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Abstract 

The standard approach of controlling in-orbit large flexible structures only by adopting actuators and sensors located 

at platform level is currently being challenged by new missions’ stringent requirements in terms of demanding 

guidance profiles and instrument performance. In this perspective, smart materials offer a different solution to 

improve the performance of space systems by controlling the vibrations of such lightweight structures. In this paper, 

the problem of designing an end-to-end architecture for active control of large in-orbit structures is addressed. First, a 

FE model of a large space antenna is derived by using commercial software. The instrument is designed to be 

supported by an active deployable frame hosting an optimal minimum set of collocated smart actuators and sensors. 

To this purpose, a comparison among different placement techniques, as Gramian and Modal Strain Energy (MSE) 

based methods, is proposed to find the final configuration for both actuators and sensors. Attention is paid to create a 

GNC strategy combining collocated control on flexible appendages with platform control, while minimizing the 

relative displacements among the most critical points of the antenna. To achieve high performance, Linear Fractional 

Transformation (LFT) modelling and advanced multivariable techniques are implemented. Finally, to validate the 

proposed controller, the control system is tested by simulating typical spacecraft manoeuvre profiles. 

 

 

1. Introduction 

Nowadays, the standard approach of controlling 

large space flexible structures only by implementing 

actuators and sensors at platform level is being more 

and more challenged by new missions narrow 

constraints in terms of pointing, guidance and 

calibration profiles. Indeed, modern spacecraft are 

required to perform high resolution geospatial services 

without incurring in geometric distortions or 

communication issues related to undesired elastic 

vibrations. In parallel, most of Earth observation (EO) 

missions are being equipped with increasingly extended 

flexible scientific instruments and antenna structures, 

whose flexibility provokes issues related to 

Control/Structure interactions [1][2]. In such cases, 

spacecraft flexible modes are very low and coupled 

around all control axis of the spacecraft, thus 

demanding a new active control strategy to increase 

their damping and to guarantee performance 

requirements are fulfilled. Indeed, according to the 

current state of the art for space missions with very low 

frequencies, controllers with low control bandwidths, 

limit on the input force and torque commands or passive 

devices are used to minimize the impact of flexible 

modes on spacecraft dynamics [3].  

A different school of thoughts looks for actively 

stiffening the structure by implementing smart vibration 

control devices, thus avoiding the need, time and costs 

for a structure-control iterative design process and for 

implementing stiffer and more massive structures [10]. 

However, currently, most of the wide space structures 

are sustained by passive materials, without putting into 

effect intelligent systems able to counteract external 

disturbances generated by the motion of the rigid base 

of the spacecraft and by environmental disturbances, as 

solar radiation pressure, gravity gradient torques and 

thermal gradients. In this context, research has been 

carried out to validate such an approach, by recurring to 

three distinct methods: independent attitude controllers, 

minimizing disturbance originated by the flexible parts 

(such as classical PID feedback with filters [4], Robust 

controllers [5]), vibration controllers, working in 

parallel to platform actuators (Direct Velocity Feedback 

methods [7], Positive Position Feedback [8], Pole/Zero 

Assignment [9], Machine Learning-based [10] among 

others) and combined controllers (as Synergetic 

methods [11] and wave-based controllers [6]), less often 

seen in literature.  

In this paper, a control-oriented strategy to design a 

in parallel attitude and active vibration control (AVC) 

system suitable to spacecraft equipped with generically-

shaped flexible appendages is proposed. In detail, this 

research aims at contributing to the current state of the 

art by suggesting a general and straightforward end-to-

end design methodology. The first step is the design of a 
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flexible antenna, followed by an optimal placement 

procedure for collocated smart actuators/sensors, 

suitable to a wide variety of current flexible payloads. 

Then, control synthesis and validation steps are carried 

out, proposing and testing on a non-linear model a 

Robust controller tailored for attitude control needs, 

working simultaneously to a vibration suppression 

controller. Furthermore, as opposed to most of available 

literature addressing vibration suppression and attitude 

control for satellites, which generally refers to simple 

geometric shapes as beams and plates, this work 

selected as representative study case a 3-D mesh 

antenna. Such a structure is characterized by a circular 

truss supporting a large parabolic reflector, usually with 

diameter higher than 6 meters (as the AstroMesh® 

family). Indeed, a growing interest is currently being 

addressed at European level towards such a type of 

structure, as proved by the development of a LEA 

(Large European Antenna) project in the frame of a 

Horizon 2020 project.  

The paper is organised as follows: in Section 2 a 

Large Mesh Reflector Model (LMRM) is designed and 

selected to test the proposed strategy. In Section 3, both 

non-linear and linearized spacecraft dynamics are 

presented. In Section 4, the general procedure for the 

placement of collocated actuators/sensors for a flexible 

3-D structure is described. In Section 5, the combined 

control of the spacecraft is illustrated, while Section 6 

reports the main results of an attitude manoeuvres with 

active vibration suppression. Finally, the conclusions 

are drawn in Section 7.  

 

2. Large Mesh Reflector Model (LMRM) 

A realistic representative model of the dynamic 

behaviour of a mesh reflector is developed as a study 

case to test the control strategy proposed in this paper. 

Indeed, based on available information [12][13], a 

Replica Model (RM) of the 12-meters diameter 

AstroMesh® reflector is realized in a finite element 

simulation environment (namely MSC Nastran). The 

comparison between the main dynamic features of the 

two systems is reported in Table 1. In detail, the antenna 

is supported by a truss structure composed of 30 unit 

bays. The reflector parabolic surface (with an areal 

density of about 0.3 kg/m²) is thought to be sustained by 

a net of rod elements representing AstroMesh® actual 

cable mesh. The truss horizontal and vertical tubes are 

assumed to be 2.5 meters long, while the diagonal ones 

2.81 meters. The material of the truss is Carbon Fiber 

Reinforced Polymer (CFRP), with density equal to 1650 

kg/m³ and Young modulus 125 GPa. The cable mesh 

rod elements, in CFRP material, have an area equal to 1 

mm². 

To exploit the advantages an active control solution 

may induce on the system design, a lighter reflector 

model, namely LMRM, was derived based on the RM. 

Indeed, the objective was to guarantee a relevant mass 

reduction (established as the 30% of the initial mass), 

while still maintaining the same modal shapes and 

stiffness distribution identified in the Replica Model 

(see Fig. 1 and Table 2). Indeed, the truss tubes external 

radius 
extr  and internal radius 

intr  have been reduced by 

1 cm and material density has been slightly decreased, 

yet maintaining the same material type (CFRP). The 

characteristics of the RM and LMRM are listed in Table 

2.  
 

Table 1. Comparison between different models 

 
AstroMesh® 

data 

Replica 

Model 
LMRM 

Mass 

(kg) 

Truss: 53 Truss: 53.01 Truss: 38.34 

Mesh: 4.1 Mesh: 4.25 Mesh: 4.25 

Total: 57.1 Total: 57.26 Total: 42.6 

    

1st 

Mode 

(Hz) 

Truss: 0.30 Truss: 0.30 Truss: 0.20 

Truss+Mesh: 

0.80 

Truss+Mesh: 

0.78 

Truss+Mesh: 

0.53 

 

  
Fig. 1. (Left) First mode of the antenna truss [13]; 

(Right) First model of the LMRM  
 

Table 2. Geometry and material characteristics 

 
Replica 

Model 
LMRM 

 extr   
intr  

extr  
intr  

Horizontal/Vertical 

tubes radius (mm) 
31 30 21 20 

Diagonal tubes 

 radius (mm) 
21 20 10 9 

Density (kg/m³) 1650 1550 

Young modulus 

(GPa) 
125 125 

 

To ensure a correct deployment of the reflector and 

to support the antenna when in-orbit, an extendable 

boom is generally implemented on the spacecraft 

platform. Therefore, an 8-meter long, 20 kg boom has 

been included in the structural model of the LMRM, 

which has been chosen as study case. As specified in 

[12], the deployed payload, composed of boom and the 

reflector, has generally three distinct constrained mode, 

named yaw, pitch and roll modes. They correspond to 

torsion and bending with respect to the main 

coordinated axes, illustrated in Fig. 2 along with a 

complete model of the payload. Usually, the yaw is the 

first fundamental mode, and it is often close to the pitch 
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mode, while the roll one is larger than the others. 

Concerning the available data in [12], the order of the 

modes for the clamped system is: yaw, pitch and roll, 

while the related frequencies are not available. 

Nevertheless, having compared the behaviour of the 

mesh reflector with the original AstroMesh® model, it 

is reasonable to assume the dynamics behaviour are 

similar. Indeed, the same order of natural modes can be 

found in Table 3 when referring to the study case and its 

modal shapes.  

 

 

 
Fig. 2. Lateral views of the LMRM 

 

Table 2. Clamped modes and frequencies 

Mode AstroMesh® LMRM replica 

1
st
  

 
Yaw mode: bending 

about Z axis [1]  

Frequency: n.a. 

 
Yaw mode: bending 

about Zaxis 

Frequency: 0.41 Hz 

2
nd

  

 
Pitch mode: bending 

about Y axis [1] 

Frequency: n.a. 

 
Pitch mode: bending 

about Y axis 

Frequency: 0.53 Hz 

3
rd

  

 
Roll mode: torsion 

about X axis [1] 

Frequency: n.a. 

 
Roll mode: torsion 

about X axis 

Frequency: 0.85 Hz 

 

In the next sections, the equations of motion for a 

spacecraft equipped with a flexible appendage will be 

presented, thus allowing us to introduce the problem of 

the optimal placement of collocated actuators/sensor on 

a generic flexible tri-dimensional structure. This 

approach will be further tested on the proposed LMRM.  

  

3. Dynamics of the Assembled Spacecraft  

It is possible to derive nonlinear dynamic equations 

of straightforward use for flexible spacecraft attitude 

control problems by adopting a Lagrangian approach 

[14][15]. For brevity’s sake, only the final equations of 

motion are reported in this paper, as the steps leading to 

such formulation may already be found in [16][17][18]. 

In general, a state vector is identified as [ , , ]GX X   , 

where 
GX  indicates the position of the platform center 

of gravity G with respect to an ECI inertial frame,  the 

attitude of the body reference frame with respect to the 

inertial system and  the modal amplitudes of a flexible 

appendage equipped to a central satellite platform.  

Therefore, the full non-linear dynamics of the 

system can be written as reported in eq. (1).  

 ,

G G

T T T L T TX X K X N F   M C  (1)    

In detail, the system total mass matrix reads as 

 

  ,

i i

i

i i i

i i

A AB B

A b G k

T
A A AG B B B

T G G TOT k

A AB T B T

k k

m m 



 
 
 
 
 
  

p L

M p J

L

I

S

S I

 (2)    

with 
bm mass of the platform, 

iAm mass of the 

appendage, iAB

G


p static moment of the system with 

respect to the platform center of gravity G, defined in 

the body reference frame, 
,
iAB

G TOTJ  moment of inertia of 

the system with respect to G in the body frame, iAB

kL and 

iAB

kS translation and rotation modal participation factors 

(coupling with the rigid motion) , I is the identity 

matrix.  

 Furthermore, the matrices TC  and TK are defined as  

2

,T T

2

  
  

    
     

C

0 0 0 0 0 0

0 0 0 0 0 0

0 0 Ω Ω

K

0 0

 (3)    

where   is a diagonal matrix listing all squared 

angular frequencies of the appendages as cantilevered to 

satellite and   is a diagonal matrix containing the k-th 

damping factor k of the corresponding elastic mode. 

The term G

TF  indicates the generalized forces (forces
Gf

, torques 
Gc  and projection of forces on the modal base

ef ) applied to the spacecraft in G. In case of a flexible 

structure equipped with smart actuators, the forces 

exerted by the active devices on the modal base, 

originated by multiplying the electro-mechanical 

X, Roll Y, Pitch 

Z, Yaw 
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coupling matrix g

U
K (see Par. 3.2) and the input voltage 

 vector, are included in the following expression 

 
U

, ,
T

G e g

T G GF f c f 


   K  (4)     

Finally, the non-linear terms are indicated below as 

 
1

,

, 1

1 1

,

1

2

1

2

i i

i i i

i

N
A AG B

G k k

k

N N
A A A kB G B B B

L G TOT k k k

k k

A kT B

p L

N S

   

     

 



 

 
    

 
 

     
 
 

 
 



 J J

J

 (5)     

 

where  is the angular velocity of the system with 

respect of the inertial system written in the body 

reference frame, ,

1
iA kB

J is the variation of the inertia 

tensor due to the flexibility (the expression of such term  

can be found in [15][16]).  

 

3.1 Linearized equations 

To simplify the control synthesis task for the 

assembled spacecraft system, the dynamic model in eq. 

(1) should be linearized around a reference trajectory. 

However, some considerations have to be reported: the 

orbital dynamics are assumed to have a negligible effect 

when the orbital frequency is very low with respect to 

the attitude controller bandwidth [15][19] (i.e. when the 

duration of the manoeuvre is short with respect to the 

orbital period). Furthermore, this study is in line with 

those space applications, most of the cases, where the 

spacecraft angular rates are not high enough to retain 

the gyroscopic stiffness term. In such conditions, which 

often constitute the standard situation for a satellite 

orbiting the Earth, the operating point in terms of both 

attitude and rate, can be assumed equal to zero. 

Therefore, after having performed a Taylor expansion 

around the operating point, one obtains 

 G G

T T TS S K S F  M C  (6)     

where the overline sign refers to the system written in 

linearized form. It can be demonstrated [20] that the 

mass and stiffness matrices correspond to the ones 

reported in eq. (1), while the damping matrix may be 

written as 

 jT ac

2

 
 

  
 



0 0 0

0 H 0

0 0 Ω

C  (7)     

where jacH is the Jacobian matrix of the gyroscopic 

term. 

Concerning the kinematics, we describe the non-

linear evolution of the attitude motion of the body 

reference frame with respect to the reference frame by 

using either Euler’s angles or quaternion, as 

 ( )  Q  (8)     

where ( ) Q is a matrix function of the rotation angles 

depending on the type of assumed rotation sequence. 

According to the previous considerations [19], it is 

possible to assume as the linearization point the zero 

state of the system, i.e. the satellite in the rest condition, 

as in  

  

|ω=0 |ω=

0
0

0( ) ( )

( )
( )

B G B G

jac b b

o o o










      



 




   


   



H J J 0 - 0 0

Q
Q I



 (9)     

Finally, the linearized equations can be re-arranged in 

state-space standard form as 

 
X X u

Y X u

 

 

A B

C D
 (10)     

where 

 

   

1 1

T T T T

T

v ox ov

 

 
  

  

 

0 I
A

M K M C

B 0 B C C C

 (11)     

and D feedthrough term. The matrix 
vB is defined as  

 v

m

 
 


 
  

I 0 0

B 0 I 0

0 0 B

 (12)     

 

Assuming the flexible structure is not subjected to 

forces other than the actuators actions, the input forces 

u will include  , ,G Gu f c   and the matrix 
U

g

m 
B K . 

In case of collocated devices, 0, T

ox ov v C C B . 

 

3.2 Spacecraft model 

The satellite is composed of a flexible appendage 

attached to a rigid platform in correspondence of an 

attachment point 
1P  defined in the S/C reference frame, 

whose origin is located at the centre of the launch 

vehicle payload adapter (see Fig. 3). The inertial 

properties of the platform, without considering the 

appendage, are listed in Table  3. 
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Fig. 3.Schematic of the spacecraft equipped with a large 

flexible mesh reflector 

 

Table  3. Platform inertial properties 

Mass 

(kg) 

Inertia (kg/m²) CoG (m) 

Jxx Jyy Jzz Jxy Jxz Jyz X Y Z 
940 590 620 550 2 4 -8 0 0 -1 

For control purposes, it often convenient to retain in the 

dynamic model the elastic modes computed at specific 

locations of the flexible structure. Such points are 

identified with specific nodes in the FEM model of the 

flexible appendage, namely Nodes of Interest (NOIs). In 

this paper, two sets of NOIs are proposed. The first 

group of nodes, named Requirements NOIs (R-NOIs), 

aims at monitoring elastic displacements to check if the 

system requirements are satisfied when performing 

attitude manoeuvres. The second sub-set, named 

Distributed-control NOIs (D-NOIs), includes those 

nodes where the active vibration control distributed 

system exerts its control actions, as indicated in Fig.  4. 

Therefore, the elastic modes of the structure, used to 

project the forces of actuators on the appendage modal 

base, will be computed in such distinct locations, thus 

reducing the size of the inputs to the model. Among the 

Requirements NOIs, the nodes of the center phase of the 

antenna and the reflector tip are considered to evaluate 

the maximum allowed displacement for the antenna 

reflector (see Fig.  4).   
 

 
Fig.  4. Requirements and Distributed-control NOIs 

 

 

4. General placement strategy 

In this section a general procedure to perform a 

straightforward and computationally efficient placement 

for high-dimensional structures is proposed and tested 

on the study case in Par. 2. In detail, two methodologies 

are contemplated to carry out in parallel the placement 

of a set of actuators and sensors on a flexible structure 

and to compare their outcome for validation: 

 A Norm-based placement method makes use of the 

controllability and observability gramians of the 

system and attempt to optimize the sensor and 

actuator locations to increase, from a control 

perspective, the relative controllability and 

observability of the important system mode; 

 A MSE|SVD-based placement method is based on 

the extraction of the Modal Strain Energy (MSE) 

from a commercial finite element tool and on the 

successive computation of Singular Values (SVDs) 

of the modal input matrix of the system to evaluate 

the effect of positioning collocated devices on 

flexible structures. 

 

4.1 Problem set-up 

Let us consider placing S  collocated actuators and 

sensors on a flexible structure. The devices are assumed 

to be implemented between two adjacent nodes ,m n  of 

the structure, each node with six degrees of freedom
nmV  

  , , , , , , , , , , ,nm m m m m m m n n n n n nV u v w u v w       (13)     

where , ,u v w  indicate the translational degrees of 

freedom along the local X, Y and Z-axis, while , ,    

the rotational ones. Generally, [21], the effect of a smart 

device on a flexible structure can be described in terms 

of forces and torques applied (or displacements and 

rotations sensed) on specific nodes of its finite element 

model by means of an electromechanical coupling term
e

U
K . Such term will depend on both specific properties 

of the device and a mapping matrix distributing the 

exerted generalized forces (sensed variables) on the 
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degrees of freedom of the nodes of the structure as listed 

in the vector below 

[0,...,0, , , , , , ,...

0, , , , , , ,...,0]

e m m m m m m

X Y Z X Y Z

n n n n n n T

X Y Z X Y Z

F F F C C C

F F F C C C




U
K

 (14)     

where , ,X Y ZF F F and , ,X Y ZC C C are the terms regrouping 

the active material properties variables which, 

multiplied by an input voltage  vector in case of 

piezoelectric devices, will produce effective forces and 

torques on the nodes ,m n  of the structure (or will define 

which variables the sensor is able to perceive). This 

vector has length equal to the number of the total 

degrees of freedom of the finite element system and the 

only non-zero elements are those corresponding to the 

translational and rotational degrees of freedom of the 

nodes where the device is implemented.  

In this paper, a π-shaped Piezoelectric Stack 

Actuator (PPSA) mounted on two L-support mechanical 

frames at a certain distance from the surface of the 

element is considered [18], in order to observe the 

effects of applying both axial forces and bending 

moments. In this case, eq. (14) can be rewritten as  

  0,...,1,0,0,0,0, , 1,0,0,0,0, ,...,0
Te

PZ a ac h h

  

U
K  

(15)  

   
with 

ah  offset between the longitudinal axis of the 

piezoelectric stack and the neutral plane of the passive 

structure and 

 
33 PZ PZ

PZ

PZ

d A E
c n

l
  (16)     

where 
33d is the piezoelectric material coefficient, n  is 

the number of layers composing the piezo-stack, 
PZA ,

PZE and 
PZl are the area, the Young module and the 

length of the device respectively. Furthermore, a 

rotation matrix 
g e

T  is needed to transfer the actions of 

the device from an element local frame to the global 

frame of the assembled finite element model, as 

indicated below 

 g e

g e

 


U U
K T K  (17)     

where      3 2 1g e x y z   T R R R . In detail, the first two 

rotations are needed to define the position of the 

element in the tri-dimensional space, while the third 

rotation is required when assuming that the element 

section may be oriented in different ways around the 

longitudinal axis of the element. This approach is 

proposed in the placement process to represent different 

orientations of the actuators (see Fig.  5). In case of 

placing PPSA actuators, the generated bending moment 

can be generally oriented with respect to the three 

coordinated axes X, Y and Z. Therefore, their efficacy 

in suppressing vibrations depends not only on their 

actual location on the structure, but also on how the 

designer decides to orient them in the 3D space. Such an 

issue has been here addressed in the placement 

procedure by enlarging the initial set of possible 

physical locations (corresponding to the actual finite 

elements of the structure) with additional virtual 

locations (i.e. different orientations of the devices on a 

same finite element). In this case, for each physical 

location, four different orientations of the piezo stack 

have been considered (in black in Fig.  5, while in green 

the longitudinal forces and in red the actual device). It 

should be noticed that the enlarged dataset is further 

used to carry out the placement process.  

 
Fig.  5. Set of possible locations of smart devices 

 

In detail, a location  | | |ID ID rs ID E N O  is defined by a 

label ID , by the identification number
IDE of the finite 

element where the active device is implemented, by a 

vector
IDN  listing the IDs of the two considered nodes, 

and by a term 
rO  indicating the distinct orientation of 

the active device (e.g. the virtual location). The 

complete set of locations is portrayed in Fig.  5.  Finally, 

the physical input matrix B  is column-wise assembled 

by horizontally concatenating all the , 1,...,iB i S  

vectors, one for each considered device, as in 

  1 2 SB B BB  (18)  

  
Then, the modal input matrix is defined by pre-

multiplying such matrix by the modes as in 

 T

m B B  
(19)  

  
where   is the matrix containing the elastic modes of 

the flexible structure. Furthermore, in case of collocated 

system the modal output matrix mC  is assumed equal to 

the transpose of mB . 

 

4.2 Norm-based  

The first method relies on the definition of system 

norms, based on controllability and observability 

gramians, to investigate the placement of co-located 

pairs of actuators/sensors on large flexible structures 
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[22]. A placement index grading the effects of an 

actuator/sensor on a specific mode is defined by 

considering the ratio between the transfer function of 

the i-th mode and k-th actuator kiG


 and the transfer 

function of the structure with all the actuators 

candidates G


.    

 , 1,..., , 1,...,
ki

ki ki

G
w k i n

G
 





  R  (20)     

where 0kiw  are weights that can be included to 

selectively give more importance to a specific actuator 

or mode in practical applications, as for multiple modes 

control it is generally not possible to find locations 

which are optimal for all the modes. In detail, based on 

the hypothesis of small damping [22], which is often the 

case for a spacecraft flexible appendage flexible 

structure, an approximated expression for the transfer 

functions in eq. (20) may be derived as  

 
2

mki mi

ki

i i

B C
G


 


  (21)    

 
2

1

R

k

k

G G
 



   (22)    

with 

 
2

1

, 1,...,
R

i ki

k

G G i N
 



   (23)     

The placement indexes 
2ki  can be rearranged in a 

matrix 
  as follows 

 

11 12 1 1

21 22 2 2

1 2

1 2

k

k

i i ik i

n n nk n

   

   

   

   

   

   



   

   

 
 
 
 

   
 
 
 
  

S

S

S

S

 (24)     

As it can be deduced by directly inspecting eq. (24), the 

k-th column of the matrix lists the indices evaluating the 

effect of the k-th actuators on all the modes of the 

structure. Conversely, the i-th row of the matrix 

regroups the indices of the i-th mode for all the 

considered actuators. Therefore, a vector comprising the 

actuators placement indices can be defined as 

  1 2a a a aS     (25)     

where each k-th element is 

  max , 1,..., , 1,...,ak ik

i

i n k S     (26)  

The vector ak  provides the designer with a significant 

information: it quantifies the weighted contribution of 

the k-th actuator at all the (selected) modes to the norm 

of the flexible structure. With this in mind, the actuators 

related to small values of placement indexes can be 

removed being the least significant ones. 

  max 1,...,OPT a
k

k S    (27)  

   
By placing the actuator and sensor at the locations of the 

maximum index values, the vibration of the i-th mode is 

controlled by an actuator input signal of minimal energy 

and measured by a sensor with maximum output energy. 

 

4.3 MSE|SVD-based 

The placement of active elements in a flexible 

structure can be carried out from the inspection of the 

map of the Modal Strain Energy (MSE) in the finite 

element model. The element strain energy is defined as 

the amount of elastic energy stored in a finite element, 

as follows 

 
1

2

T

e e ee eESE u u K  
(28)  

   
where 

eu  is the element displacement and 
eeK is the  

stiffness matrix. The active parts should be placed 

where their authority over the modes to control is the 

largest. Indeed, according to [22], the control authority 

is proportional to the fraction of MSE in the element. 

The search procedure is greatly assisted by the fact the 

map of the fraction of MSE is directly available in 

commercial finite element packages (such as MSC 

Nastran). The map of modal strain energies is useful to 

initially discriminate best locations, but it does not 

provide enough practical information on how to 

implement actuators on the structure. Indeed, the 

actuators may be mounted in different orientations on a 

same finite element (especially when referring to a 

piezo stack with offset on a truss structure). To consider 

also different orientations and generally to reduce the 

set of best locations where to place the actuator/sensor, 

the minimization of the maximal physical control force 

is here chosen as the criterion to drive the actuator 

placement [23]. Furthermore, the latter method is 

suitable to be used in conjunction with the MSE 

approach. Indeed, the physical control force strategy is 

based on considering all the possible combinations of 

collocated actuators/sensors to compose the modal input 

matrix, thus leading to high computational costs, which 

can be reduced by choosing a proper subset of possible 

location thanks to MSE information. In this context, the 

Singular Value Decomposition (SVD) of the input 

matrix is used to measure the system controllability as 

follows 

 
 1

0
, ,...,

0 0

m v

v mdiag  



 
  
 

B U S Q

S



 

(29)  

   

Where i  is a singular value of the matrix mB . Indeed, 

it  can be demonstrated [23] that the physical input force 
*

iu is proportional to the modal force *

Cif and inversely 

proportional to the singular value 
i  as indicated below 
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*

* Ci
i

i

f
u


  

(30)  

   

Therefore, if the minimal singular value of a matrix 
mB  

is larger, the maximal physical control force will be 

smaller. Finally, the optimization objective function 

may be formulated as follows 

  
min

max m 
 

B  
(31)  

   
The proposed placement approach is described by 

following some steps: 

 

 

 Define initial subsets 
iU , where 1:i N  number of 

considered modes, listing prospective locations 

identified by MSE data referred to the i-th mode; 

 Compute combinations 
ic   of the locations for a i-

th mode included in each subset 
iU , taken 

i  

times without repetitions, where 
i  is the number 

of collocated devices chosen to control/sense a 

mode at a time; 

 Also consider combinations i ii
C c  among 

different 
iU  sets to simultaneously control more 

than one mode. Such combinations are then used 

as hint to assemble 
iC  distinct input matrices B in 

a column-wise fashion, where each column 

indicates the effect of one device on the flexible 

structure;  

 Calculate the SVs of the input matrices T

m  B B  

of all the combinations, and the optimal 

combination should be the one that meet the 

objective function in eq. (31). 

 

4.4 General placement strategy implementation 

Information from finite element software generally 

contains positions and ID of the nodes, Modal Strain 

Energy tables as well as Property Sets (PSETs) 

associated to different parts of the model, comprising 

characteristics as material association and dimensions of 

the component. In this context, two methods have been 

contemplated to automatically choose specific finite 

elements for placement purposes based on different 

inputs (see Fig.  6). The first approach identifies one or 

more volumes of interest; it may be used when only 

specific zones of the flexible appendage are available to 

practically implement active vibration devices. The 

second method selects particular PSETs associated to 

precise features, as plates or beam elements, useful 

when investigating the placement of devices on a 

structure composed of multiple types of finite elements.  

 

 
Fig.  6. General workflow of the placement 

procedure 
 

After having identified the elements of interest 

according to one of the two methods, one may want to 

further select a type of finite element to carry out the 

placement procedure. The accounted categories are five, 

namely CQUAD, CTRIA, CROD, CBAR and CBEAM 

elements, thus allowing to cover for a wide range of 

designs of flexible structures. Once defined the final set 

of finite element to be taken into account, the 

characteristics of actuators/sensors can be selected, 

choosing among the piezoelectric stacks, patches and 

stack with offset (as in this study case). At this point, 

the action of the device is mapped onto the structure as 

previously illustrated. The full-assembled Modal Input 

Matrix mB  is then computed: it contains all the possible 

locations selected so far for placement purposes. The 

two open-loop methods are then applied. 
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Finally, the results deriving from the two 

procedures are compared in terms of set of identified 

optimal locations to verify the output of the procedure. 

An overview of the placement algorithm is portrayed in 

Fig.  6. 

 

4.5 Results 

The plot of the placement matrices 
ki

for the first, 

second, third and fourth mode are represented in Fig.  7 

and Fig.  8, where the peaks of the placement indexes 

(both higher value and second higher peak) are circled 

in red. Indeed, frequencies up to 3 Hz have been 

considered for the placement, as it may interfere with 

the bandwidth of the controller and cause 

control/structure interaction issues. Higher frequencies 

have been discarded as it is less likely they may provoke 

performance deterioration. The outcome is further 

summarized in Table  4.  

 
Fig.  7. Placement indices for i=1:4 with 1,3 1kw   

and 2,4 0kw   

 
Fig.  8. Placement indices for i=1:4 with 2,4 1kw   

and 1,3 0kw   

 

Table  4. Norm-based placement outcome 

Mode Location ID 

Forces direction: 

F. Force, M. 

Moment 

Placement 

Index 

1 (4975,6426) F: ±Y, M: ±XZ (1,0.98) 

(9927) F: ±Z, M: ±X (0.55) 

2 
(9925) 

(8977) 

F: ±Z, M: ±Y 

F: ±Z, M: ±Y 

(1) 

(0.58) 

3 
(9927) 

(4924,6480) 

F: ±Z, M: ±X 

F: ±Y, M: ±XZ 

(1) 

(0.57,0.58) 

4 
(8977) 

(9481) 

F: ±Z, M: ±Y 

F: ±Z, M: ±Y 

(1) 

(0.74) 

 

It may be noticed how the axes of the bending moments 

exerted by the devices are oriented as expected with 

respect to the directions of the bending modes. Indeed, 

the first mode is composed mainly of a bending about 

the Z-axis and a minor bending about the X-axis. The 

second mode is a bending about the Y-axis, the third 

mode is a torsion of the reflector about the X-axis and 

consequent bending of the boom with respect to the 

same axis. The fourth mode is similar to the second, 

being again a bending about the Y-axis, where the boom 

deflects as the second mode of a constrained-free beam.  

As far as the second placement method is concerned, 

the MSE data are extracted from MSC Nastran and 

imported in Matlab environment for further processing.  

 

 
Fig. 9. MSE (element density) for the first mode  

 
Fig.  10. MSE (element density) for the second mode  

Boom 

Truss 

 

Truss 

 

Boom 
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Fig.  11. MSE (element density) for the third mode 

 

The MSE in terms of energy density (weighted 

accordingly to the effective dimension of the finite 

element, for a more accurate information about the 

energy distribution) is reported in Fig.  10 to Fig.  13. It 

can be noticed a good correspondence between elements 

with higher energy and results from the previous 

placement method. 

 
Fig.  12. MSE (element density) for the fourth mode 

 

After having identified elements in the subsets 
iU , 

possible combinations are computed as indicated in Par. 

3.3. The results are summarized in Table  5. In detail, 

combinations of two actuators for each mode have been 

considered ( 2i   ).  

 

Table  5. MSE|SVD-based placement outcome 

Mode Locations ID 
Normalized 

 
minm B  

1-3 
[4975,6426|9927, 8977] 

[4974,6426|9935, 8977] 

(1) 

(0.99) 

2-4 
[9925, 8977|8977, 9841] 

[9926, 8977|8977, 9841] 

(1) 

(0.97) 

 

A good correspondence is evident when considering the 

results of the previous method. In the next section, the 

final configuration is presented based on such results.  

 

 

4.6 Final configuration 

In the proposed configuration, a total of five 

actuators are placed on the flexible structure, in 

correspondence of the locations with higher placement 

indices and minimum SV for each considered mode. It 

is interesting to note that the devices are effective, in 

different amounts, on more than one mode at a time (see 

Table  6). 

 

Table  6. Outcome summary 

Act/ 

Sens 
Element ID 

Mode 

1 2 3 4 

1 2907 ++ - + - 

2 3270 ++ - + - 

3 4077 - ++ - + 

4 4079 + - ++  

5 3908 - + - ++ 
++ very effective, + effective, - not effective 

 

 
Fig.  13. Final configuration of co-located  

actuators/sensors 

 

The position and related number of the actuators is 

depicted in Fig.  13.  

 

5. Robust Control synthesis and design 

This section begins with a summary of the necessary 

models for the description and analysis of uncertain 

Linear Time Invariant (LTI) systems; following, after a 

brief introduction of the μ-synthesis control approach, 

an attitude control accounting for attitude (angles and 

angular rates) measurements, coupled with a vibration 

controller using measurements obtained via 

piezoelectric sensors, is proposed based on this method. 

 

5.1 Uncertain modelling 

Any real system is characterized by unwanted 

uncertainties, coming from neglected dynamics in the 

modelling phase, non-linearities and unknown 

parameters, which can significantly affect the stability 

and performance of the system. The various source of 

uncertainties mentioned above may be grouped in two 

main classes: structured uncertainties, which are related 

to changes in actual parameters, and unstructured 

4 
3 

2 

1 

5 
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uncertainties which, instead, are frequency dependent 

and are generally used to describe some unmodelled 

dynamics. 

A Linear Fractional Transformation (LFT) modelling 

strategy [24] is hereby adopted since it provides a 

unified method to gather and isolate all the uncertainties 

of the dynamical model; in fact, denoted G  as a generic 

uncertain process, it is possible to express it as a 

feedback interconnection of a nominal plant M  and a 

block-diagonal matrix ( )idiag    with 1 


  as 

sketched in Fig. 14.  

 
Fig. 14. LFT representation of an uncertain system 

 

In this formulation, G  is then expressed by the upper-

LFT of M with  as follows: 

 
1

22 21 11 12
( , ) ( )

u
G F M M M I M M



        
(32)  

   
With respect to the dynamical model derived in 

Section 3, Table 7 reports the uncertain parameters 

considered in the plant and the relevant extent of 

perturbations; uncertainties in the translational and 

rotational modal participation factors and damping 

values have been neglected with respect to the other 

parameters in order to keep the complexity of the LFT 

system as low as possible. It has to be, in fact, noted that 

high order LFTs, together with the presence of highly 

packed and lightly damped flexible modes can 

significantly complicate the computation of precise 

lower and upper bound of μ [25]. Furthermore, to keep 

the model as close as possible to the reality and to avoid 

possibly conservative results in the synthesis, the 

uncertainty on the diagonal elements of the inertia 

tensor is considered linearly proportional to the mass. 

 

Table 7. Uncertain parameters of the plant 

 Uncertainty 

Mass 5 % of N.V. 

[ , , ]
xx yy zz

J J J  f(Mass) 

[ , , ]
xy yz xz

J J J  5 % of N.V. 

Natural 

frequencies  

5 % of N.V. 

(for the first 5 modes) 

PZc  15 % of N.V. 

 

5.2 Plant structure for robust control design 

Robust control methods aims at designing a fixed 

controller such that some defined levels of performance 

(i.e. reference tracking, disturbance rejection and noise 

attenuation) and stability margins of the closed loop 

system are guaranteed, irrespective of the change in the 

plant dynamics over a predefined range of uncertainties. 

The proposed synthesis model used to design the 

controllers is presented in Fig.  15.  

 

 
Fig.  15. Synthesis model 

 

where: 

 closed loop inputs , ,d r n  indicates respectively the 

external disturbance, reference signal and 

measurement noise vectors and , ,d r n are their 

normalized counterparts via the scaling functions 

, ,d r nN N N ; 

 the closed loop outputs , ,e y u are respectively the 

error signal e r y n   , measured output and 

control signals vectors and , ,e y u are their 

normalized counterparts via the scaling functions 

, ,e y uN N N ; 

 the performance outputs 1 2 3, ,z z z . 

 

The input-output map of the synthesis model in Fig.  15 

is represented as follows 

1

2

3

0 0

0 0

0 0

S e S d e r e n

T y S d y r y n

U u o d u o r u o n

z dW N SP N N SN N SN

z W N SP N N TN N TN r

W N T N N S KN N S KN nz

 

 

 

       
       
       
             

 (33)     

with 

 
 

 

1

1

0 0 0

S

S

S I P K T I S

S I KP T I S





   

   
 (34)     

Finally, the weighting functions , ,
S T U

W W W  are used to 

define the control design requirements by shaping the 

sensitivity function, the complementary sensitivity 

function and control sensitivity transfer function. In this 

study, a diagonal structure is selected for all weighting 

functions as follows [26]  

( )

( ) ( ) ( )

( )

( ) ( ) ( )

( )

( )
( ) ( ),

i i

i i

i

i

n n
i

s
n ni i i

s T Tii

s
ni i i

s s T
n i

T

s

M s Aii
W s T

s
s A

M

W s





 






 



   
   
   
   
   

  
  

 (35)     
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( )

( )

( )

( )

( )
( )

i

i

i

n
i

U
n i

U

i

U
n i

U

s

Mii
U

s
W s

A











 
 
 
 
 
 
 

 (36)     

where the parameters      
( ) ( ) ( )

, , , , , ,
, ,i i i

M
S T U S T U S T U

A  are 

properly selected and tuneable quantities used to impose 

the required closed loop behaviour. 

By shaping the sensitivity function ( )S s , the weighting 

function ( )
S

W s  allows to define the following 

requirements: 

 A minimum bandwidth of the closed loop system 

to satisfy minimum rise time requirements (

cl S  ); 

 A desired maximum overshoot of the response 

(generally below 30%) by constraining 

accordingly a value of the maximum peak of the 

sensitivity function via SM ; 

 Some desired steady state tracking error 

performance by constraining the lower frequency 

gain of the sensitivity function under SA . 

Similar considerations are valid for 
T

W used to shape the 

complementary sensitivity function, which is a good 

indicator of the system response to reference and sensor 

noise inputs, and the weighting function
U

W , which is 

designed to shape the frequency behaviour of the 

control signal. Indeed, the objective of the function 
U

W  

is to limit the control signal and to guarantee 

compatibility with actuation capabilities (for example, 

to avoid actuator saturation due to bandwidth 

limitation). 

 

5.3 µ-synthesis control design 

For the current problem, which presents mostly 

structured uncertainties (i.e. mass, inertia tensor, natural 

frequencies, etc.), H


 control methods are discarded 

since they cannot tackle well huge structured   block 

without producing additional conservativeness in the 

model and severely undermining the performance of the 

closed loop. Therefore, µ-synthesis, although more 

computationally problematic, is selected for the current 

study. Basically, the µ-framework introduces a new 

metric based on the Structured Singular Value µ [27]. 

By assuming that   belongs to the set: 

 
1 1 1

( , ..., , , ..., ) : ,
j j

m m

r s rs k i j
diag I I C C  



       (37) 

with ( ) 1,     , then given a matrix 
n n

M C


 , 

the structured singular value ( )M  is defined as: 

( ) : , det( ) 0

1
( )

min( )I M

M



      

  (38) 

unless no    makes I M  singular, then ( ) 0M  . 

Therefore, ( )M is the inverse of the smallest 

perturbation (in terms of ( )  ) among all possible 

  . 

The plant scheme proposed in Fig.  15 can be 

rearranged in the LFT framework as in Fig. 16 with K  

the controller and
eP the generalized plant, also 

containing the weighting and scaling functions 

previously introduced. 

 
Fig. 16. LFT representation of a general control 

scheme 

 

The synthesis problem to be solved is, then, the 

following: 

Find a controller K such that it minimizes 

inf sup ( ( ( ), ( )))
l e

K
F P j K j



     

where ( , )l eF P K  is the lower LFT of the generalized 

plant with the controller. 

 At present, there is still no direct method to 

synthetize the controller directly on the optimization of 

the µ and a solution can only be found iteratively (D-K 

iteration) if the µ is replaced by a mildly conservative 

upper bound. Since the joint convexity over the variable 

K (controller) and D (scaling matrix) is not guaranteed, 

the iteration may converge to a local minimum [28].  

 

6. Simulations and Results 

In this section, the results of the control synthesis 

procedure are reported. In addition, the synthetized 

robust controller K  and an in parallel Proportional-

Derivative feedback vibration controller 
VK  are tested 

in a simulator taking into account the dynamic non-

linearities presented in Par. 3, as indicated in Fig.  17, 

where the term 
NNP  indicates the non-linear plant.  

 

 
Fig.  17. Robust attitude and PD-feedback vibration 

control scheme 

 

6.1 Results of the µ-synthesis control design 
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The main results concerning the synthesis of the 

attitude robust controller are reported in this section. In 

detail, Fig. 18 reports upper and lower bounds on the 

structural singular value for the attitude controller 

obtained via µ -synthesis.  

 

 
Fig. 18. Robust performance margin 

 

It is shown that the system satisfies the performance 

requirements with a sufficient margin of value 0.761 

obtained at a frequency of 0.01 rad/s. 

 
Fig. 19. Singular Values of the sensitivity function 

ir d n e
 

 
Fig. 20. Singular Values of the complementary 

sensitivity function ir d n y
 

 
Fig. 21. Singular Values of the control sensitivity 

function or d n u
 

 

Furthermore, Fig. 19 to Fig. 21 show respectively the 

singular values of the sensitivity function, 

complementary sensitivity function and command 

function for the scaled closed loop system compared 

with the inverse of the performance weighting function  

, ,
S T U

W W W . 

 

5.3 Results of non-linear simulator 

The main results deriving from implementing the 

controller in the simulator implementing the non-linear 

equations of motion are reported in Fig. 22 to Fig. 26. In 

detail, Fig. 22 depicts the time histories of the actual 

Euler’s angles (in blue). In detail, a set-point reference 

equal to [30,20,10] degrees is provided to the attitude 

controller. The system shows a maximum overshoot 

under the set constraints in the synthesis process (below 

30%, 2SM  ). The constraint on maximum steady state 

error is respected too, being equal to 0.001 Me , where 
Me

is the maximum expected error with respect to the 

reference. 
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Fig. 22. Time histories of Euler’s angles (in blue: set 

point reference, in red: actual angles) 

 

The time histories of the torques 
Gc  are illustrated in 

Fig. 23. The maximum torque is below the saturation 

constraint imposed to the robust controller during 

synthesis iterative process.  

 

 
Fig. 23. Torques time histories (with zoom on the 

first 100 seconds) 

 

In Fig. 24, the displacement of the tip of the antenna 

with respect to time is reported. The vibration system 

ensure the maximum displacement is in a sub-

millimetre range, suitable to perform high precision 

pointing operations.  

 
Fig. 24. Tip displacement time history (with zoom 

on the first 100 seconds) 

 

Finally, both the results from sensing and actuation by 

using smart piezoelectric actuators and sensors are 

portrayed in Fig. 25 and Fig. 26. The values of voltages 

required to the devices to perform the vibration 

suppression are both in the range of commercially 

available products.  

 

 
Fig. 25. Sensed voltage time histories (with zoom on the 

first 100 seconds) 
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Fig. 26. Input Voltages time histories (with zoom on the 

first 100 seconds) 

 

 

7. Conclusions  

In this paper, a general architecture to perform end-

to-end design of an in parallel robust attitude control 

and vibration suppression system is presented. To test 

the proposed methodology, a Large Mesh Reflector 

Model (LMRM) has been designed, aiming at obtaining 

a structure lighter than modern commercially available 

equivalent reflectors, starting from available data of the 

mature mesh reflector family AstroMesh®. The 

dimensional stability of the payload is supposed to be 

constrained by using collocated smart piezoelectric 

actuators and sensors on the flexible structure. Their 

optimal location is studied by introducing a general and 

computationally efficient strategy to address the issue of 

actuators/sensors placement for generically-shaped 3-D 

flexible structures. In detail, both a gramian-based 

method and a solution exploiting the extraction of 

Modal Strain Energy from commercial finite element 

models and locations combinations computation are 

presented.  

Then, the synthesis of a robust controller for 

performing the attitude control of the spacecraft, based 

on mu-synthesis theory, is presented, being the plant of 

the system considered uncertain. Finally, the results 

from synthesis iterative process are discussed, along 

with the main results deriving from implementing both 

attitude and vibration control system on a plant 

considering also dynamic non-linearities. The control 

system proved to be able to reach the desired set-point 

angles by keeping the maximum displacement of the tip 

of the reflector under a sub-millimetre range, making 

such system suitable to high precision pointing 

operations.  

As future developments, an unstructured synthesis 

combining both attitude and vibration control will be 

contemplated. Furthermore, more specific external 

disturbances (other than system non-linearities) as 

orbital perturbations, solar pressure and thermal 

gradients could be considered in the study. In addition, 

failures and multiple piezoelectric anomaly behaviour 

will be considered to test the vibration control system 

efficacy.  
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 The problem of designing an end to end architecture (from structural design to control laws 
verification) for attitude and vibration control for a large flexible antenna is addressed; 

 A large antenna mesh reflector based on realistic space mission data is designed by using FEM 
techniques; 

 A network of smart actuators/sensors including Piezo-stack actuators is developed; 
 Different spatial configurations for the placement of actuators and sensors are investigated by 

using open-loops placement methods for generically shaped tri-dimensional structures;  
 Attitude manoeuvres are performed to prove the efficacy of both the attitude and vibration control 

system.  
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