
Fuzzing Symbolic Expressions
Luca Borzacchiello
DIAG Department

Sapienza University of Rome
Rome, Italy

borzacchiello@diag.uniroma1.it

Emilio Coppa
DIAG Department

Sapienza University of Rome
Rome, Italy

coppa@diag.uniroma1.it

Camil Demetrescu
DIAG Department

Sapienza University of Rome
Rome, Italy

demetres@diag.uniroma1.it

Abstract—Recent years have witnessed a wide array of results
in software testing, exploring different approaches and method-
ologies ranging from fuzzers to symbolic engines, with a full
spectrum of instances in between such as concolic execution
and hybrid fuzzing. A key ingredient of many of these tools is
Satisfiability Modulo Theories (SMT) solvers, which are used to
reason over symbolic expressions collected during the analysis. In
this paper, we investigate whether techniques borrowed from the
fuzzing domain can be applied to check whether symbolic formu-
las are satisfiable in the context of concolic and hybrid fuzzing
engines, providing a viable alternative to classic SMT solving
techniques. We devise a new approximate solver, FUZZY-SAT,
and show that it is both competitive with and complementary
to state-of-the-art solvers such as Z3 with respect to handling
queries generated by hybrid fuzzers.

Index Terms—concolic execution, fuzzing testing, SMT solver

I. INTRODUCTION

The automatic analysis of modern software, seeking for high
coverage and bug detection is a complex endeavor. Two popu-
lar approaches have been widely explored in the literature: on
one end of the spectrum, coverage-guided fuzzing starts from
an input seed and applies simple transformations (mutations)
to the input, re-executing the program to be analyzed to
increase the portion of explored code. The approach works
particularly well when the process is guided and informed
by code coverage, with a nearly-native execution time per
explored path [1], [2]. On the other end of the spectrum,
symbolic execution (SE) assigns symbolic values to input
bytes and builds expressions that describe how the program
manipulates them, resorting to satisfiability modulo theories
(SMT) [3] solver queries to reason over the program, e.g.,
looking for bug conditions. A popular variant of SE is concolic
execution (CE), which concretely runs one path at a time akin
to a fuzzer, collecting branch conditions along the way [4],
[5]. By systematically negating these conditions, it steers
the analysis to take different paths, aiming to increase code
coverage. The time per executed path is higher than fuzzing
but the aid of a solver allows for a smaller number of runs.

Different ideas have been proposed to improve the ef-
fectiveness of analysis tools by combining ideas from both
fuzzing and SE somewhere in the middle of the spectrum. As
a prominent example, hybrid fuzzing couples a fuzzer with
a symbolic executor to enable the exploration of complex

This paper is supported in part by European Union’s Horizon 2020 research
and innovation programme (grant agreement No. 830892, project SPARTA).

branches [4], [6]. Compared to base fuzzing, this idea adds
a heavy burden due to the lack of scalability of symbolic
execution. It is therefore of paramount importance to speed
up the symbolic part of the exploration.

While there is no clear winner in the software testing
spectrum, tools that hinge upon an SMT solver get a high price
to pay in terms of running time, limiting their throughput.

Contributions. As a main contribution, this paper addresses
the following research question:

can we avoid using accurate but costly SMT solvers,
replacing them with an approximate solver to test
satisfiability in the context of software testing?

We attempt to positively answer this question, devising
FUZZY-SAT, an approximate solver that borrows ideas from
the fuzzing domain. Our solver is tailored to the symbolic
expressions generated by concolic engines and can replace
classic SMT solvers in this context. By analyzing the ex-
pressions contained in symbolic queries, FUZZY-SAT performs
informed mutations to possibly generate new valuable inputs.
To demonstrate the potential behind FUZZY-SAT, we present
FUZZOLIC, a new hybrid fuzzer based on QEMU. To show
that FUZZY-SAT can be used in other frameworks, we integrate
it also in QSYM [4]. In our experimental evaluation:

1) we compare FUZZY-SAT to the SMT solver Z3 [7] and
the approximate solver JFS [8] on queries issued by
QSYM, which we use as a mature baseline. Our results
suggest that FUZZY-SAT can provide a nice tradeoff
between speed and solving effectiveness, i.e., the number
of queries found satisfiable by a solver.

2) we show that FUZZY-SAT allows QSYM to find more
bugs on the LAVA-M dataset [9] compared to Z3.

3) we evaluate FUZZOLIC on 12 real-world programs
against state-of-the-art fuzzers including AFL++ [2],
ECLIPSER [10], and QSYM, showing that it can reach
higher code coverage than the competitors.

To facilitate extensions of our approach, we make our
contributions available at:

https://season-lab.github.io/fuzzolic/

II. BACKGROUND

FUZZY-SAT takes inspiration from two popular software
testing techniques [11]: symbolic execution [12] and coverage-

https://season-lab.github.io/fuzzolic/


based grey-box fuzzing [13]. We now review the inner-
workings of these two approaches, focusing on recent works
that are tightly related to the ideas explored in this paper.

Symbolic execution. The key idea behind this technique
is to execute a program over symbolic, rather than concrete,
inputs. Each symbolic input can, for instance, represent a
byte read by the program under test from an input file and
initially evaluate to any value admissible for its data type
(e.g., [0, 255] for an unsigned byte). SE builds expressions
to describe how the program manipulates the symbolic inputs,
resorting to SMT solver queries to reason over the program
state. In particular, when a branch condition b is met during
the exploration, SE checks using the solver whether both
directions can be taken by the program for some values of the
inputs, forking the execution state in case of a positive answer.
When forking, SE updates the list of path constraints π that
must hold true in each state: b is added in the state for the true
branch, while ¬b is added to the state for the false branch. At
any time, the symbolic executor can generate concrete inputs,
able to reproduce the program execution related to one state,
by asking the solver an assignment for the inputs given π.

SE can be performed on binary code (e.g., ANGR [14],
S2E [15]) or on more high-level representations of a program
(e.g., LLVM IR in KLEE [16], Java bytecode in SPF [17]).
Besides software testing, SE has been extensively used during
the last decade in the context of cybersecurity [18]–[20].

Concolic execution. A twist of SE designed with scalability
in mind is concolic execution [21], which given a concrete
input i, analyzes symbolically only the execution path taken
by the program when running over i. To generate new inputs,
the concolic executor can query an SMT solver using ¬b∧ π,
where b is a branch condition taken by the program in the
current path while π is the set of constraints from the branches
previously met along the path. A benefit from this approach
is that the concolic executor only needs to query the solver
for one of the two branch directions, as the other one is taken
by the path under analysis. Additionally, if the program is
actually executed concretely in parallel during the analysis, the
concolic engine can at any time trade accuracy for scalability,
by concretizing some of the input bytes and make progress
in the execution using the concrete state. For instance, when
analyzing a complex library function, the concolic engine
may concretize the arguments for the function and execute
it concretely, without issuing any query or making π more
complex due to the library code but possibly giving up on
some alternative inputs due to the performed concretizations.

A downside of most concolic executors is that they restart
from scratch for each input driving the exploration, thus
repeating analysis work across different runs. To mitigate this
problem, QSYM [4] has proposed a concolic executor built
through dynamic binary instrumentation (DBI) that cuts down
the time spent for running the program by maintaining only the
symbolic state and offloads completely the concrete state to the
native CPU. Additionally, it simplifies the symbolic state by
concretizing symbolic addresses [22], [23] but also generates
inputs that can lead the program to access alternative mem-

ory locations. More recently, SYMCC [5] has improved the
design of QSYM by proposing a source-based instrumentation
approach that further reduces the emulation time.

Approximate constraint solving. Many queries generated
by concolic executors are either unsatisfiable or cannot be
solved within a limited amount of time [4]. This often is due
to the complex constraints contained in π, which can impact
the reasoning time even when the negated branch condition is
quite simple. For this reason, QSYM has introduced optimistic
solving that, in case of failure over ¬b ∧ π due to unsatness
or solving timeout, submits to the solver an additional query
containing only ¬b: by patching the input i (used to drive the
exploration) in a way that makes ¬b satisfied, the executor is
often able to generate valuable inputs for a program.

A different direction is instead taken by JFS [8], which
builds on the experimental observation that SMT solvers can
struggle on queries that involve floating-point values. JFS
thus proposes to turn the query into a program, which is
then analyzed using coverage-based grey-box fuzzing. More
precisely, the constructed program has a point that is reachable
if and only if the program’s input satisfies the original query.
The authors show that JFS is quite effective on symbolic
expressions involving floating-point values but it struggles on
integer values when compared to traditional SMT solvers.

Two very recent works, PANGOLIN [24] and TRIDENT [25],
devise techniques to reduce the solving time in CE. PANGOLIN
transforms constraints into a polyhedral path abstraction,
modeling the solution space as a polyhedron and using,
e.g., sampling to find assignments. TRIDENT instead exploits
interval analysis to reduce the solution space in the SMT
solver. Their implementations have not been released yet.

Coverage-based grey-box fuzzing. An orthogonal ap-
proach to SE is coverage-based grey-box fuzzing (CGF).
Given an input queue q (initialized with some input seeds) and
a program p, CGF picks an input i from q, randomly mutates
some of its bytes to generate i′ and then runs p over i′: if new
code is executed (covered) by p compared to previous runs on
other inputs, then CGF deems the input interesting and adds
it to q. This process is then repeated endlessly, looking for
crashes and other errors during the program executions.

American Fuzzy Lop (AFL) [1] is the most prominent
example of CGF. To track the coverage, it can dynamically
instrument at runtime a binary or add source-based instru-
mentation at compilation time. The fuzzing process for each
input is split into two main stages. In the first one, AFL
scans the input and deterministically applies for each position
a set of mutations, testing the effect of each mutation on
the program execution in isolation. In the second stage, AFL
instead performs several mutations in sequence, i.e., stacking
them, over the input, non deterministically choosing which
mutations to apply and at which positions. The mutations in
the two stages involve simple and fast to apply transformations
such as flipping bits, adding or subtracting constants, removing
bytes, combining different inputs, and several others [1].

Hybrid fuzzing. Although CGF fuzzers have found thou-



sands of bugs in the last years [26], [27], there are still
scenarios where their mutation strategy is not effective. For
instance, they may struggle on checks against magic num-
bers, whose value is unlikely to be generated with random
mutations. As these checks may appear early in the execution,
fuzzers may soon get stuck and stop producing interesting
inputs. For this reason, a few works have explored combi-
nations of fuzzing with symbolic execution, proposing hybrid
fuzzing. DRILLER [6] alternates AFL and ANGR, temporarily
switching to the latter when the former is unable to generate
new interesting inputs for a specific budget of time. QSYM
proposes instead to run a concolic executor in parallel with
AFL, allowing the two components to share their input queues
and continuously benefit from the work done by each other.

Recent improvements in coverage-guided fuzzing. During
the last years, a large body of works has extended CGF, trying
to make it more effective without resorting to heavyweight
analyses such as symbolic execution. LAF-INTEL [28] splits
multi-byte checks into single-byte comparisons, helping the
fuzzer track the intermediate progress when reasoning on
a branch condition. VUZZER [29] integrates dynamic taint
analysis (DTA) [30] into the fuzzer to identify which bytes
influence the operands in a branch condition, allowing it to
bypass, e.g., checks on magic numbers. ANGORA [31] further
improves this idea by performing multi-byte DTA and using
gradient descent to effectively mutate the tainted input bytes.

As DTA can still put a high burden on the fuzzing strategy,
some works have recently explored lightweight approximate
analyses that can replace it. REDQUEEN [32] introduces the
concept of input-to-state correspondence, which captures the
idea that input bytes often flow directly, or after a few simple
encodings (e.g., byte swapping), into comparison operands
during the program execution. To detect this kind of input
dependency, REDQUEEN uses colorization that inserts random
bytes into the input and then checks whether some of these
bytes appear, as is or after few simple transformations, in the
comparison operands when running the program. Input-to-state
relations can be exploited to devise effective mutations and
bypass several kinds of validation checks.

WEIZZ [33] explores instead a different approach that flips
one bit at a time on the entire input, checking after each
bit flip which comparison operands have changed during the
program execution, possibly suggesting a dependency between
the altered bit and the affected branch conditions. While more
accurate than colorization, this approach may incur a large
overhead, especially in presence of large inputs. Nonetheless,
WEIZZ is willing to pay this price as the technique allows
it to also heuristically locate fields and chunks within an
input, supporting smart mutations [26] to effectively fuzz
applications processing structured input formats.

SLF [34] exploits a bit flipping strategy similar to WEIZZ
to generate valid inputs for an application even when no
meaningful seeds are initially available for it. Thanks to the
input dependency analysis, SLF can identify fields into the
input and then resort to a gradient-based multi-goal search

heuristic to deal with interdependent checks in the program.
ECLIPSER [10] identifies a dependency between an input

byte ik and a branch condition b whenever the program
decision on b is affected when running the program on
inputs containing different values for ik. ECLIPSER builds
approximate path constraints by modeling each branch con-
dition met along the program execution as an interval. In
particular, given a branch b, it generates a new input using
a strategy similar to concolic execution, by looking for input
values that satisfy the interval from ¬b as well as any other
interval from previous branches met along a path. To find
input assignments, ECLIPSER does not use an SMT solver but
resorts to lightweight techniques that work well in presence
of intervals generated by linear or monotonic functions.

III. APPROACH

Recent coverage-guided fuzzers perform input mutations
based of a knowledge on the program behavior that goes be-
yond the simple code coverage. Concolic executors by design
build an accurate description of the program behavior, i.e.,
symbolic expressions, but outsource completely the reasoning
to a powerful but expensive SMT solver, which is typically
treated as a black box. In this paper, we explore the idea that
a concolic executor can learn from the symbolic expressions
that it has built and use the acquired knowledge to apply
simple but fast input transformations, possibly solving queries
without resorting to an SMT solver. The key insight is that
given a query ¬b∧ π, the input i that has driven the concolic
exploration satisfies by design π. Hence, we propose to build
using input mutations a new test case i′ that satisfies ¬b and
is similar enough to i so that π remains satisfied by i′. In the
remainder of this section, we present the design of FUZZY-
SAT, an approximate solver that explores this direction by
borrowing ideas from the fuzzing domain to efficiently solve
queries generated by concolic execution.

A. Reasoning primitives for concolic execution

While SMT solvers typically offer a rich set of solving
primitives, enabling reasoning on formulas generated from
quite different application contexts, concolic executors such as
QSYM are instead built on top of a few but essential primitives.
In this paper, we focus on these primitives without claiming
that FUZZY-SAT can replace a full-fledged SMT solver in a
general context. FUZZY-SAT exposes the following primitives:
• SOLVE(e, π, i, opt): returns an assignment for the sym-

bolic inputs in e ∧ π such that the expression e ∧ π
is satisfiable. The flag opt indicates whether optimistic
solving should be performed in case of failure. This
primitive is used by concolic engines when negating a
branch condition b, hence e = ¬b.

• SOLVEMAX(e, π, i) (resp. SOLVEMIN(e, π, i)): returns
an assignment that maximizes (resp. minimizes) e while
making π satisfiable. Concolic executors use these prim-
itives before concretizing a symbolic memory address e
to keep the exploration scalable. These functions are thus



Analysis

Input Groups

Input-to-State

Range Intervals

Constants

Conflicting Exprs

Reasoning

Expression
Metadata

fetch
& 

update

Input-to-State

Mutation Engine

Range Brute Force

Gradient Descent

AFL Deterministic

Multi-Goal Engine

find conflicting expr e’if not
 SAT

fuzz
e’

fetch

Constants

AFL Non-Determ.

Inputs

Fig. 1. Internal architecture of FUZZY-SAT.

used to generate alternative inputs that steer the program
to read/write at boundary addresses.

• SOLVEALL(e, π, i): combines SOLVEMIN and SOLVE-
MAX, yielding intermediate assignments identified during
the reasoning process as well. This primitive is valuable
in the presence of symbolic memory addresses accessing
a jump table or when the instruction pointer becomes
symbolic during the exploration.

Two main aspects differentiate these primitives in FUZZY-
SAT with respect to their counterpart from an SMT solver.

First, FUZZY-SAT is an approximate solver and thus it
cannot guarantee that no valid assignment exists in case
of failure of SOLVE, i.e., FUZZY-SAT cannot prove that an
expression e∧π is unsatisfiable. Similarly, given an expression
e, FUZZY-SAT may fail to find its global minimum/maximum
value or to enumerate assignments for all its possible values.

Another crucial difference is that FUZZY-SAT requires that
the concolic engine provides the input test case i that was
used to steer the symbolic exploration of the program under
test. This is essential as FUZZY-SAT builds assignments by
mutating the test case i based on facts that are learned when
analyzing e and π. Given an assignment a returned by FUZZY-
SAT, a new input test case i′ can be built by patching the bytes
in i that are assigned by a.

B. Overview

Architecture. To support the primitives presented in Sec-
tion III-A, the architecture of FUZZY-SAT (Figure 1) has been
structured around three main building blocks: the analysis
stage, the expression metadata, and the reasoning stage.

The analysis stage (§ III-C) is designed to analyze symbolic
expressions, extracting valuable knowledge to use during the
reasoning stage. It starts by identifying which input bytes
ik from the input i are involved in an expression and how
they are grouped. It detects input-to-state relations (§ II) and
collects constants appearing in the expression for later use in
the mutation phase. Expressions that constrain the interval of
admissible values for a set of inputs, dubbed range constraints,
such as i0 < 10, are identified to keep track of the range
intervals over the symbolic inputs. Finally, this stage detects
whether the current expression shares input bytes with other
expressions previously processed by the analysis component,
possibly pinpointing conflicts that may result when mutating
these bytes during the reasoning stage.

The expression metadata maintains the knowledge of
FUZZY-SAT on the expressions processed by the analysis

function SOLVE(e, π, i, opt):
1 M ← ANALYZE(π, M)
2 M ← ANALYZE(e, M)
3 a, SA ← MUTATE(e, π, i, M)
4 if a is not NULL then return a
5 a ← PICKBESTASSIGNMENT(π, SA)
6 if a is not NULL then
7 M′ ← FIXINPUTBYTES(a, M)
8 CC ← GETCONFLICTINGEXPRESSIONS(e, π, M′)
9 for e′ ∈ CC do

10 a′, SA ← MUTATE(e′, π, i, M′)
11 if a′ is not NULL then return a′
12 a′ ← PICKBESTASSIGNMENT(π, SA)
13 if a′ is NULL then break
14 a ← a′
15 M′ ← FIXINPUTBYTES(a, M′)
16 if opt then
17 if a is NULL then a ← MUTATEOPT(e, π, i, M)
18 return a
19 return NULL

Algorithm 1: SOLVE implementation of FUZZY-SAT:
analysis stage in light gray, reasoning stage in dark gray
(initial mutations due to e at lines 3-4, multi-goal strategy
at lines 5-15, and optimistic solving at lines 16-18).

stage over time. Internally, it is implemented as a set of
data structures optimized for fast lookup of different kinds of
properties related to an expression (and its subexpressions). It
is updated by the analysis stage and queried by both stages.

Finally, the reasoning stage is where FUZZY-SAT exploits
the knowledge over the expressions to effectively fuzz the
input test case and possibly generate valid assignments. To
reach this goal, a mutation engine (§ III-D) is used to perform
a set of transformations over the input bytes involved in an
expression e looking for an assignment that satisfies e and π
(SOLVE) or maximizes/minimizes e while satisfying π (other
primitives). When this step finds assignments for e, but none
of them satisfies π, then FUZZY-SAT performs a multi-goal
strategy, which is not limited to changing the input bytes
involved in e, but attempts to alter other input bytes that are
involved in conflicting expressions present in π.

Implementing the reasoning primitives. Algorithm 1
shows the interplay of these three components in FUZZY-SAT
when considering the primitive SOLVE. Lines 1 and 2 execute
the analysis stage by invoking the ANALYZE function on π
and e, respectively. ANALYZE updates the expression metadata
M, adding any information that could be valuable during
the reasoning stage. Since concolic engines would typically
call SOLVE several times during the symbolic exploration,
providing each time a π that is the conjunction of branch
conditions met along the path and which have been already
analyzed by FUZZY-SAT in previous runs of SOLVE, the call
at line 1 does not lead FUZZY-SAT to perform any work in
most scenarios as the expression metadata M already has a
cache containing knowledge about expressions in π.

Lines 3-18 instead comprise the reasoning stage and can be
divided into three main phases. First, the MUTATE function
is called at line 3 to run the mutation engine, restricting
the transformations on input bytes that are involved in the
expression e. When MUTATE finds an assignment a that



satisfies both e and π, SOLVE returns it at line 4 without any
further work. On the other hand, when a is invalid but some
assignments SA found by MUTATE make at least e satisfiable,
then SOLVE starts the multi-goal phase (lines 5-15). To this
end, FUZZY-SAT uses function PICKBESTASSIGNMENT to
select the best candidate assignment a from SA1 and then fixes
the input bytes assigned by a using function FIXINPUTBYTES
to prevent further calls of MUTATE from altering these bytes.
It then reruns the mutation engine considering an expression e′

which has been marked as in conflict with e during the analysis
stage. This process is repeated as long as three conditions hold:
(a) e∧π is not satisfied (line 11), (b) MUTATE returns at least
one assignment in SA for e′ (line 13), and (c) there is still a
conflicting expression left to consider (condition at line 9).

The multi-goal strategy in FUZZY-SAT employs a greedy
approach without ever performing backtrack (e.g., reverting
the effects of FIXINPUTBYTES in case of failure) as it trades
accuracy for scalability. Indeed, FUZZY-SAT builds on the
intuition that by altering a few bytes from the input test case
i, it is possible in several cases to generate valid assignments.
Additionally, since many queries generated by a concolic
engine are unsatisfiable, increasing the complexity of this
strategy would impose a large burden on FUZZY-SAT.

The last phase of SOLVE (lines 16-18) has been devised to
support optimistic solving in FUZZY-SAT. When the Boolean
opt is true, FUZZY-SAT returns the last candidate assignment
found by the mutation engine, which by design satisfies the
expression e. However, since the previous calls to the mutation
engine in SOLVE may have failed to find an assignment a
for e due to the constraints resulting from the analysis of
expressions from π, FUZZY-SAT as last resort uses a variant of
the function MUTATE, called MUTATEOPT, that ignores these
constraints and exploits only knowledge resulting from e when
performing transformations over the input bytes.

The other reasoning primitives (SOLVEMIN, SOLVEMAX,
and SOLVEALL, respectively) follow a workflow similar to
SOLVE and we do not present their pseudocode due to lack
of space. In the remainder of this section, we focus on the
internal details of functions ANALYZE (§ III-C) and MUTATE
(§ III-D), which are crucial core elements of FUZZY-SAT.

C. Analyzing symbolic expressions

We now present the details of the main analyses integrated
into the ANALYZE function, which incrementally build the
knowledge of FUZZY-SAT over an expression e.

Detecting inputs and input groups. The first analysis iden-
tifies which input bytes ik are involved in an expression and
evaluates how these bytes are grouped. In particular, FUZZY-
SAT checks whether the expression can be regarded as an input
group, i.e., the expression is equivalent to a concatenation (++)
of input bytes or constants that never mix their bits. Single byte
expressions are also detected as input groups.

1We pick an a that maximizes the number of expressions satisfied in π.

Examples:
• expression i1 ++ i0 contains inputs i0 and i1, and it

is an input group since the bits from these bytes do
not mix with each other but are just appended;

• expression 0++ i0 contains input i0 and it is a 1-byte
input group as it is a zero-extend operation on i0;

• expression i1 + i0 contains inputs i0 and i1, but it
is not an input group as bits from i0 are mixed, i.e.,
added, with bits from i1;

• expression (0 ++ i0) + (i1 � 8) contains inputs i0
and i1, and it is an input group as the expression is
equivalent to i1 ++ i0, which is an input group.

Given an expression e, FUZZY-SAT stores in the expression
metadata M the list of inputs involved in e, whether e is an
input group, and the list of input groups contained in e when
recursively considering subexpressions of e.

Detecting uniquely defined inputs. A crucial information
about an input byte is knowing whether its value is fixed to
a single value, dubbed uniquely defined in our terminology,
due to one equality constraint that involves it. Indeed, it is not
productive to fuzz input bytes whose value is fixed to a single
constant. Given an expression e, then:
• if e is an equality constraint and one of its operands is

an input group, or contains exactly only one input group,
while the other operand is a constant, then M is updated
to reflect that the bytes in the group will be uniquely
defined due to e if e is later added to π;

• an input in e is marked as uniquely defined whenever a
constraint from π marks it as uniquely defined;

• the input group in e (if any) is marked as uniquely defined
whenever the inputs forming it are all uniquely defined
due to constraints in π;

Example. The expression i1 ++ i0 == 0xABCD makes
FUZZY-SAT mark inputs i0 and i1 as uniquely defined.
If this expression is later added to π, then i0 and i1
will be considered uniquely defined in other expressions,
disabling fuzzing on their values.

Detecting input-to-state branch conditions. This analysis
checks whether e contains at least one operand that has input-
to-state correspondence (§ II). In FUZZY-SAT we use the
following conditions to detect this kind of branch conditions:
(a) e matches the pattern e′ opcmp e′′, where opcmp is a
comparison operator (e.g., ≥, ==, etc.) and (b) one operand
(e′ or e′′) is an input group. When e is a Boolean negation,
FUZZY-SAT recursively analyzes the subexpression.

Example. The expression 10 ≥ i1 ++ i0 is an input-to-
state branch condition as ≥ is a comparison operator and
i1 ++ i0 is an input group.

Detecting interesting constants. FUZZY-SAT checks the ex-
pression e, looking for constants that could be valuable during
the reasoning stage, dynamically building a dictionary to



use during the transformations. When specific patterns are
detected, FUZZY-SAT generates variants of the constants based
on the semantics of the computation performed by e.

Example. When analyzing i1 ⊕ 0xF0 == 0x0F, FUZZY-
SAT collects the constants 0xF0, 0x0F, and 0xFF (i.e.,
0xF0⊕ 0x0F) since the computation is an exclusive or.

The patterns used to generate interesting constants can be
seen as a relaxation of the concept of input-to-state relations.

Detecting range constraints. FUZZY-SAT checks whether
e is a range constraint, i.e., a constraint that sets a lower
bound or an upper bound on the values that are admissible
for the input group in e (if any). For instance, FUZZY-SAT
looks for constraints matching the pattern e′ opcmp e

′′ where
e′ is an input group, opcmp is a comparison operator, and
e′′ is a constant value. Other equivalent patterns, such as
(e′ − e′′) opcmp e

′′′ where e′ is an input group while e′′ and
e′′′ are constants, are detected as range constraints as well.

By considering bounds resulting from expressions in π
and not only from e, FUZZY-SAT can compute refined range
intervals for the input groups contained in an expression. To
compactly and efficiently maintain these intervals, FUZZY-SAT
uses wrapped intervals [35] which can transparently deal with
both signed and unsigned comparison operators.

Examples.
• given the expressions i1++i0 > 10 and i1++i0 ≤ 30,

FUZZY-SAT computes the range interval [11, 30] for
the input group composed by i0 and i1;

• given the expression (i1++i0)+0xAAAA <unsigned

0xBBBB, FUZZY-SAT computes the intervals
[0, 0x1110] ∪ [0x5556, 0xFFFF] for i0 and i1, cor-
rectly modeling the wrap-around that may result in
the two’s complement representation.

Detecting conflicting expressions. The last analysis is devised
to identify which expressions from π may conflict with e when
assigning some of its input bytes. In particular, FUZZY-SAT
marks an expression e′ as in conflict with e whenever the set
of input bytes in e′ is not disjoint with the set from e.

Example. The expression i1 + i0 > 10 is in conflict with
the expression i1+ i2 < 20 as they both contain the input
byte i1. Hence, fuzzing the first expression may negatively
affect the second expression.

Computing the set of conflicting expressions is essential for
performing the multi-goal strategy during the reasoning stage.

D. Fuzzing symbolic expressions

The core step during the reasoning stage of FUZZY-SAT is
the execution of the function MUTATE, which attempts to find
a valid assignment a. To reach this goal, MUTATE performs a
sequence of mutations over the input test case i, returning
as soon as a valid assignment is found by one of these
transformations. When a mutation generates an assignment
that satisfied e but not π, then MUTATE saves it into a set

of candidate assignment SA, which could be valuable later
on during the multi-goal strategy (§ III-B). In some cases, a
transformation can determine that there exists a contradiction
between e and the conditions in π, leading MUTATE to an early
termination. Additionally, when MUTATE builds a candidate
assignment a, it checks that a is consistent with the range
intervals known for the modified bytes, discarding a in case
of failure and avoiding the (possibly expensive) check over π.
We now review in detail the input transformations performed
by the function MUTATE.

Fuzzing input-to-state relations. When an expression e is an
input-to-state branch condition (§ III-C), FUZZY-SAT tries to
replace the value from one operand e′ into the bytes composing
the input group from the other (input-to-state) operand e′′. If
e′ is not constant, then FUZZY-SAT gets its concrete value by
evaluating e′ on the test case i. When e′ is constant and the
relation is an equality, if the assignment does not satisfy π,
then FUZZY-SAT deems the query unsatisfiable. Conversely,
when the comparison operator is not an equality, FUZZY-
SAT tests variants of the value from e′, e.g., by adding or
subtracting one to it, in the same spirit as done by REDQUEEN.

Example. Given i1 ++ i0 == 0xABCD, FUZZY-SAT
builds the assignment {i0 ← 0xCD, i1 ← 0xAB}. If the
range interval over i0 is [0xDD, 0xFF] due to constraints
from π, then the assignment can be discarded without
testing π, deeming the query unsatisfiable (but keeping
the assignment in SA in case of optimistic solving).

Range interval brute force. When a range interval is known
for an input group contained an expression e, FUZZY-SAT
can use this information to perform brute force on its value
and possibly find a valid assignment. In particular, when an
expression contains a single input group and its range interval
is less than 2048, FUZZY-SAT builds assignments that brute
force all the possible values assignable to the group. If no
valid assignment is found, then the query can be deemed
unsatisfiable. If the interval is larger than 2048, then FUZZY-
SAT only tests the minimum and maximum value of the
interval. To make this input transformation less conservative,
FUZZY-SAT runs it even when e contains at least one input
group whose interval is less than2 512.

Example. Given the expression (i1 ++ i0) ∗ 0xABCD ==
0xCAFE and the range interval [1, 9] (built due to con-
straints from π) on the group g with i0 and i1, then
FUZZY-SAT builds assignments for g ∈ [1, 9], deeming
the query unsatisfiable if none of them satisfies e ∧ π.

Trying interesting constants. For each constant c collected
by ANALYZE when considering the expression e and for each
input group g contained in e, FUZZY-SAT tries to set the bytes
from g to the value c. Since constants are collected through
relaxed patterns, FUZZY-SAT tests different encodings (e.g.,
little-endian, big-endian, zero-extension, etc.) for each constant
to maximize the chances of finding a valid assignment.

2We pick the input group with the minimum range interval.



Example. Given the expression (i1 ++ i0) ∗ 100 == 200
and assuming that ANALYZE has collected the constants
{2, 99, 100, 101, 199, 200, 201} where 2 was obtained as
200/100, while other constants are obtained from 100 and
200, then FUZZY-SAT would find a valid assignment when
testing {i0 ← 2, i1 ← 0} (c = 2, little-endian encoding).

Gradient descent. Given an expression e, FUZZY-SAT tries
to reduce the problem of finding a valid assignment for it
to a minimization (or maximization) problem. This is valu-
able not only in the context of SOLVEMIN, SOLVEMAX, or
SOLVEALL where this idea seems natural, but also when
reasoning over the branch condition e in SOLVE. Indeed,
any expression of the form e′ opcmp e

′′, where opcmp is a
comparison operator, can be transformed into an expression
f amenable to minimization to find a valid assignment [31],
e.g., e′ < e′′ can be transformed3 into f < 0 with f = e′−e′′.

The search algorithm implemented in FUZZY-SAT is in-
spired by ANGORA [31] and it is based on gradient descent.
Although this iterative approach may fail to find a global
minimum for f , a local minimum can be often good enough in
the context of concolic execution as we do not always really
need the global minimum but just an assignment that satisfies
the condition, e.g., given i0 < 1, the assignment {i0 ← 0x0}
satisfies the condition even if the global minimum for i0−1 is
given by {i0 ← 0x81}. For this reason, FUZZY-SAT in SOLVE
can stop the gradient descent as soon an assignment satisfies
both e and π. When the input groups from e have disjoint
bytes, FUZZY-SAT computes the gradient considering groups
of bytes, instead of computing it for each distinct byte, as this
makes the descent more effective. In fact, reasoning on i0 and
i1 as a single value is more appropriate when these bytes are
used in a two-byte operation since gradient descent may fail
when these bytes are considered independently.

Example. Given the expression (i0 ++ i1) − 10 > (i2 ++
i3)− 5 and a zero-filled input test case, then FUZZY-SAT
transforms the expression into ((i2 ++ i3) − 5) − ((i1 ++
i0) − 10) < 0, computes the gradients over the input
groups (i1 ++ i0) and (i2 ++ i3), finding the assignment
{i0 ← 0x80, i1 ← 0x06, i2 ← 0x84, i3 ← 0x01} which
makes the condition satisfied as (0x80 ++ 0x06) − 10 =
32764 > −31748 = (0x84 ++ 0x01)− 5.

Deterministic and non-deterministic mutations. These two
sets of input transformations are inspired by the two mutation
stages from AFL (§ II). Deterministic mutations include bit
or byte flips, replacing bytes with interesting well-known
constants (e.g., MAX_INT), adding or subtracting small con-
stants from some input bytes. Non-deterministic mutations
instead involve also transformations such as flipping of random
bits inside randomly chosen input bytes, setting randomly
chosen input bytes to randomly chosen interesting constants,
subtracting or adding random values to randomly chosen bytes,
and several others [1]. The main differences with respect to

3For the sake of simplicity, we ignore in our examples the wrap-around.

AFL are: (a) mutations are applied only on the input bytes
involved in the expression e, (b) multi-byte mutations are
considered only in the presence of multi-byte input groups,
(c) for non-deterministic mutations, FUZZY-SAT generates
k distinct assignments, with k equal to max{100, ni · 20}
where ni is the number of inputs involved in e, and for each
assignment it applies a sequence (or stack) of n mutations
(n = 1� (1 + rand(0, 7)) as in AFL).

E. Discussion

Similarly to fuzzers using dynamic taint analysis, FUZZY-
SAT restricts mutations over the bytes that affect branch
conditions during the program execution. However, it does not
only understand which bytes influence the branch conditions
but also reasons on how they affect them, possibly devising
more effective mutations.

FUZZY-SAT shares traits with ANGORA, SLF, and
ECLIPSER by integrating mutations based on gradient descent,
a multi-goal strategy, and range intervals, respectively. Nev-
ertheless, these techniques have been revisited and refined to
work over symbolic constraints, which accurately describe the
program state and are not available to these fuzzers.

FUZZY-SAT exposes primitives that are needed by concolic
executors and that are typically offered by SMT solvers but
it implements them in a fundamentally different way inspired
by fuzzing techniques, trading accuracy for scalability.

Finally, FUZZY-SAT shares the same spirit of JFS but takes
a rather different approach. While JFS builds a bridge between
symbolic execution and fuzzers by turning expressions into a
program to fuzz, FUZZY-SAT is designed to merge these two
worlds, possibly devising informed mutations that are driven
by the knowledge acquired by analyzing the expressions.

IV. IMPLEMENTATION

FUZZY-SAT is written in C (10K LoC) and evaluates queries
in the language used by the Z3 Theorem Prover [7]. To
efficiently evaluate an expression given a concrete assignment
FUZZY-SAT uses a fork of Z3 where the Z3_model_eval
function has been optimized to deal with full concrete models.

FUZZOLIC is a new concolic executor based on QEMU
4.0 (user-mode), written in C (20K LoC), that currently
supports Linux x86 64 binaries. Its design overcomes one
of the major problems affecting QSYM: FUZZOLIC decouples
the tracer component, which builds the symbolic expressions,
from the solving component, which reasons over them. This
is required as recent releases of most DBI frameworks, such
as PIN [36] on which QSYM is based on, do not allow an
analysis tool to use external libraries (as the Z3 solver in
case of QSYM) when they may produce side effects on the
program under analysis [37]. This implementation constraint
has made it very complex to port QSYM to newer releases
of PIN, limiting its compatibility with recent software and
hardware configurations4. To overcome this issue, the two
components are executed into distinct processes in FUZZOLIC.

4QSYM has been recently removed from the Google project FuzzBench
due to its instability on recent Linux releases [38].



In particular, the tracer runs under QEMU and generates
symbolic expressions in a compact language, storing them into
a shared memory that is also attached to the memory space
of the solving component, which in turn submits queries to
FUZZY-SAT to generate alternative inputs. Similarly to QSYM,
FUZZOLIC runs in parallel with two coverage-guided fuzzers.

V. EVALUATION

In this section we address the following research questions:
• RQ1: How effective and efficient is FUZZY-SAT at solv-

ing queries generated by concolic executors?
• RQ2: How do different kinds of mutations help FUZZY-

SAT in solving queries?
• RQ3: How does FUZZOLIC with FUZZY-SAT compare

to state-of-the-art fuzzers on real-world programs?
Benchmarks. Throughout our evaluation, we consider the

following 12 programs: advmng 2.00, bloaty rev 7c6fc,
bsdtar rev. f3b1f, djpeg v9d, jhead 3.00-5, libpng 1.6.37,
lodepng-decode rev. 5a0dba, objdump 2.34, optipng 0.7.6,
readelf 2.34, tcpdump 4.9.3 (libpcap 1.9.1), and tiff2pdf 4.1.0.
These targets have been heavily fuzzed by the community [27],
and used in previous evaluations of state-of-the-art fuzzers [4],
[5], [10], [32], [33]. As seeds, we use the AFL test cases [1],
or when missing, minimal syntactically valid files [39].

Experimental setup. We ran our tests in a Docker container
based on the Ubuntu 18.04 image, using a server with two Intel
Xeon E5-4610v2@2.30 GHz CPUs and 256 GB of RAM.

A. RQ1: Solving effectiveness of FUZZY-SAT

To evaluate how effective and efficient is FUZZY-SAT at
solving queries generated by concolic execution, we discuss
an experimental comparison of FUZZY-SAT against the SMT
solver Z3 and the approximate solver JFS. We first focus
on SOLVE queries, collected by running the 12 programs
under QSYM on their initial seed with optimistic solving
disabled, comparing the solving time and the number of
queries successfully proved as satisfiable when using these
three solvers. Then, we analyze the performance of QSYM at
finding bugs on the LAVA-M dataset [9] when using FUZZY-
SAT with respect to when using Z3, implicitly considering the
impact also of other reasoning primitives (e.g., SOLVEMAX)
and from enabling optimistic solving in SOLVE. In these
experiments, we consider QSYM instead of FUZZOLIC to avoid
any bias resulting from its expression generation phase that
could benefit FUZZY-SAT and impair the other solvers.

FUZZY-SAT vs Z3. Table I provides an overview of the
comparison between FUZZY-SAT and Z3 on the queries gen-
erated when running the 12 benchmarks.

The first interesting insight is that only a small subset of
the queries, i.e., less than 10%, has been proved satisfiable
(even when considering together both solvers). The remaining
queries are either proved unsatisfiable or make the solvers run
out of the time budget (10 seconds for Z3, as in QSYM).

The second insight is that, when focusing on the queries
that are satisfiable, FUZZY-SAT is able to solve the majority

TABLE I
NUMBER OF QUERIES PROVED SATISFIABLE BY FUZZY-SAT W.R.T. Z3
(TIMEOUT 10 SECS). NUMBERS SHOW THE AVERAGE OF 5 RUNS. THE

SPEEDUP CONSIDERS THE SOLVING TIME ON THE FULL SET OF QUERIES.

PROGRAM
# # QUERIES PROVED SAT BY # SAT FUZZY-SAT SOLV. TIME

QUERIES BOTH Z3 FUZZY-SAT DIV. BY # SAT Z3 SPEEDUP

advmng 1481 236.7 +7.0 +64.3 1.24 17.1×
bloaty 2085 95.0 +7.0 +1.0 0.94 47.8×
bsdtar 325 124.0 +6.0 0 0.95 1.8×
djpeg 1245 189.0 +6.0 +11.0 1.03 34.3×
jhead 405 88.0 0 0 1.00 21.7×
libpng 1673 31.0 0 0 1.00 70.9×
lodepng 1531 100.3 +6.3 +4.7 0.98 75.6×
objdump 992 146.0 +4.0 0 0.97 30.6×
optipng 1740 42.0 0 0 1.00 67.3×
readelf 1055 150.0 +8.0 0 0.95 69.5×
tcpdump 409 58.3 +9.7 +28.7 1.28 37.3×
tiff2pdf 3084 164.0 +9.0 0 0.95 28.1×
G. MEAN 1335.4 118.7 +5.3 +9.1 1.02 31.2×

of them and can even perform better than Z3 on a few bench-
marks: for instance, FUZZY-SAT solves 301 (236.7 + 64.3)
queries on average on advmng, while Z3 stops at 243.7
(236.7 + 7). Although this may seem unexpected, this re-
sult is consistent with past evaluations from state-of-the-art
fuzzers [10], [32] that have shown that a large number of
branch conditions can be solved even without SMT solvers.
Nonetheless, there are still a few queries were FUZZY-SAT is
unable to find a valid assignment while Z3 is successful, e.g.,
FUZZY-SAT misses 7 queries on bloaty (but solves one query
that makes Z3 run out of time). Assessing the impact of solving
or not solving a query in concolic execution is a hard problem,
especially when bringing into the picture hybrid fuzzing and
its non-deterministic behavior. Hence, we only try to indirectly
speculate on this impact by later discussing the results on the
LAVA-M dataset and the experiments in Section V-C.

Lastly, we can see in Table I that on average FUZZY-SAT
requires 31× less time than Z3 to reason over the queries
from the 12 benchmarks. When putting together this result
with the previous experimental insights, we could speculate
why FUZZY-SAT could be beneficial in the context of concolic
execution: it can significantly reduce the solving time during
the concolic exploration while still be able to generate a large
number of (possibly valuable) inputs.

One natural question is whether one could get the same
benefits of FUZZY-SAT by drastically reducing the time budget
given to Z3. To tackle this observation, Figure 2a reports the
number of queries solved by Z3 when using a timeout of 1
second and Figure 2b shows how the speedup from FUZZY-
SAT is reduced in this setup. FUZZY-SAT is still 9.5× faster
than Z3 and the gap between the two in terms of solved queries
increases significantly (+12% in FUZZY-SAT), suggesting that
this setup of Z3 is not as effective as one may expect.

FUZZY-SAT vs JSF. One solver that shares the same spirit
of FUZZY-SAT is JFS (§ II), which however is based on a
different design. When considering the queries collected on
the 12 benchmarks, it can be seen in Figure 2a that JFS is
able to solve only 1106 queries, significantly less than the
1534 from FUZZY-SAT. On 127 out of the 325 queries from
bsdtar, JFS has failed to generate the program to fuzz due



(a)

All benchmarks0

500

1000

1500

2000

# 
qu

er
ie

s p
ro

ve
d 

SA
T

1367.7
1514.4

1106

1534

Z3 (1 secs)
Z3 (10 secs)

JFS
Fuzzy-Sat

(b)

All benchmarks0

5

10

15

Sp
ee

du
p 

on
 so

lv
in

g 
tim

e

9.5

1.5

4.8

Fuzzy-Sat vs Z3 (1 sec)
Fuzzy-Sat w/o cache vs JFS
Fuzzy-Sat vs JFS

Fig. 2. FUZZY-SAT vs other solvers on the 12 benchmarks: (a) number of
queries proved satisfiable and (b) speedup on the solving time.

TABLE II
BUGS FOUND ON LAVA-M IN 5H: AVG (MAX) NUMBER OVER 5 RUNS.

base64 md5sum uniq who
QSYM WITH Z3 48 (48) 58 (58) 19 (29) 743 (795)
QSYM WITH FUZZY-SAT 48 (48) 61 (61) 19.7 (29) 2256.5 (2268)

to the large number of nested expressions contained in the
queries, yielding a gap of 95 solved queries between two
solvers. The remaining missed queries can be likely explained
by considering that: (a) it is not currently possible to provide
the input test case i used for generating the queries to the
fuzzer executed by JFS [40], as JFS generates a program that
takes an input that is different (in terms of size and structure)
from i and builds its own set of seeds, (b) JFS does not provide
specific insights to the fuzzer on how to mutate the input,
and (c) JFS uses LIBFUZZER [41], which does not integrate
several fuzzing techniques that have inspired FUZZY-SAT.

When considering the solving time, FUZZY-SAT is 1.5×
faster than JFS (Figure 2b). However, when enabling analysis
cache in FUZZY-SAT, the speedup increases up to 4.8×.

JFS does not currently provide a C interface [42], requiring
concolic executors to dump the queries on disk: as this
operation can take a long time in presence of large queries,
we do not consider JFS further in the other experiments.

FUZZY-SAT on LAVA-M. To test whether FUZZY-SAT can
solve queries that are valuable for a concolic executor, we
repeated the experiment on the LAVA-M dataset from the
QSYM paper [4], looking for bugs within the four benchmarks
base64, md5sum, uniq, and who. Table II reports the average
and max number of bugs found during 5-hour experiments
across 5 runs. QSYM with FUZZY-SAT finds on average
more bugs than QSYM with Z3 on 3 out of 4 programs. In
particular, the improvement is rather significant on who, where
FUZZY-SAT allows QSYM to find 3× more bugs compared to
Z3, suggesting that trading performance for accuracy can be
valuable in the context of hybrid fuzzing.

Interestingly, FUZZY-SAT was able to reveal bugs that the
original authors from LAVA-M were unable to detect [9], e.g.,
FUZZY-SAT has revealed 136 new bugs on who. Since other
works [10], [32] reported a similar experimental observation,
the additional bugs are likely not false positives.

B. RQ2: Impact of different kinds of mutations in FUZZY-SAT

An interesting question is which mutations contribute at
making FUZZY-SAT effective. Table III reports which trans-
formations have been crucial to solve the queries from the 12
benchmarks, assigning a query to the multi-goal strategy when
FUZZY-SAT had to reason over conflicting expressions from

TABLE III
EFFECTIVENESS OF THE DIFFERENT MUTATIONS FROM FUZZY-SAT: I2S

(INPUT-TO-STATE), BF (R.I. BRUTE FORCE), IC (INTERESTING
CONSTANTS), GD (GRADIENT DESCENT), D+ND (DETERMINISTIC AND

NON-DETERMINISTIC MUTATIONS), MGS (MULTI-GOAL STRATEGY).

PROGRAM I2S BF IC GD D+ND MGS
advmng 176 31 74 2 18 0
bloaty 43 5 20 5 19 4
bsdtar 14 8 11 0 0 91
djpeg 98 29 28 6 14 25
jhead 27 5 41 6 8 0
libpng 14 8 7 1 1 0
lodepng 61 6 16 1 21 0
objdump 91 21 18 1 10 5
optipng 28 7 6 0 1 0
readelf 96 10 22 0 22 0
tcpdump 28 7 11 1 11 29
tiff2pdf 107 25 6 0 2 24
PERC. ON TOTAL 51.04% 10.56% 17.01% 1.50% 8.28% 11.60%

π to solve the query. FUZZY-SAT was able to solve more than
51% of the queries by applying input-to-state transformations,
and an additional 17% was solved by exploiting the interesting
constants collected during the analysis stage. Range interval
brute-force was helpful on around 10% of the queries, while
mutations inspired by AFL were beneficial in 8% of them.
Gradient descent solved just 1.5% of the queries. However,
two considerations must be taken into account: (a) the order of
the mutations affect these numbers, as gradient descent is not
used when previous (cheaper) mutations are successful, and (b)
gradient descent is crucial for solving queries in SOLVEMIN,
SOLVEMAX, and SOLVEALL, which are not considered in this
experiment. Finally, the multi-goal strategy of FUZZY-SAT was
essential for solving around 11% of the queries.

C. RQ3: FUZZY-SAT in FUZZOLIC

To further assess the effectiveness of FUZZY-SAT, we
compare FUZZOLIC, which is built around this solver, against
state-of-the-art binary open-source fuzzers on the 12 bench-
marks, tracking the code coverage reached during 8-hour
experiments (10 runs). Besides FUZZOLIC, we consider: (a)
AFL++ [2] rev. 3f128 in QEMU mode, which integrates [43]
the colorization technique from REDQUEEN, as well as other
improvements to AFL proposed by the fuzzing community
during the last years [44], (b) ECLIPSER rev. b072f, which
devises one of the most effective approximations of concolic
execution in literature, and (c) QSYM rev. 89a76 with Z3.
As both FUZZOLIC and QSYM are hybrid fuzzers that are
designed to run in parallel with two instances (Fm, Fs) of
a coverage-guided fuzzer, we consider for a fair comparison
AFL++ and ECLIPSER in a similar setup, running them in
parallel to (Fm, Fs) and allowing the tools to sync their input
queues [45]. Hence, each run takes 8 × 3 = 24 CPU hours.
For Fm we use AFL++ in master mode, which performs
deterministic mutations, while for Fs we use AFL++ in slave
mode that only executes non-deterministic mutations. Since
ECLIPSER does not support a parallel mode, we extended it
to allow AFL++ to correctly pick inputs from its queue.

Figure 3 shows the code coverage reached by the different
fuzzers on 8 out of 12 programs. On the remaining four



0 7200 14400 21600 28800
Time (secs)

3
5
7
9

11
13
15
17

Co
ve

ra
ge

 M
ap

 D
en

sit
y 

(%
) bsdtar

AFL++
Eclipser
Fuzzolic (Fuzzy-Sat)
QSYM (Z3)

0 7200 14400 21600 28800
Time (secs)

2

3

4

5

6

7

Co
ve

ra
ge

 M
ap

 D
en

sit
y 

(%
) djpeg

AFL++
Eclipser
Fuzzolic (Fuzzy-Sat)
QSYM (Z3)

0 7200 14400 21600 28800
Time (secs)

1

2

3

4

Co
ve

ra
ge

 M
ap

 D
en

sit
y 

(%
) libpng

AFL++
Eclipser
Fuzzolic (Fuzzy-Sat)
QSYM (Z3)

0 7200 14400 21600 28800
Time (secs)

4

7

10

13

16

19

Co
ve

ra
ge

 M
ap

 D
en

sit
y 

(%
) objdump

AFL++
Eclipser
Fuzzolic (Fuzzy-Sat)
QSYM (Z3)

0 7200 14400 21600 28800
Time (secs)

3

4

5

6

7

8

Co
ve

ra
ge

 M
ap

 D
en

sit
y 

(%
) optipng

AFL++
Eclipser
Fuzzolic (Fuzzy-Sat)
QSYM (Z3)

0 7200 14400 21600 28800
Time (secs)

3

7

11

15

19

23

27

Co
ve

ra
ge

 M
ap

 D
en

sit
y 

(%
) readelf

AFL++
Eclipser
Fuzzolic (Fuzzy-Sat)
QSYM (Z3)

0 7200 14400 21600 28800
Time (secs)

2

11

20

29

38

47

56

Co
ve

ra
ge

 M
ap

 D
en

sit
y 

(%
) tcpdump

AFL++
Eclipser
Fuzzolic (Fuzzy-Sat)
QSYM (Z3)

0 7200 14400 21600 28800
Time (secs)

4
6
8

10
12
14
16
18

Co
ve

ra
ge

 M
ap

 D
en

sit
y 

(%
) tiff2pdf

AFL++
Eclipser
Fuzzolic (Fuzzy-Sat)
QSYM (Z3)

Fig. 3. Coverage map density reached by FUZZOLIC with FUZZY-SAT vs other state-of-the-art fuzzers. The shaded areas are the 95% confidence intervals.

0 7200 14400 21600 28800
Time (secs)

3

12

21

30

39

48

Co
ve

ra
ge

 M
ap

 D
en

sit
y 

(%
) tcpdump

Fuzzolic (Fuzzy-Sat)
QSYM (Z3)
QSYM (Fuzzy-Sat)

0 7200 14400 21600 28800
Time (secs)

4

7

10

13

16

19

Co
ve

ra
ge

 M
ap

 D
en

sit
y 

(%
) objdump

Fuzzolic (Fuzzy-Sat)
QSYM (Z3)
QSYM (Fuzzy-Sat)

Fig. 4. Coverage map density: impact of FUZZY-SAT in QSYM.

benchmarks, the fuzzers reached soon a very similar coverage,
making it hard to detect any significant trend and thus we omit
their charts due to lack of space. Similar to other works [4],
[5], we plot the density of the coverage map from Fs and
depict the 95% confidence interval using a shaded area. As
bitmap collisions may occur [46], we validated the trends by
also computing the number of basic blocks [47].

FUZZOLIC reaches a higher code coverage than other so-
lutions on 6 programs, i.e., bsdtar, djpeg, objdump, readelf,
tcpdump, and tiff2pdf. In particular, tcpdump is the program
where FUZZOLIC shines better, consistently showing over time
an increase in the map density of 5% with respect to the
second-best fuzzer (AFL++). On optipng, although FUZZOLIC
appears to have an edge at the beginning of the experiment,
it then reaches a coverage that is comparable to other fuzzers,
which are all very close in performance. Finally, FUZZOLIC
falls behind other approaches on libpng, pinpointing one case
where FUZZY-SAT seems to underperform compared to Z3,
as QSYM dominates on this benchmark.

When comparing closely FUZZOLIC to QSYM, the improve-
ment in the coverage is likely due to the better scalability of
the former with respect to the latter. For instance, on tcpdump
FUZZOLIC performs concolic execution on 11089 inputs (1.8
secs/input), generating 14415 alternative inputs, while QSYM
only analyzes 376 inputs (71.4 secs/input) and generates 786
alternative inputs. When considering libpng, FUZZOLIC is
still faster than QSYM (8.8 secs/input vs 43.6 secs/input) but
the number of inputs available in the queue from Fs (from
which FUZZOLIC and QSYM pick inputs) over time is very
low. Hence, the difference between FUZZOLIC and QSYM on
libpng is due to a few but essential queries that Z3 is able to
solve while FUZZY-SAT fails to reason on.

The better scalability of FUZZOLIC with respect to QSYM is

given by the combination of an efficient solver (FUZZY-SAT)
and an efficient tracer (FUZZOLIC). Indeed, when replacing Z3
with FUZZY-SAT in QSYM, this concolic executor improves
its performance but still falls behind FUZZOLIC. Figure 4
compares the coverage of QSYM with the two solvers and
FUZZOLIC on two benchmarks. On tcpdump, QSYM with
FUZZY-SAT is able to analyze 2111 inputs (10.1 secs/input)
and generate 3690 alternative inputs, improving the coverage
by 4% on average with respect to Z3 but still performing worse
than FUZZOLIC. Similarly, on objdump the improvement in
QSYM due to FUZZY-SAT is even more noticeable but still
QSYM cannot match the coverage reached by FUZZOLIC.

When comparing FUZZOLIC to ECLIPSER and AFL++,
the results suggest that the integration of fuzzing techniques
into a solver provides a positive impact. Indeed, while these
fuzzers scales better than FUZZOLIC, processing hundreds of
inputs per second, they lack the knowledge that FUZZY-SAT
extracts from the symbolic expressions, which is used to per-
form effective mutations. Overall, colorization from AFL++
and approximate concolic execution from ECLIPSER seem to
generate similar inputs on several benchmarks, yielding often
a similar coverage in our parallel fuzzing setup. Moreover,
despite FUZZOLIC may spend several seconds over a single
input, it collects information that allows it to fuzz a large
number of branch conditions, paying on average only a few
microseconds when testing an input assignment. Hence, the
time spent building the symbolic expressions can be amortized
over thousands of (cheap) query evaluations, reducing the gap
between the efficiency of a fuzzer and a concolic executor.
Nonetheless, FUZZOLIC is still a hybrid fuzzer and it needs to
run in parallel to a traditional fuzzer to provide good results,
since some non-deterministic mutations, such as randomly
combining inputs, are not performed by FUZZOLIC.

VI. THREATS TO VALIDITY AND LIMITATIONS

Floating-point arithmetic. Our current implementation of
FUZZOLIC and FUZZY-SAT does not handle symbolic expres-
sions involving floating-point operations. In case of floating-
point instructions during program execution, FUZZOLIC con-
cretizes the symbolic expressions. Although this is the same
strategy adopted by QSYM, we acknowledge that it may harm



the effectiveness of the concolic executor on programs heavily
based on floating-point computations.

Order of the mutations in FUZZY-SAT. The current im-
plementation of FUZZY-SAT applies mutations using a specific
order and stops as soon as one of the mutations is successful in
finding a valid assignment for a query. In particular, FUZZY-
SAT runs first the cheapest rules that are more likely able to
succeed: e.g., given an input-to-state relation, trying the input-
to-state rule first makes sense as it requires a few attempts
and has high chances to succeed [32]. Hence, results reported
in Section V are based on the order currently adopted by
FUZZOLIC. An interesting experiment would be to evaluate
how FUZZY-SAT would perform when changing the order of
the mutations.

Impact of FUZZY-SAT in hybrid fuzzing. In Section V,
we have investigated the impact of FUZZY-SAT inside two
concolic executors: FUZZOLIC and QSYM. Our results are
promising and suggest that FUZZY-SAT can be beneficial in
the context of hybrid fuzzing. However, we believe it would
be interesting to integrate FUZZY-SAT in other frameworks to
have additional insights on its effect. For instance, the benefit
from using FUZZY-SAT inside a concolic executor that is slow
at building symbolic expression would be marginal as most
of the analysis time would be spent in the emulation phase
and not in the solving one. On the other hand, an efficient
concolic executor should benefit from FUZZY-SAT as long
as the number of queries submitted to the solver during an
experiment is very high: if the number of queries is low, then
a slower but more accurate traditional SMT solver would likely
perform better than FUZZY-SAT.

VII. CONCLUSIONS

FUZZY-SAT is an approximate solver that uses fuzzing
techniques to efficiently solve queries generated by concolic
execution, helping hybrid fuzzers scale better on several real-
world programs.

We have currently identified two interesting future direc-
tions. First, we plan to integrate FUZZY-SAT in the concolic
execution framework SYMCC, which has been shown to be
very efficient at building symbolic expressions and thus should
benefit from using an efficient approximate solver. Second,
we would like to devise an effective heuristic for dynamically
switching during the exploration between FUZZY-SAT and a
traditional SMT solver depending on the workload generated
by the concolic executor on the solver backend.

REFERENCES

[1] M. Zalewski, “American Fuzzy Lop,” https://github.com/Google/AFL,
2019, [Online; accessed 20-Aug-2020].

[2] M. Heuse, H. Eißfeldt, and A. Fioraldi, “AFL++,” https://github.com/
vanhauser-thc/AFLplusplus, 2019, [Online; accessed 20-Aug-2020].

[3] C. Barrett and C. Tinelli, Satisfiability Modulo Theories. Springer
International Publishing, 2018, pp. 305–343.

[4] I. Yun, S. Lee, M. Xu, Y. Jang, and T. Kim, “QSYM: A
practical concolic execution engine tailored for hybrid fuzzing,”
in Proceedings of the 27th USENIX Conference on Security
Symposium, ser. SEC’18, 2018, pp. 745–761. [Online]. Available:
http://dl.acm.org/citation.cfm?id=3277203.3277260

[5] S. Poeplau and A. Francillon, “Symbolic execution with symcc: Don’t
interpret, compile!” in Proceedings of the 29th USENIX Security
Symposium (USENIX Security 20). USENIX Association, Aug. 2020,
pp. 181–198. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity20/presentation/poeplau

[6] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang,
J. Corbetta, Y. Shoshitaishvili, C. Kruegel, and G. Vigna,
“Driller: Augmenting fuzzing through selective symbolic execution,”
in Proceeings of the 23nd Annual Network and Distributed
System Security Symposium, ser. NDSS’16, 2016. [Online].
Available: http://www.internetsociety.org/sites/default/files/blogs-media/
driller-augmenting-fuzzing-through-selective-symbolic-execution.pdf

[7] L. De Moura and N. Bjørner, “Z3: An efficient smt
solver,” in Proceedings of 14th Int. Conf. on Tools and
Algorithms for the Construction and Analysis of Systems, ser.
TACAS’08/ETAPS’08, 2008, pp. 337–340. [Online]. Available:
https://doi.org/10.1007/978-3-540-78800-3 24

[8] D. Liew, C. Cadar, A. F. Donaldson, and J. R. Stinnett, “Just fuzz
it: Solving floating-point constraints using coverage-guided fuzzing,”
in Proceedings of the 2019 27th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering, ser. ESEC/FSE 2019. New York, NY, USA:
Association for Computing Machinery, 2019, p. 521–532. [Online].
Available: https://doi.org/10.1145/3338906.3338921

[9] B. Dolan-Gavitt, P. Hulin, E. Kirda, T. Leek, A. Mambretti,
W. Robertson, F. Ulrich, and R. Whelan, “LAVA: Large-Scale
Automated Vulnerability Addition,” in Proceedings of the 2016 IEEE
Symposium on Security and Privacy, ser. SP ’16, 2016, pp. 110–121.
[Online]. Available: https://doi.org/10.1109/SP.2016.15

[10] J. Choi, J. Jang, C. Han, and S. K. Cha, “Grey-box concolic testing
on binary code,” in Proceedings of the 41st International Conference
on Software Engineering, ser. ICSE ’19, 2019, pp. 736–747. [Online].
Available: https://doi.org/10.1109/ICSE.2019.00082

[11] G. J. Myers, C. Sandler, and T. Badgett, The art of software testing,
3rd ed. Hoboken and N.J: John Wiley & Sons, 2012.

[12] R. Baldoni, E. Coppa, D. C. D’Elia, C. Demetrescu, and I. Finocchi,
“A survey of symbolic execution techniques,” ACM Computing
Surveys, vol. 51, no. 3, pp. 50:1–50:39, 2018. [Online]. Available:
http://doi.acm.org/10.1145/3182657

[13] A. Zeller, R. Gopinath, M. Böhme, G. Fraser, and C. Holler, “The
Fuzzing Book,” https://www.fuzzingbook.org/, 2019, [Online; accessed
20-Aug-2020].

[14] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino,
A. Dutcher, J. Grosen, S. Feng, C. Hauser, C. Kruegel, and G. Vigna,
“SOK: (state of) the art of war: Offensive techniques in binary
analysis,” in Proceedings of the 2016 IEEE Symposium on Security
and Privacy, ser. SP’16, 2016, pp. 138–157. [Online]. Available:
http://dx.doi.org/10.1109/SP.2016.17

[15] V. Chipounov, V. Kuznetsov, and G. Candea, “The S2E platform:
Design, implementation, and applications,” ACM Trans. on Computer
Systems (TOCS), vol. 30, no. 1, pp. 2:1–2:49, 2012. [Online]. Available:
http://doi.acm.org/10.1145/2110356.2110358

[16] C. Cadar, D. Dunbar, and D. Engler, “KLEE: Unassisted and
Automatic Generation of High-coverage Tests for Complex Systems
Programs,” in Proceedings of the 8th USENIX Conference on Operating
Systems Design and Implementation, ser. OSDI’08. Berkeley, CA,
USA: USENIX Association, 2008, pp. 209–224. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1855741.1855756

[17] C. S. Pasareanu, P. C. Mehlitz, D. H. Bushnell, K. Gundy-Burlet,
M. Lowry, S. Person, and M. Pape, “Combining unit-level symbolic
execution and system-level concrete execution for testing nasa
software,” in Proceedings of the 2008 International Symposium on
Software Testing and Analysis, ser. ISSTA ’08, 2008, p. 15–26.
[Online]. Available: https://doi.org/10.1145/1390630.1390635

[18] S. K. Cha, T. Avgerinos, A. Rebert, and D. Brumley, “Unleashing
mayhem on binary code,” in Proceedings of the 2012 IEEE Symposium
on Security and Privacy, ser. SP ’12, 2012, pp. 380–394. [Online].
Available: https://doi.org/10.1109/SP.2012.31

[19] R. Baldoni, E. Coppa, D. C. D’Elia, and C. Demetrescu,
“Assisting Malware Analysis with Symbolic Execution: A
Case Study,” in Proceedings of the 2017 Cyber Security
Cryptography and Machine Learning, ser. CSCML ’17. Springer
International Publishing, 2017, pp. 171–188. [Online]. Available:
https://doi.org/10.1007/978-3-319-60080-2 12

https://github.com/Google/AFL
https://github.com/vanhauser-thc/AFLplusplus
https://github.com/vanhauser-thc/AFLplusplus
http://dl.acm.org/citation.cfm?id=3277203.3277260
https://www.usenix.org/conference/usenixsecurity20/presentation/poeplau
https://www.usenix.org/conference/usenixsecurity20/presentation/poeplau
http://www.internetsociety.org/sites/default/files/blogs-media/driller-augmenting-fuzzing-through-selective-symbolic-execution.pdf
http://www.internetsociety.org/sites/default/files/blogs-media/driller-augmenting-fuzzing-through-selective-symbolic-execution.pdf
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1145/3338906.3338921
https://doi.org/10.1109/SP.2016.15
https://doi.org/10.1109/ICSE.2019.00082
http://doi.acm.org/10.1145/3182657
https://www.fuzzingbook.org/
http://dx.doi.org/10.1109/SP.2016.17
http://doi.acm.org/10.1145/2110356.2110358
http://dl.acm.org/citation.cfm?id=1855741.1855756
https://doi.org/10.1145/1390630.1390635
https://doi.org/10.1109/SP.2012.31
https://doi.org/10.1007/978-3-319-60080-2_12


[20] L. Borzacchiello, E. Coppa, D. C. D’Elia, and C. Demetrescu,
“Reconstructing C2 Servers for Remote Access Trojans with
Symbolic Execution,” in Proceedings of the 2019 Cyber Security
Cryptography and Machine Learning, ser. CSCML ’19. Springer
International Publishing, 2019. [Online]. Available: https://doi.org/10.
1007/978-3-030-20951-3 12

[21] P. Godefroid, M. Y. Levin, and D. A. Molnar, “Automated
Whitebox Fuzz Testing,” in Proceedings of the 2008 Network
and Distributed System Security Symposium, ser. NDSS’08,
2008. [Online]. Available: http://www.isoc.org/isoc/conferences/ndss/
08/papers/10 automated whitebox fuzz.pdf

[22] E. Coppa, D. C. D’Elia, and C. Demetrescu, “Rethinking
Pointer Reasoning in Symbolic Execution,” in Proceedings of
the 32nd IEEE/ACM International Conference on Automated Software
Engineering, ser. ASE ’17, 2017, pp. 613–618. [Online]. Available:
https://doi.org/10.1109/ASE.2017.8115671

[23] L. Borzacchiello, E. Coppa, D. C. D’Elia, and C. Demetrescu, “Memory
models in symbolic execution: key ideas and new thoughts,” Software
Testing, Verification and Reliability, vol. 29, no. 8, 2019. [Online].
Available: https://doi.org/10.1002/stvr.1722

[24] H. Huang, P. Yao, R. Wu, Q. Shi, and C. Zhang, “Pangolin: Incremental
hybrid fuzzing with polyhedral path abstraction,” in Proceedings of
the 2020 IEEE Symposium on Security and Privacy (SP), 2020, pp.
1613–1627. [Online]. Available: https://doi.ieeecomputersociety.org/10.
1109/SP40000.2020.00063

[25] P. Yao, Q. Shi, H. Huang, and C. Zhang, “Fast bit-vector satisfiability,”
in Proceedings of the 29th ACM SIGSOFT International Symposium
on Software Testing and Analysis, ser. ISSTA ’20, 2020, p. 38–50.
[Online]. Available: https://doi.org/10.1145/3395363.3397378

[26] V. Pham, M. Boehme, A. E. Santosa, A. R. Caciulescu, and
A. Roychoudhury, “Smart greybox fuzzing,” IEEE Transactions on
Software Engineering, 2019. [Online]. Available: https://doi.org/10.
1109/TSE.2019.2941681

[27] “Google OSS-Fuzz: continuous fuzzing of open source software,” https:
//github.com/google/oss-fuzz, 2019, [Online; accessed 20-Aug-2020].

[28] “Circumventing Fuzzing Roadblocks with Compiler
Transformations,” https://lafintel.wordpress.com/2016/08/15/
circumventing-fuzzing-roadblocks-with-compiler-transformations/,
2016, [Online; accessed 20-Aug-2020].

[29] S. Rawat, V. Jain, A. Kumar, L. Cojocar, C. Giuffrida, and
H. Bos, “Vuzzer: Application-aware evolutionary fuzzing,” in 24th
Annual Network and Distributed System Security Symposium, NDSS,
2017. [Online]. Available: https://www.ndss-symposium.org/ndss2017/
ndss-2017-programme/vuzzer-application-aware-evolutionary-fuzzing/

[30] B. Yadegari and S. Debray, “Bit-level taint analysis,” in 2014 IEEE
14th International Working Conference on Source Code Analysis
and Manipulation (SCAM), 2014, pp. 255–264. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/SCAM.2014.43

[31] P. Chen and H. Chen, “Angora: Efficient fuzzing by principled
search,” in Proceedings of the 2018 IEEE Symposium on Security
and Privacy (SP), 2018, pp. 711–725. [Online]. Available: https:
//doi.org/10.1109/SP.2018.00046

[32] C. Aschermann, S. Schumilo, T. Blazytko, R. Gawlik, and T. Holz,
“REDQUEEN: fuzzing with input-to-state correspondence,” in Proceed-

ings of the 26th Annual Network and Distributed System Security Sym-
posium, NDSS, 2019. [Online]. Available: https://www.ndss-symposium.
org/ndss-paper/redqueen-fuzzing-with-input-to-state-correspondence/

[33] A. Fioraldi, D. C. D’Elia, and E. Coppa, “WEIZZ: Automatic
Grey-Box Fuzzing for Structured Binary Formats,” in Proceedings
of the 29th ACM SIGSOFT International Symposium on Software
Testing and Analysis (ISSTA ’20), 2020. [Online]. Available: https:
//doi.org/10.1145/3395363.3397372

[34] W. You, X. Liu, S. Ma, D. Perry, X. Zhang, and B. Liang, “SLF: Fuzzing
without valid seed inputs,” in Proceedings of the 41st International
Conference on Software Engineering, ser. ICSE ’19, 2019, pp. 712–723.
[Online]. Available: https://doi.org/10.1109/ICSE.2019.00080

[35] J. A. Navas, P. Schachte, H. Søndergaard, and P. J. Stuckey,
“Signedness-agnostic program analysis: Precise integer bounds for
low-level code,” in Proceedings of the 10th Asian Symposium on
Programming Languages and Systems, ser. APLAS ’12, 2012, pp. 115–
130. [Online]. Available: https://doi.org/10.1007/978-3-642-35182-2 9

[36] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin: Building customized
program analysis tools with dynamic instrumentation,” ser. PLDI ’05.
ACM, 2005. [Online]. Available: http://doi.acm.org/10.1145/1065010.
1065034

[37] D. C. D’Elia, E. Coppa, S. Nicchi, F. Palmaro, and L. Cavallaro, “SoK:
Using Dynamic Binary Instrumentation for Security (And How You
May Get Caught Red Handed),” in Proceedings of the 14th ACM ASIA
Conference on Computer and Communications Security, ser. ASIACCS
’19, 2019. [Online]. Available: https://doi.org/10.1145/3321705.3329819

[38] Google, “FuzzBench: issue #131,” https://github.com/google/fuzzbench/
issues/131, 2020, [Online; accessed 20-Aug-2020].

[39] M. Bynens, “Smallest possible syntactically valid files of different
types,” https://github.com/mathiasbynens/small, 2019, [Online; accessed
20-Aug-2020].

[40] D. Liew, “JFS: issue #4,” https://github.com/mc-imperial/jfs/issues/4,
2019, [Online; accessed 20-Aug-2020].

[41] K. Serebryany, “libFuzzer: a library for coverage-guided fuzz testing,”
http://llvm.org/docs/LibFuzzer.html, 2015, [Online; accessed 20-Aug-
2020].

[42] R. J. Stinnett, “JFS: issue #22,” https://github.com/mc-imperial/jfs/
issues/22, 2019, [Online; accessed 20-Aug-2020].

[43] “CmpLog instrumentation for QEMU inspired by Redqueen,” https://
aflplus.plus/features/, 2020, [Online; accessed 20-Aug-2020].

[44] A. Fioraldi, D. Maier, H. Eißfeldt, and M. Heuse, “AFL++: Com-
bining incremental steps of fuzzing research,” in Proceedings of the
14th USENIX Workshop on Offensive Technologies, ser. WOOT ’20.
USENIX Association, 2020.

[45] “Single-system parallelization,” https://aflplus.plus/docs/parallel
fuzzing/, 2020, [Online; accessed 20-Aug-2020].

[46] S. Gan, C. Zhang, X. Qin, X. Tu, K. Li, Z. Pei, and Z. Chen,
“Collafl: Path sensitive fuzzing,” in 2018 IEEE Symposium on Security
and Privacy, ser. SP ’18, 2018, pp. 679–696. [Online]. Available:
http://dx.doi.org/10.1109/SP.2018.00040

[47] A. Fioraldi, “afl-qemu-cov,” https://github.com/andreafioraldi/
afl-qemu-cov, [Online; accessed 20-Aug-2020].

https://doi.org/10.1007/978-3-030-20951-3_12
https://doi.org/10.1007/978-3-030-20951-3_12
http://www.isoc.org/isoc/conferences/ndss/08/papers/10_automated_whitebox_fuzz.pdf
http://www.isoc.org/isoc/conferences/ndss/08/papers/10_automated_whitebox_fuzz.pdf
https://doi.org/10.1109/ASE.2017.8115671
https://doi.org/10.1002/stvr.1722
https://doi.ieeecomputersociety.org/10.1109/SP40000.2020.00063
https://doi.ieeecomputersociety.org/10.1109/SP40000.2020.00063
https://doi.org/10.1145/3395363.3397378
https://doi.org/10.1109/TSE.2019.2941681
https://doi.org/10.1109/TSE.2019.2941681
https://github.com/google/oss-fuzz
https://github.com/google/oss-fuzz
https://lafintel.wordpress.com/2016/08/15/circumventing-fuzzing-roadblocks-with-compiler-transformations/
https://lafintel.wordpress.com/2016/08/15/circumventing-fuzzing-roadblocks-with-compiler-transformations/
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/vuzzer-application-aware-evolutionary-fuzzing/
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/vuzzer-application-aware-evolutionary-fuzzing/
https://doi.ieeecomputersociety.org/10.1109/SCAM.2014.43
https://doi.org/10.1109/SP.2018.00046
https://doi.org/10.1109/SP.2018.00046
https://www.ndss-symposium.org/ndss-paper/redqueen-fuzzing-with-input-to-state-correspondence/
https://www.ndss-symposium.org/ndss-paper/redqueen-fuzzing-with-input-to-state-correspondence/
https://doi.org/10.1145/3395363.3397372
https://doi.org/10.1145/3395363.3397372
https://doi.org/10.1109/ICSE.2019.00080
https://doi.org/10.1007/978-3-642-35182-2_9
http://doi.acm.org/10.1145/1065010.1065034
http://doi.acm.org/10.1145/1065010.1065034
https://doi.org/10.1145/3321705.3329819
https://github.com/google/fuzzbench/issues/131
https://github.com/google/fuzzbench/issues/131
https://github.com/mathiasbynens/small
https://github.com/mc-imperial/jfs/issues/4
http://llvm.org/docs/LibFuzzer.html
https://github.com/mc-imperial/jfs/issues/22
https://github.com/mc-imperial/jfs/issues/22
https://aflplus.plus/features/
https://aflplus.plus/features/
https://aflplus.plus/docs/parallel_fuzzing/
https://aflplus.plus/docs/parallel_fuzzing/
http://dx.doi.org/10.1109/SP.2018.00040
https://github.com/andreafioraldi/afl-qemu-cov
https://github.com/andreafioraldi/afl-qemu-cov

	Introduction
	Background
	Approach
	Reasoning primitives for concolic execution
	Overview
	Analyzing symbolic expressions
	Fuzzing symbolic expressions
	Discussion

	Implementation
	Evaluation
	RQ1: Solving effectiveness of Fuzzy-Sat
	RQ2: Impact of different kinds of mutations in Fuzzy-Sat
	RQ3: Fuzzy-Sat in Fuzzolic

	Threats to validity and limitations
	Conclusions
	References

