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Abstract: The capability of monitoring user’s performance represents a crucial aspect to improve

safety and efficiency of several human-related activities. Human errors are indeed among the

major causes of work-related accidents. Assessing human factors (HFs) could prevent these acci-

dents through specific neurophysiological signals’ evaluation but laboratory sensors require highly-

specialized operators and imply a certain grade of invasiveness which could negatively interfere with

the worker’s activity. On the contrary, consumer wearables are characterized by their ease of use and

their comfortability, other than being cheaper compared to laboratory technologies. Therefore, wear-

able sensors could represent an ideal substitute for laboratory technologies for a real-time assessment

of human performances in ecological settings. The present study aimed at assessing the reliability

and capability of consumer wearable devices (i.e., Empatica E4 and Muse 2) in discriminating specific

mental states compared to laboratory equipment. The electrooculographic (EOG), electrodermal ac-

tivity (EDA) and photoplethysmographic (PPG) signals were acquired from a group of 17 volunteers

who took part to the experimental protocol in which different working scenarios were simulated to

induce different levels of mental workload, stress, and emotional state. The results demonstrated

that the parameters computed by the consumer wearable and laboratory sensors were positively and

significantly correlated and exhibited the same evidences in terms of mental states discrimination.

Keywords: wearable device; emotional state; mental workload; stress; heart rate; eye blinks rate;

skin conductance level

1. Introduction

This paper aims to investigate the capability of two consumer wearable devices (i.e.,
Empatica 4 and Muse 2) in assessing different levels of mental and emotional states. The
consumer devices were compared to laboratory ones (i.e., BeMicro and Shimmer) in order
to validate their reliability in scientific research.

1.1. Monitoring Mental States

In recent years there was an increasing interest toward wearable monitoring
devices to assess physiological and mental activity, both in research and industry [1,2].
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These devices are particularly important to the world’s increasingly aging population
since this aspect constitutes a relevant risk factor for work-related accidents [3]. Both
in research and industry domains the mental states’ monitoring is becoming really
important. Starting from few decades ago, there was a shift in the focus from operators’
physical demands to their cognitive demands. This shift is particularly evident for
some complex and safety-critical human activities such as air traffic control, and car
and rail train driving [4–7]. In these contexts, it is evident that most of the fatal and
non-fatal accidents occur because of Human Factors (HFs) concerns [8–11]. Among
all the HFs, stress, mental overload, and lack of vigilance could cause tragic human
errors in several working environments [12–14]. Giving the limitations imposed by
subjective evaluation of mental states [15–17] and due to the fact that in some specific
activities it is not possible to interrupt operators while working, researchers started to
acquire biosignals to monitor and assess operators’ mental states. Biomarkers such as
skin conductance level (SCL), heart rate (HR), and eye blink rate (EBR) are investigated
as correlates of users’ mental states to develop a monitoring system to diminish and
prevent fatal and non-fatal accidents [4,6,16,18–20]. For this reason, it is important to
reduce at minimum the invasiveness of the monitoring equipment. Furthermore, the
interest in consumer wearable devices was supported by the increasing advances in
microelectronics which allowed to overcome the limitations imposed by the size of
the electronic components and of the measuring sensor itself [21]. The size reduction,
other than costs reduction and easiness to use, enhanced the application of such
wearable devices to areas of research which were usually investigated using laboratory
technologies, considered in scientific literature as the gold-standard [22–24]. Indeed,
despite the improvements of the technology behind laboratory equipment such devices
are often uncomfortable and obtrusive for the participants leading to a non-optimal
condition to ecologically assess mental states [25].

1.2. Consumer Wearables in Scientific Research

Consumer wearable devices are ideal candidates to record operators’ biosignals with-
out negatively interfere with their activities and tasks. Given the emergence of an incredible
amount of commercial and user-friendly wearable devices [23,24] and given the fact that
they seem to better adapt to daily-life activities, their accuracy has to be investigated deeply.
The reliability of wearable devices in measuring biomarkers such as HR and SCL was
demonstrated. In fact, compared to gold-standard equipment, consumer wearable devices
showed a similar accuracy in measuring different biomarkers such as HR, HRV and SCL in
different conditions [26–28]. Ragot and colleagues successfully adopted the Empatica E4
wrist-band to measure physiological response in an emotion recognition task [29]. Based
on these evidence wearable devices were also used to assess different mental states. Setz
and colleagues [30] compared the reliability of a consumer wearable device (Empatica E4)
in detecting drowsiness during a driving simulation task using HRV. The authors found
that E4 wristband showed similar results compared to a medical-grade device and argued
that the latter device could be substituted with the E4 in order to detect drowsiness. The
possibility to discriminate between different levels of the same mental states was also
explored. A study on simulated train traffic controlling [25] demonstrated that it is possible
to differentiate between different level of mental workload (WL) using HRV acquired via
wearable device. Compared to an FDA-approved medical device authors showed that
a consumer wearable sensor (EmWave Pro, Boulder Creek, California, USA) had similar
results in estimating changes in HRV, while the Empatica E3, a different consumer wearable
device included in the same study, did not show the same reliability. The potentiality of
consumer wearable devices in acquiring biosignals in an unobtrusive way brought to the
development of devices to collect electroencephalographic (EEG) and electrooculographic
(EOG) signals. Krigolson and colleagues [31] validated Muse 2 wearable device for ERP
research demonstrating an adequate level of accuracy in measuring N200 and P300 compo-
nents compared to standard 10–20 electrode configuration. Other researchers investigated
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the possibility to use Muse 2 to discriminate between different levels of enjoyment while
playing videogames [32]. The authors reported no significant difference in cortical activity
while subjective reports did but the absence of a gold standard reference did not allow to
objectively assess the accuracy of the consumer wearable EEG device considered.

1.3. Aim of the Present Study

Summarizing, there are contrasting evidence in literature about the reliability
of consumer wearable devices. The possibility of these devices to estimate different
biosignals is well accepted [26–29,32]. Additionally, some authors successfully differ-
entiated between several mental states using the neurometrics collected with consumer
wearables devices [25,30] but in other cases a failure was reported [25,31]. This pa-
per fits into this contest by comparing the Empatica E4 and Muse 2 with laboratory
equipment. The reliability and capability of the two consumer wearable devices were
investigated for stress, mental workload (WL), and emotional state (EmS) evaluation
while participants were performing three working-like tasks, comparing them with
laboratory equipment. To summarize, this paper aimed at responding to the following
research questions (RQ):

• RQ1: Are the above-mentioned neurophysiological parameters (EBR, SCL and HR)
gathered through consumer wearable devices comparable with those acquired with
laboratory equipment?

• RQ2: Are consumer wearable devices reliable in discriminating different levels of the
mental states considered (WL, Stress and EmS)?

2. Materials and Methods

2.1. Participants

Seventeen (17) participants were recruited from the Sapienza University of Rome (ten
males and seven females, 31.1 ± 3.7 years old) with normal or corrected-to-normal vision.
Due to artifacts and missing data caused by technical issues after signals processing twelve
(12) participants were considered valid for the analysis. Informed consent was obtained
from each participant after explanation of the study. The experiment was conducted
following the principles outlined in the Declaration of Helsinki of 1975, as revised in 2000
and was approved by the Sapienza University of Rome Ethical Committee in Charge for the
Department of Molecular Medicine (protocol number: 2507/2020, approved on 4 August
2020). To respect the privacy of participants, only aggregate results were reported.

2.2. Procedures

In order to test the reliability of consumer wearable devices in WL, stress, and EmS
evaluation, an experimental protocol was designed including three tasks: N-back task,
Doctor Game task, and Webcall task. These tasks were selected to respectively simulate an
office-like environment, an assembly-line and a teleworking activity. N-back task was used
to simulate an office related activity which usually do not demand a pronounced physical
effort whilst keeping high the mental one. Doctor Game (i.e., “Operation”) represents a fine
motor skill task requiring participant to use a pair of tweezers to extract several items from
their slots. This task was adopted because of its analogy with the assembly line activities.
Finally, Webcall task was used to reproduce a teleworking case, in which people are often
asked to communicate and coordinate with someone who is not physically present. The
order of tasks completion was balanced and randomized among participants.

2.2.1. N-Back Task

The N-back task (NB) (Figure 1) is a robust psychological test to manipulate working
memory load [33], one of the major components and a reasonable approximation of WL [34].
Participants are presented with a sequence of letters on a screen. The goal is to press a
button when the letters appearing on the screen is the same that occurred in the series n
steps before. The difficulty of the task can be manipulated increasing the value of n, thus
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forcing participants to retain more items in their mind. In this study, the task was composed
of a baseline and three conditions: Low WL, high WL, and stress. Under all conditions,
21 uppercase letters were used, which were displayed for 500 ms and an inter-stimulus
interval randomized between 500 to 3000 ms; 33% of the displayed letters were targets.

Figure 1. Example of N-back task under the 0-back, 1-back, and 2-back conditions.

• Baseline: Participants were instructed to watch the sequence of letters without giving
any response.

• Low WL: 0-back. The task consisted in indicating when the stimulus on the screen
matches a predetermined letter.

• High WL: 2-back. The task consisted in indicating when the stimulus occurred in
the series 2 steps before. When investigating stress assessment, we referred to this
condition as ‘No Stress’ condition (i.e., in the comparison ‘No Stress vs. Stress’) as it
differed from the Stress one only in the presence of the stressors whilst the difficulty
level was the same.

• Stress: The task was practically equivalent to the High WL one (indicating when the
stimulus occurred in the series two steps before) but simultaneously high intensity
noise was played (85 db) and the white-coat effect was used to stress the partici-
pant [35]. Four-minute relaxing music and video was played at the end of this phase
for letting the participants recover from the stressful event before continuing with the
remaining experimental conditions [36].

In all conditions, behavioral data like reaction time and number of errors were col-
lected. The low WL and the high WL conditions were performed randomly while the
baseline and the stress conditions were performed respectively at the beginning and at
the end of the experimental task. Before the 0-back and the 2-back task, the participant
performed a training session containing 21 stimuli, 33% of which were targets.

2.2.2. Doctor Game Task

This task is a fine motor skill task. We adopted the “Doctor Game” (DG) (i.e., “Opera-
tion”) board game (Figure 2). Its goal consisted in removing small objects from the board
without touching the metal edges. In this task a baseline, two difficulty levels and one
stressful condition were performed as well.
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Figure 2. The Doctor Game task consisted in extracting as many objects as possible from the “patient”

without touching the metal border. If an error occurred, the nose will emit a red light and the board

will vibrate.

• Baseline: Participants were instructed to watch the board game without touching the
board itself nor the objects.

• Low WL: Participants were asked to remove five predefined objects (the easiest ones).
They had three minutes to complete the task.

• High WL: Participants were asked to remove all 12 objects. They had three minutes to
complete the task. When investigating stress assessment, we referred to this condition
as ‘No Stress’ condition (i.e., in the comparison ‘No Stress vs. Stress’) as it differed
from the Stress one only in the presence of the stressors whilst the difficulty level was
the same.

• Stress: Participants were asked to remove all 12 objects. They had one minute to
complete the task. Additionally, high intensity noise was played (85 db) and the
white-coat effect was used to stress the participant [35]. Then, a four-minute relaxing
music and video was played at the end of this phase. This was done to let participants
recover from the stressful event before continuing with the experiment.

In all conditions, behavioral data like number of objects removed and accomplishment
time were collected. The Low WL and the High WL conditions were performed randomly
while the baseline and the stress conditions were performed respectively at the beginning
and at the end of the experimental task. Before the baseline the participant performed a
training session by extracting a couple of objects from the board.
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2.2.3. Webcall Task

This task consisted in an interactive Webcall to simulate a teleconference in smart-
working condition. This task comprised a baseline, a positive, and a negative condition
of two minutes each. The positive and negative conditions were achieved by asking
the participant to respectively recall the happiest and the saddest memory of their past,
while during the baseline condition the participant was asked to watch the teleconference
platform interface without reacting. The positive condition was always performed at the
beginning to avoid transients due to strong negative memories. One experimenter was
sitting in another room interacting with the participant. The hypothesis was that asking the
participant to talk about saddest/happiest memories will naturally induce these emotions
and thereby enable them to feel and display the relevant expressions of emotions via
multiple modalities, including physiological reactions [37,38].

2.3. Performance Assessment

Participants’ performance was assessed for NB and DG tasks. Webcall task did not
imply a right or wrong response therefore no performance was computed. Performance
in NB was assessed using the Inverse Efficiency Score (IES) [34] computed as reported in
Equation (1):

IES =
RT

1 − PE
(1)

where RT is the participant’s average (correct) reaction time within the condition considered,
and PE is the participant’s proportion of errors in the same condition. IES can be considered
as the RT corrected for the amount of errors committed [34].

For the DG task we combined the number of errors, number of extracted objects, and
the time spent to complete the task, in order to have an overall value representing the
performance. Since no standard Performance Index (PI) are reported in the literature, we
proposed the following one:

PI =

OBJ
OBJmax

+
(

1 − ERR
TIME

)

2
(2)

where OBJ is the number of extracted objects, OBJmax is the total number of objects in
the condition (5 in the low WL condition and 12 in the high WL and stress ones), ERR is
the maximum number of errors a participant could make in the condition (one error per
second, 180 in Low WL and High WL conditions and 60 in Stress one) and TIME is the
time the participant spent to complete the task in the condition.

2.4. Subjective Reports

After each experimental condition, including the baseline, two questionnaires were
administered to the participants:

• NASA Task-Load Index (NASA-TLX): It consists of six sub-scales representing inde-
pendent groups of variables: mental, physical and temporal demands, frustration,
effort and performance [39]. The participants were initially asked to rate on a scale
from “low” to “high” (from 0 to 100) each of the six dimensions during the task.
Afterwards, they had to choose the most important factor along pairwise comparisons.
The NASA-TLX was selected for subjectively quantify the mental demand perceived
by the participants with respect to the experimental condition of DG and NB tasks.

• GENEVA Emotion Wheel (GEW): It is a validated instrument to measure emotional
reactions to several stimuli [40]. The participants were asked to indicate the emotion
he/she experienced by choosing intensities for a single emotion or a blend of several
emotions out of 20 distinct emotion families. Given the nature of the task, in this
analysis we decided to use only the type of emotions selected by participants, without
considering their intensities.
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The reason why we selected these questionnaires is because they have been adopted
in several studies. In particular, the NASA-TLX has been used for WL [41,42] subjective
reports and GENEVA has been used for emotion categorization [40,43]. For the stress
self-report, we utilized only the temporal demand and frustration parameters because they
are the main components of the stressor used in this study.

2.5. EOG Recording and Analysis for Mental Workload Assessment

The vertical EOG pattern was estimated by acquiring simultaneously the EEG Fpz
channel of the BeMicro (EB Neuro, Florence, Italy) and the EEG TP9 channel of the Muse
2 (Interaxon Inc, Toronto, OH, USA), with a sampling frequency of 256 Hz and 64 Hz
respectively. Details are summarized in Table 1. The aim of the EOG analysis was to detect
the eye blinks in order to estimate the eye blink rate (EBR) and finally correlate it with the
WL variations) [7,44]. The same algorithm was adopted for the analysis of both datasets.
Firstly, the EOG signal was band-pass filtered using a 5th-order Butterworth filter within
the frequency range of 2–10 Hz, since in this range the main frequency contribute of eye
blinks is contained [45,46].

Table 1. A summary of the devices and signals used in the presented work.

Signal
Laboratory

Device
Consumer

Wearable Device
Extracted
Feature

Filter Frequency
Range

Time
Window

EOG BeMicro Muse 2 EBR 2–10 Hz -

EDA Shimmer Empatica 4 SCL 1 Hz 60 s

PPG - Empatica 4 HR 1–4 Hz 60 s

ECG BeMicro - HR 1–15 Hz 60 s

Secondly, the eyes open condition was used to identify a threshold for each participant
that, when exceeded, identified a potential blink. The threshold was calculated as follows:

Threshold = mean(EOG Eyes Open) + 3 ∗ robustStdDev (3)

where robustStdDev is the mean absolute deviation of the corresponding EOG channel.
Finally, every time the EOG signal exceeded the computed threshold, the Pearson

correlation between a common blink template (the template was built averaging the blinks
estimated from five random participants during the eyes open condition) and the EOG
signal was computed within each experimental condition (i.e., pattern-matching phase).
If this value was higher than 0.9, a potential blink would be classified as “real blink”,
similarly to what performed by the BLINKER algorithm [47].

The EBR estimated for each participant in each condition were calculated as the
total number of blinks in every condition divided by the condition duration. EBR was
evaluated under the different WL conditions to assess if it could differentiate user’s mental
workload. Previous studies demonstrated the capability of this parameter in estimating
WL demand [16,44,48].

2.6. EDA Recording and Analysis for Stress Assessment

The EDA was recorded by both laboratory and consumer wearable devices. The
sampling frequency of the Shimmer3 GSR+ unit (Shimmer Sensing, Dublin, Ireland) lab-
oratory device was 64 Hz while the sampling frequency of the Empatica E4 was 4 Hz.
Shimmer sensors were placed on the participant’s no-dominant hand on the second and
third fingers. In Empatica E4 the two electrodes are placed on the bottom part of the wrist.
The EDA was firstly low-pass filtered with a cut-off frequency of 1 Hz and then processed
by using the Ledalab suite [49], a specific open-source toolbox implemented within the
MATLAB (MathWorks, Natik, Massachussets) environment for EDA processing (details
in Table 1). The continuous decomposition analysis [50] was applied in order to estimate
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the tonic (SCL) and the phasic (SCR) components [51]. The SCL is the slow-changing
component of the EDA signal, mostly related to the global arousal of the participant. On
the contrary, the SCR is the fast-changing component of the EDA signal usually related
to single stimuli reactions. The EDA components, as well as the other neurophysiological
parameters, were estimated both using a 60 s time resolution and averaging within each
experimental condition. Finally, only the SCL was analyzed accordingly with the objectives
of the present study as demonstrated by Borghini et al. [7]. This parameter was chosen
for stress estimation since previous studies demonstrated its relation with this mental
state [7,52].

2.7. ECG Signal Recording and Analysis for Emotional State Assessment

Additonally, the HR estimation was performed using laboratory and consumer wear-
able technologies. ECG signal was collected using an electrode fixed on the participant’s
chest (laboratory device BeMicro) and referred to the potential recorded at both the earlobes
with a sampling frequency of 256 Hz. At the same time, photoplethysmographic signal
(PPG) was collected by means of Empatica E4 (Empatica, Milan, Italy). First, the ECG
and PPG signal were filtered using a 5th-order Butterworth band-pass filter (1–1 Hz, and
1–4 Hz, respectively) in order to reject the continuous component and the high-frequency
interferences, such as that related to the mains power source (details in Table 1). Another
purpose of this filtering was to emphasize the QRS process of the ECG signal [53]. The
following step consisted in computing the ECG (PPG) signal to the power of 3 to emphasize
the heartbeat peaks, as they generally have the highest amplitude, and at the same time
reduce spurious artifact peaks. Finally, the distance between consecutive peaks (i.e., each
R peak corresponds to a heartbeat) was measured to estimate the HR values every 60 s.
The Pan-Tompkins algorithm [54] was used for the HR estimation. A combination of HR
and SCL measurements was adopted in order to estimate EmS [55,56]. In this regard, an
Emotional Index (EI) was defined as:

EI = |SCL| ∗ HR (4)

where SCL and HR were normalized by subtracting the corresponding baseline and divid-
ing by the corresponding standard deviation. The resulting values were then averaged
within the considered experimental condition. The combination of these two parameters
was adopted because the sensitivity of this emotional index was already described in
previous works [56].

2.8. Statistical Analysis

Statistical analyses were performed after normalizing each data condition with the
corresponding task Baseline. For each participant, EBR, SCL, and HR data collected during
baseline were subtracted from data collected during experimental conditions. The new
EBR, SCL and HR values were named respectively EBR’, SCL’ and HR’. The Shapiro–Wilk
test was used to assess the normality of the distribution related to each of the considered
parameters. If normality was confirmed, Student’s t-test would have been performed to
pairwise compare the conditions (e.g., ‘Low WL vs. High WL’, or ‘laboratory device vs.
wearable device’). In case of non-normal distribution, the Wilcoxon signed-rank test was
performed. In case of comparisons between three or more distributions, the analysis of
variance (ANOVA) or its non-parametric equivalent (Friedman ANOVA) was performed.
For all tests, statistical significance was set at α = 0.05.

Pearson’s repeated measure correlation (rmcorr) analysis [57] was then used to assess
the reliability of the parameters estimated by the wearable device with respect to the
laboratory one both at single- participant level and on the entire group. The rmcorr was
performed on the average values of each parameter of wearable and laboratory devices
gathered during the entire experimental session.
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3. Results

3.1. Performance

3.1.1. N-back task

The Wilcoxon signed-rank test on the IES (Figure 3) revealed a significant difference
between the low WL and high WL conditions (p < 0.001) and between the “no stress” (i.e.,
high WL) and stress conditions (p < 0.001). Furthermore, the three parameters involved in
the IES computation (i.e., reaction times, wrong response, missed response) were analyzed
to determine the one was most affecting the decreasing performance while executing the
task. The Wilcoxon signed-rank test showed that both in high WL and Stress conditions
(Figure 4) the number of missed responses increased significantly compared to the low WL
condition (p < 0.001).

Figure 3. Difference in subjective performance during N-back task. Low vs. high Workload (WL)

conditions (p < 0.001). No stress vs. stress conditions (p < 0.001).

Figure 4. The number of missed responses was higher in high WL and stress conditions compared to

the low WL condition (p < 0.001).
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3.1.2. Doctor Game Task

The Wilcoxon signed-rank test revealed that the performance index significantly
decreased (p = 0.03) during the high WL condition compared to the low WL one (Figure 5).
The same was observed during the Stress condition when compared with the no stress one
(p = 0.02).

Figure 5. The performance index significantly decreased during the high WL condition compared

to Low WL condition (p = 0.03). The same result was found in the stress vs. no stress comparison

(p = 0.001).

3.2. Subjective Reports

3.2.1. N-back task

The Wilcoxon signed-rank test performed on the NASA-TLX demonstrated that
participants perceived the High WL condition significantly more demanding (p = 0.02)
than Low WL one (Figure 6). Additionally, at the end of the experiments they reported that
the High WL condition resulted too difficult to be performed and that for this reason they
did not or could not attend the task properly. Regarding the subjective stress evaluation,
the combination of frustration and temporal demand parameters of the NASA-TLX was
considered. These two parameters were selected accordingly with the relevant audio
noise and the white-coat effect induced within the stress condition. The statistical analysis
showed no significant difference (p = 0.4) in terms of perceived stress between no-stress
and stress conditions.

3.2.2. Doctor Game Task

Looking at NASA-TLX total score, participants did not perceive the High WL condition
to be significantly harder than Low WL condition (p = 0.9). Additionally, in this task we
considered the frustration and temporal demand parameters of the NASA-TLX to assess
the perceived stress, and no significant difference was found between the no-stress and
stress conditions (p = 0.8).

3.2.3. Webcall Task

As showed in Table 2, during the positive condition participants rated mostly positive
emotions than the negative ones. Instead, during negative conditions the rated emotions
were mostly negative. However, some participants selected negative emotions during the
positive calls while others positive emotions during the negative one.
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Figure 6. NASA-TLX total score during the low WL and high WL conditions (p = 0.02).

Table 2. Frequency of the emotions selected after positive and negative conditions of the Webcall.

Emotions (Geneva Emotion Wheel) Positive Webcall Negative Webcall

Admiration 1
Contentment 1 1

Joy 12
Love 3 2

Pleasure 6
Pride 3 1
Relief 1

Interest 6 2
Embarrassment 1

Compassion 1
Anger 1 2

Disappointment 4
Disgust 1

Fear 3
Guilt 3

Regret 1 1
Sadness 2 11
Shame 1 3

3.3. Neurophysiological Results

3.3.1. Methods comparisons

The statistical analysis revealed no significant difference in terms of EBR’ between the
consumer wearable and laboratory equipment during both NB (p = 0.65) and DG (p = 0.69).
Similarly, the Wilcoxon signed-rank tests on the SCL’ and HR’ showed no significant
differences in terms of SCL’ (NB: p = 0.09; DG: p = 0.4) and HR’ (NB: p = 0.18; DG: p = 0.69)
estimation. Correlation analysis between the neurophysiological parameter estimated with
wearable and laboratory devices was performed. All the parameters were significantly
correlated (p < 0.05). EBR estimated with laboratory and wearable devices resulted highly
and positively correlated (R = 0.83, p < 10−47) (Figure 7). Correlation for SCL and HR
resulted less strong but however significant. SCL correlation analysis (Figure 8) reported
and R of 0.4 (p < 10−6). Finally, R value for HR correlation (Figure 9) was 0.51 (p < 10−14).
To support correlation results, time dynamics of the investigated parameters acquired in a
representative participant are depicted in Figures 10–12.
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Figure 7. Pearson’s repeated measure correlation for the Eyeblink Rate (EBR) estimated with labora-

tory and wearable devices. R = 0.83, p < 10−47.

Figure 8. Pearson’s repeated measure correlation for the Skin Conductance Level (SCL) estimated

with laboratory and wearable devices. R = 0.4, p < 10−6.
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Figure 9. Pearson’s repeated measure correlation for the Heart Rate (HR) estimated with laboratory

and wearable devices. R = 0.51, p <10−14.

Figure 10. Time dynamics of EBR across all experimental task and conditions for both consumer

wearable (blue) and laboratory device (red).
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Figure 11. Time dynamics of SCL across all experimental task and conditions for both consumer

wearable (red) and laboratory device (blue).

Figure 12. Time dynamics of EBR across all experimental task and conditions for both consumer

wearable (red) and laboratory device (blue).

3.3.2. Mental workload

For both wearable and laboratory device the Wilcoxon signed-rank tests did not reveal
significant differences (consumer wearable: p = 0.64; laboratory: p = 0.96) in terms of EBR’
when comparing high WL vs. low WL conditions.
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3.3.3. Stress

The Wilcoxon signed-rank tests on SCL’ parameter estimated by the laboratory device
and the wearable one returned significant difference showing higher values during the
stress condition (all p < 0.05) both for the NB (Figure 13) and DG (Figure 14) task.

Figure 13. Increased SCL’ in stress vs. no stress condition during NB task. Statistical analysis revealed significant difference

between the conditions for both (a) laboratory equipment (p = 0.002) and (b) wearable device (p = 0.1).

Figure 14. Increased SCL’ in stress vs. no stress condition during DG task. Statistical analysis revealed significant difference

between the conditions for both (a) laboratory equipment (p = 0.0004) and (b) wearable device (p = 0.02).

3.3.4. Emotional State

The Wilcoxon signed-rank test demonstrated no statistical differences (wearable:
p = 0.1; laboratory: p = 0.4) in terms of EI between the positive and negative conditions.
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4. Discussion

The objectives of the study consisted in assessing the reliability and capability of
commercial wearable devices with respect to laboratory devices in estimating EBR, SCL
and HR parameters and discriminating different levels of mental workload, stress, and
emotional state.

4.1. Research Questions

Regarding the RQ1 (i.e., “Are the above-mentioned neurophysiological parameters
(EBR, SCL and HR) gathered through consumer wearable devices comparable with those
acquired with laboratory equipment?”), our results confirmed the feasibility to measure
EBR, HR and SCL using consumer wearable devices. The parameters estimated with wear-
able and laboratory devices showed significant positive correlations as a demonstration
that the two devices provided similar neurophysiological results (Figures 7–9). Addition-
ally, no statistical differences were observed in terms of EBR, HR, and SCL estimation
between the two technologies considered (i.e., consumer wearable and laboratory). In
fact, for each of the parameters considered the statistical analysis showed no significant
difference in the averaged. These results support the adoption of consumer wearable
devices and the relative collected metrics to disentangle complex mental and emotional
events in real-life environments. This aspect leads to the RQ2 (i.e., “Are consumer wearable
devices reliable in assessing different levels of several mental states?”). EBR was used as a
neurophysiological correlate of WL, and the Muse 2 (wearable) and BeMicro (laboratory)
devices were compared. No difference was found in terms of mental workload variation
during the NB and DG task.

4.2. Workload Assessment

Regarding the DG task, the absence of WL changes was probably due to the fact that
the High WL condition was not so hard as expected. Indeed, even if performance decreased
in the high WL condition compared to the low WL one, participants did not perceive the
high WL condition to be harder. It is arguable that adding more items resulted in a similar
WL demand between low and high WL conditions with no difference when comparing
EBR’ correlates.

Similarly, for the NB task, combining together performance and subjective reports,
it could be argued that the absence of WL correlates was due to the difficulty of the task
itself. In fact, NASA-TLX showed participants perceiving high WL condition to be harder
than low WL one (Figure 6). However, at the end of the experimental session they reported
that the High WL condition was too hard to be performed and for this reason they did
not or could not attend the task properly. This finding is supported by performance
analysis, where it was found number of missed responses significantly increased in high
WL condition compared to low WL one (Figure 4). In this view, the absence of WL
correlates could be a result of participants’ abandoning the task. Alternatively, the lack
of EBR’ variations in both tasks could be motivated by EBR sensitivity. EBR parameter
could be less sensitive to slight changes in task WL demand then other parameters (HR,
HRV, PSD, ERP, etc.). This means that other parameters than EBR could have detected WL
correlates in the same conditions. This points out directions for future works. The same
paradigm could be tested using different neurophysiological correlates of WL to test their
sensitivity and to support their adoption in different environments.

4.3. Stress Assessment

In terms of stress assessment, the SCL parameter was used as a neurophysiological
correlate. The Empatica E4 (consumer wearable) and Shimmer (laboratory) evaluated an
increased stress level during Stress condition compared to no stress one, both within NB
(Figure 13) and DG (Figure 14) tasks. Even if stress correlates are accompanied with a
decreased performance in both experimental tasks (Figure 3, Figure 5), participants were
not able to perceive stress variations. In accordance with this, previous studies highlighted
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the limit in assessing perceived stress using subjective reports [34]. This study, therefore,
confirmed the utility of using neurometrics to assess perceived stress [7]. It was also
demonstrated that consumer wearable devices could substitute laboratory equipment to
acquire such neurometrics. The possibility to detect stress in an obtrusive way is one of the
most promising aspects of wearable devices.

4.4. Emotional State Assessment

Finally, regarding the possibility to discriminate between a positive EmS and a neg-
ative one using a combination of SCL and HR [55], both technologies were not able to
differentiate these two conditions. Even if after positive condition participants selected
mostly positive emotions (and negative ones after negative conditions), we found that
after positive condition participants selected also some negative emotions and vice versa.
It is arguable what arose from the two conditions was a blend of emotions, with no pure
positive or negative connotations. Additionally, there is the possibility that two minutes
interaction with a stranger in a simulated webcall was not enough to elicit a measurable
neurophysiological change in the participants’ emotional states. As exposed, considering
performance and subjective evaluations, the reason for the absence of WL and EmS corre-
lates could be the experimental design itself, which did not elicit the desired mental states.
This limit points out direction for next works. Future studies should design an experiment
to more accurately define WL and EmS conditions.

4.5. Limits and Future Directions

Although both the reliability of consumer wearable devices in estimating neurophysi-
ological signals and their capability in discriminating different levels of stress is promising,
some limitations must be discussed. An experimental design and tasks capable of eliciting
the desired levels of the mental states must be implemented to better investigate the us-
ability of wearable devices. For NB and DG, an improved design should elicit the proper
level of workload while for the emotional state evaluations a longer duration of the task
should be considered in order to elicit a stronger and measurable emotional, and therefore
autonomic, response in the participants. Consumer wearable devices are user-friendly and
non-invasive technologies, allowing their usage in dynamics condition in which labora-
tory equipment would not be adequate. The possibility to use these devices in dynamics
environments must be supported by a good quality of the gathered signals. This is a
challenging aspect for consumer wearable devices and their utilization must be carefully
evaluated considering the recording settings and protocol in order to acquire a valid signal.
In particular, after this preliminary evaluation of wearables reliability, their capability in
differentiating between different mental states should will be tested in real-working condi-
tions with attention to the processing and analysis of the data gathered with these devices
and the results will be considered for the next study. Additionally, it should be underlined
that one of the considered consumer wearable devices, the Empatica E4, can be classified as
a high-level wearable device. The elevated cost of high-quality wearables could represent
a limit in their adoption. For this reason, the possibility to estimate the considered signals
and the related mental states using commercial and low-cost wearable devices should be
also explored in order to broad the mental state monitoring in the consumer world, without
limiting their adoption to the scientific research.

Furthermore, future works should investigate these and other mental states in a larger
group of participants and investigate the impact of participants’ movements on the quality
of collected data with a particular attention to the devices/parameters affected by the
movements and the intensity of the considered signals. Specifically, an important aspect
that will be investigated in the next study is the comparison of the number of artifacts and
the percentage of data loss found in consumer wearable devices with those of laboratory
equipment. Additionally, reliability of investigated parameters in estimating mental states
correlates in working-like tasks should be compared to other physiological signals (such
as EEG and HRV) in order to detect the one that better fits to the recording conditions.
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Consequently, the adoption of other physiological signals must be accompanied by an
adequate task duration to provide reliable data. Once reliability of wearable devices
has been confirmed, the possibility to discriminate mental states in real-time must be
investigated. Finally, consumer wearable devices are optimal candidate for health and
well-being monitoring [58,59]. When appropriate algorithms are applied it is possible to
monitor patients’ health by remote in real-time and prevent fatal and non-fatal occurrences.
For this reason, it is important to investigate the acceptance of this wearable devices
and their easiness to use [60]. This will be especially important for monitoring elderly
population [61].

5. Conclusions

The study demonstrated that signal recorded with consumer wearable and laboratory
devices showed a statistically positive correlation and no significant difference (RQ1).
Additionally, it was demonstrated the capability in differentiating stress levels (RQ2).
Within this experimental design it was impossible to differentiate between different levels
of WL and EmS (RQ2).

The possibility to measure neurophysiological parameters at the same level laboratory
devices do but with a limited invasiveness is one of the greatest points of strength of
consumer wearable devices. On the other side, unobtrusiveness is achieved with reduced
size which comports a limited duration of the battery, limiting these devices to short periods
of testing. Furthermore, it is reported that the contact between wearable devices and the
body id not always optimal, leading to missing or altered data [25]. This limits the use of
consumer wearables to those case in which movement is compatible with data collecting.

Taken together, these findings support the adoption of low-cost wearable device to
monitor operators’ mental states in laboratory and real-life environments. The possibility to
unobtrusively assess mental states has broad applications. It could be possible to monitor
air-traffic controllers, medical operators, surgeons, while working without interfering with
the performance. Hopefully, the ability to better differentiate between mental states will
reduce the effect of tragic occurrences.
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