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Abstract. Characterisation of the confined states of quantum systems made of many particles inter-
acting via short range forces was the main goal for theoretical physicists investigating the structure of
nuclei in the early years of Quantum Mechanics. A rigorous formulation of the problem was given at
the beginning of the sixties by the russian school of mathematical physics. The analysis of the three-
body problem already revealed intriguing pathologies opening at the same time promising prospects
for the future. We summarize history and recent attempts of this line of research

1. Introduction

The three quantum particle problem is a line of research that Robert A. Minlos has been following
for most of his scientific carrier. Together with Berezin and Faddeev he framed the problem of zero-
range interactions in Quantum Mechanics inside the theory of self-adjoint extensions of symmetric
operators. He was able to formulate in a rigorous way the unboudedness problem for three-particle
zero-range Hamiltonians and he also suggested possible way out of such a difficulty.
Following his suggestions, resumed later by Albeverio, Hoegh-Krohn and Wu [2], we attempted to
work out partial solutions to the problem. It is worth mentioning that nowadays the interest in the
problem shifted toward many other research fields and, e.g., it is actively investigated by physicist
and applied mathematicians working in low temperature physics of quantum many particle systems
(see e.g. [7] and reference therein). We want first to give an outline of the way zero range interactions
and the quantum three-body problem appeared in the physical literature.
Heuristically point interactions are quantum interactions supported on points or “thin sets” (e.g. low
dimensional hypersurfaces). They are also called zero-range interactions or contact interactions
They are used whenever the range of interparticle interactions is much shorter than other relevant
length scales.
They have the advantage of permitting better insight allowing for “explicit computations”: for this
reason they are used in the mathematical modeling of many natural phenomena.
Let M be a submanifold of Rd of dimension s < d. Consider the operator

H0,0 := −∆ � C∞0 (Rd \M)

As a restriction of a self-adjoint operator H0,0 is symmetric but non self-adjoint. In fact,

D(H∗0,0) =
{
ψ ∈ L2(Rd) : |(ψ,−∆φ)| < C‖φ‖ ∀φ ∈ C∞0 (Rd \M)

}
includes any function in D(−∆) = H2(Rd) as well as any function ψ ∈ L2(Rd) such that

−∆ψ = ξ + T ; ξ ∈ L2(Rd) , T ∈ D′(Rd) with supp T ⊆M
Definition. Any (non-trivial) self-adjoint extension of H0,0 (if any) will be denoted as a Hamiltonian
with zero-range interaction on M.
The simplest case is whenM = {y1, · · · yN} yi ∈ Rd ∀i = 1, · · · , N , i.e., a discrete set of points of
Rd.
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Take ψ = Gz(·− yi) where Gz = F−1(k2− z)−1 for any z ∈ C\R+. It belongs to L2(Rd) for d =1,2,3
and

(Gz(· − yi),−∆xφ) = ([−∆x − z]Gz(· − yi), φ) + (zGz(· − yi), φ) = (zGz(· − yi), φ)

for all φ ∈ C∞0 (Rd\{y1, · · · yN}), which means that Gz ∈ D(H∗0,0) (but it does not belong to H2(Rd))
and that Gz(· − yi) is an eigenvector of H∗0,0 relative to the eigenvalue z.

The same result holds true for any partial derivative of Gz belonging to L2(Rd) (which is true only
for the first derivatives of Gz in d = 1).
It is possible to classify the entire family of self-adjoint extensions of H0,0 for d=1,2 and 3. It turns
out that in each dimension the family of self-adjoint extensions shows peculiar properties. We will
be interested in particular in the following operators that can be proved (see [1]) to be a subset of
the family of self-adjoint extensions of H0,0 in L2(R3).
For any α = {α1, . . . , αn} with αi ∈ R, i = 1, . . . , n and y = {y1, . . . , yn}, yi ∈ R3, i = 1, . . . , n
the operator Hα,y defined by

D(Hα,y) =

{
u ∈ L2(R3) | u = φλ +

n∑
k=1

qkGλ(· − yk)

φλ ∈ H2(R3), φλ(yj) =
n∑
k=1

[Γα,y(λ)]jkqk, j = 1, ..., n

}
(1)

(Hα,y + λ)u = (−∆ + λ)φλ (2)

where Gλ ≡ Gz|z=−λ and

[Γα,y(λ)]jk =

(
αj +

√
λ

4π

)
δjk −Gλ(yj − yk)(1− δjk) (3)

vanishing at y1, ..., yn one has q = 0 and then, from (2), Hα,yu = −∆u.
At each point yj the elements of the domain satisfy a boundary condition expressed by the last
equality in (1). If we define rj = |x − yj| it is easy to see that the boundary condition can be
equivalently written as

lim
rj→0

[
∂(rju)

∂rj
− 4παj(rju)

]
= 0, j = 1, ..., n (4)

This explains the term “local” given to this class of extensions.
The spectral structure of local point interaction Hamiltonians is not at all trivial and it is easily
investigated. In fact, −λ is a negative eigenvalues of the Hamiltonian Hα,y if and only if det Γα,y(λ) =
0 and the generalised eigenfunctions are non-trivial and explicitly known. Details can be found in
[1]. Here, we want only to point out that if two scatterer positions come close one to the other the
off-diagonal terms of the matrix (3) become very large with respect to any value of the strength
parameters α. It is easy to check that in the limit of zero distance the ground state eigenvalue of the
Hamiltonian is approaching −∞ (for details when n=2, see [1]).

Let us now consider the much more difficult case of many particles. The Hamiltonians for a system
of N particles interacting via zero-range forces will be defined as any self-adjoint extension of

−
N∑
i=1

∆xi � C
∞
0 (RdN \

⋃
i<j

σij)
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σij = {x = (x1, ...., xN) ∈ RdN |xi = xj}
acting on state vectors with symmetry properties which will depend on the type of particles under
investigation.
In the following, we will consider the case of three identical bosons with masses 1/2, in the center of
mass reference frame.
Expressed in terms of the Jacobi coordinates

x = x2 − x3 , y =
1

2
(x2 + x3)− x1 (5)

the space of square integrable functions completely symmetric in the exchange of particle coordinates
is

L2
s(R6)=

{
ψ ∈ L2(R6) s.t. ψ(x,y) = ψ(−x,y) = ψ

(1

2
x + y,

3

4
x− 1

2
y
)}

(6)

Zero-range interactions among particles will be confined on the three-dimensional hyperplanes

Σ = {x = 0} ∪ {y − x/2 = 0} ∪ {y + x/2 = 0} . (7)

As we pointed out already, this means that we are looking for Hamiltonians in L2
s(R6) which are non

trivial s.a. extension of the operator

H̃0 = −∆x −
3

4
∆y , D(H̃0) =

{
ψ ∈ L2

s(R6) s.t. ψ ∈ H2(R6), ψ
∣∣
Σ

= 0
}
. (8)

The defect spaces of H̃0 are now of infinite dimensions. This makes the examination of classes of
self-adjoint extensions much more difficult and their physical interpretation more complicate.
Ter-Martirosian and Skorniakov [16], on the basis of the analogy with the point interaction potentials,
proposed to define an operator Hα acting as the free Hamiltonian outside the hyperplanes and
satisfying a boundary condition close to the hyperplanes. Specifically, they impose for the functions
in the domain of the Hamiltonian the boundary condition

ψ(x,y) =
ξ(y)

|x|
+ α ξ(y) + o(1) , for |x| → 0 and y 6= 0 (9)

where ξ is a function depending on ψ. The same behaviour must hold close to the other coincidence
hyperplanes for symmetry reasons.
Being the singular part in (9) the behaviour of the potential of a charge ξ distributed on the hyper-
plane, the operators Hα and the boundary condition were expressed in terms of charge distribution
potentials, i.e. imposing that functions in the domain of Hα were the sum of a regular and a singular
part in the following way

ψ = wλ + Gλξ , wλ ∈ H2(R6) (10)

where λ > 0 and

Ĝλξ(k,p) =

√
2

π

ξ̂(p) + ξ̂(k− 1
2
p) + ξ̂(−k− 1

2
p)

|k|2 + 3
4
|p|2 + λ

. (11)

is the (λ−) potential of a charge density ξ identically distributed on each coincidence plane.
The behaviour of the function Gλξ(x,y) close to the planes is easily computed

Gλξ(x,y) =
ξ(y)

|x|
− 1

(2π)3/2

∫
dp eip·y

(
T λξ̂

)
(p) + o(1) (12)



4 FIGARI AND TETA

where (
T λξ̂

)
(p) :=

√
3

4
|p|2+λ ξ̂(p)− 1

π2

∫
dp′

ξ̂(p′)

|p|2 + |p′|2 + p · p′ + λ
. (13)

In this way the boundary condition (9) can be rephrased as an integral equation for the ”charges” ξ
(for details see [5] and references therein).
As noticed by Danilov [9], the operators constructed in this way are not self-adjoint and admit a
continuum set of eigenvalues tending to minus infinity.

2. Minlos and Faddeev seminal papers (1962)

In two fundamental papers [13], [14] on the subject Minlos and Faddeev succeeded in translating
rigorously the attempts of Ter-Martirosian and Skornyakov in terms of Birman’s theory of self-adjoint
extensions of positive symmetric operators. They proved that the boundary condition (9) about the
behaviour of functions in the domain of the Hamiltonians close to the coincidence planes was not
enough to guarantee their self-adjointness.
The final result can be summarised in the following characterisation, written in momentum space,
of a two-parameter family of self-adjoint Hamiltonians

D(Hα,β) =
{
ψ ∈ L2

s(R6) | ψ = wλ + Gλξ, wλ ∈ H2(R6), ξ̂ ∈ D(T λβ ),

α ξ̂(p) +
(
T λξ̂

)
(p) = (wλ

∣∣
x=0

)∧(p)
}
, (14)

(Hα,β + λ)ψ = (H0 + λ)wλ , (15)

where

H0 = −∆x −
3

4
∆y , D(H0) = H2(R6) . (16)

with

D(T λβ ) =
{
ξ̂ ∈ L2(R3) | ξ̂ = ξ̂1 + ξ̂2, ξ̂1 ∈ D(T λ),

and ξ̂2(k) =
c

|k|2 + 1

(
β sin

(
s0 log |k|

)
+ cos

(
s0 log |k|

))}
(17)

where c is an arbitrary constant, s0 is the positive solution of the equation

1− 8√
3

sinh πs
6

s cosh πs
2

= 0 . (18)

Apart from technical complications due to the self-adjointness requirement, one should notice the
similarity between (14 - 15) and (1). Each function in the domain of the Hamiltonians is the sum
of a regular part and the potential of some charge density distributed on the coincidence planes, the
Hamiltonians operate as the free Hamiltonian acting on the regular part and the boundary condition
can be expressed as an equation on the charges.

The Hamiltonians defined in the way described above were finally self-adjoint, but Minlos and Fad-
deev realised that their spectral structure made those Hamiltonians unphysical models for a three-
body quantum system. In fact, the authors found that their point spectrum contains an infinite
sequence of negative eigenvalues unbounded from below (see [10] for an alternative proof). The



OPTIONAL SHORT TITLE FOR HEADERS 5

authors also suggest a possible way out of this unboudedness pathology. In short, their hint amounts
to substitute the constant α in (14) with the operator A defined, in Fourier space, by

(Aξ̂)(p) = αξ̂(p) + (Kξ̂)(p) (19)

with α ∈ R and K the convolution operator with kernel K(p) behaving for large |p| as

K(p) ∼ γ

|p|2
, for |p| → ∞

3. On the negative eigenvalues

In a private communication happened years ago between one of us and L.D. Faddeev, he appeared
absolutely confident that zero-range Hamiltonians bounded from below for the three-body quantum
system would exist. He renewed the suggestion that he and Minlos gave in their ’62 papers, men-
tioning that, with regret, they did not get involved any longer in the problem. On the other hand,
Minlos, in the rest of his scientific career, went back occasionally to zero-range Hamiltonians for
many-particle quantum systems approaching the interesting case of N , N ≥ 2, identical fermions
interacting, via zero-range forces, with a different particle, giving important contributions to the
stability problem (see, e.g., [11], [12]; for more recent developments see [15] and references therein).
Recently, we showed that, at least in the case α = 0 the strategy works very well. For details of the
proof see [10].
Considering the Ter-Martirosian, Skorniakov boundary condition (9) for α = 0 and adding the term
suggested by Minlos and Faddeev, we have that −λ, λ > 0 is a negative eigenvalue of the Hamil-
tonian if

δ

2π2

∫
dp′

ξ̂(p′)

|p− p′|2
+

√
3

4
|p|2+λ ξ̂(p)− 1

π2

∫
dp′

ξ̂(p′)

|p|2 + |p′|2 + p · p′ + λ
= 0 . (20)

where δ is a real parameter.
In the rotationally invariant case ξ̂ = ξ̂(|p|), integrating out the angular variables one gets

δ

π

∫ ∞
0

dp′ p′ξ̂(p′) log
p+ p′

|p− p′|
+

√
3

4
p2+λ p ξ̂(p)

− 2

π

∫ ∞
0

dp′ p′ξ̂(p′) log
p2 + p′2 + pp′ + λ

p2 + p′2 − pp′ + λ
= 0 . (21)

The following statement holds true

Proposition 3.1. Let

δ0 =

√
3

π

(
4π

3
√

3
− 1

)
. (22)

Then for δ > δ0 the equation (21) has only the trivial solution.

The main technical tool used in the proof is the following change of variable (see [8])

p =
2
√
λ√
3

sinhx , x = log

(√
3p

2
√
λ

+

√
3p2

4λ
+ 1

)
(23)
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which allows to diagonalize equation (21) for the new function

θ(x) =

{
λ sinhx coshx ξ̂

(
2
√
λ√
3

sinhx
)

for x ≥ 0

−θ(−x) for x < 0
(24)

giving the following equation for the Fourier transform of the function θ(
1 + 2

δ sinh π
2
s− 4 sinh π

6
s

√
3 s cosh π

2
s

)
θ̂(s) = 0 . (25)

It is then easy to conclude the proof showing that(
1 + 2

δ sinh π
2
s− 4 sinh π

6
s

√
3 s cosh π

2
s

)
> 0 for δ > δ0.

Other recent attempts to obtain zero-range three-body Hamiltonians bounded from below can be
found in [3] and [4].

Dedication. The authors want to dedicate this contribution to the memory of Robert A. Minlos,
a leading mind of mathematical physics and a wonderful human being.
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