+1
)

−
(

HᵀΓH + Cn+1−1

ε

)−1
Jᵀ
Ã(v j,n+1)λ j,n+1

=
(

HᵀΓH + Cn+1−1

ε

)−1
Cn+1−1

ε v̂ j,n+1 +
(

HᵀΓH + Cn+1−1

ε

)−1
HᵀΓyn+1

−
(

HᵀΓH + Cn+1−1

ε

)−1
Jᵀ
Ã(v j,n+1)λ j,n+1

=
(

Cn+1
ε − Cn+1

ε Hᵀ(Γ−1 + HCn+1
ε Hᵀ)−1

HCn+1
ε

)
Cn+1−1

ε v̂ j,n+1

+ Cn+1
ε Hᵀ(HCn+1

ε Hᵀ + Γ−1
)−1

yn+1

−
(

Cn+1
ε − Cn+1

ε Hᵀ(Γ−1 + HCn+1
ε Hᵀ)−1

HCn+1
ε

)
Jᵀ
Ã(v j,n+1)λ j,n+1

=v̂ j,n+1 − Cn+1
ε Hᵀ(Γ−1 + HCn+1

ε Hᵀ)−1
Hv̂ j,n+1

+ Cn+1
ε Hᵀ(HCn+1

ε Hᵀ + Γ−1
)−1

yn+1

−
(

Cn+1
ε − Cn+1

ε Hᵀ(Γ−1 + HCn+1
ε Hᵀ)−1

HCn+1
ε

)
Jᵀ
Ã(v j,n+1)λ j,n+1

=v̂ j,n+1 + Cn+1
ε Hᵀ(HCn+1

ε Hᵀ + Γ−1
)−1

(yn+1 − Hv̂ j,n+1)

−
(

Cn+1
ε − Cn+1

ε Hᵀ(HCn+1
ε Hᵀ + Γ−1

)−1
HCn+1

ε

)
Jᵀ
Ã(v j,n+1)λ j,n+1

• From equation (13) to the constrained EnKF updated formula (11).

We multiply equation (13) by the observation matrix H⊥
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u j,n+1 = H⊥v j,n+1 = H⊥v̂ j,n+1 + H⊥Cn+1
ε Hᵀ(HCn+1

ε Hᵀ + Γ−1
)−1

(yn+1 − Hv̂ j,n+1)

− H⊥
(

Cn+1
ε − Cn+1

ε Hᵀ(HCn+1
ε Hᵀ + Γ−1

)−1
HCn+1

ε

)
Jᵀ
Ã(v j,n+1)λ j,n+1.

and, since the map M → M−1 is continuous over the set of invertible matrices, letting ε→ 0

u j,n+1 = H⊥v̂ j,n+1 + H⊥Cn+1Hᵀ(HCn+1Hᵀ + Γ−1
)−1

(yn+1 − Hv̂ j,n+1)

− H⊥
(

Cn+1 − Cn+1Hᵀ(HCn+1Hᵀ + Γ−1
)−1

HCn+1
)

Jᵀ
Ã(v j,n+1)λ j,n+1.

Noticing that

H⊥v̂ j,n+1 = u j,n, H⊥Cn+1Hᵀ = Cn+1
uw , HCn+1Hᵀ = Cn+1

ww , Hv̂ j,n+1 = G(u j,n)

HCn+1Jᵀ
Ã(v j,n+1) = Cn+1ᵀ

uw Jᵀ
A(u j,n+1), H⊥Cn+1Jᵀ

Ã(v j,n+1) = Cn+1
uu Jᵀ

A(u j,n+1)

we finally obtain

u j,n+1 = u j,n + Cn+1
uw (Cn+1

ww + Γ−1)−1(yn+1 − G(u j,n))

+ Cn+1
uw (Cn+1

ww + Γ−1)−1Cn+1ᵀ
uw Jᵀ

A(u j,n+1)λ j,n+1 − Cn+1
uu Jᵀ

A(u j,n+1)λ j,n+1.

Appendix B. List of most used symbols

Symbol Description
R, N Spaces of real numbers and positive integers
y ∈ R

K , K ∈ N Observations or measurements
u ∈ R

d, d ∈ N Unknown control
G : Rd → R

K Forward model
G : Rd → R

K Forward linear model
Γ−1 ∈ R

K×K Covariance matrix of the noise
η ∼ N (0,Γ−1) Normally distributed measurement noise
Φ(u, y) = 1

2‖Γ
1
2 (y − G(u))‖2 Least square functional

A : Rd → R
m, m ∈ N Constraint functions

Ã : Rd+K → R
m Extension of the constraint functions to the space R

d+K

A ∈ R
m×d Linear constraint functions

JA ∈ R
m×d Jacobian matrix of the constraints

u j ∈ R
d , j ∈ {1, . . . , J} jth ensemble member

λ j ∈ R
,m, j ∈ {1, . . . , J} Multiplier related to the jth ensemble member

Cuu ∈ R
d×d Empirical covariance of the ensemble

Cuw ∈ R
d×K Empirical covariance of the ensemble and its image with respect

the forward model
Cww ∈ R

K×K Empirical covariance of the image of the ensemble with respect
the forward model

m ∈ R
d First moment (or mean) of the ensemble

m ∈ R
d×d Second moment of the ensemble

e j ∈ R
d jth ensemble spread to the mean

r j ∈ R
d jth ensemble residual

ϑ j ∈ R
K jth ensemble misfit
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