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Abstract
We consider a general statistical mechanicsmodel on a product of local spaces and prove that,
if the corresponding measure is reflection positive, then several site-monotonicity properties
for the two-point function hold. As an application, we derive site-monotonicity properties
for the spin–spin correlation of the quantum Heisenberg antiferromagnet and XY model,
we prove that spin-spin correlations are point-wise uniformly positive on vertices with all
odd coordinates—improving previous positivity results which hold for the Cesàro sum. We
also derive site-monotonicity properties for the probability that a loop connects two vertices
in various random loop models, including the loop representation of the spin O(N) model,
the double-dimer model, the loop O(N) model and lattice permutations, thus extending the
previous results of Lees and Taggi (2019).

1 Introduction

We consider a general probabilistic model on the torus TL = Z
d/LZd , whose realisations

live in a product of local spaces. Each local space is associated to one of the vertices ofTL and
elements of the local spaces interact with each other via a linear functional acting on a real
algebra of observables. This general setting includes various important models in statistical
mechanics, for example the spin O(N) model, the quantum Heisenberg anti-ferromagnet
and XY model, the dimer and the double-dimer model, lattice permutations, and the loop
O(N) model. We prove that, if the linear functional acting on functions of our state space is
reflection positive, then several site-monotonicity properties for the two-point function hold.
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This generalises the monotonicity and positivity results of [13] to a very general system. This
general result has the following implications.

Firstly, in their seminal paper [6], Fröhlich, Simon and Spencer introduced a method
for proving the non-decay of correlations of the two-point function of several statistical
mechanics models in dimension d > 2. This method was further developed in [7] and used
in many other works (we additionally refer to [4] for an overview). More precisely, this
method is used to prove that the Cesàro sum of the two-point function is uniformly positive.
Our general monotonicity result shows that, when this method works, a stronger result can
often be obtained. Namely not only is the Cesàro sum of the two-point function uniformly
positive in the system size, but the two-point function is also uniformly positive point-wise.
This result was derived by Lees and Taggi [13] in the special case of the spin O(N ) model
and here it is generalised to an abstract statistical mechanics setting.

As an example of a new application we consider quantum spin systems including the
Heisenberg antiferromagnet andXYmodel,whichwere not coveredby the frameworkof [13].
Quantum spin systems are important class of statistical mechanics models whose realisation
space is the tensor product of local Hilbert spaces.

It is already known [5,7–9,16] that the Gibbs states of this model are reflection positive
in the presence of anti-ferromagnetic interactions and that, in dimension d > 2, the Cesàro
sum of the two-point function is uniformly positive for large enough values of the inverse
temperature parameter and system size. Our result implies that, when the spin or dimension
is large enough, the spin-spin correlation is point-wise uniformly positive for vertices with all
odd coordinates, extending the existing results. We fully expect that this uniform positivity
should extend to all vertices, not just ‘odd’ vertices. In addition this method can be applied
to other cases where the Cesàro sum of two-point functions is known to be positive, such as
in [11,12,15].

Our third main result involves a general class of random loop soup models, which we
refer to as the random path model. This class includes the loop representation of the spin
O(N) model [1,13], the double-dimer model [10], lattice permutations [2,3,15], and the loop
O(N) model [14]. In [13], site-monotonicity properties for the two-point function—which is
defined as the ratio of partition functions with a walk connecting two-points in a system of
loops and the partition function with only loops—were derived. Here we extend the result to
a general class of two-point functions, including the probability that two fixed vertices have
a loop passing through both of them.

2 Model andMain Result

Consider the torus TL = Z
d/LZd with d ≥ 2 and L ∈ 2N.

Denote by o = (0, . . . , 0) the origin of the torus. For each x ∈ TL let�x be a Polish space
of local states (for example SN−1, C2S+1, {−1,+1}, . . .). Further let ⊗ be some associative
product between the�x ’s (for example the cartesian product or the tensor product). Our state
space is

S = ⊗x∈TL�x . (2.1)

We denote elements of S by w = (wx )x∈TL where wx ∈ �x . Let AL be a real, finite
dimensional, algebra of functions on S with unit. For example if �x = S

N−1 (as in the case
of the spin O(N ) model) then we could take ⊗ to be the cartesian product and AL to be
the algebra of functions S → R that are measurable with respect to the Haar measure on
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S. If �x = C
2S+1 (as in the case of spin-S quantum systems) then we take ⊗ to be the

tensor product and AL the set of Hermitian matrices acting on S. Further, let 〈·〉 be a linear
functional on AL such 〈1〉 = 1. Our key requirement is that 〈·〉 is reflection positive, which
we describe briefly.

2.1 Reflection Positivity

Consider a plane R = {z ∈ R
d : zi = m} (where zi = is the i th coordinate of z) for some

m ∈ 1
2Z ∩ [0, L) and some i ∈ {1, . . . , d}. Let ϑ : TL → TL be the reflection operator that

reflects vertices of TL in the plane R (although it is worth noting that R corresponds to a pair
of plane in TL ). More precisely, for any x = (x1, . . . , xd) ∈ TL

(ϑx)k :=
{
xk if k 	= i,

2m − xk mod L if k = i .
(2.2)

If m ∈ 1
2Z \ Z we call such a reflection a reflection through edges, if m ∈ Z we call such

a reflection a reflection through vertices. We denote by T
+
L ,T−

L the partition of TL into two
halves with the property that ϑ(T±

L ) = T
∓
L .

We say a function A ∈ AL has domain D ⊂ TL if for any w1, w2 ∈ S that agree on D
we have A(w1) = A(w2). Consider the algebras A+

L ,A−
L ⊂ AL , of functions with domain

T
+
L ,T−

L respectively. The reflection ϑ acts on elements w ∈ S as (ϑw)x = wϑx and for
A ∈ A+

L it acts as ϑ A(w) = A(ϑw).
We say that 〈·〉 is reflection positive with respect to ϑ if, for any A, B ∈ A+

L ,

1. 〈AϑB〉 = 〈Bϑ A〉,
2. 〈Aϑ A〉 ≥ 0.

A consequence of this is the Cauchy–Schwarz inequality

〈AϑB〉2 ≤ 〈Aϑ A〉〈BϑB〉. (2.3)

We say 〈·〉 is reflection positive for reflections through edges resp. vertices if, for any
reflection ϑ through edges resp. vertices, 〈·〉 is reflection positive with respect to ϑ .

2.2 Main Results

For j ∈ {1, 2} let F j
o ∈ AL be functions with domain {o}. Fix an arbitrary vertex x ∈ TL and

let o = t0, t1, . . . , tk = x be a self-avoiding nearest-neighbour path from o to t , and for any
i ∈ {1, . . . , k}, let �i be the reflection with respect to the plane through the edge {ti−1, ti }
such that �i ti−1 = ti . Define

(F j
o )[x] := �k ◦ �k−1 . . . ◦ �1 (F j

o ).

Observe that the function (F j
o )[x] does not depend on the chosen path (see Fig. 1 for an

illustration). For a lighter notation denote by F j
x = (F j

o )[x] the function obtained from F j
o

by applying a sequence of reflections that send o to x .
We define the two-point function,

GL(x, y) :=
〈
F2
x F2

y

( ∏
z∈TL\{x,y}

F1
z

)〉
,
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Fig. 1 An example of a sequence
of reflections sending a function
with domain o to a function with
domain x

omitting the dependence on the functions F j
o in the notation. For spin system examples we

would usually take F2
o to be the spin at o and F1

o = 1, meaning that GL(x, y) is a spin–spin
correlation. We say that the two-point function is translation invariant if, for any A, B ⊂ TL

and z ∈ TL 〈 ∏
x∈A

F1
x

∏
x∈B

F2
x

〉 = 〈 ∏
x∈A+z

F1
x

∏
x∈B+z

F2
x

〉
, (2.4)

where the sum is with respect to addition on TL . As a consequence, for any x, y, z ∈ TL ,

GL(x, y) = GL(x + z, y + z), GL(o, x) = GL(−x, o). (2.5)

Our first theorem states several site-monotinicity properties for the two-point function.

Theorem 2.1 Consider the torus TL = Z
d/LZd for d ≥ 2 and L ∈ 2N.

Take i ∈ {1, . . . , d}. Suppose that 〈·〉 is reflection positive for reflections through edges
and that the two-point function is translation invariant. For any z = (z1, . . . , zd),

GL(o, z) ≤ GL(o, zi ei ) if zi odd, (2.6)

GL(o, z) ≤ 1

2

(
GL

(
o, ei (zi − 1)

)
+ GL

(
o, ei (zi + 1)

))
if zi even. (2.7)

Further, for y ∈ TL such that yi = 0 (possibly y = o) the function

GL
(
o, y + nei

) + GL
(
o, nei

)
(2.8)

is a non-increasing function of n ∈ (0, L/2) ∩ (
2N + 1

)
. If, in addition, 〈·〉 is reflection

positive for reflections through vertices then (2.6) also holds for zi even and (2.8) holds for
any n ∈ (0, L/2].

Our next theorem is a consequence of Theorem 2.1 and consists of the following state-
ments. Suppose that the two-point function is uniformly bounded from above by a constant
M , (i) Whenever the Cesàro sum of the two-point function is uniformly positive, the two-
point function is point-wise uniformly positive on cartesian axes. (ii)–(iii) If the uniformly
positive lower bound to the Cesàro sum is close enough to M , then the two-point function
is point-wise uniformly positive not only on the cartesian axes, but also at any site in a box
centred at the origin whose side length is of order O(L). Applications of the theorem are
discussed in Sect. 3.

Theorem 2.2 Consider the torus TL = T
d/LZd for d ≥ 2 and L ∈ 2N.
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Take i ∈ {1, . . . , d}. Suppose that 〈·〉 is reflection positive for reflections through edges
and that the two-point function is translation invariant. Moreover, suppose that for some
C1 > 0 we have

lim inf
L→∞
L even

1

|TL |
∑
x∈TL

GL(o, x) ≥ C1 > 0, (2.9)

and that for some M ∈ (0,∞) we have that,

∀L ∈ 2N ∀x, y ∈ TL GL(x, y) ≤ M . (2.10)

Then, the following properties hold,

(i) For any ϕ ∈ (0, C1
2 ) there exists ε > 0 such that for any integer n ∈ (−ε L, εL) and any

i ∈ {1, . . . , d},
GL(o, nei ) ≥ ϕ.

(ii) For ε ∈ (0, 1
2 ) and L ∈ 2N sufficiently large, for any x ∈ TL such that |xi | ∈ (0, εL) ∩

(2N + 1) for every i ∈ {1, . . . , d},
GL(o, x) ≥ M − ( 1

4 − 1
2ε

)−d
(M − C1).

(iii) If 〈·〉 is also reflection positive for reflections through vertices then for any ε ∈ (0, 1
2 ) and

L ∈ 2N sufficiently large, for all x ∈ TL such that |xi | ∈ (0, εL) for every i ∈ {1, . . . , d},
GL(o, x) ≥ M − ( 1

2 − ε
)−d

(M − C1).

Remark 2.3 (i) For many statistical mechanics models one has that there exists some pos-
itive c > 0 such that, if x and y are nearest neighbours, then GL(o, x) ≥ GL(o, y) c.
When such a property is fulfilled, the properties of point-wise positivity of the two-point
function stated in (i) and (ii) can be extended to vertices which are not necessarily odd.

(ii) If we do not care about the size of the box around o where we can show that two-
point functions are uniformly bounded then we can simple look at the limit ε → 0. In
this case the bound in (ii) becomes M − 4d(M − C1) and the bound in (iii) becomes
M − 2d(M − C1).

(iii) In many cases M and C1 will agree to leading order, meaning that the term M − C1

can be made small (for example by taking higher dimension or larger spin value). This
is due to the nature of the infrared bound method that provides (2.9).

3 Applications

3.1 The QuantumHeisenbergModel

For S ∈ 1
2Nwe define�x = C

2S+1 and⊗ to be the tensor product, hence S = ⊗x∈TLC
2S+1.

Let S1, S2, S3 denote the spin-S operators on C
2S+1. They are hermitian matrices defined

by

[S1, S2] = i S3, [S2, S3] = i S1, [S3, S2] = i S2, (3.1)

(S1)2 + (S2)2 + (S3)2 = S(S + 1)1, (3.2)
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where 1 is the identity matrix. Each spin matrix has spectrum {−S,−S + 1, . . . , S}. We
denote by Six = Si ⊗ 1TL\{x} the operator on S that acts as Si on �x and as 1 on each �y ,
y 	= x . For u ∈ [−1, 1] consider the hamiltonian

Hu = −2
∑

{x,y}∈EL

(
S1x S

1
y + uS2x S

2
y + S3x S

3
y

)
. (3.3)

The case u = 1 gives the Heisenberg ferromagnet, u = − 1 is unitarily equivalent to the
Heisenberg antiferromagnet on bipartite graphs, (such as we have) and u = 0 is the quantum
XY model. For β ≥ 0 corresponding to the inverse temperature our linear operator is given
by the usual Gibbs state at inverse temperature β. More precisely, for operator A on S the
expectation of A in the Gibbs state is

〈A〉 = 1

Zu(β)
Tr Ae−βHu , Zu(β) = Tr e−βHu . (3.4)

Take

F1
x = 1x and F2

x = S3x . (3.5)

For u ≤ 0 we have reflection positivity for reflections through edges [6,9,17]. The fol-
lowing theorem is a direct consequence of Theorem 2.1.

Theorem 3.1 Let β ≥ 0, L ∈ 2N, S ∈ 1
2N, d ≥ 2 and u ≤ 0. For any z ∈ TL \ {o},

〈S3o S3z 〉 ≤
{〈S3o S3zi ei 〉 if zi ∈ 2N + 1,

1
2

(
〈S3o S3(zi+1)ei

〉 + 〈S3o S3(zi−1)ei
〉
)

if zi ∈ 2N \ {o}. (3.6)

Further for y ∈ TL such that yi = 0 (for example y = o) the function

〈S3o S3y+nei 〉 + 〈S3o S3nei 〉, (3.7)

is a non-increasing function of n for odd n ∈ (0, L/2).

Wenow turn our attention to the consequence of Theorem 2.2. It is known from the famous
result of Dyson, Lieb and Simon [5] and various extensions of this result [8,9,17] that for
d ≥ 3 and S ∈ 1

2N there are constants c1, c2 > 0 such that for L ∈ 2N sufficiently large

1

|TL |
∑
x∈TL

〈S3o S3x 〉 ≥ c1 − c2
β

. (3.8)

Our next theoremextends such a result by showing that the two-point function is point-wise
uniformly positive on vertices whose coordinates are all odd.

Theorem 3.2 Suppose that d ≥ 3 and u ≤ 0.

(i) For any ϕ ∈ (0, c1
2 ) there exists β large enough and ε > 0 such that, for any L ∈ 2N,

any odd integer n ∈ (−εL, εL) and any i ∈ {1, . . . , d},
〈S3o S3nei 〉 ≥ ϕ. (3.9)

(ii) There exists an explicit Q(d, u) ∈ (0,∞) such that if S > Q(d, u) and β is large enough,
then there exists ϕ, ε > 0 such that, for any L ∈ 2N and y ∈ TL such that ‖y‖∞ ≤ εL
and, for each i ∈ {1, . . . , d}, yi ∈ 2N + 1,

〈S3o S3y〉 ≥ ϕ. (3.10)
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In particular, Q(3, 0) can be taken equal to 79 and Q(3,−1) can be taken equal to 90.
If we could find a constant c > 0 as in Remark 2.3 (i) then we could extend (3.10) to all
vertices y such that ‖y‖∞ ≤ εL .

Proof The first claim follows from (3.8), and from an immediate application of the claim (i)
in Theorem 2.2. We now prove the claim (ii). We start from (3.8), we have M = S(S+ 1)/3.
From [17] obtain an explicit expression for c1 in the limit β → ∞,

c1 = S(S + 1)

3
− 1√

2

1

|TL |
∑

k∈T∗
L\{o}

√
εu(k)

ε(k)
, (3.11)

where T∗
L is the Fourier dual lattice, ε(k) = 2

∑d
i=1(1 − cos(ki )) and εu(k) = ∑d

i=1

[
(1 −

u cos(ki ))〈S1o S1ei 〉 + (u − cos(ki ))〈S2o S2ei 〉
]
. Now it is easy to check that εu(k) ≤ S(S+1)

3 (1−
u)

∑d
i=1(1+| cos(ki )|) and in the special caseu = −1wecan show ε−1(k) ≤ S(S+1)

3 ε(k+π).
This gives, for u = −1

c1 ≥ S(S + 1)

3
− 1√

2

√
S(S + 1)

3
Jd,L , (3.12)

where

Jd,L = 1

|TL |
∑

k∈T∗
L\{o}

√
ε(k + π)

ε(k)
, (3.13)

satisfies limd→∞ limL→∞ Jd,L = 1. Further limL→∞ Jd,L is a decreasing function of d and
limL→∞ J3,L = 1.15672 . . .. Using these bounds, the inequality (ii) of Theorem 2.2 shows
that there is some ϕ > 0 such that for any x ∈ TL with |x · ei | ∈ (0, εL) ∩ 2N+ 1 for every
i ∈ {1, . . . , d} we have 〈S3o S3x 〉 ≥ ϕ once β is sufficiently large if

S2 + S −
√

3
2

√
S(S + 1Jd,L

( 1
4 − 1

2ε
)−d

> 0, (3.14)

which is fulfilled for any large enough S (for d = 3, S ≥ 90 suffices). Performing a similar
calculation for u = 0 with the bound above we find for d = 3, that S ≥ 109 suffices.
However, by using the bounds in [8] for the XY model (u = 0) it can be shown that for
d = 3, S ≥ 79 suffices. Similar bounds can be found for intermediate values of u. This
completes the proof. ��
Remark 3.3 It is likely that the values of Q(d, u) could be improved somewhat, but the case
of S = 1/2, d = 3 (for example) is unlikely to be within reach of any currently known
bounds on M or C1.

3.2 The Random PathModel

The Random Path Model (RPM) was introduced in [13]. It can be viewed as a random
loop model with an arbitrary number of coloured loops and walks, with loops and walks
possibly sharing the same edge and, at every vertex, a pairing function which pairs pairs of
links touching that vertex or leaving them unpaired. It was shown in [13] that, for different
choices of the parameters of the RPM, we can obtain many interesting models such as the
loop O(N ) model, the spin O(N ) model, the dimer and double-dimer model and random
lattice permutations. Here we introduce the RPM in a more general setting than in [13]. Such
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a generalisation consists of allowing pairings of links with different colours and allows us
to derive site monotonicity properties for a more general class of two-point functions, for
example, for the probability that a loop connects two distinct vertices of the torus.

Let EL be the set of edges connecting nearest neighbour vertices of the torus. Let m =
(me)e∈EL ∈ N

EL be an assignment of a number of links on each edge of EL and, for N ∈ N>0,
let c(m) ∈ ×e∈EL

({1, . . . , N }me
)
be a function, which we call a colouring, that for each

e ∈ EL assigns theme links on e with a colour in {1, . . . , N }. Lastly we define π(m, c(m)) =
(πx (m, c(m)))x∈TL consisting of a collection of partitions of links. πx (m, c(m)) is a partition
of the links incident to x into sets with at most two links each. If, for some x ∈ TL , two
links are in the same element of the partition at x then we say the links are paired at x
and call this element a pairing. If a link is not paired to any other link at x then we say x
is unpaired at x . Links can be paired or unpaired at both end points of their corresponding
edge.We denote byWL the set of all such triples (m, c(m), π(m, c(m)) and refer to elements
w = (m(w), c(w), π(w)) ∈ WL as configurations. Configurations can be interpreted as a
collection of multicoloured loops and walks on (TL , EL).

Now for x ∈ TL and i ∈ {1, . . . , N } let uix be the number of unpaired links of colour i
at x , let Kx be the number of pairings at x between two differently coloured links, and let
nx be the number of elements of πx . If Kx = 0 we define vix to be the number of pairings
at x between links with colour i , otherwise we define vix = 0. Finally let tx be the number
of pairings at x between links on the same edge (this is required to recover, for example, the
loop O(N ) model from the RPM).

Let U : N2N+3 → R and β ≥ 0. We define our measure μL,N ,β,U on WL as

μL,N ,β,U (w) =
∏
e∈EL

βme(w)

me(w)!
∏
x∈TL

Ux (w) ∀w ∈ WL , (3.15)

where Ux (w) = U (u1x , . . . , u
N
x , v1x , . . . , v

N
x , Kx , nx , tx ). We refer to U as a vertex weight

function. For f : WL → Rweuse the samenotation for the expectationof f ,μL,N ,β,U ( f ) :=∑
w∈WL

f (w)μL,N ,β,U (w).
ThemeasureμL,N ,β,U was proven to be reflection positive for reflections through edges in

[13, Proposition 3.2]. The same result holds for the more general random path model defined
in this note, since allowing pairing of links with different colour does not modify the proof.

It can be shown that the random path model fits the general framework introduced in the
present note, by considering local state spaces for x ∈ TL that consist of a specification of
the number of coloured links on each edge incident to x (an element of N2dN ) together with
a function that maps N2dN to partitions of �m≥0{1, . . . ,m}. The measure is then supported
on configurations whose functions partition the correct value of m (the value corresponding
to the total number of incident links) at each x ∈ TL and which, for each e ∈ EL specify the
same link numbers on e for both end points of e.

Suppose thatUx (w) = 0 whenever Kx 	= 0, thenμL,N ,β,U is supported on configurations
of monochromatic loops and walks. From this we can recover the RPM introduced in [13]
which reduces to the specific examples mentioned above if we further specify U in an
appropriate way. In this case we could take

〈·〉 = 1

Zloop
L,N ,β,U

μL,N ,β,U (·), (3.16)
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where Zloop
L,N ,β,U is the total measure under μL,N ,β,U of configurations with only loops. We

then take

F1
x = 1u1x=0 and F2

x = 1u1x=1, (3.17)

and find that GL(x, y) corresponds to the two-point function introduced in [13], when U is
chosen appropriately this is equal to the spin–spin correlation of the spin O(N )model. From
this we can recover Theorems 2.4, 2.6 and 2.8 in [13] .

Now suppose that N > 1, that Ux allows links of different colours to be paired, and that
it is 0 if

∑
i u

i
x 	= 0 (meaning the model only has loops and no walks). Our linear functional

〈·〉 could then be given by

〈·〉 = 1

Zmono
L,N ,β,U

μL,N ,β,U (·), (3.18)

where Zmono
L,N ,β,U is the total measure under μL,N ,β,U of configurations with

∑
x Kx = 0 and

only loops. Now we take

F1
x = 1Kx=0 and F2

x = 1Kx=1. (3.19)

We have that GL(x, y) = 2
(N
2

)
P(x ↔ y) where the probability is in the system with only

monochromatic loops with colours in {1, . . . , N } and there are no walks. The event x ↔ y
is the event that there is a loop that passes through x and y.

Theorem 2.1 leads then to the following theorem.

Theorem 3.4 Let P(x ↔ y) be the probability that a loop passes through x and y in the ran-
dompathmodel with onlymonochromatic loops and no open paths. For any z = (z1, . . . , zd),

P(o ↔ z) ≤ P(o ↔ zi ei ) if zi ∈ 2Z + 1, (3.20)

P(o ↔ z) ≤ 1
2P(o ↔ (zi − 1)ei ) + 1

2P(o ↔ (zi + 1)ei ) if zi ∈ 2Z \ {0}, (3.21)

and that for y ∈ TL such that yi = 0

P(o ↔ y + nei ) + P(o ↔ nei ), (3.22)

is a non-increasing function of n for all odd n ∈ (0, L/2).

Note that P(x ↔ y) equals the probability that a loop connects x and y in the loop O(N)
model, in the double dimer model, in lattice permutations or in the loop representation of
the spin O(N) model under an appropriate choice of U [13]. Further, it has been proven [1]
that, when U is chosen appropriately, such a probability equals the following correlation,

P(x ↔ y) =
〈
S1x S

2
x S

1
y S

2
y

〉
, in the spin O(N) model with N > 1, hence our theorem provides

monotonicity properties for such a four-spin correlation function.

4 Proof of Theorem 2.1

Suppose that 〈·〉 is reflection positive with respect to the reflection ϑ . Let Q ⊂ TL and define
Q± := (Q ∩ T

±
L ) ∪ ϑ(Q ∩ T

±
L ). The key to the proof is the following lemma.

Lemma 4.1 For Q ⊂ TL such that |Q+| = |Q−|∑
x,y∈Q
x 	=y

GL(x, y) ≤ 1

2

∑
x,y∈Q+
x 	=y

GL(x, y) + 1

2

∑
x,y∈Q−
x 	=y

GL(x, y). (4.1)
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Proof For 0 < η � 1 we consider the following functions

A =
∏

x∈Q∩T+
L

(1 + ηF2
x

∏
z∈T+

L \{x}
F1
z ), B =

∏
x∈Q∩T−

L

(1 + ηF2
ϑx

∏
z∈T−

L \{x}
F1

ϑz). (4.2)

Now for simplicity of notation we write TL(x) for T+
L \ {x} if x ∈ T

+
L and T

−
L \ {x} if

x ∈ T
−
L . A simple calculation gives

〈AϑB〉 =
〈∏
x∈Q

(
1 + ηF2

x

∏
z∈TL (x)

F1
z

)〉

= 1 + η
∑
x∈Q

〈
F2
x

∏
z∈TL (x)

F1
z

〉
+ η2

∑
x,y∈Q
x 	=y

〈
F2
x F

2
y

∏
z∈TL (x)

F1
z

∏
z∈TL (y)

F1
z

〉
+ O(η3),

(4.3)

and analogously

〈Aϑ A〉 = 1 + η
∑
x∈Q+

〈
F2
x

∏
z∈TL (x)

F1
z

〉
+ η2

∑
x,y∈Q+
x 	=y

〈
F2
x F

2
y

∏
z∈TL (x)

F1
z

∏
z∈TL (y)

F1
z

〉
+ O(η3),

(4.4)

〈BϑB〉 = 1 + η
∑
x∈Q−

〈
F2
x

∏
z∈TL (x)

F1
z

〉
+ η2

∑
x,y∈Q−
x 	=y

〈
F2
x F

2
y

∏
z∈TL (x)

F1
z

∏
z∈TL (y)

F1
z

〉
+ O(η3).

(4.5)

Now suppose that x, y ∈ Q ∩ T
+
L , then x, y, ϑx, ϑ y ∈ Q+ and we further note that〈

F2
x F

2
y

∏
z∈TL (x)

F1
z

∏
z∈TL (y)

F1
z

〉
=

〈
F2

ϑx F
2
ϑ y

∏
z∈TL (ϑx)

F1
z

∏
z∈TL (ϑ y)

F1
z

〉
. (4.6)

An analogous identity holds for x, y ∈ Q ∩ T
−
L . Now we use (2.3) with the expansion

(1+ x)(1/2) = 1+ x/2− x2/8+O(x3). Note that the η terms will cancel by (2.4). Now we
compare the η2 terms. We find we have the stated inequality plus an extra term with is zero
due to translation invariance and the condition |Q+| = |Q−|. This completes the proof. ��

We take Q = {o, z} and ϑ the reflection in the plane bisecting {pei , (p + 1)ei } for
p := 1

2 (z · ei − 1 + q}, this requires z · ei + q ∈ 2N + 1 and z · ei ± q ∈ (0, L). If we take
q = 0 when zi ∈ 2N + 1 and q = 1 when zi ∈ 2N \ {0} then Lemma 4.1 gives us (2.6) and
(2.7). If we also have reflection positivity for reflections through sites then we can reflect in
the plane R = {x ∈ R : x · ei = 1

2 (z · ei + q)}, requiring that z · ei + q is even. If we apply
Lemma 4.1 with q = 0 we find that for z · ei ∈ 2N \ {0} we also have (2.6).

For themonotonicity result (2.8)we take Q = {o, z, zi ei , z−zi ei }with the same reflection
as above. We define the function

Gei
L (x) := 1

2

(
GL(o, x) + GL(o, (x · ei )ei )

)
, (4.7)

and find, using Lemma 4.1, after rearranging and (2.4) that for zi + q odd

Gei
L (z + qei ) − Gei

L (z) ≥ Gei
L (z) + Gei

L (z − qei ). (4.8)
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The proof follows the proof of [13, Proposition 4.2]. We can now prove (2.8) by con-
tradiction. Suppose that y ∈ TL such that y · ei = 0 and odd n ∈ (0, L/2) satisfy
Gei

L (y + nei ) > Gei
L (y + (n − 2)ei ). Now by repeatedly using (4.8) with q = 2 we find

Gei
L (y + nei ) > Gei

L (y + (n − 2)ei ) > Gei
L (y + (n − 4)ei ) > Gei

L (y + (n − 6)ei ) . . .(4.9)

Once we have used this inequality n times we findGei
L (y+nei ) > Gei

L (y+nei −2nei ) =
Gei

L (y − nei ), but by reflection positivity we must have Gei
L (y − nei ) = Gei

L (y + nei ). This
contradiction completes the proof of (2.8). If, in addition, we have reflection positivity for
reflections through sites we can use the reflection in R = {x ∈ R : x · ei = 1

2 (z · ei + q)}.
We then obtain the inequality (4.8) for zi + q even. Using this we can obtain a contradiction
as before by alternating between the odd and even version of (4.8) with q = 1 to find that
for any y ∈ TL such that y · ei ± 1 ∈ (0, L)

Gei
L (y + ei ) − Gei

L (y) ≥ Gei
L (y) − Gei

L (y − ei ). (4.10)

The full monotonicity result then follows similarly to (2.8).

5 Proof of Theorem 2.2

We start with the proof of (i) and we present the proof of (ii) and (iii) afterwards. To begin,
fix an arbitrary ϕ ∈ (0,C1). We claim that there must exist an ε > 0 small enough such that
for any L ∈ 2N there exists zL ∈ TL \ [0, εL]d such that GL(o, x) ≥ ϕ. The proof of this
claim is by contradiction. Suppose that this was not the case, then, under the assumptions of
the theorem, we would have that∑

x∈TL

GL(o, x) ≤ ϕ �( 1 − ε ) L�d + M�εL�d ,

whichwould be in contradictionwith (2.9) for small enough ε, sincewe assumed thatϕ < C1.
Now define yL := zL · e1 and, if it is odd, we use the first claim in Theorem 2.1 and deduce
that,GL

(
o, yL e1

) ≥ ϕ, otherwise we use the second claim in Theorem 2.1 and deduce that,
max

{
GL

(
o, (yL + 1)e1

)
,GL

(
o, (yL − 1)e1

)} ≥ ϕ
2 . Using the fact that yL + 1 ≥ εL and

the last claim in Theorem 2.1, we deduce that, for any odd integer in the interval n ∈ (o, εL),
GL

(
o, ne1

) ≥ ϕ
2 . This concludes the proof of (i). We now proceed with the proof of (ii) and

(iii). To begin, for z ∈ TL we define

Qz := {(x1, . . . , xd) ∈ Z
d : ∀i ∈ {1, . . . , d}, xi ≤ |z · ei | or xi > L − |z · ei ]}. (5.1)

The proof relies on the following lemmas.

Lemma 5.1 Let z ∈ TL and y ∈ Qz be such that zi and yi are odd for every i ∈ {1, . . . , d}
then under the same assumptions as Theorem 2.2

GL(o, y) ≥ 2dGL(o, z) − (2d − 1)M . (5.2)

If, in addition, 〈·〉 is reflection positive for reflections through vertices then the inequality
holds for any z ∈ TL and y ∈ Qz .

Proof The proof is as in the proof of [13, Proposition 4.7] with minor changes as we only
have the monotonicity result (2.8) for odd n. For convenience we assume that zi , yi > 0 for
every i ∈ {1, . . . , d}, other cases follow by symmetry. For i ∈ {1, . . . , d} define

Di := (z − y) · ei , (5.3)
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then Di ∈ 2N. There is a “path”(
z10, z

1
1, . . . , z

1
D1/2, z

2
0, z

2
1, . . . , z

2
D2/2, . . . , z

d
0 , z

d
1 , . . . , z

d
Dd/2

)
, (5.4)

with the properties that z10 = z, zdDd/2 = y, and, for every i ∈ {1, . . . , d − 1}, ziDi /2
= zi+1

1 .
Further, for each i ∈ {1, . . . , d} and j ∈ [1, Di/2],

zij−1 − zij = 2ei . (5.5)

Now we use both (2.6) and (2.8),

2GL(o, zi0) ≤ GL(o, zi0) + GL(o, (zi0 · ei )ei )
≤ GL(o, ziDi /2) + GL(o, (ziDi /2 · ei )ei ),

(5.6)

and hence using that GL(o, x) ≤ M for any x ∈ TL we have that

GL(o, ziDi /2) ≥ 2GL(o, zi0) − M . (5.7)

Iterating this for i = 1, . . . , d gives

GL(o, y) = GL(o, zdDd/2) ≥ 2GL(o, zd0 ) − M ≥ . . .

≥ 2dGL(o, z) − (2d − 1)M,
(5.8)

this completes the proof. If 〈·〉 is also reflection positive for reflections through vertices the
proof is exactly as in [13, Proposition 4.7]. We define Di ’s and the path (z10, . . . z

d
Dd/2 as

before except that we can take zij−1 − zij = ei , the rest of the proof then proceeds as before.
��

Now, for r ∈ N let

Sr ,L := {z ∈ TL : ∃i ∈ {1, . . . , d} such that z · ei < r or L − z · ei ≤ r}. (5.9)

Lemma 5.2 Under the sameassumptions as2.2 there are xL ∈ TL\SεL,L and zL ∈ TL\SεL,L

with |zL · ei | ∈ 2N + 1 for every i ∈ {1, . . . , d} such that

GL(o, xL) ≥ M − (1 − 2ε)−d(M − C1), (5.10)

GL(o, zL) ≥ M − ( 1
2 − ε

)−d
(M − C1). (5.11)

Proof The proof of (5.10) is exactly as in [13, Lemma 4.9]. The proof of (5.11) is a simple
adaptation of [13, Lemma 4.9] and we sketch it here. Now a simple proof by contradiction
shows that there must be a zL as in the statement of the lemma. Indeed, suppose for every
zL ∈ TL with |zL · ei | ∈ [εL, L) ∩ 2N + 1 for every i ∈ {1, . . . , d} that GL(o, zL) <

M − ( 1
2 − ε

)−d
(M −C1). Using this together with the worst-case bound M for every other

vertex and the bound |TL \ Sr ,L | = (L − 2r)d gives a contradiction. ��
Statement (i) of Theorem 2.2 follows immediately from (5.10) and Theorem 2.1. For

statement (ii) of Theorem 2.2 note that if zL is as in the statement of Lemma 5.2 then, by
Lemma 5.1, for any y ∈ QzL such that yi is odd for each i ∈ {1, . . . , d} we have (after
rearranging)

GL(o, y) ≥ 2dGL(o, zL) − (2d − 1)M ≥ M − 2d
( 1
2 − ε

)−d
(M − C1). (5.12)
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which is equal to the bound in the Theorem. Finally for statement (iii) of Theorem 2.2 we
note that by Lemmas 5.1 and 5.2 for any y ∈ QxL we have (after rearranging)

GL(o, y) ≥ 2dGL(o, xL) − (2d − 1)M ≥ M − 2d(1 − 2ε)−d(M − C1). (5.13)
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