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A B S T R A C T

Clinical Decision Support Systems (CDSS) that use machine learning techniques and their broadest sense of
artificial intelligence (AI) must be interpretable and transparent. The lack of transparency instead of providing
support could instead become a factor of indecision and obstacle. In this work, a very complex and important
problem from a clinical point of view is tackled, namely the pathology known as Dry Eye Disease (DED),
starting from a case-control study on a HIV-positive population and a healthy part of it. The case study is
faced on two fronts, the first in which an ensemble-based clustering algorithm is built. Secondly, this algorithm
is broken down to analyze each component, making the analysis method transparent and interpretable.
Specifically, an ensemble of clustering algorithms is presented, such as k-means, agglomerative, spectral, and
birch, which are combined and used in two levels: in the first, the labels are obtained from each clusterizer to
recognize significant patterns of the two populations affected by the DED pathology, in the presence of HIV
and not. Subsequently, the labels obtained at the first level are used as inputs on which the clusterizers are
used again, whose outputs in the final phase serve as a training data set for a supervised method (i.e., logistic
regression, decision trees, neural network, etc.), to evaluate every single component separately, through the
use of features importance techniques (i.e., decision trees, LASSO regression, Gini Importance (GI), Variable
Importance (VI), etc.). In this way, each clustering algorithm used at the first level can be considered a new
feature in the next one and evaluate its individual contribution. Furthermore, each characteristic is interpreted
through specific methods of the relevance of the characteristics to make the decision support tool as complete
as possible. The performance of the methods used in training, both supervised and unsupervised, is evaluated
through appropriate metrics, such as the well-known measures of precision, recall, accuracy, and homogeneity.
Clustering methods provide results on the groups created and on the influence of features (cytokines) in the two
populations examined. The experimental results obtained concerning the association between the development
of the DED pathology and the presence or absence of HIV in these patients, and the influence that certain factors
have on this problem, are interpreted with methods that are part of that branch known as Explainable AI (i.e.,
Local Interpretable Model-agnostic Explanations (LIME), Shapley, Individual Conditional Expectation (ICE),
etc.). Besides explaining the influence exerted by certain features, the methods used provide both a global and
local view on how each factor influences the final probability associated with the possible development of the
pathology. The practical implications in using this method can be of support to the clinical diagnoses carried
out on the patients examined to evaluate how each factor can be responsible for the possible development
of the disease and therefore taken individually in the treatment. To date, the analytical techniques used in
the study of this pathology have always provided generalized results, while breaking down the problem and
isolating the components could provide valuable information to clinical operators.
. Introduction

.1. Clinical Decision Support Systems

Clinical Decision Support Systems (CDSS) play a important role
n the clinical sector since every action taken by a decision maker
s crucial from an ethical and legal point of view. Decision makers
an be of various types in a CDSS picture, for example a doctor of
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medicine (M.D.), a minister or a task force of scientists (the current
COVID 19 pandemic is a recent example of how political and clinical
decision makers are called together to make important decisions). The
results of a decision deriving from a decision support system that
makes use of machine learning on the one hand make it possible
make conscious choices, since it is assumed to be there an expert
who oversees the decision-making process and on the other hand they
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can lead to interpretable results, depending on which models They
are used. A CDSS based on black-box (i.e. neural network) methods
carries with them a great responsibility. The output of a model it
may concern, for example, a drug therapy, administration of a drug,
rather the experimentation of a vaccine that compatibility on organ
transplants. The interpretability and transparency of the models used
must guarantee full explainability of the results. Some questions are
important, such as: why was one model preferred over another? and
how this model was used. From the 1970s onwards there have been
several CDSSs based on artificial intelligence, for example a work by
de Dombal et al. ([1], 1972) in which you try to implement automatic
reasoning in conditions of uncertainty. The system was developed
from the University of Leeds, designed to support diagnosis of acute
abdominal pain and on the basis of the analysis the need for surgery,
system decision making it was based on the Bayesian approach. In
Shortliffe’s work ([2], 1976), (MYCIN), a rules-based expert system de-
signed to diagnose e recommend treatment for certain blood infections
(antimicrobial selection for patients with bacteremia o meningitis) has
been proposed. It was later extended to management other infectious
diseases. Clinical knowledge in CDSS is represented as a set of IF-THEN
rules. Some CDSS related issues will be presented below for certain
classes of problems, such as cancer, diabetes, heart problems and other
applications; the use of advanced analysis techniques related to clinical
decisions is an important topic and the literature is very broad, the most
interesting contributions will be highlighted. Miller et al. ([3], 1982)
developed INTERNIST-1, one of the first clinical decisions support
systems designed to support diagnosis, in 1970. The CDSS was a rules-
based expert system designed from the University of Pittsburgh in 1974
for the diagnosis of complex diagnoses of complex problems in general
internal medicine. Use patient observations deduce a list of compatible
disease states (based on a tree structured database that links diseases
with symptoms). In the work of Muller et al. ([4], 2020) by definition
these systems are based on patient specificity as evidence and represen-
tations of clinical knowledge modeled by algorithms and mathematical
models by experts and provide recommendations by addressing the
right diagnosis or optimal therapy. In this work the authors propose
an approach based on data visualization. The authors show that more
the displays show the certainty of the calculation result such as the
recommendation and a series of clinical scores. Regarding the model
used, the authors presented an approach for a CDSS based on a Bayesian
causal network represents the therapy of laryngeal carcinoma. The
results were evaluated and validated by two experts otolaryngologists.
Several other studies have addressed the question of the explainability
of CDSS, as in ([5], 2017), ([6,7], 2019), not calibrating the user trust
concept by introducing this new type of error to the context analyzed
by ([8], 2020) using these tools. Another example related to Bussone’s
work et al. ([9], 2015) who studied the effect of the explanation on
trust and dependence. The authors state: ‘‘neglecting human factors
and user experience in the design the explanation of the CDSS could
lead to excessive dependence on medical professionals in these referral
systems, even when it is wrong’’, which the authors define an ‘‘over-
reliance’’. There is also another possible problem when the explanation
it does not provide sufficient information could lead users to reject the
suggestions, for example self-sufficiency as described in the work of
([10], 2020). There are other very recent works dealing with CDSS
that make use of advanced techniques analytics, as in the work of
([11], 2020) in which a longitudinal retrospective observational study
is conducted that examines 34,113 electronic medical records. The
authors however use a multivariate logistic regression e time series
analysis in order to explore the effects of CDSS. The aim of the study
is to evaluate the effects of CDSS integrated with the British Medical
Journal (BMJ) Best Practice Assisted Diagnosis in real-world research.
With regard to the results they obtain total accuracy values of the
diagnosis recommended by CDSS equal to 75.46% in the first degree
diagnosis, and 83.94% in the top-2 diagnosis while 87.53% in the

top-3 diagnosis in the data before implementation of the CDSS. The
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proportion of hospitalization time 7 days or less increased significantly
by 7.83% (95% CI 1.79%–13.87%, P = 0.01). The authors therefore
conclude that CDSS integrated with BMJ Best Practice has improved
the accuracy of doctors’ diagnoses. In another fairly recent study, the
authors ([12], 2020) carry out an examination of 60 clinical support
systems that use machine learning and find use in different clinical
areas such as bacterial infections, viral infections, tuberculosis and on
generic infections. 33% of these studies dealt with the diagnosis while
30% with the prediction of diseases, the prediction of the response
to treatment and the prediction of antibiotic resistance, rather than
the choice of antibiotic therapy itself. Regarding the implications, the
authors themselves suggest that a data base as exhaustive as possible
that takes into account factors such as primary care and socio-economic
data can help to build much more effective tools. Other authors ([13],
2020) have addressed the study and prediction of heart disease with
important results. Using spatial clustering techniques based on the
density of applications with noise (DBSCAN) able to identify anomalies
and remove them and then use a technique known as (SMOTE-ENN)
to balance the distribution of train data and subsequently train an
XGboost to predict heart disease. The authors compare their results
with others already known in the literature, obtaining accuracies of
95.90% and 98.40% respectively, thus providing a tool that can be
fully used by clinical operators. Recent work ([14], 2021) describes
the prevalence and nature of the involvement of clinical experts in the
development, evaluation and implementation of CDSS that use machine
learning to analyze electronic health record data. The authors conduct a
systematic search on different platforms such as: PubMed, CINAHL and
IEEE Xplore and a manual search of conference proceedings in order
to identify suitable articles. The results they get are quite interesting:
the involvement of clinical experts was prevalent in the early and late
stages of system design. The authors pay attention to the fact that
clinical operators must necessarily be involved in the entire decision-
making process in order to obtain a robust tool, in which therefore
the clinical domain competence supports the analytical design phase
designed by an expert, but which falls outside the medical domain.

1.2. Dry Eye Disease problem

DED (Dry Eye Disease), it is a condition of the human eye which
occurs when the tears necessary for adequate lubrication for the eyes,
occur in scarce quantities or almost absent, creating a disabling tear
instability. This problem affecting the external sense organ of the visual
apparatus leads to inflammation and possible damage to the surface of
the eye. According to the American Optometric Association (www.aoa.
org) DED can develop for many reasons, including:

• Age Dry eyes are part of the natural aging process. People over
the age of 65 experience some symptoms of dry eye.

• Gender Women are more likely to increase dry eyes due to
hormonal changes caused by pregnancy, oral contraceptives and
menopause.

• Medications Some medications, including antihistamines, decon-
gestants, blood pressure medications, and antidepressants, can
reduce tear production.

• Medical conditions People with rheumatoid arthritis, diabetes,
and thyroid problems are more likely to have dry eye symptoms.
Environmental conditions. Exposure to smoke, wind, and dry
climates can increase tear evaporation with symptoms of dry eye.
Also the inability to blink regularly, such as when staring at a
computer screen for long periods of drying the eyes.

As part of the CDSS, some studies have been conducted on this
pathological condition; the authors ([15], 2019) starting from the
factors that characterize the disease, such as those listed above and
according to the guidelines of the American Academy of Ophthalmol-
ogy, acquire various data concerning the disease in order to build a
robust model to support clinical decision making to try to predict the

http://www.aoa.org
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condition in advance by analyzing symptoms. The authors consider
models such as neural networks, decision trees, random forest and
naive Bayes. The results that the authors obtained were quite accurate,
starting with the classification by decision trees given a sufficient
amount of data, structured in a certain way. The prediction rate of
random forest and decision tree algorithms is over 90% compared to
more complex methods such as neural networks and naive Bayes. A
more recent study ([16], 2020) developed a model based on machine
learning methods such as decision tree and LASSO to then predict a
scoring (probability) score for a classification using multiple logistic
regression. The authors consider as many factors as possible from the
data provided by the Korea National Health and Nutrition Examination
Survey (KNHANES) for 2012 (4391 sample cases). The results obtained
show that the point-based model obtained an AUC (area under curve)
of 0.70 (95% CI 0.61–0.78). Important factors included gender (+9
points for women), corneal refractive surgery (+9 points), current
depression (+7 points), cataract surgery (+7 points), stress (+6 points),
age (54–66 years; +4 points), rhinitis (+4 points), lipid-lowering drug
(+4 points) and omega-3 intake (0.43%–0.65% kcal/day; −4 points).
The proposed method is valid for finding important risk factors and
identifying the patient’s specific risk that could be applied to other
multifactorial diseases.

1.3. Objectives

As seen in Sections 1.1–1.2, CDSS can provide advanced tools in
the fight against various diseases, making use of advanced machine
learning and deep learning techniques; the purpose of this work and
objectives can be spelled out below:

• Addressing a complex problem such as DED disease related to HIV
status in HIV infected patients, in order to make a comparison
with a healthy population and try to infer characteristics that may
be of interest in studying the development of the disease

• Show that through advanced methods of machine learning, both
supervised and unsupervised, it is possible to direct research in
this area towards more recent technologies; studies so far at the
medical health level, make use of classical statistical tools which,
however important, have intrinsically distributive hypotheses that
cannot always be satisfied

• Analyze the factors that influence the development of the disease
through methods that can be interpretable and constitute an
advanced means of diagnostics, analyzing both locally each single
factor and as a whole, in order to have a broader picture of the
disease

1.4. Implications

In this work there are several implications that can bring added
value to the study of CDSS both in the specific context of this DED
disease, and for other problems that can be addressed by this approach.
First, a combination of unsupervised and supervised method is carried
out. The use of clustering techniques provides evidence on the data
structure, patterns and elements that can be extracted for information
and diagnostic purposes. Often, however, these techniques are an end
in themselves, in the sense that once groups have been created, the
evidence and correlations between the factors and elements that make
up the clusters are sought. In this paper, however, the clustering
methods are used twice simultaneously and using the output of the
first training cycle allows you to use it as input in the second and
get an overview of which method is better. Once this is done, it is
subsequently possible to predict or classify an instance by using a meta-
regressor or meta-classifier, thus being able to study the probability of
assignment to a particular cluster and evaluate the influence of each
individual feature. The approach is totally new, as for the works cited
previously, both for the classic CDSS and for those inherent to DED,
none of the cited authors has provided explanations and interpretability
3

of both the model used and the results obtained, thus providing the
clinical decision maker an instrument that it can be defined as ‘‘blind’’.
Black-boxing methods are certainly reliable and accurate, but they must
provide answers to the decision maker. The results obtained are of great
interest, as in addition to being able to establish whether a particular
patient may belong to one group rather than another, the method
provides results in terms of probability of disease development and the
possibility of opening the model and individually evaluate each method
used (for clustering) and the relationship of the features (for supervised
classification).

1.5. Outline

As regards the structure of the work, it is divided as follows: an
introductory part in which the panorama of CDSS methods is presented
and a general framework on Dry Eye Disease, with state of the art and
main case studies, implications, technologies and limitations. In the
introduction, the objectives and implications of this work are presented.
Below is a part related to the method presented in this work (Related
work): desirable properties of interpretable CDSS, the reasons for using
this approach for DED, a description of the data, the mathematical
methodology with the description of a clustering algorithm based on
stacking method. Subsequently a part on explainability (Explainable
ML) is presented with the main methods of features explanation and
feature importance, both for supervised and unsupervised methods.
The fourth part of the work (Experimental results) concerns the results
obtained in terms of performance of the algorithms used, the expla-
nation (opening black-boxe) of the algorithms. The fifth part (Clinical
Explainability) discusses the part relating to supervised and unsuper-
vised methods but from a clinical point of view, on the relationships
and implications of the different factors that make up the analysis of
the DED disease. In the last part the conclusions follow with a brief
summary of what has been done and what has been discussed, to then
address the limitations of the work and future objectives.

2. Related work

A recent work [17] compared two populations (HIV positive, n =
17 and healthy controls, n = 18) in order to assess whether there was
an association between the pathology and dropout of the meibomian
gland; the authors found statistically significant associations in the
group of HIV-infected individuals. This condition has been found in
50%–80% of cases in HIV and AIDS patients. A highly significant CD4
cell count has been associated with this condition, correlated with
a serious situation of the eye, as indicated by a recent study [18].
Starting from the case study by Agrawal et al. concerning a case-control
[19], [20] will be treated in patients with HIV infection (type 1). The
authors review and compare data from 34 HIV-infected patients and
32 control patient observations, in order to: ‘‘study the profile of tear
cytokines in HIV infected patients with HIV Disease Dry Eye (DED)
and studies the association between the severity of ocular inflammatory
complications and tear cytokine levels’’. The proposed methodology by
the authors, however, it is not about a machine-driven study learn-
ing methodologies but rather a parametric study based on classical
statistics epidemiological approach; in this application the goal is to
find meaningful models by the grouping procedure of the whole. The
method it is therefore unsupervised despite the presence (if desired) of
a binary variable which indicates whether the patient is HIV infected
or not. Factors that make dry eyes more likely may include the fact that
tear production tends to decrease as the age. This condition generally
occurs in female individuals over the age of 50, in many cases due to
hormonal changes caused by pregnancy, or due to the use of the birth
control pill or even due to a menopause issue. Diets low in vitamin A
or low in omega-3 fatty acids can contribute to this condition, not least
wearing contact lenses may be among the causes of the development
of this pathology. It is not a discussion of this application to predict
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whether a patient with certain characteristics may be affected by the
disease although it is not excluded that it may be a topic for later
discussion. The study [19] involved the comparison of 41 features
inherent in cytokine levels using the Luminex bead assay [20]; the
authors collected the data through recruitment in a Singapore referral
eye center. The authors used logistic regression for the study in order
to understand the correlations and the statistical significance of the
relationships. As mentioned, the intent of this work is to find significant
patterns in the data, through an unsupervised ensemble method in
accordance with the results obtained by the authors, they state that
specifically: ‘‘statistically significant differences were observed in the
mean epithelial growth factor (EGF), growth-related oncogene (GRO)
and gamma-induced interferon values protein 10 (IP-10)’’. They also
state that’’ EGF and IP-10 levels were higher and GRO levels were lower
in DED tear HIV-infected patients compared with DED patients without
HIV infection. The authors found: ‘‘no significant association between
varying levels of ocular surface parameters and cytokine concentrations
in HIV patients with DED’’, for a 𝑝-value greater than 0.05. The authors
herefore conclude that: ‘‘the EGF and IP-10 values were significantly
levated and the GRO levels were lower in the tear profile of HIV
atients with DED versus immunocompetent patients with DED’’.

.1. Motivation

Clinical Decision Support Systems (CDSS) have always played a
ery important role: from cancer problems [21], to heart attack pre-
ention [22], rather than the study and treatment of diabetes [23],
umerous CDSS tools use intelligent systems that rely on advanced
achine learning and deep learning techniques [24], therefore the

ole played by these complex algorithms has become a leading role
n recent years. Providing clinical operators with transparent tools is

responsibility that researchers in the field of AI must take on and
herefore in recent years a new branch known as Explainable AI has
een born, in order to make these so-called black-boxing, interpretable
nd transparent by the point of view of how these outputs are obtained
y the algorithms, [25]. This work offers interpretable and transparent
ools in order to build a CDSS that respects some desirable properties
f a decision support system [26] that makes use of machine learning
r deep learning techniques and methods. Such desirable properties
re the simulability, decomposition and transparency of the algorithms
Fig. 3).

1. Simulability: The author [26] sets this sub-feature as follows:
‘‘a model is transparent if a person can contemplate a model
simultaneously’’ or in the meaning of Ribeiro et al. [27]: ‘‘a
model is interpretable if it can be presented visually and under-
stood intuitively’’. The concept of transparency is also applicable
as the algorithm training is provided, the necessary steps and
each step which output it produces. Of course, by definition
an interpretable model is a simple model, but a problematic
problem that is added to that of interpretation is surely the
concept of compromise between complexity and interpretability,
the challenge therefore remains methods that work intuitively
dare a fairly simple explanation of complex models, such as
which on average lead to very predictive results more accurate.

2. Decomposition: Lipton [28], in his work he also introduces
the decomposition property, i.e. each input element of a model
must be individually interpretable, just think of the inputs of
a classification tree or a linear model. This property discrim-
inates between models to which the inputs are engineered or
anonymous, this property could also be affected not only by the
number of features considered and by their engineering, even if
certain indicators are contained in the data set or not.

3. Algorithmic transparency: At the algorithm level the notion
of interpretability can be applied in the phase in which the
algorithm learns. The author sets the example in the case of
4

Fig. 1. The figure shows the percentage values of missing values for the features
present in the dataset: over 10% it is advisable to remove such features that would
not add value to the analysis.

linear models, investigating the surface of the error obtained by
minimizing the loss function. The convergence to an excellent
global also for test data, can introduce the concept of trust in
the learning method, which in black-boxing like deep neural net-
works does not happen because, in the training phase, often the
associated cost functions to learning, they are optimized through
heuristic methods and therefore the solutions produced are not
optimal overall, but at best with approximations. Therefore the
concept of algorithmic transparency lies precisely in the very
way in which the algorithm works.

The aim of this work is therefore to provide a clinical support tool
based on advanced analytical methods that make use of intelligent
systems, such as ensemble clustering and methods of explainability
of algorithms and interpretation of results; the topic dealt with is
complex and therefore it is important from a clinical point of view to
be able, in addition to having an output on the risk of developing this
pathology (DED), it is equally important to break down the problem
and understand the relationships and weight of each factor inside the
built system. The methods used and the results obtained from this study
will be presented in the next sections.

2.2. Dataset

The data [20] concern 41 cytokine-related characteristics of HIV-
infected patients with DED (n = 34) and unaffected patients (n = 32)
for a total of 126 observations and 44 features (patient id, binary target
that indicate if HIV it is present or not and binary feature indicate
which eye is involved, right or left eye), these data were acquired
through analyzes carried out at a clinical facility in Singapore. The data
were processed by excluding the features that presented a percentage
of missing values > 10% (Fig. 1). Therefore the following have been
excluded: Eotaxin 49%, IL-17A 17%, IL-2 13% and IL-3 62%, IL-9
56% and MIP-1a 86%. The variables that had values lower than 10%
were imputed through the mean of the variable. In spite of this data
set, in order to implement a new unsupervised method, neither the
binary target variable indicating the presence or absence of HIV and
the binary variable indicating whether the eye is the right or the left is
not considered; these two features will be used later in the visualization
of the data and in the part relating to the features explainability.

2.3. Methodology

In most machine learning problems, the target variable that indi-
cates the presence or absence of the phenomenon under study (in the
case of classification, both binary and multiclass) is not always present;
there are cases in which learning problems are also so-called unbal-
anced, when the proportion of cases in a classification problem is very
different and leans more towards one class than another. Training an
unsupervised clusterizer is generally an excellent method for inferring
information within the data structure and for trying to understand if
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Fig. 2. A generic clustering ensemble framework, Source: Alqurashi, T. and Wang,
W.‘‘Clustering ensemble method’’.

a certain method can actually be defined as intelligent. In order to
understand the value and influence that cytokines have on the complex
clinical picture of the DED disease, it was deliberately decided to omit
the target variable and transform the problem into an unsupervised
problem; in this way the analysis is totally addressed on the examined
population and on the characteristics concerning the cytokines, in order
to highlight if there are significant differences between the groups. To
do this, a new method is therefore introduced, instead of considering
and analyzing the available data in a classical way. Obtaining groups
and omitting the target variable is a good way to evaluate post-analysis
the value of the deductions obtained on the data starting from only
the set of features inherent to the cytokyne. The method proposed in
this work is based on a new clustering methodology, precisely defined
Stacking Clustering Algorithms, in which a series of 𝐶1(𝑥),… , 𝐶𝑛(𝑥)
clusterizers are applied to the initial dataset in order to produce as-
signments of the respective examples to a specific cluster identified
a unique label. This label, for each clusterizer used in the previous
step will be used to train other 𝑚-clusterizers in the second step. This
method is known as stacking ensemble [29], in which this procedure
is used and the final prediction is obtained by applying a meta-learner
(in the supervised case) while in the unsupervised case as shown in
Fig. 2, the different clustering algorithms chosen are combined by the
consensus function, which in our case is based on majority voting,
expressed by the following formula

𝐶∗ = mode(𝐶1(𝐱),… , 𝐶𝑘(𝐱)) (1)

Once the final label for each cluster has been obtained from the
consensus function (1), a meta-learner is trained who takes as input the
set of meta-features and the optimal label as a target, in order to obtain
a probability of belonging to a specific cluster and obtain a features
importance for each cluster model used, as using the meta-features
space the input becomes the cluster algorithm used and therefore it
is possible to obtain an importance ranking of each of them; the steps
described are shown in the pseudo code presented below.

The strength of this method is intuitive; selecting a set of algo-
rithms that contribute to forming a final clustering model, through
the conversion into a classification model through the introduction
of a meta-learner on the meta-features space, allows to obtain the
importance of each of the clusterizers used, being able in this way to
decompose the ensemble and make it interpretable.

3. Explainable machine learning

The methods of Explainable AI are much discussed today and are
beginning to play a very important role in the science of decision mak-
ing, as an intelligent system often based on black-box methods must
necessarily be able to provide the decision maker with the possibility
of know

(a) how the decision came about
(b) how this decision is to be interpreted

this must necessarily be contemplated in the context of clinical decision
support systems. In order to build a transparent and interpretable
clinical decision support system, some of the main explainable ML
methods used are introduced.
5

Algorithm 1: Stacking Clustering Algorithm
Phase 1

1 input:
Features set 𝐗
𝑘-clusterizers, 𝐶𝑖, 𝑖 = 1, ..., 𝑘

2 for i ← 1 to 𝑘 do:
Train 𝐶𝑖 on features set 𝐗 and obtain the cluster’s label
𝑙𝑖 = 𝐶𝑖(𝐗), 𝑖 = 1, ..., 𝑘

3 Assign
𝑙𝑖, ..., 𝑙𝑘 ← 𝐗̃
Phase 2

4 input:
New features set 𝐗̃
𝑘-clusterizers, 𝐶𝑖, 𝑖 = 1, ..., 𝑘

5 for i ←1 to 𝑘 do:
Train 𝐶𝑖 on new features set 𝐗̃ and obtain the cluster’s label
𝑙𝑖 = 𝐶𝑖(𝐗̃), 𝑖 = 1, ..., 𝑘

6 do:
Compute 𝐶∗ = mode(𝑙1, ..., 𝑙𝑘)
Phase 3

7 input:
Data  = (𝐗̃, 𝐶∗)
Supervised learner 

8 do:
Train  on  and get 𝑝𝑗

9 Output: Probabilities class 𝑝𝑗 = 𝑃
(

𝐶𝑗 = 𝑖|𝑋𝑗
)

Fig. 3. Conceptual diagram exemplifying the different levels of transparency charac-
terizing a ML model M with 𝜙 denoting the parameter set of the model at hand: (a)
simulatability; (b) decomposability; (c) algorithmic transparency. Source: [26].

• LIME
Ribeiro et al. [27] in this regard, introduces the concept of trade
off between interpretability and loyalty LIME (Local Interpretable
Model-Agnostic Explanations) formalized through the following
optimization problem:

min
𝑔∈𝐺

𝐿(𝑓, 𝑔, 𝜋𝑥) +𝛺(𝑔) (2)

where 𝛺(𝑔) can be defined as a measure of complexity (as op-
posed to interpretability) of the model 𝑔, for example the number
of parameters, or the depth of a tree in the case 𝑔 is a Classifica-
tion Trees, or for a linear model the number of non-zero weights,
for example in the Lasso–Ridge approach. So a model 𝑔, belonging
to the wider class of models 𝐺, minimizes the 𝐿, which is a loss
function which measures the infidelity of the model considering
the proximity measure 𝜋𝑥. Infidelity is defined by the authors as
‘‘the predictive behavior of the model near the instance to be
predicted’’, therefore a discrepancy between what is expected and
what is predicted.

• Partial Dependence Plot
In Friedman’s work [30] some methods for the interpretation of
models are presented. PDP is focuses on visualization, one of
the most powerful interpretative tools and the display is limited
to small topics. Functions of a single variable with real value
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can be plotted as a graph of the values of 𝐹 (𝑥) against each
corresponding value of 𝑥. The functions of a single categorical
variable can be represented by a bar chart, each bar represents
one of its values and the bar height the value of the function.
Viewing functions of higher-dimensional topics is more difficult.
Is therefore useful to be able to visualize the partial dependence
of the approximation 𝐹 (𝑥) on small selected subsets of the input
variables. The functional form of 𝐹 depends on the chosen values
of the input subset 𝑧𝑙, if the dependency is not very strong the
expected value of 𝐹 (𝑥), that is E[𝐹 (𝑥)] can represent a good
synthesis of the partial dependence of the chosen variables of
the subset 𝑧𝑙, a value such that 𝑧𝑙 ∪ 𝑧𝑖 = 𝑥 where 𝑧𝑙 is the
complement subset of size 𝑙 and 𝑧𝑖 is a chosen target subset.
Dependencies can be different, as additive or multiplicative, for
example in classification problems the author suggests that partial
dependence diagrams of each 𝐹𝑘(𝑥) on subsets of variables 𝑧𝑙
most relevant for a given class provide information on how input
variables affect the respective probabilities of individual classes.

• Individual Condition Expectation
ICE [31] is a tool to visualize the model estimated by any su-
pervised learning algorithm. While the PDP helps to visualize the
partial average relationship between the estimated response and
one or more features, in the presence of substantial interaction
effects, the partial response relationship can be heterogeneous,
therefore an average like the PDP, can blur the complexity of
the relationship modeled, instead the ICE improves the partial
dependence diagram by graphically representing the functional
relationship between the expected response and the characteristic
for the individual observations. In particular, the ICE graphs show
the variation of the values adapted in the range of a variable
suggesting where and to what extent heterogeneity can exist.

• Feature Interaction
Starting from his work on the PDP method, Friedman 𝑒𝑡. 𝑎𝑙
presents another method, called Feature Interaction [32] which
assumes that a function 𝐹 (𝑥) has an interaction between two of
its variables 𝑥𝑗 and 𝑥𝑘 if the difference in the value of 𝐹 (𝑥) as
a result of changing the value of 𝑥𝑗 depends on the value of 𝑥𝑘.
Such an assumption can be formalized as

E𝑥

(

𝜕2𝐹 (𝑥)
𝜕𝑥𝑗𝜕𝑥𝑘

)2

> 0

or by an analogous expression for categorical variables implying
finite differences. If there is no interaction between these vari-
ables, the function 𝐹 (𝑥) it can be expressed as the sum of two
functions, that is 𝐹 (𝑥) = 𝑓𝑗 (𝑥𝑗 ) + 𝑓𝑘(𝑥𝑘) one of which does not
depend on 𝑥𝑗 and the other independent of 𝑥𝑘.

• Shapley Value
Among the important works to refer to it is possible to mention
the Shapley Values [33], an innovative method in which an
additive method assesses the importance of variables through the
expected conditional value of the original model, it is possible to
mention the work of Koh and Liang [34] in which the authors
measure the importance of the variables through the Influence
Function, i.e. starting from the minimization of a risk function of
the following type 𝑅(𝜃) = 1

𝑛
∑

𝑖 𝐿(𝑧𝑖, 𝜃). For a more detailed discus-
sion, from which various components of this chapter have been
extracted, please refer to the excellent work of the authors [26].

3.1. Features importance

In this part of the work are presented some of the main features
importance methods in order to give the reader a general overview and
understanding of the context in which this work is placed. Features im-
portance is an analytical technique that aims to understand how much
6

each feature within the data space contributes to the final prediction
(or classification); the methods presented here are those widely known
and applied in different contexts, including the clinical one, due to their
simplicity of interpretation and explainability. The first two methods
are a consequence of the application of the Random Forest algorithm,
a set of predictors or classifiers of the decision tree type combined in
a causal way in order to improve the final result of the model; these
methods [35] are defined respectively variable importance (VI) and
Gini importance (GI) which aim to evaluate the features in the model
when it descends the impurity of the nodes at each iteration, permuting
the features in a random way; the GI method evaluates this decrease
through the Gini index, while the VI considers the average decrease.
Another interesting method is the one proposed by Gedeon [36] who
introduces a new method based on the matrix of the input weights of
a neural network, through the random elimination of less important
features using a brute force method. A recent and very interesting
method [37] is the Importance Ranking Measure (FIRM), which uses
the retrospective analysis of machine learning algorithms that allows
to obtain both predictive performance and performance from the point
of view of explainability. This method is also interesting as it considers
the underlying correlation structure of the features in such a way as
to find the most important features. Another interesting method is the
PIMP [38] which is a heuristic correction of the VI and GI methods,
in which the target variable is exchanged estimate the importance of a
features in a casual way. assuming that it follows a certain probability
distribution (Gaussian, lognormal or gamma), the value of the 𝑝-value
obtained from the resulting estimate is used as a corrected measure of
feature relevance.

3.2. Evaluation

The methodologies mentioned in the previous subsections 3 require
some algorithmic performance evaluation measures; since the prob-
lem treated in this work involves a hybrid approach in which first
unsupervised methods (clustering) and then a supervised meta-learner
are applied in order to make the model interpretable and obtain a
probability of belonging to a given cluster, it introduced both measures
that allow to evaluate the homogeneity of the groupings obtained
with stacking clustering and both measures that evaluate the correct
classification of the instances; last but not least, the hybrid approach
first unsupervised and then supervised makes it possible to apply the
methods of explainability discussed above 3.

Clustering . Rosenberg and Julia Hirschberg [39] introduce a measure
of homogeneity known as V-measure (Validity measure), based on
the concept of external entropy that solves some problems that other
evaluation metrics used in clustering present, such as the type of data
processed, the algorithm used and also the simultaneous measurement
of two desirable properties such as homogeneity and completeness.
One of the traditionally used evaluation methods is the Dunn’s in-
dex [40], which measures the internal homogeneity of the points
grouped for each cluster, minimizing the internal variance and separat-
ing the groups externally. Another well-known and used method is the
Silhouette Coefficient [41], which validates the measure of coherence
within the clusters referring to the quality of the classification of each
object; this method is widely used and provides an intuitive visual
representation of the grouping.

Classification. Starting from the confusion matrix that it can be ap-
plied to binary and multiclass classification problems the algorithms
used were evaluated by the following metrics, namely recall, precision,
accuracy and Area Under Curve (AUC). The metrics defined are

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(3)

and

𝑟𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃 (4)

𝑇𝑃 + 𝐹𝑁
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For binary classification, accuracy can also be calculated in terms of
positives and negatives classes

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 + 𝑇𝑁

(5)

here

(a) TP (True positive): correctly classified or detected
(b) FP (False positive): incorrectly classified or detected
(c) FN (False negative): incorrectly rejected
(d) TN (True negative): correctly rejected

urthermore is defined the F-measure score as follow

-𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2
1∕𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 1∕𝑟𝑒𝑐𝑎𝑙𝑙

(6)

or classification problems in which the probability of belonging to a
ertain class of an instance is evaluated, it is possible to use the fol-
owing metric defined receiver operating characteristics (ROC), which
s also a good intuitive visual interpretation, from this measure it is
ossible to derive the formulation of AUC which has a very interesting
tatistical property as shown by [42]: the AUC of a classifier is equiva-
ent to the probability that the classifier will classify a randomly chosen
ositive instance higher than a randomly chosen negative instance.

. Experimental results

This section presents the main results obtained, both for the ensem-
le clustering method and for the supervised part. The performance
esults of the models, the interpretation of the features, their impor-
ance and a whole part in which the results obtained from the clinical
oint of view are explained are presented.

.1. Algorithms performance

For the part relating to clustering algorithms, four methods have
een selected: 𝑘-means, agglomerative clustering, birch and spectral
lustering. Using the silhouette method and the elbow method for
etermining the necessary clusters, three distinct clusters were cre-
ted. The choice of these methods falls on their good interpretability,
ethods that answer well to the question ‘‘how the algorithm works’’

Section 2.1): the 𝑘-means is based on a euclidean distance and from the
oint of view of mathematical optimization its resolution is very simple,
t minimizes the variance between groups. The agglomerative algorithm
s a hierarchical method in which in each step of the algorithm, the
wo most similar clusters are combined into a new larger cluster. This
rocedure is repeated until all points are members of one large cluster.
he birch method is always part of the hierarchical methods and works
lot on large amounts of data, in our case study considering a large

et of features it could be a good method, from the point of view
f transparency, this method works through a tree structure therefore
rom the logical point of view it is easy to understand. Spectral clus-
ering is a technique that works well where the set of features is very
arge as it reduces the dimensionality by mapping the new points in
vector subspace, making one of the adjacency matrix being a graph-
ased method; by choosing a euclidean kernel function the relationship
ith the 𝑘-means method is direct and therefore also its resolution. For

he evaluation of the capacities of the single clustering algorithms it is
ossible to use the previously presented metric known as V-measure:
t is evaluated the homogeneity and completeness between the optimal
abel obtained by the consensus function and the label of each single
lusterizer, then it evaluates the homogeneity and completeness of
ach clusterizer with itself but at the previous level in staking, i.e. it
valuates the label obtained at the first level with that obtained at the
econd level for the same method. Then the results obtained are given
n Table 1.

For the supervised part, the well-known logistic regression was
sed in order to create a meta classifier of the instances on the basis
7

able 1
-measure analysis.
Method Algos-labels and optimal label Intra-stacking levels

birch 0.73 1.0
agglomerative 1.0 0.67
𝑘-means 1.0 0.40
spectral 0.73 0.38

Table 2
Classification report.

Precision Recall F1-score

cluster 0 0.90 0.90 0.90
cluster 1 0.82 0.90 0.86
cluster 2 0.88 0.78 0.82

Fig. 4. Confusion matrix comparison: train vs test.

Fig. 5. Multiclass ROC curve analysis.

of the meta features previously obtained with the stacking clustering
procedure. The classifier correctly assigns the respective classes to the
classified test instances with good accuracy, as can be seen from Fig. 4
which shows the respective confusion matrices for the train and test set.
The accuracy of the classifier for the train and test set data, respectively,
is equal to 0.91 and 0.85 with AUC value 0.86, Table 2 shows the values
of the other metrics obtained for each clustering label on which the
classification was carried out.

Fig. 5 shows the analysis of the ROC curve with respect to the three
analyzed clusters; the relationship between true positives and false
positives for cluster 0 is quite good in correspondence, respectively, of
values equal to 1 (TP) and 0.1 (FP), while for cluster 1 the situation is
a little different, it is respectively 1 (TP) and 0.5 (FP), the last cluster,
2 instead shows values equal to 1 (TP) and over 0.5 for false positives
(FP), being the AUC equal to 0.86 it can be deduced that there is 86%
probability that the result of this classifier applied to an individual
randomly extracted from the group of patients is higher than that
obtained by applying it to an individual randomly extracted from the
group of healthy, therefore a good chance of being able to distinguish

in which cluster to assign the new instances.
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Fig. 6. Clustering importance: permutation importance.

Table 3
Clustering explanation: random forest.
Method Importance

agglomerative 0.337020
𝑘-means 0.298459
spectral 0.211150
birch 0.153371

Table 4
Clustering Explanation: LIME Global.
Method Importance Cluster

𝑘-means 0.4772 0
𝑘-means −1.7429 1
spectral −1.4031 0
spectral 0.6024 1

4.2. Algorithms explanation

Having used the stacking method in clustering therefore allows us to
analyze and interpret each single method used as a feature, in order to
see the global and local contribution of each method in order to create a
robust and homogeneous grouping within and the most heterogeneous
on the outside, between the instances present in the data. To do this
are used the methods discussed, such as LIME, Random forest and
Permutation importance.

From Fig. 6 it is possible to see that the two algorithms that have
a greater weight are spectral clustering and 𝑘-means, and this is con-
sistent with what was stated in the section dedicated to methodology,
as by choosing a Euclidean kernel the spectral is reduced to 𝑘-means,
which it has been seen to be one of the simplest and most transparent
methods to use.

Regarding the random forest method for importance it can be seen
in Table 3 that the most important methods are the agglomerative and
the 𝑘-means, even here it is not surprising as the simplicity of the two
methods indicates a clear transparency on how such. methods work.

Table 4 clearly shows the weight of each method on the global
classification in clustering, also here with the LIME method it can
be observed that 𝑘-means and spectral clustering are the most robust
methods in the clustering of instances.

4.3. Features importance

For the part concerning the importance of each feature it can con-

sider the application of some methods discussed above, one is certainly

8

Fig. 7. Feature importance: random forest.

Fig. 8. Feature importance: logistic regression.

the one based on random forest and logistic regression, whose method
is based on the standard deviation of the coefficients estimated by the
model.

Fig. 7 shows the application of the random forest and Fig. 8 that
of logistic regression, the most significant feature from the plot was
omitted as its high value did not render the visualization of the other
features well. Respectively in each method the value of the feature
𝑤ℎ𝑖𝑐ℎ 𝑒𝑦𝑒 (binary 0–1) obtained a score equal to 0.35 (random forest)
and 5.80 (logistic regression), confirming the significance of the feature
in both methods. As regards the impact of the other features, the vari-
able named 𝑡𝑎𝑟𝑔𝑒𝑡 (binary) which indicates the presence or absence of
HIV in the subject, is confirmed as significant in the logistic regression
and practically null in the random forest.

Fig. 9 shows the method known as permutation feature impor-
tance [35] which also shows that the variable which eye has a signif-
icant impact on the final classification, equal to 0.40, in accordance
with random forest and logistic regression.
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Fig. 9. Feature importance: permutation features importance.

Fig. 10. Feature explainability: LIME.

.4. Explainability

After providing a result in terms of the impact of the features on the
lassification, in this section are presented the results from the point of
iew of explainability and interpretation. Let us consider our logistic
lassifier and use a method known as LIME defined in the previous
ections: Fig. 10 shows the explanation of the features at a global
evel, that is for the whole model, and it can be seen that also in this
ase, depending on the cluster, it can evaluate the single impact of the
eature. In this case the significant impact is always the one that refers
o the feature 𝑤ℎ𝑖𝑐ℎ 𝑒𝑦𝑒 which in cluster 0 increases the probability of
elonging to that particular group by 6 times and in a minor (negative)
ut still significant form has an impact on the two remaining clusters,
s proof and validation of the methods used in the previous subsection.

Using the LIME method, which provides a local interpretation, for
single instance, of how the features impact the final classification,

ables 5–7 show the values explained for three different patients. Each
able shows the probability of belonging to a certain cluster for that
atient, with the name of each feature and the corresponding value that
ffects that certain probability; in the case of patient CTH024 (Table 7)
t is noted that the value of cytokine TGF-a has a strong contribution in
dentifying group 2 as probable to insert that patient, as well as in group
for patient CTH025 (Table 6) in which the values of the cytokines EGF

nd GRO have a strong relationship with belonging to that group.

. Clinical explainability

This section provides an explanation of the results obtained above,
rom the clinical point of view and the possible implications, in order
9

Table 5
LIME Explanation: patient: TH003.
y = 0 (p: 0.953) Contribution Feature

+7.198 which eye
+0.421 G-CSF
+0.267 IL-7
+0.236 EGF
+0.217 GRO
+0.157 IL-10
+0.101 IL-15
+0.100 IL-13
+0.098 sCD40L
−1.072 IP-10

Table 6
LIME Explanation: patient CTH025.
y = 1 (p: 0.027) Contribution Feature

+0.924 GRO
+0.713 G-CSF
+0.608 IL-7
+0.428 IL-10
+0.302 sCD40L
+0.260 EGF
+0.241 IL-15
+0.236 IL-8
+0.179 IL-13
−0.336 IP-10

Table 7
LIME Explanation: patient CTH024.
y = 2 (p: 0.887) Contribution Feature

+5.535 TGF-a
+1.326 PDGF-AA
+1.091 IL-6
+0.906 MIP-1b
+0.869 HIV presence
+0.829 IL-15
+0.819 IL-5
+0.734 IP-10
+0.701 FGF-2
+0.692 MDC

Table 8
LIME Explanation: patient TH003.

y = 1
(p: 0.95)

Negative Positive Feature Value

0.46 0.00 < which eye which eye 1.00
0.30 0.00 < HIV

presence ≤ 1.00
HIV
presence

1.00

0.16 TGF-a ≤ 503.15 TGF-a 105.72
0.10 FGF-2 ≤ 696.45 FGF-2 353.09
0.09 PDGF-BB ≤ 2309.25 PDGF-BB 1523.50
0.05 IP-10 ≤ 172976.24 IP-10 223207.87
0.07 GRO ≥ 20550.58 GRO 17005.63

to provide the complete CDSS tool, assuming that the clinical operator
works closely with the analytics expert and more generally of artificial
intelligence, so that the results are robust from a methodological point
of view, above all easily usable and interpretable in the clinical domain.

5.1. Clustering explanations

In the results obtained by Agrawal et al. [19], it was highlighted
that some cytokines are in close association with the DED pathology,
therefore starting from their observations and their analysis results,
in this phase of explainability of clustering, the results obtained on
the basis of the cytokines GRO, EGF and IP-10, with respect to some
features, such as which eye (1=right, 0=left) and the presence of HIV (0
= negative, 1 = positive) and obviously the label (obtained through the
consent function) of membership in order to evaluate the assignment.



F. Curia Healthcare Analytics 1 (2021) 100001

I
c
i
6
0
I
i
l

h
g
i
b
i

5

c
u
t
o
b
(
a
1
I
s
(
c
p

Fig. 11. Comparison IP-10 and GRO cytokines.

Fig. 12. Comparison EGF and GRO cytokines.

Fig. 13. Comparison IP-10 and EGF cytokines.

Figs. 11–13 show the clustering results with respect to the EGF,
P-10 and GRO features. We can observe that in Fig. 11, from the
omparison between GRO and IP-10 the good ability of the method to
nsert in group 1 the seropositive patients (HIV = 1) emerges, equal to
0% of the instances and the remaining 40% are included in the cluster
; in cluster 1 there are those patients who actually have very high
P-10 values. In cluster 2, on the other hand, it is possible to observe
mmunocompetent patients (equal to 50%) with higher GRO values and
ower IP-10, confirming the results obtained by the authors [19]

By comparing the cytokines EGF and GRO, from Fig. 12 it note that
ere too it has an interesting result; in cluster 0, 4% of the units of this
roup have quite high values while those of the EGF are much lower
n patients with HIV belonging to cluster 1. Fig. 13 confirms what has
een said about the levels of IP-10 in relation to the EGF for patients
n cluster 1 and 0.

.2. Supervised explanations

Once it is obtained the labels are applied to a supervised binary
lassifier and based on the probabilities obtained for each patient,
sing the explainability methods 5–8. Obtaining the labels, it is applied
o a supervised binary classifier and on the basis of the probabilities
btained for each patient, are used the explanability methods (Ta-
les 5–8, obtaining some information of interest; for a given instance
patient: TH003, with HIV presence, 6) shows significant levels of EGF
nd GRO in order to increase the probability of belonging to cluster
, that of probable patients with HIV and DED, while the cytokine
P-10 slightly decreases this impact. The eye-related feature has a
ignificant contribution to the classification. For the patient CTH025
immunocompetence, Table 6) with low probability of belonging to
luster 1 (in fact the hypotheses are that in cluster 1 there are HIV
ositive with DED), GRO, EGF and IP-10 also in this case are features
10
of interest. In Table 7, the immunocompetent patient CHT024 with
a high probability of belonging to group 2 (in which it is possible
there are patients without HIV with DED, consistent since from the
HIV presence features it is known that the patient is seronegative) so
that the EGF and GRO are not the most influential while IP-10 is. In
Table 8 for patient TH003, through the LIME method always with 95%
probability of belonging to cluster 1, so that the values of the cytokine
GRO equal to 17005.63, if higher than 20000, increase the risk by 7%,
therefore consistent with the [19] results as below this threshold the
risk decreases. The cytokine IP-10 confirms this hypothesis, since the
present value for the instance is equal to 223207.87, a value less than
172976 would decrease the probability by 5%.

5.3. Extended discussion

In a clinical decision-making process, which makes use of tech-
niques based on intelligent systems, the results obtained as those ob-
tained in this work (Sections 4 and 5), without the use of explanability
methods, could remain confined to a domain too technical related to
the ability to understand the underlying mathematical method. Using
the proposed methods, both for the decomposition of an ensemble
method (in the case examined, clustering), and for the features impor-
tance and features explanation, the clinical operator is equipped with a
complete tool able to collect the necessary data, analyze them, predict
or classify a phenomenon, make it interpretable and transparent. The
proposed framework could be configured in a broader framework of
prescriptive analysis since starting from the inferences deduced within
the data and from the predictions (related to the probability of devel-
oping the pathology) it is possible to make practical decisions about the
problem treated. In the case of study treated, the results of Tables 5–
8, for example, support the diagnosis of the clinical operator for a
specific patient, for which it is possible to deduce both which are
the cytokynes with abnormal values, and which suffering from DED
(i.e. patient TH003). Also imagining a decision maker who obtaining
an output from a model based on AI or ML, is induced to make a
decision on how to approach the therapy for DED pharmacologically
(for example) but without having evidence

1. on the characteristics (cytokines) that determine the increase or
decrease in the risk probability

2. on the clinical picture of the pathology for each individual
patient

3. on the impact of the disease in subjects who do not have similar
characteristics

The proposed method would be able to identify the levels of
cytokyne involved, associated with the probability estimated by the
model (or models), the relationship between them and would allow
the decision maker to have a detail on each component of the decision-
making process. In the works mentioned in the first part of the work
(Sections 1.1–1.2), these characteristics are not used, the works focus a
lot on the accuracy of the models to predict the risk of disease onset, on
the sensitivity of the models in recognizing this risk, but no one focuses
on the interpretation of the model itself and above all, fundamentally,
on what the model explains. Regarding the treatment and study of DED
in HIV-infected patients, this work could constitute an extra step in
the study of the disease and its treatment, placing itself in a field of
literature in a middle way between machine learning and the clinical
study of the phenomenon.

6. Conclusions

The use of a hybrid machine learning tool to support a clinical study
such as the one treated has proven to be highly functional; combining
unsupervised and supervised techniques, methods of features impor-
tance and explainable ML allowed us to build a robust tool that in a
CDSS could be absolutely supportive. Logistic regression obtained an



F. Curia Healthcare Analytics 1 (2021) 100001
accuracy of 91% on the train data and 86% on the test; the choice
of logistic regression as meta-learner for the classification is motivated
by the fact that the same authors [19] used logistic regression in their
study, but obviously nothing prevents other methods from being used
for this particular case of study (i.e. decision trees, neural network, . . . ),
but taking into account that using complex black-box methods such as
neural networks, for example, always provides for the use of techniques
for explaining the results as was done in this work by means of the LIME
or Shapley method. The results obtained confirm the previous study by
the [20] authors, [19], regarding the values of the cytokines GRO, EGF
and IP-10 and their association with DED disease and seropositivity:
this work adds a small contribution on how to use these [20] data, on
how to interpret the results and another point of view on how to study
the associated phenomenon.

6.1. Limitations and future work

By introducing this new methodology in a clinical decision-making
process, decision makers will surely have an extra tool to deal with
the diagnosis and treatment of this particular pathology that has been
treated. However, there are several questions that at present can be
investigated and further solutions to be pursued; for example if the
proposed framework, based on clustering methods in which groups
are chosen a priori, can be extended to the use of different methods,
perhaps not necessarily based on Euclidean distances, or if textual data
can be used for example, collected from medical records, or image data.
In the hypotheses just made it is clear that the tools can be different and
more complex, in the case study the data were numerical, extending to
categorical, textual and image data, or in any case unstructured data,
the resources to be put in place different. Instead of perhaps using a
𝑘 -means method you will need to use a 𝑘 -modes or other methods,
such as autoencoder or self-organizing maps. Another consideration
is related to data: how could the method behave if massive amounts
of data were used? Therefore it should also be clear which and how
many computational resources to put in place and if the explainability
methods can be extended to unstructured data; fortunately, advances in
explainable AI and clinical research continue and to date some of the
questions posed have already been answered. The proposed method is
applied to few data and computationally there were no difficulties and
the mathematical methods used did not have any problems in use; in
general, clinical problems have quite manageable datasets, since the
aim of the work was to show both the potential of the proposed method
and to make a contribution in the field of research for DED, although
there are some limitations, the framework presented is in any case
usable in the light of recent advances in this area.
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