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Abstract

In this thesis we are concentrating on identifying defective items in larger
sets which is a main problem with many applications in real life situations,
e.g., fault diagnosis, medical screening and DNA screening. We consider the
problem of localizing defective nodes in networks through an approach based
on Boolean Network Tomography (BNT), which is grounded on inferring
informations from the Boolean outcomes of end-to-end measurement paths.
In particular, we focus on the following three:

• Studying Maximal Identifiability, which was recently introduced in
BNT to measure the maximal number of corrupted nodes which can
be uniquely localized in sets of end-to-end measurement paths on
networks;

• Central role of Vertex-Connectivity in maximal identifiability;

• Investigating identifiability conditions on the set of paths which
guarantee discovering or counting unambiguously the defective nodes
and contributing this problem both from a theoretical and applied
perspectives.

We prove tight upper and lower bounds on the maximal identifiability
for sets of end-to-end paths in network topologies obtained from trees
and d-(dimensional) grids over nd nodes. For trees (both directed and
undirected) we show that the maximal identifiability is 1. For undirected
d-grids we prove that, using only 2d monitors, maximal identifiability is at
least d− 1 and at most d. In the directed case proving that the maximal
identifiability is d and can be reached at the cost of placing 2d(n− 1) + 2
monitors on the d-grid. This monitor placement is optimal and adding
more monitors will not increase the identifiability. We also study maximal
identifiability for directed topologies under embeddings establishing new
relations with embeddability, graph dimension and proving that under the
operation of transitive closure maximal identifiability grows linearly.

Our results suggest the design of networks over n nodes reaching maxi-
mal identifiability Ω(logn) using O(logn) monitors and a heuristic to boost
maximal identifiability increasing the minimal degree of the network which
we test experimentally.

Moreover we prove tight bounds on the maximal identifiability first in
a particular class of graphs, the Line of Sight networks and then slightly
weaker bounds for arbitrary networks. Furthermore we initiate the study
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of maximal identifiability in random networks. We investigate two models:
the classical Erdős-Rényi model, and that of Random Regular graphs. The
proposed framework allows a probabilistic analysis of the identifiability
in random networks giving a tradeoff between the number of monitors to
place and the maximal identifiability.

Further in this thesis, we work on the precise tradeoff between number
of nodes and number of paths such that at most k nodes can be identified
unambiguously. The answer to this problem is known only for k = 1 and we
answer it for any k, setting a problem implicitly left open in previous works.
We focus on upper and lower bounds on the number of unambiguously
identifiable nodes, introducing new identifiability measures (Separability
and Distinguishability) which strictly imply and are strictly implied by the
notion of identifiability introduced in [39]. We utilize these new measures
to design algorithmic heuristics to count failure nodes in a fine-grained way
and further to prove the first complexity hardness results on the problem
of identifying failure nodes in networks via BNT.

At last but not least, we introduce a random model so as to achieve
lower bounds on the number of unambiguously identifiable defective nodes.
We use this model to approximate that number on real networks by a
maximum likelihood estimate approach.
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Chapter 1

Introduction

1.1 What Is Network Tomography?

A central issue in communication networks is to ensure that the structure
works reliably. To this end detecting as quickly as possible those components
that develop some sort of failure is of the prime priority. In other words,
monitoring a network to localize corrupted components is essential to
guarantee a correct behaviour and the reliability of a network. In general,
identifying a subset of defective items out of a much larger set of items
is a problem that has numerous applications in a variety of situations
such as medical screening, network reliability, DNA screening, streaming
algorithms. In many real networks direct access and direct monitoring
of the individual components are not possible (for instance because of
limited access to the network) or unfeasible in terms of available resources
(protocols, communications, response-time etc.).

A well-studied approach to localization of failing components is Network Network Tomogra-
phy as a way to
check network re-
liability

Tomography. Network Tomography is a general inference technique based on
end-to-end measurements aimed to extract internal network characteristics
such as link delays and link loss rates but also defective items. Network
Tomography focuses on detecting the state of single components in the
network by running a measurement process along the network. The process
starts by sending packets (containing suitable data to capture interesting
failures) from specific input monitor nodes and terminates receiving another
data packet on other specific output monitor nodes. Otherwise stated
Network Tomography is a family of distributed failure detection algorithms
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based on the spreading of end-to-end measurements [12, 49] rather than
directly measuring individual network components.

Typically a network G = (V,E) is given as a graph along with a
collection of paths P in it and the goal is to take measurements along such
paths to infer properties of the given network. Quoting from [16] ”A key
advantage of tomographic methods is that they require no participation
from network elements other than the usual forwarding of packets. This
distinguishes them from well-known tools such as trace-route and ping,
that require ICMP responses to function. In some networks, ICMP response
has been restricted by administrators, presumably to prevent probing from
external sources. Another feature of tomography is that probing and
the recovery of probe data may be embedded within transport protocols,
thus co-opting suitably enabled hosts to form impromptu measurement
infrastructures”.

The approach is strongly related to group testing [15] where, in general, Connection to
group testingone is interested in making statements about individuals in a population by

taking group measurements. In other words, the problem of group testing
concerns the design and evaluation of tests on pools of items (a pool is
a selected subset of all items) to identify the defective items. The main
concern is to do so with the minimum number of tests. In our setting, for
instance the connectivity structure of the network constrains the set of
feasible tests. Graph-constrained group testing has been studied before,
starting with [11]. One of our main interests is using structural graph-
theoretic properties to make statements about the quality of the testing
process.

Research in Network Tomography is vast. The seminal works of Vardi
[49], and Coates et al. [12], or more recent surveys like [10] each have more
that 500 citations, according to Google Scholar. Methods and algorithms
vary dramatically depending on the network property of interest, or the
measurements one has to rely on.

In this thesis we focus on the problem of detecting node states (fail- Boolean Network
Tomographying/working), using a Boolean Network Tomography approach [16, 17].

Duffield, who as first introduced Boolean Network Tomography [17] to
identify network failure components, proposed an inference algorithm based
on Boolean Network Tomography to identify the set of failure links. The
Boolean Network Tomography approach was later studied also to identify
node failures in networks [4,24,26,37–39]. Boolean Network Tomography
(BNT) aims to identify corrupted components in a network using Boolean



1.1 What Is Network Tomography? 3

measurements (i.e. assuming that elementary network components can be
in one of two states: “working” or “failing”). A (Boolean) measurement is
done along a set of end-to-end paths, each one starting and ending with
a monitor node and moreover the final measurement in the path1 at each
monitor is one bit (failure (1) /working (0)), capturing the presence or the
absence of a failure along a path. Introduced in [16], the paradigm has
recently attracted a lot of interest [29,38] because of its importance.

We are interested in conditions under which identifying (uniquely)
failure nodes. Assume to have a set P of measurement paths over a node set
V . We would like to know the state xv (with xv = 0 corresponding to “v in
working order” and xv = 1 corresponding to “v in a faulty state”) of each
node v ∈ V . In simple words, Receiving a 0 (working state) at an output
monitor of a path means that each node in the path is working properly.
Then the localization of failing nodes in a set of paths P is captured by the
solutions to the following Boolean system: Boolean system

∧
p∈P

∨
v∈p

xv ≡ bp

 (1.1)

where ~bp is a vector of Boolean values (corresponding to final measurement
in the paths) and xv’s are Boolean variables, one for each node v. Any
solution to this system is a possible location of node-failures satisfying the
measurements. Hence in the case of identifying failure nodes, the BNT
approach deals with extracting as much information as possible on the
number and the positions of the corrupted nodes from the solutions ~x
of a Boolean system P~x = ~b, where P is the incidence matrix of the m
measurement paths over the n nodes and ~b is the m-vector of the Boolean
outcomes of the measurement paths (see Figure 1.1).

The solutions to Eq. 1.1 are often multiple. Namely, systems of this
form may have several solutions and therefore, in general, the availability
of a collection of end-to-end measurements does not necessarily lead to the
unique identification of the failing nodes. This leads to pose the following
question: Given the set of paths P, what is the maximal set of nodes we can
hope to identify unambiguously? Identifiability conditions on the matrix P

under which failure nodes can be localized unambiguously (or also counted
accurately) from the solution of the system P~x = ~b are of course of the
utmost interest. We will investigate properties of the underlying network

1As a generic model, we assume failure if no result is obtained at the terminal monitor
after the given time.
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P 1 2 3 4 5 6 7 ~b

1 1 1 1 0 1 0 0 1
2 1 0 1 1 0 0 1 0
3 0 0 1 1 1 1 0 1
4 0 1 0 1 1 0 1 1
x1 ∨ x2 ∨ x3 ∨ x5 = 1
x1 ∨ x3 ∨ x4 ∨ x7 = 0
x3 ∨ x4 ∨ x5 ∨ x6 = 1
x2 ∨ x4 ∨ x5 ∨ x7 = 1

Figure 1.1. (1) A set P of 4 paths over 7 nodes. (2) The incidence matrix of P
and a measurement vector ~b. (3) The associated Boolean system. Notice that
the outcome 1 in the measurement of a path indicates the presence of at least
a node failure.

that facilitate the solution of this problem. In particular, we follow the
approach initiated by Ma et. al. [39] and later studied in [37,38] based on Maximal identifia-

bilitythe notion of maximal identifiability (see Section 2.4 Definition 2.4.1 for a
precise definition). The parameter aims to count the maximal number of
simultaneously failure nodes which are uniquely identifiable along a set of
measurement paths through a Boolean measurement. It turns out that the
network maximal identifiability is an interesting combinatorial measure.

The condition introduced as k-identifiability (for P) states that any two
distinct node sets of size at most k can be separated by at least a path in P.
k-identifiability initially introduced for link failure detection [36,41], was
later studied with success also for node failure detection [4, 24,26,37–39].
If this condition is true for a set of measurement paths P, it ensures
that if there are at most k failure nodes in P then these nodes can be
identified unambiguously. Hence the optimization problem of computing
the maximal k ≤ n such that a set P is k-identifiable (k-ID) admits that
the k-identifiability property is very relevant to the problem of node failure
localization. We refer to this maximal value as µ(P) (it was called Ω(P)
in [37]).

Maximal identifiability was recently studied under several aspects, in-
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cluding network topologies, routing protocols and probing mechanisms. Ma
et. al. in [37, 38] investigated under what conditions one can uniquely
localize failed nodes from path measurements available in the entire network.
Such questions depend on the network topology, on the placement of moni-
tors, and the implemented routing mechanism. Several studies [3,24,39,41]
have investigated variants of this measure in connection with various types
of path systems. However, it seems difficult to come up with simple graph-
theoretic properties that affect the given network identifiability. We contend
that the maximal identifiability using measures over the collection of all
simple paths between two sets of vertices S and T enables us to make good
progress on this issue. The works [4,37,38] focused on how much to increase
the number of monitors on generic topologies and what nodes to link them,
with the aim of optimizing maximal identifiability. However structural
limitations due to the network topology might affect the feasibility of such
approaches. For instance, as we notice in this thesis, the minimal degree
of the graph modeling the network is a structural limit on the maximal
identifiability one can hope for, independently of the number of monitors
and their placement. Despite of the importance of detecting failing nodes
in real networks, there is still a lack of a complete understanding of what
maximizing identifiability of failure nodes requires in terms of network prop-
erties as the topology and the monitor placement. Our work contributes to
this line of research.

1.2 Main Results

Network Tomography provides one of the main approach to detect fail-
ure components in networks. The identification of failure nodes via Boolean
Network Tomography is a computational problem of Boolean nature. The
purpose of this dissertation is to contribute both from a theoretical and
applied perspective to the understanding of node failure identification via
Boolean Network Tomography. In our analysis we use basic tolls from
discrete math in Graph Theory (Menger’s Theorem), Extremal Combina-
torics (Union-Free Families), Complexity Theory (NP-Completeness) and
Probability (Maximal Likelihood Estimate).

Network Tomography is an approach based on distributed algorithms
aimed to detect fault components in networks through end-to-end path
measurements. In this thesis we focus on the problem of detecting failing
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nodes in networks through binary (working/failing) measurements. We
consider the problem of detecting the maximal number of failing nodes that
can be simultaneously detected in a network as a measure of network’s
reliability, an approach devised in [9,16–18,32,37–39]. The study of this
measure turns out to be an interesting combinatorial problem with several
real-world applications.

Node failure identification is carried on set of (end-to-end) measurement
paths that we usually denote with P. When we study failure identification in
networks whose topology is defined by a graph G = (V,E) (either directed
or undirected), we specify a monitor placement on G by χ = (S, T ) where
S, T ⊆ V . Expressly, we consider P = Pχ(G) = the set of all paths in G
from a node in S to a node in T . Now in this thesis we are focusing on:

1. studying how structural properties of G limit the maximal identifia-
bility of nodes in P, cf. Chapter 3;

2. studying upper and lower bounds for maximal identifiability when
G is a tree, a d-dimensional grid, an augmented hypergrid and ran-
dom networks, possibly independently of the monitor placement, cf.
Chapter 4;

3. understanding how embeddability between directed graphs interferes
with the maximal identifiability, cf. Chapter 3;

4. exploring experimentally a heuristic (suggested by the results in items
2 and 3) to increase maximal identifiability by increasing the minimal
degree of the network topology, cf. Chapter 6;

5. studying the maximal identifiability of any network G using vertex-
connectivity κ(G) and other tools in Graph Theory such as Menger’s
Theorem, cf. Chapter 3;

6. combinatorial upper bounds on the maximal number of failure nodes
using union-free families, cf. Chapter 5;

7. studying lower bounds on maximal identifiability using random mod-
els, cf. Chapter 5 and 6;

8. counting and localizing failure nodes in real networks, cf. Chapter 5
and 6;

9. complexity of k-identifiability and the minimum hitting set, cf. Chap-
ter 6.
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The first results we show are structural. Namely we identify how max- Structural results

imal identifiability depends on the minimal degree (both in the directed
and undirected case), cf. Theorems 3.2.1 and 3.2.3, on the number of
monitors (Theorem 3.1.1) and the number of edges and nodes, cf. Corollary
3.2.2. It is noteworthy to mention that we provide heuristics on how to
design topologies and related monitoring schemes to achieve the maximum
identifiability under various network settings.

Later, we prove that when the topology G is a tree (both directed or Trees

not), the maximal identifiability is very low, namely 1, cf. Theorems 4.1.1
and 4.1.4. This result means that the maximal number of failing nodes we
can uniquely identify on such topologies is 1.

In searching for topologies where maximal identifiability is greater than Grids

1, we considered the case of grids (directed and not). We prove that in
2-dimensional grids we can reach a maximal identifiability strictly greater
than 1, namely 2. Our analysis easily extends to the case of d-dimensional
grids where we prove that the maximal identifiability is the dimension d.
We prove these results for both directed and undirected grids, cf. Theorems
4.2.1 and 4.2.9. In the former case we prove a tight bound of d for the max-
imal identifiability under a suitable monitor placement of O(nd) monitors
and we prove this is optimal. For undirected d-grids we greatly improve
the directed case. First we show a d− 1 lower bound and a d upper bound
using only d input and d output monitors (so independently of n). Second,
we prove the bounds for any monitor placement of d input and d output
monitors. To prove our lower bounds we use a combinatorial analysis, which
hence leads to algorithms to design network topologies with a guarantee
of reaching a tight maximal identifiability. Our results are the first known
on precise bounds for maximal identifiability for specific network topologies.

d-grids are related to the dimension of directed acyclic graphs (DAG) Embeddings and
transitive closurethrough the operation of embedding. Namely the dimension of a DAG G , is

the smallest integer d such that G is embeddable in the d-grid [5]. Motivated
by the results on d-grids. we start the study of maximal identifiability under
isomorphic embeddings of DAGs. While the most general definition of
embedding can drastically decrease maximal identifiability, yet we explore
two directions: (1) restricting the class of topologies we want to embed
(Theorem 3.4.2) and (2) restricting the mapping that defines the embedding,
cf. Theorem 3.4.4 and Corollary 3.4.5. In both cases we show new results on
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how maximal identifiability can be preserved under embeddings. Among our
results we prove that the k-transitive closure on directed graphs increases
the maximal identifiability linearly in k, cf. Theorem 3.4.12.

d-grids are examples of concrete topologies which reach an optimal Hypergrids

value of the maximal identifiability. The results on embeddability suggest
that for increasing the maximal identifiability of real networks (which often
are very low since many real topologies are trees, quasi-trees or grids) one
can try to add edges to the network in such a way to get closer to a graph
which is embeddable into a d-hypergrid.

We propose an algorithm Agrid that given a network G and a parameter
d outputs a new network GA having minimal degree d by adding random
edges. We discuss the feasibility of Agrid on real networks, and we test it
on examples of real networks, as well as on random graphs and also for
random placement of monitors, obtaining positive results.

All the above mentioned results in this thesis rely on the following works:

[24] N. GALESI, AND F. RANJBAR, Tight bounds for maximal
identifiability of failure nodes in boolean network tomography. In 38th
IEEE International Conference on Distributed Computing Systems, ICDCS
2018, Vienna, Austria, July 2-6, 2018 (2018), IEEE Computer Society, pp.
212–222.

[25] N. GALESI, AND F. RANJBAR, Tight bounds to localize failure
nodes on trees, grids and through embeddings under boolean network
tomography. Submitted, 2020.

The paper [25] is an extended version of the ICDCS paper [24].

More specifically, we show that the proposed approach provides an Maximal identifia-
bility of LoS net-
works

almost tight characterization of the maximal identifiability in augmented
hypergrids and more general Line-of-Sight (LoS) networks (see definition
in Section 2.2). LoS networks were introduced by Frieze et al. in [23] and
have been widely studied (see for instance [13, 14, 42, 43]) as models for
communication patterns in a geometric environment containing obstacles.
Like grids, LoS networks can be embedded in a finite cube of Zd, for some
positive integer d. But LoS networks generalize grids that edges are allowed
between nodes that are not necessarily next to each other in the network
embedding. We employed Menger’s Theorem establishing a precise relation Vertex-

connectivity
and Menger’s
Theorem

of µ(P) with the vertex connectivity of the graph (i.e. the size of the
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minimal set of nodes disconnecting the graph) underlying P.
Using the network vertex-connectivity, κ(G), we are able to prove the

following:

Theorem 1.2.1. Let H be an undirected augmented hypergrid. For every
pair of disjoint S, T ⊆ V (H), the maximal identifiability of H, µ(H) using
measures over simple paths between S and T satisfies: µ(H) ≤ κ(H).
Furthermore, for all pair of disjoint S and T we have µ(H) ≥ κ(H)− 1.

The result on hypergrids immediately suggests the related question
about general graphs. In this thesis we prove upper and lower bounds on
the maximal identifiability of any network G. The following statement
summarizes our findings (here κST (G) is the size of smallest set of vertices
separating S and T ):

Theorem 1.2.2. Let G = (V,E) be an undirected graph. For every pair of
disjoint S, T ⊆ V (G), the maximal identifiability of G, µ(G) using measures
over simple paths between S and T satisfies: µ(G) ≤ min(δ(G), κST (G)).
Furthermore, there is a way to choose S and T that guarantees µ(G) ≥
bκ(G)/2c − 1.

In both results, the upper bound is proved by showing that there are
sets of κ(G) + 1 vertices that cannot be identified. The lower bounds which
require the construction of paths separating large sets of nodes in the graph,
are based on a well-known relationship between κ(G) and the existence
of collections of vertex-disjoint paths between certain sets of nodes in G.
In fact a much higher lower bound can be proved for graphs with low
connectivity. The following result applies to arbitrary LoS networks, and to
many topologies studied in relation to communication problems including
various types of grids, butterflies, hypercubes, and sparsely connected sensor
networks.

Theorem 1.2.3. Let G = (V,E) be an undirected network with κ(G) ≤
|V |/3. Let µ(G) denote the maximal identifiability of G using measures
over simple paths between two disjoint sets of vertices S and T .

1. For all pairs of disjoint S, T ⊆ V , µ(G) ≤ κ(G).

2. There is a pair of disjoint S, T ⊆ V (G) such that µ(G) ≥ κ(G)− 2.

Furthermore, we look at random networks (Erdős-Rényi and Random
Regular Graphs), cf. Theorems 4.4.4 and 4.4.5. In these structures we are
able to show a trade-off between the success probability of the relevant path
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construction processes and the size of the sets S and T defining the path
set P. Random graphs also give us alternative constructions of networks
with large identifiability.

All these results on LoS networks, arbitrary graphs and random graphs
are based on:

[26] N. GALESI, F. RANJBAR AND M. ZITO. Vertex-connectivity for
node failure identification in boolean network tomography. In Algorithms
for Sensor Systems - 15th International Symposium on Algorithms and
Experiments for Wireless Sensor Networks, ALGOSENSORS 2019, Mu-
nich, Germany, September 12-13, 2019, Revised Selected Papers (2019), F.
Dressler and C. Scheideler, Eds., vol. 11931 of Lecture Notes in Computer
Science, Springer, pp. 79–95.

Finally, we try to understand the combinatorics and the complexity
of the theoretical problem of unambiguously identifying failure node sets
under the BNT approach, and moreover to devise new algorithms and
heuristics to count or localize failure nodes in networks as more precisely as
possible. we introduce new identifiability measures and deepen the study
of k-identifiability obtaining several new results and new heuristics to test
networks against the number and position of failing nodes.

In this matter, our first contribution is regarding the minimal number of Tradeoffs between
paths and nodesmeasurement paths m on n nodes such that below m, P is not k-identifiable.

We set this question about limits of upper bounds on identifiability of
failures via Boolean Network Tomography which is implicitly left open
in some previous works [4, 36]. What are the precise tradeoffs between
number of nodes n and number of paths m of P such that P is no longer
k-identifiable, that is µ(P) < k? The answer is known only for k = 1
where the tradeoff n ≥ 2m − 1 implies µ(P) < 1, and it is obtained by a
straightforward counting argument ( see Lemma 5.2.1 and [4]). Using the
notion of regular union-free families, we answer to the problem for any
2 ≤ k ≤ n, showing that n ≥ 2

k
k−1 (m+k−1)(1+ε)

implies µ(P) < k, for any
ε > 0. (Theorem 5.2.7 and Corollary 5.2.8).

The result mentioned above can be used as an estimate of upper
bounds on the number of k-identifiable nodes in P. As [4] uses the re-
sult for k = 1 to prove that | ID1(P)| ≤ min(n, 2m − 1) (see Theorem
5.2.2), our bound proves the general statement that for all 2 ≤ k ≤ n,
| IDk(P)| ≤ min{n, 2

k
k−1 (m+k−1)(1+ε)

} (Theorem 5.2.9). Our bound can also
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be used as a black-box in algorithms and heuristics aimed at approximating
the number of identifiable nodes ( [37–39]) which use the bound for k = 1.
For instance the ICE heuristic of [4], that creates a set of paths P reaching
a certain value of µ(P), is generating paths according to the result for k = 1.

Secondly, we introduce two new identifiability notions, namely, k- Refining Identifia-
bilityseparability (k-SEP) and k-distinguishability (k-DIS)(see Section 5.3). Anal-

ogously to identifiability we define these notions on nodes and we consider
the corresponding node sets SEPk(P) and DISk(P). These conditions pro-
vide significant upper and lower bounds to identifiability: namely we prove
that for all k ≤ n, k-SEP implies k-ID and k-ID implies k-DIS, both strictly.
Hence SEPk(P) ⊆ IDk(P) ⊆ DISk(P). We use these measures to get up-
per and lower bounds for | IDk(P)| and µ(P), to study the computational
complexity of identifiability conditions and to estimate the number of
k-identifiable nodes through a random model. Namely:

1. We prove that the problem of deciding the non k-identifiability of a Complexity results
and MHS problemgiven node in P is polynomial time reducible to the minimum hitting

set problem (MHS), cf. Theorem 6.4.1. Furthermore we prove that
the optimization problem of finding the minimal k such that a given
node is not k-separable in P is NP- complete (Theorem 6.4.3). To our
knowledge these are the first known hardness results of identifiability
problems arising from Boolean Network Tomography. The fact that
the MHS problem is reducible to the non-separability problem suggests
the idea of using the minimal hypergraph transversal (instead of a
minimum hitting set) to lower bound the number of separable nodes
(hence identifiable nodes) in P. Given an order of the variables a
minimum hypergraph transversal in a set-system can be efficiently
computed. We propose two algorithms based on the hypergraph
transversal (Simple-SEP and Decr-SEP). In particular in the second
algorithm we use a new idea which partitions the set of nodes of P in
family of subsets of nodes called 0-decreasing which allows to apply in
a more efficient way the hypergraph transversal heuristic (Decr-SEP).

2. We introduce and study a random model for P based on the binomial A random model
to estimate the
number of identi-
fiable nodes

distribution and we estimate lower bounds on the number of k-
identifiable nodes | IDk(P)| in this model by analyzing the number
of k-separable nodes in P (Theorem 5.4.2). We employ the random
model to approximately count the number of k-identifiable nodes on
concrete networks using an approach based on the maximum likelihood
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estimate for binomial distributions. Our experimental results indicate
that a lower bound for the number of k-identifiable nodes of a real
network can be computed very accurately using a relatively simple
random model based on the binomial distributions and computing the
probability that a node is k-separable in this model. We then consider
a real set of measurement paths P̂ as it is a random experiment, we
plug in the MLE estimates on P̂ in the probability formula of the
random model to estimate the cardinality of the set SEPk(P̂).

3. We use node distinguishability to study upper bounds on the number Fine-grained
search of failure
nodes

of k-identifiable nodes parameterizing the search of such nodes in
terms of specific subset of nodes and specific subset of paths in P.
We introduce the relation (Definition 5.5.1) u k-equal W modulo P,
where u is node, W a set of nodes and P a family of paths in P that
characterizes non-distinguishability of u restricted to the set W with
respect to P. A recursive construction (Definition 5.5.3 of τk) built
on the previous relation allows to upper bound efficiently the number
of k-identifiable nodes in a fine-grained way (Theorem 5.5.4). In other
words, we use the definition of τk to upper bound the number of
k-identifiable nodes in P according to specific families of subset of
nodes and subset of paths. As we show in Section 5.5, this can be
used to compute approximations of the value of µ(P) and | IDk(P)|
which are efficiently computable (Algorithm lb-DISk).

All the mentioned results on counting and localizing failure nodes by
Boolean Network Tomography rely on our following paper:

[27] N. GALESI, AND F. RANJBAR, Counting and localizing defective
nodes by boolean network tomography. Submitted, 2020. arXiv:2101.04403

1.3 Organization of The Thesis

In the thesis we have firstly studied k-identifiability from the topological
point of view of the graph underlying P. Then we generalized our results and
established a precise relation of identifiability with the structural properties
of our networks especially with vertex connectivity and started the study
of identifiability conditions on random graphs and random regular graphs.
Furthermore we worked on counting and localizing failure nodes in networks
and finally we end this thesis with some algorithms, data and experiments.
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Each chapter starts with some more detailed overview of the results/
techniques introduced.

Chapter 2 In this chapter we focus on the preliminary and basic defini-
tions and notations used in the thesis. It is including five sections as the
following: Section 2.1 which is regarding Sets, Graphs, Paths and Connec-
tivity; Section 2.2 introduces grids and LoS Networks; Section 2.3 offers a
brief introduction on embeddings; and the last two Sections 2.4 and 2.5
contain the main definitions related to the Boolean Network Tomography
and identifiability.

Chapter 3 This chapter consists of several sections, each focusing on
bounds on maximal identifiability under some particular structural prop-
erties of the networks. In Section 3.1 we study how the number of input
and output nodes effects the maximal identifiability. Sections 3.2 and
3.5 contain some results on the relation of the minimal degree and vertex
connectivity of our networks with the k-identifiability. Moreover in Section
3.4 we discuss some results on maximal identifiability under isomorphic
embeddings of DAGs. Finally this chapter ends with a list of related open
problems, cf. Section 3.6.

Chapter 4 In this chapter we construct the framework to prove lower
and upper bounds on maximal identifiability for some specific networks such
as trees (Section 4.1), grids (Section 4.2), augmented hypergrids (Section
4.3) and last but not least random networks, cf. Section 4.4. This chapter
is largely dependent on Chapter 3.

Chapter 5 This chapter switch the focus from topological and structural
point of view to the combinatorics and the complexity point of view. We
first introduce some preliminary definitions, cf. Section 5.1. Then we
study the tradeoffs between number of nodes and number of paths in
Section 5.2. In the Section 5.3 we give the definitions of k-separability
and k-distinguishability and prove the relation with identifiability. Then
in Section 5.4 we introduce the random model and show how to count
k-separable nodes (hence lower bounds on k-identifiable nodes) on real
networks through a maximum likelihood estimate method. Finally in Section
5.5 we prove some properties and introduce a corresponding method based
on distinguishability to compute upper bounds on identifiable nodes in a
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fine-grained way, when the set of paths is obtained by taking all the paths
in a graph from a set of source nodes to a set of target nodes.

Chapter 6 This last chapter is consisting of algorithms, data and experi-
ments or in other words all applications of our results in previous chapters.
In Sections 6.1 and 6.2 our results in Chapter 4 culminated with a heuristic
Agrid to design networks with a high degree of identifiability or to modify
a network to boost identifiability and we study the feasibility of Agrid and
provide some experimental data. In Section 6.3 we present some experi-
ments on the number of k-separable nodes on real networks using maximum
likelihood estimate method on the random model. Lastly, Sections 6.4
and 6.5 contain algorithms and experimental data based on the results
in Chapter 5. We present an algorithm regarding counting k-identifiable
nodes in a network on real set of measurement paths. Furthermore we
present the results on the computational complexity of k-identifiability
and we introduce two algorithms based on hypergraph transversal to count
identifiable nodes.

Appendix For the convenience of the reader we collect in an appendix
some additional proofs which we have omitted due to their similarity to
the other proofs given in the thesis.
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Chapter 2

Preliminaries

This chapter gives a concise introduction to most of the terminology
used later in the thesis. Fortunately, much of standard graph theoretic
terminology is so intuitive that it is easy to remember; However some few
terms better understood in their proper setting will be introduced later,
when their time has come. Sections 2.1, 2.2 and 2.3 offer a brief but precise
summary of the most basic definitions in graph theory, those centered round
the notion of a graph. Most readers will have met these definitions before,
or will have them explained to them as they begin to read this thesis. For
this reason, Sections 2.1, 2.2 and 2.3 do not dwell on these definitions more
than clarity requires: its main purpose is to collect the most basic terms in
one place, for easy reference later.

From Sections 2.4 and 2.5 onwards, primary concepts and definitions
related to Network Tomography are being introduced. We become familiar
with identifying (uniquely) failure nodes. We study the maximal size of sets
of failure nodes one can guarantee identifiability for which is a measure of
the ability to identify failure sets uniquely using paths in a Given Network.
Furthermore in Section 2.5 we formally prove that how and why maximal
identifiability implies unique localization of sets of failure nodes (Theorem
2.5.2).

2.1 Sets, Graphs, Paths and Connectivity

For a real number x we denote by bxc the greatest integer ≤ x, and by
dxe the least integer ≥ x. For sets U, V , U4V = (U \ V ) ∪ (V \ U) is the Symmetric differ-

encesymmetric difference between U and V .
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Figure 2.1. Venn diagram of symmetric difference.

A graph is a pair G = (V,E) of sets such that E ⊆ V × V ; thus, the Graph

elements of E are 2-element subsets of V . The elements of V are the
vertices (or nodes, or points) of the graph G, the elements of E are its
edges (or lines) (we will use the terms network and graph interchangeably).
The set of neighbours of a vertex u in G is denoted by NG(u), or briefly by Neighbours of a

nodeN(u) and it is N(u) = {v ∈ V | (u, v) ∈ E}. The degree of u, deg(u), is the
Degree

cardinality of N(u). The number δ(G) = minu∈V deg(u) is the minimum
degree of G, the number ∆(G) = maxu∈V deg(u) its maximum degree. If
all the vertices of G have the same degree r, then G is r-regular, or simply r-regular

regular.

Figure 2.2. A graph with a loop having vertices labeled by degree.

Figure 2.3. Some examples of r-regular graphs.

A path p in G from a node u to a node v is a sequence of edges Path

p = (u1, u2) · (u2, u3) · . . . · (uk−1, uk) such that u1 = u and uk = v and
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(ui, ui+1) ∈ E for all i ∈ [k − 1]. · is the operation of path concatenation.
We often refer to a path by the natural sequence of its vertices, writing, say,
p = u1 · . . . · uk. The number of edges of a path is its length, and the path
of length k is denoted by L(p) = k. The path p is simple if no two ui and
uj in p are the same. Any sub-sequence ux, . . . , ux+y (x ∈ {1, . . . , k + 1},
y ∈ {0, . . . , k + 1− x}) is said to be contained in p, and dually we say that
p contains the sequence or passes through it. We say that path p and q

intersect if they contain a common sub-sequence. The intersection of a
path p and an arbitrary set of nodes W is the set of elements of W that are
contained in p. When p intersects W sometimes we say that p touches W .
A cycle is a path where u1 = uk. An acyclic graph is a graph not containing Cycle

any cycles. The distance dG(x, y) in G of two vertices x, y is the length of Distance of two
verticesa shortest x− y path in G; if no such path exists, we set d(x, y) :=∞.

Figure 2.4. Some examples of paths.

G is directed if pairs in E are ordered. Otherwise G is undirected. G Directed graph

is DAG if it is directed and with no cycles. If G is directed then we also
distinguish Ni(u), the set of neighbours v of u s.t. (v, u) ∈ E, from No(u),
the neighbours v of u s.t. (u, v) ∈ E. For all degree measures on G we
distinguish the in-degree ∆i(G) and δi(G) and the out-degree ∆o(G), and
δo(G).

Figure 2.5. Example of a directed acyclic graph.
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A graph G is called connected if it is non-empty and any two of its Connected graph

vertices are linked by a path in G. Moreover a maximal connected subgraph
of G is a component of G. In Connectivity, the vertex-connectivity of the Vertex-

connectivitygiven graph G = (V,E), namely κ(G) is the size of the minimal subset K
of V , such that removing K nodes from G disconnects G. In particular it
is well-known (see for example [30], Theorem 5.1, pag 43) that

κ(G) ≤ δ(G). (2.1)

Figure 2.6. This graph becomes disconnected when the right-most node in the
gray area on the left is removed.

It will also be convenient to work with sets of vertices disconnecting
particular parts of G. If S, T ⊆ V , then κST (G) is the size of the smallest
vertex separator of S and T in G, i.e. the smallest set of vertices whose
removal disconnects S and T (set κST (G) =∞ if S ∩ T 6= ∅ or there are
s ∈ S and t ∈ T such that {s, t} ∈ E). Notice that κST (G) ≥ κ(G).

An undirected tree Tn over n nodes is an acyclic graph where any two Trees

nodes are connected by exactly one path. In the directed case we say that
Tn is a downward directed tree (respectively upward directed tree) if all
vertices v except the root have ∆i(v) = 1 (respectively ∆o(v) = 1). See
Figure 4.1. The vertices of degree 1 in a tree are its leaves.

A hypergraph is a pair (V,E) of disjoint sets, where the elements of E Hypergraph

are non-empty subsets (of any cardinality) of V . Thus, graphs are special
hypergraphs.

Figure 2.7. An example of an undirected hypergraph with E = {e1, e2, e3, e4} =
{{v1, v2, v3}, {v2, v3}, {v3, v5, v6}, {v4}}.
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2.2 Grids and LoS Networks

We consider the following graphs. Let d ∈ N+ and n ∈ N, n ≥ 3. The Hypergrid

(directed) hypergrid of dimension d (d-grid) over support [n], Hn,d, is the
graph with vertex set [n]d and where there is a directed edge from a node
x = (x1, x2, ..., xd) to a node y = (y1, y2, ..., yd) if for some i ∈ [d] we have
yi−xi = 1 and xj = yj for all j 6= i. In the case of undirected d-grid in Hn,d
there is an edge between a node x and a node y if for some i ∈ [d] we have
|xi − yi| = 1 and xj = yj for all j 6= i. In the case of grids over n nodes, i.e.
d = 2, we use the notation Hn. ∂i is the set of nodes x = (x1, x2, ..., xd)
such that xi = 1. A border node is a node of Hn,d which is also in some ∂i.

(1, 1) (4, 1)

(4, 4)(1, 4)

Figure 2.8. Directed hypergrid H4 = H4,2.

For positive integers d, and n ≥ 2, let Zdn be the d-dimensional cube
{1, . . . , n}d. We say that distinct points P1 and P2 in a cube share a line
of sight if their coordinates differ in a single place. A graph G = (V,E)
is said to be a Line of Sight (LoS) network of size n, dimension d, and Line of Sight

(LoS) networkrange parameter ω if there exists an embedding fG : V → Zdn such that
{u, v} ∈ E if and only if fG(u) and fG(v) share a line of sight and the
(Euclidean) distance between fG(u) and fG(v) is less than ω. In the rest of
the paper a LoS network G is always given along with some embedding fG
in Zdn for some d and n, and with slight abuse of language we will often refer
to the vertices of G, u, v, . . . ∈ V in terms of their corresponding points
fG(u), fG(v), . . . in Zdn, and in fact the embedding fG will not be mentioned
explicitly.

Note that d-dimensional hypergrids, Hn,d are particular LoS networks
with ω = 2 and all possible nd vertices. In the forthcoming sections we will
study augmented hypergrids Hn,d,ω (or simply Hn,ω in the 2-dimensional
case), namely d-dimensional LoS networks with range parameter ω > 2
containing all possible nd nodes.
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Figure 2.9. On the left, the network Hn,ω for n = 5 and ω = 4 (note that
vertices u and v are not adjacent); on the right a more general example of LoS
network, having ω = 3, embedded in Z2

5 (represented as a dashed grid).

2.3 Embeddings

Each DAG G = (V,E) is equivalent to a poset with elements V and
partial order �G, where u �G v if v is reachable from u in G. Elements
u and v are comparable if u �G v or v �G u , and incomparable otherwise.
We write u ≺G v if u �G v and u 6= v.

Now that we have met all the standard basics about graphs, we can
also define what it means to embed one graph in another. Basically, an
embedding of G in G′ is an injective map f : G(V,E) → G′(V ′, E′) that
preserves the kind of structure we are interested in. In other words, a
mapping f from a poset G = (V,E) to a poset G′ = (V ′, E′) is called an
embedding if f is injective and it respects the partial order, that is, all Embedding

u, v ∈ V are mapped to u′, v′ ∈ V ′ such that u �G v iff u′ �G′ v′. If G is
embeddable into G′ we write G ↪→ G′.

G1

u1

u2

u3

u4 G2

w1

w2

w3

w4

Figure 2.10. Example of embedding G1 ↪→f G2: f(ui) = wi.
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2.4 Monitors, Measurement Paths and Maximal
Identifiability µ

In Boolean Network Tomography one takes measurements along paths,
and the quality of the monitoring scheme depends on the choice of such
paths. Let P be a set of paths over some node set V . For a node v ∈ V ,
let P(v) be the set of paths p ∈ P passing through v, i.e. such that v is
a node in p. For a set of nodes U , P(U) =

⋃
u∈U P(u). Hence if U ⊆ V ,

P(U) ⊆ P(V ). Crucially, we identify two sets of vertices S and T , and
assume that P is the set of all S-T paths in G, i.e. simple paths with one
end-point in S and the other one in T .

Traditionally in Network Tomography all measurements originate and
end at special monitoring stations that are connected to the structure under
observation. In other words, in end-to-end measurement paths, messages are
routed and received through monitor nodes. For any tomographic process
to have any chance of succeeding, one has to assume that such monitors are
infallible. It is therefore customary to assume that physical monitors are
external to the given network but connected to it through a designated set
of nodes (S ∪T is such set in our case). This assumption is justified by two
reasons: (1) Monitors by default must be reliable, hence there is no failure
to identify for them; (2) Since we study maximal identifiability in set of
paths associated to given topologies G = (V,E), the assumption allows to
consider all the nodes in G as equally potentially identifiable for a failure.

Let I,O be sets of physical monitors. A monitor placement for G = Monitor place-
ment(V,E) is a pair of injective mappings χ = (χi, χo) such that χi : I → V

and χo : O → V . We always denote by (S, T ) the pair (χi(I), χo(O)),
where clearly S =

⋃
i∈I χi(i) and T =

⋃
i∈O χo(i). Notice that there is

no relation between cardinalities of S and I or cardinalities of T and O.
The interpretation is that S is the set of the nodes in G (input nodes)
linked to input monitors and T (output nodes) the nodes in G linked to
output monitors. We use to denote measurement paths in G under χ as
S ·(v1, v2) · . . . · (vk−1, vk)·T where v1 ∈ S is an input node, vk ∈ T is an
output node and (v1, v2) · . . . · (vk−1, vk) a path in G.

Given a graph G = (V,E) and a monitor placement χ = (S, T ) we
denote by P(G|χ) the set of all distinct paths from a node in S to a node in
T . Let P be a set of paths over a set of nodes V . Following [38] we define:

Definition 2.4.1 (k-identifiability). A set of vertices V is k-identifiable k-identifiability
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with respect to P if and only if for all U,W ⊆ V , with U4W 6= ∅ and
|U |, |W | ≤ k, it holds that P(U)4P(W ) 6= ∅.

That is, for any two distinct node sets U and W in V of cardinality
at most k there exists always a path in P traversing exactly one node-set
between U and W .

Definition 2.4.2 (Maximal identifiability). The maximal identifiability of Maximal identifia-
bilityV with respect to P, µ(V ) is the max k ≥ 0 such that V is k-identifiable

with respect to P.

Monotonicity of identifiability (a property noticed also in [38,39]), i.e. Monotonicity of
identifiabilitythat k-identifiability of V wrt P implies k′-identifiability of V wrt P for

k′ < k, is trivial from our definition.
In the Boolean system as in Equation 1.1 we can have equations made

by only one variable, xv = b for some b ∈ {0, 1}. This situation occurs
when in P a node v is linked to both input and output monitors. But
one node is no path. We then consider such equation to correspond to a
loop path of one node S ·(v, v)·T . We call it a DLP-path (from degenerate DLP-path

loop path). Notice that since xv = b has a trivial solution which can be
immediately propagated in the whole system of Equation 1.1, DLP does
not have a key role in localizing node failures. Given a graph G and the
monitor placement χ = (S, T ), a routing mechanism determines the set of
measurement paths. All our results hold under any routing which does not
create loops and therefore also without DLP.

For a graph G = (V,E), and a monitor placement χ for G, we write µ(G|χ)

µ(G|χ) and call it the maximal identifiability of G|χ, to indicate the
maximal identifiability of V with respect to P(G|χ). We might omit the
χ, when it is either clear from the context, or when the result holds for all
possible monitor placements.

Symbol Meaning
P set of paths
P(u) paths in P passing through u
P(U)

⋃
u∈U P(u)

(I,O) physical input and output monitors
χ monitor placement: χ = (χi(I), χo(O))
(S, T ) nodes in V linked to I and O by χ
P(G|χ) set of all paths in G from S to T
µ(G|χ) maximal identifiability of V wrt P(G|χ)
Table 2.1. Notations for paths, monitors, identifiability.
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2.5 Bounds on µ and Unique Localization of Fail-
ure Nodes

To prove that µ(G|χ) ≤ k − 1 we have to show that G|χ is not k-
identifiable. By Definition 2.4.1 it is sufficient to show the existence
of two distinct node sets U and W of cardinality at most k such that
P(U)4P(W ) = ∅. By the monotonicity property of identifiability, this
implies that µ(G|χ) ≤ k − 1.

Conversely, to prove that µ(G|χ) ≥ k for some k, then by Definition
2.4.1 it is enough to argue that for all distinct node sets U and W of
cardinality |U |, |W | ≤ k, P(U)4P(W ) 6= ∅. To prove this we have to show
that for any two distinct node sets U and W of cardinality at most k there
exists a path in P intersecting exactly one between U and W .

To make clear the importance of the measure µ, we formally addresses
how maximal identifiability implies unique localization of sets of failure
nodes, which is known but did not appear before anywhere.

Let us motivate our definition in the context of the approach of Boolean
Network Tomography to detect failure nodes in networks. Assume to have a
set P of m end-to-end paths over n nodes. A binary measurement M along Binary

measurementa path p ∈ P is obtained by sending a message through p and recording
the outcome M(p), a bit, which identifies (in the case M(p) = 1) that some
node in p is failing, or (in the case M(p) = 0) that no node is failing along
the path p.

We claim that if P is k-identifiable, then under any binary measurement
M, we can uniquely localize in P up to k failing nodes.

Let P be a set of paths over nodes V and let M be a Boolean measurement
running along the paths in P. Let failM(P) = {p ∈ P|M(p) = 1}, i.e. the set
of paths where a failure is detected under M.

Definition 2.5.1 (Unique failure). Let P be a set of m paths over V and M Unique failure

a binary measurement on P. A set of nodes W ⊆ V is failing in P under M

if P(W ) ⊆ failM(P). Furthermore W is uniquely failing if P(W ) ⊆ failM(P)
(where P(W ) = P \ P(W ) and failM(P) = P \ failM(P)), i.e. on any path not
touching W the measurement M is not failing.

Theorem 2.5.2. Let P be a set of paths over V . If µ(P) ≥ k, then under
any Boolean measurement M there is exactly one set W of nodes in V of
size at most k that is uniquely failing in P.
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Proof. Let M be a measurement over P. Assume that µ(P) ≥ k and that
for the sake of contradiction there are two distinct sets W,W ′ ⊆ V of
size at most k both uniquely failing in P under M. Since W 6= W ′, and
P is k-identifiabale, hence by Definition 2.4.1 we know that either there
is path p ∈ P(W ) \ P(W ′) or p ∈ P(W ′) \ P(W ). Say wlog the first case.
Since p ∈ P(W ) and W is failing, then by Definition 2.5.1 p ∈ failM(P).
On the other hand since p 6∈ W ′, by unique failure of W ′ p ∈ failM(P).
Contradiction.
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Chapter 3

Tight Bounds on Maximal
Identifiability by Structural
Results

One of the modern methods in Pure and Applied Mathematics is to
switch the problem into the language of Graph Theory and then by using
the theorems, rules and structures in Graph Theory we can find a better
depiction to solve the problem. Using different structural graphs may
reveal new insights on the problem. Our main purposes in this chapter are
developing new techniques in terms of structural property of the topology to
detect fault components in networks through main tools in Graph Theory.

In the first two Sections 3.1 and 3.2 we present some upper bounds for
maximal identifiability in terms of structural properties of the topology.
We analyse: the number of nodes linked to monitors (Theorem 3.1.1), the
minimal degree (Lemmas 3.2.1 and 3.2.3) and the number of edges and
nodes (Corollary 3.2.2).

Section 3.4 contains all the results about maximal identifiability and
isomorphic embeddings. We establish relations between maximal identifia-
bility and embeddability when networks are modeled by DAGs. In Theorem
3.4.2 we prove that upper bounds for maximal identifiability (for DAGs) are
preserved under isomorphic embeddings. For isomorphic embeddings we
prove that lower bounds on maximal identifiability are preserved (Theorem
3.4.4). This result in turn is used to prove that, for DAGs closed under
transitivity, maximal identifiability is lower bounded by the dimension of
the graph (Theorem 3.4.7). The end of this section is devoted to the study
of maximal identifiability under the operation of k-transitive closure of
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DAGs. We show that µ grows linearly in k (Theorem 3.4.12).
Last but not least, Section 3.5 focuses on arbitrary graphs. We study

the upper and lower bounds on the maximal identifiability of any network
G in terms of the vertex connectivity using tools from Graph Theory (such
as Menger’s Theorem). First we look at the proof of Theorem 1.2.2. Then
we describe a different construction that leads to the proof of Theorem 1.2.3.

3.1 Number of Input and Output Nodes

Having monitors external to the network, we look at the maximal
identifiability we can hope for in a graph, knowing how many internal nodes
are linked to monitors. Let G = (V,E) be a graph. Let χ = (χi, χo) be a
monitor placement for G of physical monitors I and O. Let S =

⋃
i∈I χi(i)

and Ŝ = |S|. Let T =
⋃
i∈O χo(i) and T̂ = |T |.

Theorem 3.1.1. Let G = (V,E) be an arbitrary connected graph without
loop paths and therefore without DLPs and χ an arbitrary monitor placement
for G. Then µ(G|χ)<max(Ŝ, T̂ ).

Proof. Define U = S and W = T . Hence |U |, |W | ≤ max(Ŝ, T̂ ). If U 6= W ,
then since G is connected, there is no way of separating U from W with a
path going from an input-node to an output-node. We will always touch
both. Then P(U)4P(W ) = ∅ and hence µ(G|χ) < max(Ŝ, T̂ ). If U = W

then it must be that |U | = |W | ≥ 2, since otherwise U = W = {u} and we
would have a DLP-path which is not allowed. Then define U ′ = U − {u}
where u is one of the nodes that is both the termination of a path and the
source of another (u necessarily exists since U = W ). It is obvious that
P(U ′) ⊆ P(W ). Now, if p ∈ P(W ) is not touching u, then p ∈ P(U ′) since
U ′ = W − {u}. If p ∈ P(W ) is touching u, then the source of this path is
in U ′ and p touches U ′ as well, unless the source of p is u. If the source of
p is u, then the termination of this path is in W − {u} = U ′ (since loop
paths are not allowed) and touches U ′ as well. Therefore P(U ′)4P(W ) = ∅
and hence µ(G|χ) < max(Ŝ, T̂ ).

3.2 Degree

Next results hold for any monitor placement and we omit χ. We start
with the undirected case.
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Lemma 3.2.1. Let G = (V,E) be undirected. Then µ(G) ≤ δ(G).

Proof. Let u ∈ V be such that deg(u) = δ(G). Fix U = N(u) and
W = {u} ∪N(u). Each path touching u is passing through at least a node
in N(u). Hence P({u}) ⊆ P(N(u)). Hence P(W ) = P({u}) ∪ P(N(u)) =
P(N(u)) = P(U) and then P(U)4P(W ) = ∅. We have found two sets U,W
of cardinality at most δ(G) + 1. Hence µ(G) ≤ δ(G).

Notice that if a node v in V is disconnected in G, then µ(G) = δ(G) = 0.
Hence in the rest of the paper, we assume the graphs always to be connected.

Corollary 3.2.2. Let G = (V,E) be defined over n nodes and m edges.
Then µ(G) ≤ min{n, d2m

n e}.

Proof. Assume a graph G has n nodes and minimal degree d. Then there
are at least nd/2 edges in G. So m ≥ nd/2. Hence d ≤ 2m/n. By Lemma
3.2.1 µ(G) ≤ d = 2m/n.

Let us now consider the directed case. Let G = (V,E) be a di-
rected graph and χ = (S, T ) be a monitor placement. A node v ∈ V is
called a complex source if v ∈ S and degi(v) > 0 and a simple source Complex and sim-

ple sourcesif v ∈ S and degi(v) = 0. Let K (resp. L) be the set of complex
(resp. simple) source nodes and R = V \ (K ∪ L). We let δ̂(G) =
min{ minv∈R degi(v),minv∈K(degi(v) + dego(v)) }.

S2S1

u •

◦ w

v•

T

Figure 3.1. Example of simple (•) and complex (•) source nodes.

Lemma 3.2.3. Let G = (V,E) be directed. Then µ(G) ≤ δ̂(G).

Proof. Let w be a node in G which minimizes δ̂(G). If w ∈ R, then
δ̂(G) = δi(w). Define W = Ni(w) and U = Ni(w) ∪ {w}. Since w ∈ R,
then each path passing through w is necessarily proceeding from a node
in Ni(w), hence P({w}) ⊆ P(Ni(w)). Therefore P(U) = P(W ), which
proves the claim since |U | = δi(G) + 1 = δ̂(G) + 1. If w ∈ K, then define
W = Ni(w) ∪No(w) and U = W ∪ {w}. If a path is passing from w and
raising from an input monitor linked to w, it is necessarily continuing to a
node in No(w).
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3.3 Lines

We call a path p in an undirected graph G = (V,E) a line if p := Line

(u0, u1) . . . (uk, uk+1) and N(ui) = {ui−1, ui+1} for any i ∈ [k] (see also
[9, 18]). Reasoning exactly as in Lemma 3.2.1 is easy to observe that if
P(G|χ) includes a path which is a line, the maximal identifiability of G is
less than 1. Hence meaningful topologies should not include a line. We
define an undirected topology G to be Line-Free (LF) if each node u is
linked to at least three other nodes in G.

3.4 Embeddings

Let G = (V,E) and H = (V ′, E′) be two DAGs and consider f to be an
embedding G ↪→f H. Let χ be a monitor placement in G, and χf be the
monitor placement for H defined by (f ◦ χi, f ◦ χo). We want to explore
what can be said on µ(H|χf ) in terms of µ(G|χ).

u

v

u′

v′

z

u

v

z

u′

v′

z′

Figure 3.2. Injective and bijective embeddings.

As it can be seen from the left example in Figure 3.2, a 1− 1 mapping
can map an edge into a line. Hence it can map a line-free graph G into
a graph H which contains a line and whose µ(H) is 0 (see Section 3.3)
independently of µ(G). We then consider embeddings defined by 1− 1 and
onto mappings which are known as order-isomorphisms, see [45,47]. Though Order-

isomorphismsweaker than general embeddings, order-isomorphisms are still interesting
to study with respect to maximal identifiability. The order-isomorphism
on the right in Figure 3.2 indicates that new paths can appear under an
order-isomorphism and hence there is hope that µ can potentially grow
(since it will be potentially easier to find a path to separate bigger sets of
nodes). In fact we will show that property in Theorem 3.4.12.

In the rest of the section we study what can be said on µ(H|χf ) from
µ(G|χ) when G ↪→f H and f is an order-isomorphism, i.e. a bijective
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embedding [45, 47]. To simplify readability we always omit the χ’s, writing
simply µ(G) and µ(H). Consider the following definition given in [4, 21].

Definition 3.4.1. A set of paths P is routing consistent if any two distinct Routing consistent

paths p and p′ in P and any distinct nodes u and w traversed by both paths
(if any) p and p′ follow the same subpath between u and w.

In the directed case we can prove the following result.

Theorem 3.4.2. Assume that G = (V,E) is a routing consistent directed
graph and that G ↪→f G

′. Then µ(G) ≤ µ(G′).

Proof. Let χ = (S, T ) be a monitor placement on G. Assume µ(G′) = k.
We prove that µ(G) ≤ k. Since µ(G′) ≤ k, there are two sets U ′,W ′ ⊆ V ′

such that U ′4W ′ 6= ∅, and at least one of them, wlog say U ′, has cardinality
k + 1, and PG′(U ′)4PG′(W ′) = ∅. Fix U = f−1(U ′) and W = f−1(W ′).
By bijectivity of f , U has cardinality k+ 1 and U4W 6= ∅ (since otherwise
U ′4W ′ = ∅). Assume by contradiction that PG(U)4PG(W ) 6= ∅. That is,
there exists a path p in G from S to T touching nodes of only one between
U and W , say U . Let p = (u1, u2) · . . . · (ur, ur+1), r ≥ 1. Hence ui ≤ ui+1

for all i ∈ [r]. Let u′i = f(ui). Clearly if ui ∈ U , then u′i ∈ U ′. Since f is
an embedding (i.e. x ≤ y iff f(x) ≤ f(y)), then u′i ≤ u′i+1, u′1 ∈ S′ and
u′r+1 ∈ T ′. Hence there are paths p′i in G′ from u′i to u′i+1 and the path
p′ = p′1 · . . . ·p′r is a path from S′ to T ′ in G′. If all nodes in p′ are in V ′ \W ,
this is a contradiction with the fact PG′(U ′)4PG′(W ′) = ∅. Then there is
an i ∈ [r] such that p′i is touching a node w′ ∈W ′. Hence we have that in
G′ , u′i ≤ w′ ≤ u′i+1. Since f is an embedding and since ui = f−1(u′i), this
means that in G, ui ≤ f−1(w) ≤ ui+1. Then in G there is a path from ui

to ui+1 passing through f−1(w). This contradicts the routing consistency
of G since between ui and ui+1 there is another path, the edge that is in
p.

The previous result shows that restricting the class of graphs one can
still hope to bound identifiability using embeddability. We now restrict
the class of embeddings, obtaining similar relationships but for broader
classes of topologies. Assume that f is an embedding between two DAGs
G1 = (V1, E1) and G2 = (V2, E2). Let us say that f is distance-increasing Distance-

increasing,
distance decreas-
ing and distance
preserving

(d.i) (respectively distance decreasing (d.d.) if for all x, y ∈ V1, dG1(x, y) ≤
dG2(f(x), f(y)) (dG1(x, y) ≥ dG2(f(x), f(y))). Here dG(x, y) is the length
of the shortest path between x and y in G. We call f distance preserving
(d.p.) if dG1(x, y) = dG2(f(x), f(y)). Distance-increasing of f immediately
implies that the inverse image under f of edges of G2 are edges of G1.
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Lemma 3.4.3. Let G = (V,E) and H = (W,F ). If G ↪→f H, where f is
d.i.-embedding and (w1, w2) ∈ F , then (f−1(w1), f−1(w2)) ∈ E.

Theorem 3.4.4. Let G and G′ be two DAGs such that G ↪→f G
′, where f

is a (d.i.)-embedding (respectively a d.d.- embedding). Then µ(G) ≥ µ(G′)
(respectively µ(G′) ≥ µ(G)).

Proof. Let χ = (S, T ) be a monitor placement on G. Let us prove the
statement for a d.i.-embedding. Assume µ(G) = k, we prove that µ(G′) ≤ k.
Since µ(G) ≤ k, there are two sets U,W ⊆ V such that U4W 6= ∅, at least
one of them, say U , has cardinality k + 1, and PG(U)4PG(W ) = ∅. Fix
U ′ = f(U) andW ′ = f(W ) and let S′ = f(S) and T ′ = f(T ). By injectivity
of f , U ′ has cardinality k + 1 and clearly U ′4W ′ 6= ∅ (since otherwise
U4W = ∅). Assume by contradiction that PG′(U ′)4PG′(W ′) 6= ∅. That
means that there exists a path p′ from S′ to T ′ touching nodes of only
one between U ′ and W ′, say U ′. Let p′ = (u′1, u′2) · . . . · (u′r−1, u

′
r) and

ui = f−1(u′i). By Lemma 3.4.3 for all i ∈ [r − 1], (ui, ui+1) is an edge in G
and since f is an embedding, then ui ∈ U , u1 ∈ S and ur ∈ T . But then
p = (u1, u2) · . . . · (ur, ur+1) is a path from S to T touching only nodes in
U . This is a contradiction with the fact PG(U)4PG(W ) = ∅.

In the case of d.d.-embedding the claim follows from the first part since
if G ↪→f G

′ and f is d.d.-embedding, then by bijectivity of f G′ ↪→f−1 G

is a d.i.-embedding from G′ to G.

Hence if f is distance-preserving, then equality holds.

Corollary 3.4.5. Let G and G′ be two DAGs such that G ↪→f G
′, where

f is a (d.p.)-embedding. Then µ(G) = µ(G′).

The dimension of G, dim(G) is the smallest integer d such that G ↪→ Dimention of a
graph GHn,d. Dushnik and Miller [19] proved that for any n > 1, the hypergrid

Hn,d has dimension exactly d. We explore how to bound µ(G) in terms
of dim(G). Let G = (V,E) be a directed graph. The transitive closure Transitive closure

of a graphG∗ = (V,E∗) of the graph G is formed by the reachability factor, i.e an
edge (v, w) ∈ E∗ if and only if the vertex w is reachable in the graph G
from the vertex v (means there exists at least one path from v to w).

Figure 3.3. Transitive closure constructs the graph G∗ from the graph G.
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Now let G∗ be the transitive closure of a DAG G.

Lemma 3.4.6. Let G and H be DAGs. If G is closed under transitivity
and G ↪→f H, then µ(G) ≥ µ(H). In particular µ(G∗) ≥ µ(G).

Proof. Since G is closed under transitivity then the embedding f is neces-
sarily a distance-increasing one. Hence the first claim follows by Theorem
3.4.4. The second claim follows since the identity is a bijective embedding
from G∗ to G.

Theorem 3.4.7. Let G be a DAG closed under transitivity. Then µ(G) ≥
dim(G).

Proof. Let f be the function witnessing the embedding G ↪→ Hn,dim(G).
Since G is closed under transitivity and by Theorem 4.2.10 µ(Hn,dim(G)) =
dim(G), the claim follows by previous lemma.

Corollary 3.4.8. For all DAGs G, for all k ∈ N, µ(Gk) ≥ µ(G).

Transitive closure The result in Corollary 3.4.8 is new but unsatisfac-
tory since it is not giving a precise estimate of how much it can increase
maximal identifiability building the k-transitive closure of a graph. Here
we obtain a precise lower bound.

Definition 3.4.9 (Segment). Let G = (V,E) be a directed graph. Let Segment

{u1, ..., ur} ⊆ V and p be a path in G. We say that {u1, ..., ur} is a segment
of length r in p if u1 · u2 · . . . · ur is a subpath of p.

We say that the segment I is internal to a path if neither endpoints of Internal segment

I coincide with the endpoints of p. Let us denote with |p| the length of p, Length of a path p

i.e. the number of edges in p.

Lemma 3.4.10. Let G = (V,E) be a directed graph and Gk = (V,Ek) its
k-transitive closure and let p be a path in Gk from a node s to a node t.
Any internal segment I of length at most |I| ≤ |p| − 1 ≤ k − 1 in p can be
removed and replaced by one edge obtaining another path in Gk from s to t.

Proof. Since the segment I is internal, it is surrounded by at least two
nodes, say u and w. Since Gk is closed under k-transitivity and |I| ≤ k− 1,
then in Gk there is an edge (u,w). We can then replace in p, the segment
I by the edge (u,w), obtaining a new path from s to t.

Given U ⊆ V and a path p, the set of U -segments in p is the set of all
I ⊆ U forming an internal segment in p. The set of U -segments is closed
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under inclusion. We consider Upmax to be the maximal subset I of U such
that I is an internal segment in p.

Lemma 3.4.11. Let G = (V,E) be a DAG and Gk = (V,Ek) the k-
transitive closure of G. Let U,W ⊆ V , with U 6= W and such that
PGk(U) = PGk(W ). Then for all p ∈ PGk(U), |Upmax|, |W p

max| > k − 1.
Hence |U |, |W | > k − 1.

Proof. Assume for the sake of contradiction that there exits a p ∈ PGk(U)
such that |Upmax| ≤ k − 1. Hence for any U -segment I in p, it holds that
|I| ≤ k − 1. Since PGk(U) = PGk(W ), then p must necessarily touch also
nodes in W . Hence any two consecutive U -segments I ′ and I ′′ in p are
either interleaved by elements of W as in p = . . . w · I ′ ·W ′ · I ′′ · w′′ . . .,
where W ′ ⊆W , or separated by elements of W and surrounded by input
and output monitors, that is p = S · I ′ ·W ′ · I ′′ · T . Consider the first case
and assume that W ′ = {w1, . . . wr}, r ≥ 1. Since |I ′|, |I ′′| ≤ k − 1, and Gk

is closed under k-transitivity, then in Gk there are the edges (w,w1) and
(wr, w′′). Hence according to previous lemma the two segment I ′ and I ′′

can be replaced by the consecutive edges (w,w′) · (w′, w′′). Obtaining a
new path from S to T . We can repeat this replacement for all consecutive
pairs of U -segments in p, eventually to obtain a path connecting S with T
but not touching U at all. This means that there is a path in PGk(W ) but
not touching U and hence PGk(U) 6= PGk(W ), contradicting the hypothesis
of the lemma. The same argument proves that |W p

max| > k − 1.

Let G = (V,E) be a DAG and Gk = (V,Ek) the k-transitive closure of
G. Notice that the identity function id is a (d.d.)-isomorphic-embedding
G ↪→id G

k (respectively a (d.i.)-isomorphic embedding Gk ↪→id G).

Theorem 3.4.12. Let G = (V,E) be a DAG. Then µ(Gk) ≥ µ(G)+(k−1).

Proof. Assume that µ(G) = r, we want to prove that µ(Gk) ≥ r + (k − 1).
Assume for the sake of contradiction that µ(Gk) < r + (k − 1). Then there
exist Û , Ŵ ⊆ V , and at least one of them, say wlog Û , of size strictly less
than r + (k − 1) such that PGk(Û) = PGk(Ŵ ). By Lemma 3.4.11 we have
that |Û |, |Ŵ | > k − 1. Let I ⊆ Û such that |I| = k − 1 and let Ũ = Û \ I.
Let J ⊆ Ŵ such that |J | = k − 1 and let W̃ = Ŵ \ J . Notice that |Ũ | < r.

We first claim that PGk(Ũ) = PGk(W̃ ). Let p ∈ PGk(Ũ). Since Ũ ⊂ Û ,
then p ∈ PGk(Û) = PGk(Ŵ ). Hence p is also touching Ŵ . Assume that
p is not touching W̃ = Ŵ \ J . Then p must necessarily touch a node in
J , since otherwise p 6∈ PGk(Ŵ ). Consider the set of J-segments for p. All
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such subsets of J are of cardinality at most |J | ≤ k − 1. Hence according
to Lemma 3.4.10 all those segments can be replaced by edges with both
endpoints in Û obtaining a path from S to T , touching only Û but not Ŵ .
This is not possible since PGk(Û) = PGk(Ŵ ). This proves that PGk(Ũ) ⊆
PGk(W̃ ) and a symmetric argument proves also that PGk(W̃ ) ⊆ PGk(Ũ),
giving the claim.

Observe that G ↪→id G
k and we now claim that equality is kept on G

passing to the counter-image, i.e. PG(id−1(Ũ)) = PG(id−1(W̃ )). This is
the same as saying that PG(Ũ) = PG(W̃ ) and would immediately give a
contradiction since we know that µ(G) ≥ r and hence for any sets U and
W of size at most r, PG(U) 6= PG(W ) but |Û | < r. To see the last claim
notice that since G ↪→id G

k, then the same argument used in Theorem 3.4.4
proves that PG(Ũ) = PG(W̃ ).

3.5 Vertex Connectivity and Menger’s Theorem

We now look at the maximal identifiability in arbitrary networks. In
this section in order to get our desired results we assume that the monitor
placement (S, T) are disjoint i.e., S ∩ T = ∅. Theorem 1.2.2 stated in
Section 1.2 will be a consequence of two independent results. In [24] it
was proved that µ(G) ≤ δ(G), for any monitor placement (S, T ). Here we
show that µ(G) can be upper bounded in terms of κST , the size of the
minimal node set separating S from T (refer to Section 2.1 for a more
precise definition) [26].

Theorem 3.5.1. Let G = (V,E) be an undirected graph and (S, T ) be a
monitor placement with S ∩ T = ∅. Then µ(G) ≤ κST (G).

Proof. If there is no vertex set in G separating S and T , κST (G) =∞ and
the result is trivial. Let K be the set witnessing the minimal separability of
S from T in G. Hence |K| = κST (G). Let N(K) be the set of neighbours
of nodes in K and notice this cannot be empty since K is disconnecting
G. Pick one w ∈ N(K) and define U := K and W := U ∪ {w}. Clearly
P(U) ⊆ P(W ). To see the opposite inclusion assume that there exists a
path from S to T passing from w but not touching U = K. Then K is not
separating S from T in G. Contradiction.

Note that, while in general κST (G) may be larger than δ(G), if S and T
are separated by a set of κ(G) vertices then, by inequality (2.1), the bound
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in Theorem 3.5.1 is at least as good as the minimum degree bound proved
earlier by the two authors [24]. This implies the upper bound in Theorem
1.2.2.

Moving to lower bounds, in this section we prove the following:

Theorem 3.5.2. Let G = (V,E) be an undirected connected graph and
(S, T ) be a monitor placement for G with S ∩ T = ∅. Then µ(G) ≥
min(κ(G)− 1, |S|, |T |)− 1.

The lower bound in Theorem 1.2.2 can be derived easily from Theorem
3.5.2. Let K be a vertex separator in G of size κ(G), set SK to be the
first bκ(G)/2c elements of K and TK = K \ SK . By Theorem 3.5.2 the
maximal identifiability of G is at least |SK | − 1 = bκ(G)/2c − 1.

The proof of Theorem 3.5.2 uses Menger’s Theorem, a well-known result
in graph theory (see [30, Theorem 5.10, p. 48] for its proof).

Theorem 3.5.3 (Menger’s Theorem). Let G = (V,E) be a connected Menger’s Theo-
remgraph. Then κ(G) ≥ k if and only if each pair of nodes in V is connected

by at least k node-disjoint paths in G.

Menger’s Theorem is central to the following lemma which is used in
the proof of Theorem 3.5.2.

Lemma 3.5.4. Let G = (V,E) be a connected graph. Let W ⊆ V such
that |W | ≤ κ(G)− 2. Then any pair of vertices in V \W is connected by
at least two vertex-disjoint simple paths not touching W .

Proof. By Menger’s Theorem, for any pair of nodes u and v in V \W there
are at least κ(G) vertex-disjoint paths from u to v in G. Call P the set
of such paths. Since |W | ≤ κ(G) − 2, then the nodes of W can be in at
most κ(G)− 2 of paths in P. Hence there are at least two paths in P not
touching W .

Let G = (V,E) be a graph, W ⊆ V and p a path in G. We say that p W -free

is W -free if no node of p is in W .

Lemma 3.5.5. Let G = (V,E) be an undirected connected graph. Let
s, t, u be three distinct nodes in V . If in G there are two vertex-disjoint
paths from s to u and two vertex-disjoint paths from u to t, then there is a
simple path in G from s to t passing through u.

Proof. Let πs1, πs2 be the two vertex-disjoint paths from s to u. Let πt1, πt2
be the two vertex-disjoint paths from u to t. If at least one between πs1,
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and πs2 only intersects one of πt1, and πt2 at u then the concatenation of
such paths is a (longer) simple path from s to t passing through u (Figure
3.4 (a)). Otherwise the concatenation of one between πs1, and πs2 with one
between πt1, and πt2 is a non-simple path. In what follows we show that
the subgraph of G induced by the four paths does contain a simple path
from s to t passing through u (as an example see Figure 3.4 (b)). In the
construction below we exploit the fact that πs1, and πs2 (resp. πt1, and πt2)
are simple and vertex disjoint. Let p be a path from s to u. Define an
order on the nodes of p as follows: v ≺p w if going from v to u we pass
through w. From now on we will use ≺ instead of ≺p when the path under
consideration will be clear from the context. Let Zj1 be the nodes in πs1 ∩πtj .
Z1

1 and Z2
1 are disjoint but there will be a node in those sets, say z, which is

minimal according to ≺. Without loss of generality let us say that z ∈ Z1
1 .

The subpath πs1[s . . . z] of πs1 going from s to z, is intersecting neither πt1 nor
πt2. Hence the concatenation of the following three disjoint paths defines a
simple path from s to t passing through u, hence a path with the required
properties:

1. πs1[s . . . z], going from s to z;

2. πt1[z . . . u] a sub-path of πt1 going from u to z and traversed in the
other direction;

3. πt2, connecting u to t.

(a) (b)

Figure 3.4. Examples of simple paths from s to t passing through u .
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Proof of Theorem 3.5.2. Let G = (V,E) be an undirected connected
graph and (S, T ) be a monitor placement in G with S ∩ T = ∅. Note that
without loss of generality min(κ(G)− 1, |S|, |T |) > 1 (for otherwise there is
nothing to prove).

Assume first that |S| ≥ κ(G)− 1 and |T | ≥ κ(G)− 1. We claim that

µ(G) ≥ κ(G)− 2.

We show that for any distinct non-empty subsets U and W of V of size at
most κ(G)− 2, there is a path in P touching exactly one between U and
W . Given such U and W , fix a node u ∈ U4W and assume w.l.o.g. that
u ∈ U . Since |W | ≤ κ(G)− 2 and |S| ≥ κ(G)− 1 there is at least a node
in s ∈ S \W . By Lemma 3.5.4 applied to nodes s and u and to the set W ,
there are two vertex-disjoint simple paths πs1, πs2 from s to u not touching
W . The same reasoning applied to T , guarantees the existence of a node
t ∈ T \W and two vertex-disjoint paths πt1, πt2 from u to t not touching
W . Let πs1, πs2, πt1, πt2 be the paths in the graph G −W (the subgraph of
G obtained by removing nodes in W ). Hence Lemma 3.5.5 gives a simple
path from s to t passing through u in G−W , hence a simple path from s

to t passing through u in G, avoiding W .

Now assume that at least one between |S| and |T | is less than κ(G)− 1.
Let r = min(|S|, |T |)−1. As before we prove that for all distinct non-empty
U and W subsets of V of size at most r, there is an S − T path in G,
hence in P, touching exactly one between U and W . Let u ∈ U4W and
without loss of generality assume u ∈ U . Notice that r + 1 = min(|S|, |T |),
then both |S| ≥ r + 1 and |T | ≥ r + 1. Since |W | ≤ r, as before there are
s ∈ S \W and t ∈ T \W . Furthermore, since κ(G) ≥ min(|S|, |T |), then by
previous observation on |S| and |T |, κ(G) ≥ r+ 1 and, since |W | ≤ r, then
κ(G)− |W | ≥ 2, that is |W | ≤ κ(G)− 2. As in the previous case we can
apply the claim above once to s, u and W getting the vertex-disjoint paths
πs1 and πs2 from s to u, and once to t, u and W getting the vertex-disjoint
paths πt1 and πt2 from t to u. The proof then follows by the same steps as
in the previous case. We then have proved that if |S| or |T | are smaller
than κ(G) − 1, then µ(G) ≥ min(|S|, |T |) − 1 and the proof of Theorem
3.5.2 is complete.

Proof of Theorem 1.2.3. We complete this section investigating a
different way to relate the graph vertex connectivity to µ(G). It is easy
to see that, in general, the bounds in Theorem 1.2.2 are not very tight,
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particularly when κ(G) is large. However, if κ(G) is small, we can do
better.

In what follows let K be a minimal vertex separator in G. Let GKi =
(V K
i , EKi ), i ∈ {1, . . . , rK} be the rK ≥ 2 connected components remaining

in G after removing K. Since κ(G) ≤ n
3 , then 2κ(G) ≤ n− κ(G) and one

can define disjoint sets S, and T with κ(G) vertices each in such a way
that the smallest among the V K

i ’s contains only elements of S. This can be
done as follows: if the smallest of V K

i ’s has less than κ(G)− ` nodes, then
assign all its nodes to S. Then use the other components GKj ’s to assign `
nodes to S and κ(G) other nodes to T . If the smallest V K

i has more than
κ(G) nodes, choose κ(G) nodes among them and put them in S. Choose
κ(G) nodes in other components and assign them to T .

We now prove that the set of simple paths between S and T defined as
above allows a very high identifiability. The lower bound on µ(G) follows
from Theorem 3.5.2 noticing that |S| = |T | > κ(G) − 1. We now prove
that µ(G) ≤ κ(G). Let GKi be the component where all the S-nodes are
assigned. Let w be a node in V K

i ∩N(K). This node has to exists since
G was connected and the removal of K is disconnecting GKi from K. Fix
U = K and W = K ∪ {w}. We will show that P(U) = P(W ). It suffices
to prove that P({w}) ⊆ P(K), since clearly P(U) ⊆ P(W ). Observe that
no S − T path p in G can live entirely inside GKi , i.e. have all of its nodes
in V K

i . This is because at least one end-point (that in T ) is necessarily
missing in any path entirely living only in GKi . Hence a path touching w
is either entering or leaving GKi . But outside of GKi , w is connected only
to K, since otherwise K would not be a minimal vertex separator. Hence
it must be P({w}) ⊆ P(K). We have found U,W of size ≤ κ(G) + 1 such
that P(U) = P(W ). The upper bound follows.

Arbitrary LoS networks have minimum degree, and hence also vertex
connectivity at most 2d(ω − 1). The next corollary follows directly from
Theorem 1.2.3.

Corollary 3.5.6. Let G be an undirected LoS network over n nodes and
with fixed range parameter ω, independent of n, such that n ≥ ω. Then
µ(G) ≥ κ(G)− 2.
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3.6 Open Problems

We shortly address some directions related to our approach which might
be further explored in the analysis of identifiability of failure nodes. In
1982, [51] showed that for k ≥ 3 to test if a partial order has dimension ≤ k
is NP -complete. Nevertheless there are some algorithms to compute the
dimension of poset [48,50] which are practically used. It would be interesting
to further explore connections between Boolean Network Tomography and
poset dimension theory to get better estimates on the maximal identifiability
for DAG network topologies. It is a well-known result [44] that planar
graphs over n nodes can be embedded through a straight line embedding
into a (n− 2)× (n− 2) 2-dimensional grid. It seems not difficult to see that
our results on embeddability can be generalized to obtain a lower bound of
2 for the maximal identifiability when a network is a planar graph.

A k-Transitive-Closure-Spanner of a graph G is a graph H with a small k-Transitive-
Closure-Spanner
of a graph G

diameter - k- that preserves the connectivity of the original graph. These
graphs and their relations with dimension of poset were recently studied
in [5]. From our results it is clear that adding edges to a graph G can
strengthen the potential of failure identifiability. Are k-TC-Spanners and
in particular Steiner-k-TC-Spanners (see [5]) useful to maximize failure
identifiability of a network?
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Chapter 4

Bounds on Identifiability for
Some Network Topologies

In this chapter we want to explore maximal identifiability for specific
class of topologies such as trees, grids and augmented hypergrids, which
are among the topologies most used and implemented in real networks and
random networks.

First we prove upper and lower bounds on the maximal identifiability
for trees and d-(dimensional) grids, in both directed and undirected cases.
For trees we obtain that the maximal node identifiability is 1. This result
has to be interpreted as saying that if our network topology is a tree then
maximal number of failed nodes we can hope to uniquely identify is 1. Then
searching for topologies which are better than trees with respect to maximal
node-failure identifiability, we proved that d-grids, under a suitable optimal
monitor placement, can reach a better identifiability strictly greater than 1.
We prove that directed d-grids with support n have maximal identifiability
d using 2d(n− 1) + 2 monitors on the d-grid; and in the undirected case we
show that 2d monitors suffice to get identifiability of at least d− 1 and at
most d. When one consider the minimal number of monitors to reach the
maximal identifiability on d-grids, our results mark an important difference
between the directed and undirected cases. In the latter we can show how
to get tight lower and upper bound results using only 2d monitors (so
independently of n). In the directed case instead the number of monitors
to reach a maximal identifiability depends linearly on the number of nodes
and cannot be improved.

Moreover we are handling class of graphs which are very regular combi-
natorial objects. In order to prove lower bounds on maximal identifiability,
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instead of checking experimentally the optimality of the upper bounds as in
previous works, we use an algorithmic/combinatorial analysis, so obtaining
tight results. This approach directly leads to algorithms to design network
topologies with a guarantee of reaching a precise maximal identifiability of
failure nodes.

Furthermore in an attempt to generalize to more general graphs than
hypergrids, we start by studying the identifiability of Line-of-Sight (LoS)
networks. We consider Line-of-Sight networks and we characterize the max-
imal identifiability of such networks highlighting that vertex-connectivity
plays a central role.

Finally we initiate the study of maximal identifiability for random
networks. We focus on two models: Erdős-Rényi model and Random
Regular graphs. The framework proposed in the thesis allows a probabilistic
analysis of the identifiability in random networks giving tradeoffs between
the number of monitors to place and the maximal identifiability. The last
section of this chapter is divided into three parts: First we analyze the case
of Erdős-Rényi graphs and we show a simple analysis to prove sub-linear
maximal identifiability. A more refined analysis is sketched in the second
part for Erdős-Rényi graphs reaching an optimal linear separability. Finally
we analyze maximal identifiability for the case of random regular graphs.
Random graphs give us constructions of networks with large identifiability.

To sum up, the organization of this chapter is as the following:

Section 4.1 includes the bounds on the maximal identifiability of trees,
both in the directed (Theorem 4.1.1) and the undirected case (Theorem
4.1.4).

In Section 4.2 we prove tight bounds for maximal identifiability for
d-grids undirected (Theorem 4.2.1) and directed (Theorem 4.2.9).

In Section 4.3 we show tight bounds on the maximal identifiability in a
particular class of graphs, augmented hypergrids, cf. Theorem 4.3.1.

At last Section 4.4 is dedicated to the analysis of the maximal identifia-
bility on random graphs. First we look at Erdős-Rényi graphs (Theorem
4.4.4), then random regular graphs, cf. Theorem 4.4.5. All our results
gave immediate tradeoffs between maximal identifiability and number of
monitors.
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4.1 Trees

Let Tn be a directed tree. For downward trees we consider the monitor
placement χt which includes in S the root of Tn and in T all the leaves.
Vice versa in an upward tree χt assigns the root of Tn in T and the leaves
in S (see Figure 4.1).

Theorem 4.1.1. Let Tn be a directed tree and χt the monitor placement
which assigns the roots and the leaves of Tn in S and T according to be a
downward tree or an upward tree with S ∩ T = ∅. Then µ(Tn|χt) = 1.

Proof. We assume the tree to be line-free (LF) so that the bound depends
only on the topology and not on the fact that contains a line. Consider a
node u in Tn. Since Tn is LF u has either in-degree ≥ 2 or out-degree ≥ 2.
According to whether the tree is downward or upward, one of the two cases
in Figure 4.1 can happen:

t

S

u

w

t

z

t

T1 Tt

t

u

w

t

z

t

S1 St

T

Figure 4.1. Directed trees with monitor placement χt.

For the upper bound: fix W = {u,w} and U = {u}. P(U) ⊆ P(W ).
Moreover in both cases each path passing through w is also touching u.
Hence P({w}) ⊆ P({u}). Therefore P(W ) ⊆ P(U) and then P(U) = P(W )
and P(U)4P(W ) = ∅. For the lower bound, let u and w be two distinct
nodes in Tn. Let U = {u} and W = {w}. Each node in Tn is on some path
from the root to a leaf. If u and w lie on different paths, then clearly there
are paths in P(U) but not in P(W ). Hence P(U)4P(W ) 6= ∅. If u and w lie
on the same path p and say that p meets w before u. Let pw be the subpath
of p truncated at node w. Let w1 ∈ No(w) be the neighbour of w lying on
p. Since Tn is LF there is necessarily another node w2 6= w1, w2 ∈ No(w)
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and in Tn there is a path q from w2 to a leaf. Hence the concatenation of
pw with q is a path from the root to a leaf touching w but not u. Hence in
P(W ) but not in P(U). Hence P(U)4P(W ) 6= ∅.

Optimality of χt. Notice that the monitor placement χt in both cases is
optimal. Consider the downward case: if we modify χt by removing one
output monitor from a leaf, say u, then µ(Tn) = 0: let v be the node parent
of u and let w be its other son. From {w} and {v} pass exactly one path.
Hence µ(Tn) < 1.

We now consider undirected trees. We first start by observing that
a large class of monitor placement on undirected trees make maximal
identifiability 0. We later see that under any other monitor placement
undirected trees have µ exactly 1 as well. Let Tn be an undirected tree and
χ = (S, T ) be a monitor placement for Tn. We say that Tn is an input tree
(respectively output tree) with respect to χ if there is a node of Tn in S
(respectively in T ). Notice that a tree can be both an input and an output
tree. Given a tree Tn and one of its edges e = (u, v), let T e(u) (respectively
T e(v)) be the subtrees of Tn obtained from cutting in Tn the edge (u, v)
and taking the tree rooted at u (respectively v). For a node u ∈ Tn, we call
the u-subtrees of Tn the family of trees {T (w,u)(w)}w∈N(u).

Definition 4.1.2 (Monitor-balanced tree). An undirected tree Tn is monitor- Monitor-balanced
treebalanced under χ if for each non-leaf node u in Tn the family {T (w,u)(w)}w∈N(u)

of the u-subtrees of Tn contains at least two input trees and at least two
output trees.

Lemma 4.1.3. If an undirected tree Tn is not monitor-balanced under χ,
then µ(Tn|χ) = 0.

Proof. If Tn is not monitor-balanced, then there is a non-leaf node u in Tn
such that the family {T (w,u)(w)}w∈N(u) contains either only one input tree
or only one output tree. There are hence only three possible cases at such
a node u that can happen and which are visualized in Figure 4.2.

In all the cases we set U = {u} and W = {w}. Since any path must
necessarily go from an input node to an output node, then P(U) = P(W ).
This proves that µ(Tn|χ) < 1.

On the other hand when χ is balanced, a similar proof as in Theorem
4.1.1 (that we omit) proves that,

Theorem 4.1.4. Let Tn be an undirected tree and χ a monitor-balanced
monitor placement for Tn. Then µ(Tn|χ) = 1.
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Figure 4.2. The three possible cases of Lemma 4.1.3 for u when Tn is not
monitor-balanced.

We remark that precise relations between maximal identifiability and
vertex connectivity were found in [26].

4.2 Grids

Can we find topologies whose maximal identifiability is strictly greater
than 1? We consider the case of d-dimensional grids and we start with the
undirected case.

We show that d input and d output monitors suffice to get maximal
identifiability at least d − 1 and at most d in the case of undirected d-
dimensional grids for any monitor placement.

Theorem 4.2.1. Let n ≥ 3 and Hn,d be an undirected d-dimensional grid.
Then d − 1 ≤ µ(Hn,d|χ) ≤ d for any monitor placement χ = (S, T ) such
that |S|, |T | = d.

The rest of the section contains the proof for the case d = 2. The proof
for dimension d > 2 is essentially the same and we omit the proof.

Proof. (of Theorem 4.2.1) The upper bound follows from Lemma 3.2.1.

For the lower bound we consider the following claim.

Claim 4.2.2. Let z1 = (i1, j1), z2 = (i2, j2), z3 = (i3, j3) be three nodes in
Hn such that z1 and z3 are distinct nodes. There exists a simple path from
z1 to z3 touching z2.

Proof. First we consider a rectangle/square of four paths in Hn such that
all these three nodes are lying on the edges of this rectangle/square (see
Figure 4.3 for an example). Then we start from the node that we want
to be the origin of our path and move along the edge towards our second
node that we want to be touched by our path. After reaching the second
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node we continue moving along the edge which will lead to the third node
that our path terminates at. We then build a path from z1 to z3 touching
z2.

Now we have to prove that independently of what nodes form S and
T , for any U,W ⊆ V with U4W 6= ∅ such that |U |, |W | ≤ 1, then
P(U)4P(W ) 6= ∅. Since U 6= W , then there is at least one S 6∈W , at least
one T 6∈ W and wlog a u ∈ U \W . By Claim 4.2.2 we get a simple path
from S to T passing through u. If this path touches w, then we can avoid
it. If w is an internal node (not on the borders), in order to avoid w we
remove this node and all the edges linked to it. Then we have a hole in our
grid. By previous observation, after removing w, at least one node in S
and one node in T are in the remaining network and they must be different
since we we do not have loops or DLP. By previous claim applied to S, T
and u we have an S − T path in Hn touching U but not W . Notice that
if a part of the rectangle/square that we are considering in Claim 4.2.2
intersects with our hole then we can move along the borders of our hole
(see Figure 4.4 for an example). If w is on the border but u is an internal
node, then by the same argument as above we can touch w and avoid u.
If both w and u are on the same border and one of them say u is isolated
by w, S and T (see Figure 4.5 for an example), then we remove u and the
edges linked to it and again by the same argument as above we have a path
S − T touching W but not U .

z1

z2

z3

Figure 4.3. Building a
path in Hn touching
three points.

w

Figure 4.4. Avoiding a
hole in Hn.

u
S

w T

Figure 4.5. Avoiding
a hole in a corner in
Hn.

We now turn on considering directed grids. Paths are more constrained
in a directed grid, hence we expect that to reach a maximal identifiability
of d we have to place more monitors. Our next result proves that in fact
we can have a tight maximal identifiability of d on directed grids but the
number of monitors is now linear in n, the support of the grid. Furthermore
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the result does not hold for any monitor placement but for a specific one,
which however we prove to be optimal.

S S S S

T T T

S

S

S

T

T

T

T

Figure 4.6. A directed grid H4 with the monitor placement χg.

Let us consider the monitor placement χg for Hn as in Figure 4.6.
Precisely χg is defined by S = {(1, 1), . . . (1, n), (2, 1), . . . , (n, 1)} and T =
{(n, 1), (n, 2), . . . (n, n), (1, n), (2, n), . . . , (n−1, n)}. (1, 1) is the only simple
source node and Lemma 3.2.3 can be applied to this case.

Lemma 4.2.3. Let n ≥ 3 and Hn be a directed grid. Then µ(Hn|χg) ≤ 2.

To prove a matching lower bound on µ(Hn|χg) we prove that any two
distinct node sets U and W of size at most 2 can be separated by a path
in P(Hn|χg). Since we do not have DLP or loop paths, we have to be
careful that no path separating U from W could be a DLP path. Since
the only nodes which are both input and output are (1, n) and (n, 1), then
to separate U from W by a path we have to avoid the two DLP paths
S·(1, n)·T or S·(n, 1)·T and any other loop path starting and ending in the
same node. Hence we assign a special role to the complex sources (1, n) and
(n, 1) (green nodes in Figure 4.6) and we consider the following assumption
(which we prove to fulfill) about paths that separate sets of nodes.

Assumption 4.2.4. Nodes (1, n) and (n, 1) can be endpoint but never
starting point of a path starting in S and ending in T .

Let us denote with V the nodes in the directed grid Hn and with
V − the nodes of Hn except for (1, n) and (n, 1). By the definition of
χg, S and T are both formed by the border nodes. Hence to fulfill our
assumption we define S′ = S \ {(1, n), (n, 1)}, and T ′ = T . Given a node u
in V , let S(u) = {v ∈ V − |∃ a path from v to u in Hn} and T (u) = {v ∈
V |∃ a path from u to v in Hn}.
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The following lemmas give a way to build paths avoiding specific nodes.
We always assume n ≥ 3 since otherwise, independently of d, the directed
d-dimensional grid Hn,d would have no node with degree 2d.

Lemma 4.2.5. Let n ≥ 3. Let u be a node in V − and w ∈ S(u) with
w 6= u. There is a path pwu from a node in S′ to u not touching w.

Proof. By induction on S(u). If S(u) = {u} for some u ∈ S′, then u is
linked to an input monitor (notice in S′ we do not have the two mentioned
complex sources) and since u 6= w, then pwu is the path made by the only
node u. In the inductive hypothesis |Ni(u)| = 2, Hence there is w1 ∈ Ni(u)
such that w1 6= w. Since |Ni(u)| = 2 , then S(w1) ⊂ S(u). By induction
there is a path pww1 from S′ to w1 avoiding w. Then define as pwu , the path
concatenating pww1 with u.

A similar proof holds also for the nodes in T reachable from u without
worrying about the two nodes {(1, n), (n, 1)}.

Lemma 4.2.6. Let n ≥ 3. Let u be a node in the directed grid Hn and
w ∈ T (u) with w 6= u. There is path qwu from u to a node in T not touching
w.

Next claim handles the case when one among U and W contains at
least a complex source. In this case to fulfill our assumption, we have to
show an S − T path touching exactly one between U and W which is not
starting neither with (1, n) nor with (n, 1). This immediately implies that
this path can be neither S ·(1, n)·T nor S ·(n, 1)·T .

Claim 4.2.7. Let U,W be non-empty sets of nodes of the directed grid
Hn, n ≥ 3 such that |U |, |W | ≤ 2 and at least one of the complex sources
(1, n) or (n, 1) belongs to one of them. Then there is a path from a node in
S to a node in T passing though exactly one between U and W fulfilling
Assumption 4.2.4.

Proof. Assume without loss of generality that (1, n) ∈ U (the case where
(n, 1) ∈ U is symmetric). Let N((1, n)) be the neighbours of (1, n) in Hn,
i.e. N((1, n)) = {(1, n− 1), (2, n)}. We distinguish the following 4 cases:

1. W ∩N((1, n)) = ∅;

2. W = N((1, n))

3. W ∩N((1, n)) = {(1, n− 1)}
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4. W ∩N((1, n)) = {(2, n)}

In each of these cases we find an S − T path touching only one between
U and W fulfilling Assumption 4.2.4.

In case (1) and in case (4) the path (1, n− 1) · (1, n), is a path touching
U but not W fulfilling our assumption.

In case (2) (1, n) is completely surrounded by W . So we will build a
path touching W but not U . If the node (2, n − 1) is not in U then the
path (1, n− 1) · (2, n− 1) · (2, n) proves the claim. If instead (2, n− 1) is in
U we have to avoid it. We use here that n ≥ 3 to build the path starting in
(1, n− 1) going up to (1, n− 2), then going right until the node (3, n− 2)
and finally going down to the T node (3, n).

In case (3) we distinguish the following two cases according to whether
U ∩ {(2, n − 1), (2, n)} = ∅ or not. In the first case the path (1, n − 1) ·
(2, n− 1) · (2, n) touches only W and fulfill the assumption. In the second
case, we follow case (2) and avoid both nodes in {(2, n− 1), (2, n)} using
the fact that n ≥ 3. We start in (1, n− 1), go up to (1, n− 2), then right
up to (3, n− 2) and finally down to (3, n). This path touches W but not U
and fulfill the assumption.

Lemma 4.2.8. (Main Lemma) Let n ≥ 3 and Hn be a directed grid.
µ(Hn|χg) ≥ 2.

Proof. Let V be the set of nodes of Hn. We have to prove that for any
U,W ⊆ V with U 6= W and such that |U |, |W | ≤ 2, P(U)4P(W ) 6= ∅. It is
sufficient to find a path p ∈ Hn from S to T touching exactly one between
U and W . By Claim 4.2.7 we can assume that neither of U and W contain
(1, n) and (n, 1). So in the rest of the proof we work only with S and no
node will be ever (1, n) and (n, 1). We split in the following cases:

1. at least one between U and W has cardinality 1;

2. both U and W have cardinality 2.

Case 1. Assume wlog that W = {w}. Since U4W 6= ∅, then there is a
node u ∈ U \W , such that w 6= u. w can be either in (1) S(u), or (2) in
T (u); or (3) in V \ (S(u) ∪ T (u)).

In case (3) any path p from S to T passing through u is not touching
w and proves the claim. In case (1) we use Lemma 4.2.5 to have a path pwu
from S to u avoiding W . Moreover, any path p from u to T is avoiding w.
Then the path pwu · p, concatenation of pwu with p proves the claim. In case
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(2) any path p from S to u avoids w, and Lemma 4.2.6 guarantees a path
qwu from u to T avoiding w. Hence the path p · qwu , concatenation of p and
qwu proves the claim.

Case 2. Observe that though U4W 6= ∅, they might share a node. So
there might be two cases: (A) |U ∩W | = 1 and (B) |U ∩W | = 0. In case
(A) we fix u to be the node of U not in W . In case (B) say U = {u0, u1}
we fix u to be the node in U not reachable in Hn by the other node in U ,
i.e. the ui such that ui 6∈ S(u1−i). Notice that this node always exists since
the nodes in U cannot reach each other in Hn. As in case (1) we divide in
three cases according to the position of W wrt u.

i. W ⊆ S(u);

ii. W ⊆ T (u);

iii. |S(u) ∩W | ≤ 1 and |T (u) ∩W | ≤ 1;

In case (iii) a similar argument as above works. Since |S(u) ∩W | ≤ 1,
then either (if |S(u) ∩W | = 0) any path from S to u avoids W , or (if
|S(u) ∩W | = 1) we can apply Lemma 4.2.5 to find a path pu from S to u
avoiding W . Using |T (u) ∩W | ≤ 1, a similar argument works for finding a
path qu from u to T avoiding W . Hence the path pu · qu, concatenation of
pu and qu is a path from S to T passing from u but avoiding W . In case
(i) we further distinguish two cases and fix the w as follows:

(A) |U ∩W | = 1. w is the only node in U ∩W .

(B) w is any node in W . Denote by v be the other node in W .

In case (A) U = {u,w} and W = {w, v}, hence since u 6= w, then by
Lemma 4.2.5 there is a path pwu from S to u avoiding w. Moreover, since
W ⊆ S(u) any path qu from u to T avoids W . Hence the path pu := pwu · qu
which is the concatenation of pwu with qu, touches U and avoids W . This
path proves the claim unless v ∈ pu, and precisely v ∈ pwu , since W ⊆ S(u)
and qu lives only in T (u).

If v ∈ pu then we modify pu into a new path pv touching v, hence the
set W , but avoiding U and this will prove the claim. To do this we first
identify a node z lying on pwu before u but after v and we consider the
subpath pwz of pwu stopping at z, hence touching v. The node z is defined as
follows: assume u to be the node u = (x1, x2) with x1, x2 ∈ [n]. Since pwu
is ending at u and Hn is directed, there is a first node z1 in pwu such that
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starting from z1 all the nodes z1, . . . zr, u of the subpath of pwu starting at
z1 lie either on the same row (x1) or on the same column (x2) of u. z is
defined to be either z1 or zi if v = zi for some i ∈ [r]. The main properties
of z are that: u ∈ T (z) and that w 6∈ pwz . The first is straightforward. For
the latter first notice that before z no node on pwz can be w because pwz is a
subpath of pwu . Furthermore w 6∈ T (z) since z is by definition on the same
border of u and hence S(u) ∩ T (z) is the set of nodes {z1, . . . zr} and none
of them can be w.

Since u ∈ T (z) and z 6= u1, then we can use Lemma 4.2.6 on z and u
to find a path quz from z to T avoiding u. Define pv := pwz · quz the path
concatenating pwz with quz . pv touches v but avoids both u and w, hence
touches W but avoids U . Case (A) is proved.

u

S(u)

T (u)

T (z)

pw
u

qu qu
z

z

Figure 4.7. Case (i).A

In Case (B) w 6∈ U and let u1 be the other node of U . So U = {u, u1}
and W = {w, v}. The same proof of Case (A) works here too. If v ∈ pu
however we have to be slightly more careful. Assume without loss of
generality that u1 appears before u on pu (the other case is exactly the
same swapping u and u1). We want to build a path pv avoiding both u1

and u. Since v ∈ S(u), we can have two cases: (1) v is before both u1 and
u; and (2) v is in between u1 and u. Let tv be the subpath of pu ending in
v. In case (1) we use a first time Lemma 4.2.6 on v and u1 to find a path t
from v to T avoiding u1. If t still passes through u, then we notice that u
cannot be on the border of the grid, since otherwise u1 would also be on
the same border and hence t would not avoid u1. Hence u is an internal
node in the grid. Let {i1, i2} be the incoming nodes in u. Only one can
be u1, say i1. Hence t is entering in u through i2. Let t2 be the subpath
of t ending at i2. Again by Lemma 4.2.6 on i2 and u we can find a path
q from i2 to T avoiding u. The path pv := t2 · q concatenating t2 with q
proves the claim. Case (2) is easier. First we apply Lemma 4.2.5 on v and

1If v is a source node and v ∈ Ni(u), then z is v itself.
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u1 to have path t from S to v avoiding u1. Then we apply Lemma 4.2.6 on
v and u to have a path q from v to T avoiding u. Then the concatenation
of t with q proves the claim. In case (ii) a similar argument of case (i) but
on T (u) works. We left the details to the reader.

Together previous Lemma and Lemma 4.2.3, imply the following.

Theorem 4.2.9. Let n ∈ N, n ≥ 3 and Hn be a directed grid. Then
µ(Hn|χg) = 2.

Previous result can be easily proved for grids of dimension d > 2
generalizing the definitions and the proofs to the case of a generic d. We
omit the details.

Theorem 4.2.10. Let d, n∈N, d> 2, n≥ 3 ans Hn,d be a d-dimensional
directed grid. Then µ(Hn,d|χg) = d.

Optimality of χg. In the case d = 2 we were using 4n− 2 monitors. We
wonder whether the number of monitors can be reduced. The answer is
essentially no. Namely, it is easy to see that if in the monitor placement
used in χg for Theorem 4.2.9 we remove the input links to nodes (1, 2)
and (2, 1) (so we have 4n− 4 monitors), the sets U = {(1, 2), (2, 1)} and
W = {(1, 1)} cannot be separated by any path in Hn.

4.3 Augmented Hypergrids

Let ω > 2 be an integer. In this section we analyze the maximal
identifiability of undirected augmented hypergrids. To maximize clarity,
we provide full details for Hn,d,ω, the d-dimensional augmented hypergrid.
In [24], we showed that µ(G) ≤ δ(G) for any (P, S, T ). In Hn,d,ω each
node u has ω − 1 edges for each one of the possible directions (we have d
directions). Hence the minimal degree in Hn,d,ω is reached at the corner
nodes and it is d(ω − 1). Thus µ(Hn,d,ω) ≤ d(ω − 1) for any (P, S, T ). In
the remainder of this section we pair this up with a tight lower bound for
any monitor placement. Note that these results readily imply the upper
and lower bounds in Theorem 1.2.1 as in the augmented hypegrids the
vertex connectivity is actually equal to the network’s minimum degree. The
rest of this section focuses on the second inequality in that theorem. First
notice that we shorten Hn,d,ω with H.
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Theorem 4.3.1. Let n, ω, d ∈ N, ω > 2, n > 3(ω−1) and d ≥ 2. Let (S, T )
be any monitor placement such that |S| = |T | = d(ω − 1) and S ∩ T = ∅.
Then d(ω − 1)− 1 ≤ µ(H) ≤ d(ω − 1).

Notice that this strengthen the result on hypergrids obtained in [24].

We start by proving preliminary technical lemmas. For U a set of nodes
in H, we let H − U to be the subgraph of H obtained by removing the
nodes in U .

Lemma 4.3.2. Let n, d, ω be integers, d ≥ 2 and n ≥ ω ≥ 3. Let A be a
set of vertices in H. Then:

1. κ(H) = δ(H);

2. If |A| < δ(H), then H−A is connected;

3. if |A| = δ(H), then H−A is disconnected only if A = N(c) for some
corner node c in H;

4. if A = N(c) for some corner node c, then H − A is made by two
connected components: {c} and H− (A ∪ {c}).

Proof. First notice that (2) is an obvious consequence of (1).

We start with (1). Let Pn,ω be the generalized path on n vertices,
obtained from a simple path on the given vertices by connecting any pair
of vertices at distance less than ω.

Claim 4.3.3. κ(Pn,ω) = ω − 1.

To see this, observe that a potential minimal vertex separator in Pn,ω is
a set of at most ω − 1 vertices of Pn,ω, not including the two end-points of
the path, which we call u and v. Clearly N(u) and N(v) are two separators
of size ω− 1. We claim that a set of vertices in Pn,ω is a minimal separator
if and only if it is formed by ω − 1 consecutive vertices of Pn,ω, excluding
u and v. It is not difficult to see that the removal of ω − 1 consecutive
vertices excluding u and v disconnects Pn,ω. A smaller set, or a set of ω− 1
non-consecutive vertices, will not cover sufficiently long stretches of Pn,ω to
disconnect the path.

Next observe that obviously,

H = Pn,ω × . . .× Pn,ω︸ ︷︷ ︸
d times

(4.1)

(where × here denotes the cartesian graph product). Equality (1) now fol-
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-lows from Claim 4.3.3 and the following formula [35]:

κ(G×H) = min{κ(G) · |H|, κ(H) · |G|, δ(G×H)}

expressing the vertex connectivity of the cartesian product of two graphs
G and H in terms of the properties of its contributing graphs.

Coming to (3), we will prove that statement in its contrapositive form:
if there is no corner vertex c such that A = N(c), then H−A is connected.
Denote by BH the set of vertices on the border of H . We first observe
some simple facts from definitions. Let H′ be the smallest [n′]d subgrid of
H such that A is contained among vertices of H′. Hence A ∩BH′ 6= ∅, but
A ∩ (H−H′) is empty. Let H′′ = H′ −BH′ be the [n′ − 2]d subgrid of H′

obtained by removing the border nodes from H′.

We first prove the claim in the simpler case when n′ = n (hence H′ = H).
Then we extend the argument to any n′ < n, when H′ is a strict subgraph
of H. Observe that H′′ − A is connected: the reason is that, since at
least a node in A is in BH, then |A ∩ H′′| < δ(H′′) = δ(H). Hence by
case (2), H′′ − A is connected. It remains to prove that adding nodes in
BH − A to H′′ − A the connectivity is preserved. Let x be any node in
BH−A not in the corner. x has at least δ(H) + 1 = d(w− 1) + 1 = |A|+ 1
neighbours. Hence x is connected to either BH − A or H′′ − A, which
proves our claim. If x is a corner node in H, then it is necessarily connected
to one of its neighbours on BH, since A 6⊆ N(c). In conclusion the graph
(H′′ −A) ∪ (BH−A) is connected.

When n′ < n, H′ is a strict subgraph of H. As for the case n′ = n, we
have that H′′−A is connected. But we also know that H−H′ is A-free and
connected. We want to prove that the graph (H−H′)∪(BH′−A)∪(H′′−A)
is connected. Let x be any node in (BH′−A)∪ (H′′−A). x is not a corner
node in H, hence its degree is ≥ δ(H) + 1 = |A|+ 1. Then there is at least
a node y in (H−H′) ∪ (BH′ −A) ∪ (H′′ −A) such that x is connected to
and the claim is proved.

Finally to prove (4), clearly removing N(c) disconnects the graph.
Obviously c becomes isolated. IfH−(A∪{c}) had more than one component,
each of those would have to be connected only to some of the neighbours
of c but this would imply the existence of a smaller separator.

Lemma 4.3.4. Let n, d, ω be integers, d ≥ 2, n ≥ 4 and ω ≥ 2. Let A be
a set of nodes in Hn,d,ω such that |A| < δ(H) and for each corner node c
in H, it holds that A 6⊆ N(c). Then κ(H−A) ≥ 2.



4.3 Augmented Hypergrids 53

Proof. Notice that κ(H − A) > 0, since |A| < δ(H) and by Lemma 4.3.2
case (2), H−A is connected. Assume by contradiction that κ(H−A) < 2,
then it must be that κ(H−A) = 1. That means that there is a node z in
H such that H− (A ∪ {z}) is disconnected. This is not possible because
|A ∪ {z}| = δ(H) but A is not included in any corner node of H, and
according to Lemma 4.3.2 case (3), that set does not disconnect H.

Proof of Theorem 4.3.1. As already mentioned the upper bound follows
by the result in [24] that maximal identifiability is upper bounded by the
minimal degree. δ(H) = d(ω − 1) and the result is proved.

Let S and T be disjoint set of d(ω − 1) nodes in H linked to input
and output monitors. Let P be the set of all paths in H from a node in
S to a node in T . We have to prove that for all U ,W with U 6= W and
|U |, |W | ≤ d(ω − 1)− 1, P(U) 6= P(W ).

Assume wlog that u ∈ U \W and let s ∈ S \W and t ∈ T \W (since
|W | < |S| = |T |, such s and t exist). If for each corner node c, W 6⊆ N(c),
then by Lemma 4.3.4 κ(H−W ) ≥ 2. Then by Lemma 3.5.4, there exist
two vertex-disjoint paths between s and u (and respectively between u and
t) in H−W . These are then W -free paths in H. Hence by Lemma 3.5.5
there is a simple path in H from s to t touching u and avoiding W , and
the claim is proved.

Assume now that there exists a corner node c in H such that W ⊆ N(c).
Notice that if |W | = d(ω− 1)− 1, then δ(H−W ) = 1 because c has degree
1 in H−W . We claim that:

Claim 4.3.5. κ(H− (W ∪ {c})) ≥ 2.

Proof. (of the Claim) Notice that κ(H−(W ∪{c})) > 0 because |W ∪{c}| ≤
δ(H) and by Lemma 4.3.2 case (3) to disconnect H,W ∪{c} should be equal
to the set of neighbours of a corner node, which is not the case since c is a
corner itself. Assume by contradiction that κ(H− (W ∪ {c})) = 1. Then
there should be a node z in H− (W ∪ {c}) such that H− (W ∪ {c} ∪ {z})
is disconnected. If z = N(c) \W , then we have the two following cases: (I)
If |W | = d(ω − 1)− 1, then z is the last remaining neighbour of c outside
W . Thus by Lemma 4.3.2 case (4) H− (W ∪ {c} ∪ {z}) is still connected
because H − (W ∪ {z}) is disconnected into two connected components:
{c} and H− (W ∪ {c} ∪ {z}); (II) If |W | < d(ω − 1)− 1, then there is still
another node in H that is connected to the corner node c. Therefore by
Lemma 4.3.2 case (3) to disconnect H, W ∪ {c} ∪ {z} should be equal to
the set of neighbours of a corner node, which is not the case. If z 6∈ N(c),
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then by Lemma 4.3.2 case (3), H− (W ∪ {z}) is connected and since the
degree of c in H− (W ∪ {z}) is ≥ 1, then H − (W ∪ {c} ∪ {z}) cannot be
disconnected.

Now we distinguish the following cases:

1. c 6= s, c 6= t, c 6= u. Then s, t, u are nodes in H− (W ∪ {c}) and the
theorem follows by the same argument as above since by the previous
claim κ(H− (W ∪ {c}) ≥ 2.

2. c = s. Then there is at least a node z1 ∈ N(c) \W . If z1 6= u and
z1 6= t, then by the same argument as above we can find a simple
path p in H− (W ∪ {c}) from z1 to t passing from u. And finally the
theorem follows considering the path (s, z1)p. If z1 = u, we know (by
the previous claim) that H−(W ∪{c}) is connected and hence there is
a simple path p from u to t in H− (W ∪{c}). Then (s, u)p proves the
theorem. If z1 = t and |N(c) \W | > 1, then there exits another node
z2 ∈ N(c)\W , such that z2 6= z1. We can reason as the last case with
z2 in the place of z1. If z1 = t and |N(c) \W | = 1, then that means
|W | = δ(H) − 1. Therefore there is a node w′ ∈ W \ U . Moreover
H−U is connected by Lemma 4.3.2 case (2) since |U | < δ(H). Hence
there is a simple path q in H− U from w′ to t. Therefore the path
(s, w′)q in H is connecting s and t, touching W and avoiding U , thus
it proves the theorem.

3. c = t. It is the same as the case c = s.

4. c = u. If |W | ≤ δ(H)− 2, then we claim that κ(H−W ) ≥ 2. From
this fact and by Lemma 3.5.4 and Lemma 3.5.5, we have a simple
path in H−W from s to t touching u and this is giving the theorem.
The claim κ(H −W ) ≥ 2 follows since: (1) κ(H −W ) > 0 since
|W | < δ(H) and by Lemma 4.3.2 case (2) we have that H −W is
connected; (2) κ(H−W ) 6= 1 since if it is 1, then there should exist
a node z in H−W such that H− (W ∪ {z}) is disconnected. This
is not possible since |W ∪ {z}| < δ(H) and by Lemma 4.3.2 case (2)
H− (W ∪ {z}) is connected.

If |W | = δ(H)− 1, then we can use the same argument as in the case
(2), when |W | = δ(H)− 1 finding a path from s to t passing through
W and avoiding U .
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4.4 Random Networks

The main aim of this work is to characterize the identifiability in terms
of the vertex connectivity. In this section we prove that tight results are
possible in random graphs. Also we show an interesting trade-off between
the success probability of the various random processes and the size of the
sets S and T .

Random graph is the general term to refer to probability distributions
over graphs. Random graphs may be described simply by a probability
distribution, or by a random process which generates them. Random graphs
give us constructions of networks with large identifiability. Its practical
applications are found in all areas in which complex networks need to
be modeled. Many random graph models are thus known, mirroring the
diverse types of complex networks encountered in different areas. A random
graph is obtained by starting with a set of n isolated vertices and adding
successive edges between them at random. Here let us become familiar
with the random graphs which we work on in this section.

Definition 4.4.1 (Erdős-Rényi graphsG(n, p)). In the Erdős-Rényi G(n, p) Erdős-Rényi
graphs G(n, p)model, a graph is constructed by connecting labeled nodes randomly. Each

edge is included in the graph with probability p, independently from every
other edge.

Figure 4.8. A graph generated by the binomial model of Erdős-Rényi (p = 0.01).

Definition 4.4.2 (Random r-regular graphs). A random r-regular graph Random r-regular
graphsis a graph selected from Gn,r, which denotes the probability space of all

r-regular graphs on n vertices, where 3 ≤ r < n and nr is even.
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output monitors

input monitors

v
U

W

Figure 4.9. A node v ∈ U∆W and a possible way to connect it to S and T .

Sub-Linear Separability in Erdős-Rényi Graphs We start our in-
vestigation of the identifiability of node failures in random graphs by looking
at the binomial model G(n, p), for fixed p ≤ 1/2 (in this section we only
follow the traditional random graph jargon and use p to denote the graph
edge probability rather than a generic path). The following equalities,
which hold with probability approaching one as n tends to infinity (that is
with high probability (w.h.p.)), are folklore:

κ(G(n, p)) = δ(G(n, p)) = np− o(n), (4.2)

(see [8]). Here we describe a simple method which can be used to separate
sets of vertices of sub-linear size.

We assume, for now, that S and T are each formed by γ = γ(n) nodes
with κ(G(n, p)) ≤ γ < n/2. Let M = S ∪ T .

Let P be the set of all distinct paths in G(n, p). Let U and W be two
arbitrary subsets of V \M of size k. We want to estimate the probability
that U and W are separated by a path in G, i.e.

Pr[∃p ∈ P(U)4P(W )]. (4.3)

We focus on specific simple paths separating U from W , that is paths made
by only two edges (s, v)(v, t) where v ∈ U∆W . The probability in 4.3 is
then at least the probability that there is such path, i.e. there is an element
v of U∆W (w.l.o.g. assume v ∈ U \W ) which is directly connected to a
node in S and to a node in T .

The probability that a node u is an endpoint of an edge in a set of size
γ is (1− (1− p)γ). Hence the probability that u is directly linked to both
S and T is (1− (1− p)γ)2. Hence:

Pr[∃p ∈ P(U)4P(W )] ≥ (1− (1− p)γ)2. (4.4)
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On the other hand the probability that U and W cannot be separated
by any path, i.e. P(U) = P(W ) is hence:

Pr[P(U) = P(W )] ≤ 1− (1− (1− p)γ)2 = 2(1− p)γ − (1− p)2γ

and therefore the probability that some pairs of sets U and W of size k
(not intersecting M) fail is at most 2

(n−2γ
k

)(2k
k

)
(1− p)γ .

Theorem 4.4.3. For fixed p with p ≤ 1/2, under the assumptions above
about the way monitors are placed in G(n, p), the probability that G(n, p) is
not k-vertex separable is at most 2k

(n
k

)2e(2k−γ)p.

Proof. The argument above works if both U and W contain no vertex in
M . The presence of vertices of M in U or W may affect the analysis in
two ways. First v could be in M (say v ∈ S). In this case U and W are
separable if v is directly connected to a vertex in T . This happens with
probability (1 − (1 − p)γ) > (1 − (1 − p)γ)2. Second, M might contain
some elements of U and W different from v. In the worst case when v

is trying to connect to M , it must avoid at most 2k elements of such set.
There are at most

∑
h≤k

(n
h

)2 ≤ k(nk)2 pairs of U and W of size at most k.
Thus the probability that G(n, p) fails to be k-vertex separable is at most
2k
(n
k

)2(1− p)γ−2k. and the result follows as 1− p ≤ e−p.

Note that the bound in Theorem 4.4.3 can only be small if k = o(n) for
otherwise the factor e(2k−γ)p is large. In fact it has to be k = O(nε) for
sufficiently small positive ε otherwise the large factor

(n
k

)2 is not “killed off”
by the magnitude of the small exponential.

Linear Separability in Erdős-Rényi Graphs The argument above
cannot be pushed all the way up to κ(G(n, p)). When trying to separate
vertex sets containing Ω(n) vertices, the problem is that these sets can form
a large part of M and the existence of direct links from v to S \W and
T \W is not guaranteed with sufficiently high probability.

However a different argument allows us to prove the following:

Theorem 4.4.4. For any fixed p ≤ 1/4, there is a β > 0 such that for any
monitor placement (S, T ) with S ∩ T = ∅, µ(G(n, p)) ≥ βn w.h.p.
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Proof. We claim that the chance that two sets of size at most βn are not
vertex separable is small. To believe this, pick two sets U and W , assuming
without loss of generality that U \W 6= ∅, and remove W from the graph.
G(n, p)−W is still a random graph on at least n− np = Ω(n) vertices and
constant edge probability. In the remainder of the proof, we prove that
the main result in [40] is still valid for G(n, p)−W . Hence, in particular
G(n, p)−W has a Hamiltonian cycle with sufficiently high probability and
therefore there is a good chance that G(n, p)−W is Hamiltonian for any
choice of W (recall that a Hamiltonian path/cycle is a path/cycle that Hamiltonian

path/cyclevisits each vertex of the graph exactly once and a graph that contains a
Hamiltonian cycle is called a Hamiltonian graph). Any Hamiltonian cycle Hamiltonian

graphin G(n, p)−W , by definition, contains a path from S to T passing through
v 6∈W , for every possible choice of v. This proves, w.h.p., the separability
of sets of size up to βn.

Assume p ≤ 1/4. In what follows we claim that there is an ε > 0 such
that

Pr[G(n, p) not Hamiltonian] ≤ en5(1−εp)n/5+n(1−εp)n/4+
( 1− p

1− εp

)n/4
.

(4.5)

Also, using (4.5), we then prove that, in fact, for each p < 1/4 there exists
a value β such that if |W | ≤ βn the probability that G(n, p) −W is not
Hamiltonian is bounded as above by function of the form f(ε, β, p)n+o(n)

with f(ε, β, p) < 1. The proof of the theorem follows.

Proof of (4.5): We obtain the bound above by just working through
the proof of the main result in [40] and quantifying the error probability
assuming p constant. Pósa uses a two-stage exposure defining G(n, p) as
the union of G(n, p1) and G(n, p2) using p1 = εp and p2 = (1− ε)p/(1− εp),
solution of the equation: p = p1 + p2− p1p2. The two stage exposure allows
him to first work with enough edges to claim the existence of a Hamiltonian
path, and then showing that few more edges are likely to close at least
one of those paths into a fully fledged Hamiltonian cycle. following Pósa’s
calculations, we argue that:

Pr[G(n, p1) has NO Hamiltonian path] ≤ en5(1− εp)n/5 + n(1− εp)n/4

and furthermore the probability that assuming G(n, p1) does have a Hamil-
tonian path, the edges of G(n, p2) do not close any of those, is at most
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( 1− p
1− εp

)n/4
.

These two together give (4.5).

Now we move to the second part of the argument which focuses on
G(n, p)−W . Assume ε is large enough (say ε > 1/2). Note that:

• 1− p < 1− εp, so all exponentials in (4.5) tend to zero.

• The sum of the first two terms is at most

(en5 + n)(1− εp)n/5.

• The argument of the right-most exponential is smaller than (1−εp)1/5

if
(1− p)1/4 < (1− εp)9/20,

which can be verified resorting to the Taylor expansion of the two
sides.

So, given our constraints on p and ε, the upper bound on the probability
that for any W of size at most βn, G(n, p)−W is NOT Hamiltonian is at
most

(en5 + n+ 1)
βn∑
k=1

(
n

k

)
(1− εp)(n−k)/5.

This is at most

(en5 + n+ 1)
( e
β

)βn
(1− εp)n/5

βn∑
k=1

[ 1
(1− εp)1/5

]k
.

The geometric sum satisfies:

(
1

(1−εp)1/5

)βn+1
− 1

1
(1−εp)1/5 − 1

− 1 =

(
1

(1−εp)1/5

)βn+1
− 1

(1−εp)1/5

1
(1−εp)1/5 − 1

= (1− εp)1/5

1− (1− εp)1/5

[( 1
(1− εp)1/5

)βn+1
− 1

(1− εp)1/5

]

= 1
1− (1− εp)1/5

[( 1
(1− εp)1/5

)βn
− 1

]
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≤ 1
1− (1− εp)1/5

( 1
(1− εp)1/5

)βn
.

Hence, the overall error probability is at most

en5 + n+ 1
1− (1− εp)1/5

[( e
β

)β
(1− εp)(1−β)/5

]n

which is exponentially small for an appropriate choice of β provided p <
1/4.

Random Regular Graphs A standard way to model random graphs
with fixed vertex degrees is Bollobàs’ configuration model [6]. There are n
buckets, each with r free points. A random pairing of these free points has a
constant probability of not containing any pair containing two points from
the same bucket or two pairs containing points from just two buckets. These
configurations are in one-to-one correspondence with r-regular n-vertex
simple graphs. Denote by Cn,r the set of all configurations C(n, r) on n
buckets each containing r points, and let G(r-reg) be a random r-regular
graph.

As before assume |S| = |T | = γ with S ∩ T = ∅. The main result of
this section is the following:

Theorem 4.4.5. Let r ≥ 3 be a fixed integer. r−2−o(1) ≤ µ(G(r-reg)) ≤ r
w.h.p.

The result resembles Theorem 1.2.3 but its proof uses different tech-
niques. The upper bound is true for any r-regular graph G as µ(G) ≤
δ(G) = r. The lower bound is a consequence of the following:

Lemma 4.4.6. Let r ≥ 3 be a fixed integer. Two sets U and W with
U,W ⊆ V (G(r-reg)) and max(|U |, |W |) ≤ k are separable w.h.p. if k =
r − 2− o(1).

Proof. In what follows we often use graph-theoretic terms, but we actually
work with a random configuration C(n, r). Let U and W be two sets of
k buckets. For simplicity assume that (the vertices corresponding to the
elements of) both U and W are subsets of V \M . The probability that U
and W can be separated is at least the probability that a (say) random
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element v of U4W (w.l.o.g. v ∈ U \ W ) is connected to S by a path
of length at most `s and to T by a path of length at most `t, neither of
which “touches” W . Figure 4.10 provides a simple example of the event
under consideration. The desired paths can be found using algorithm
PathFinder below that builds the paths and C(n, r) at the same time.

PathFinder(v, `s, `t,W )

SimplePaths(v, `s, `t,W ). Starting from v, build a sim-
ple path ps of length `s that avoids W . Similarly,
starting from v, build a simple path pt of length `t
that avoids W .

RandomShooting(ps, pt). Pair up all un-matched
points in ps and pt.

Complete the configuration C(n, r) by pairing up all re-
maining points.

Sub-algorithm SimplePaths can complete its constructions by pairing
points starting from elements of the bucket v, then choosing a random
un-matched point in a bucket u, then picking any other point u and then
again a random un-matched point and so on, essentially simulating two
random walks RWs and RWt on the set of buckets. Note that the process
may fail if at any point we re-visit a previously visited bucket or if we hit
W or even M . However the following can be proved easily.

Claim 4.4.7. RWs and RWt succeed w.h.p. provided `s, `t ∈ o(n).

As to RandomShooting, the process succeeds if we manage to hit an
element of S from ps and an element of T from pt.

Claim 4.4.8. RandomShooting(qs, qt, S, T ) succeeds w.h.p. if `s, `t ∈
ω(1).

Any un-matched point in ps or pt after SimplePaths is completed is
called useful. Path ps (resp. pt) contains qs = (r − 2)`s + 1 (resp qt = (r −
2)`t+ 1) useful points. During the execution of RandomShooting a single
useful point “hits” its target set, say S, with probability proportional to the
cardinality of S. Hence the probability that none of the qs useful points hits
S is (1− γ

n)qs and the overall success probability is (1−(1− γ
n)qs)(1−(1− γ

n)qt).

Back to the proof of Lemma 4.4.6, set `s = `t = ` and q the common
value of qs and qt. The argument above implies that the success probability
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T

S

j = 5

= 4i 

v

Figure 4.10. Assume r = 4. The picture represents a bucket (i.e. vertex)
v ∈ U4W and two possible “paths” (sequences of independent edges such
that consecutive elements involve points from the same bucket) of length 3
and 5, respectively connecting it to S and T .

for U and W is asymptotically approximately (1− (1− γ
n)q)2 and the rest

of the argument (and its conclusion) is very similar to the G(n, p) case
(the final bound is slightly weaker, though). The chance that a random
r-regular graph is not k-vertex separable is at most

O(n2k)× (1− (1− (1− γ

n
)q)2) ≤ O(n2k)× 2(1− γ

n
)q ≤ O(n2k)× 2e−

γ
n
q,

which goes to zero as n−C provided ` is at least logarithmic in n. The
constraints on ` from the claims above imply that the parameter can be
traded-off against γ to achieve high identifiability.
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Chapter 5

Counting and Localizing
Failure Nodes in Networks

As observed in [37,38] k-identifiability can be scaled to each single node
yet preserving the property for the whole set of paths. A node u is k-ID
if any two sets of size at most k differing on u are separated by at least a
path in P. Hence understanding the combinatorics of the set IDk(P) of the
k-identifiable nodes in P and study upper and lower bounds for | IDk(P)| is
of great importance to develop algorithms to maximize the identification of
failure nodes in real networks.

In [38] they started this study quantifying the capability of failure
localization through (1) the maximum number of failures such that failures
within a given node set can be localized unambiguously, and (2) the largest
node set, failures can be uniquely localized under a given bound on the total
number of failures. These measures were used to evaluate the impact of
maximum identifiability on various parameters of the network (underlying
the set of paths) like the topology, the number of monitor and the probing
mechanisms. They presented a set of sufficient and necessary conditions
(testable in polynomial time) for identifying a bounded number of failures
within an arbitrary node set.

Moreover, the works [4, 37] considered the problem of optimizing the
capability of identifying network failures through different monitoring
schemes and giving upper bounds on the maximum number of identifiable
nodes, given the number of monitoring paths, the routing scheme and the
maximum path length. In particular in [4] they studied upper bounds on
the set of | ID1(P)| of the 1-identifiable nodes in P.

In this chapter we study upper and lower bounds on the number of
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unambiguously identifiable nodes for any k, introducing new identifiability
conditions which strictly imply and are strictly implied by unambiguous
identifiability. We use these new conditions on one side to design new
algorithms and heuristics to count or localize as more precisely as possible
failure nodes in networks, on the other side to prove the first complexity
hardness results on the problem of identifying defective nodes in networks
via BNT.

More precisely, we first give some preliminary definitions on Boolean
Network Tomography and identifiability, showing the connection with
unambiguous identification of failure nodes in Section 5.1.

In Section 5.2, we study upper bounds on the number of paths such
that P is no longer k-identifiable (Corollary 5.2.8) using union-free families
notion. Moreover this result will give us an estimate of upper bounds on
the number of k-identifiable nodes in P (Theorem 5.2.9).

Section 5.3 includes the definitions of k-separability, k-distinguishability
and the relation of these new definitions with identifiability (Lemmas 5.3.2
and 5.3.4).

In Section 5.4 we introduce a random model to study lower bounds on
the number of unambiguously identifiable defective nodes (Theorem 5.4.2)
and then use this model to estimate this number of k-identifiable nodes on
real networks by a maximum likelihood estimate approach.

Finally in Section 5.5 we present a method based on distinguishability
to compute upper bounds on identifiable nodes in a fine-grained way (The-
orem 5.5.4).

5.1 Preliminary Definitions

Let n, k ∈ N and k ≤ n.
([n]
k

)
is the set of subsets of [n] of size k.

([n]
≤k
)

is the set of subsets of [n] of size at most k. 2A is the set of subsets of the
set A. A⊕B is the symmetric difference between A and B. A denotes the
complement of A.

Let n and m be positive integers and V = [n] be the set of nodes. We
encode a set of m paths over nodes in V as a collection P of n distinct
m-bit vectors such that 0 6∈ P, i.e. the m-bit zero vector is not in P (this
condition means that each node in V is used in at least a path).
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We can view P in three different ways: as a Boolean m× n-matrix, as
a collection of n m-bit vectors and as a collection of m n-bit vectors. For a
node u ∈ V , cu is then the m-bit vector whose p-th coordinate indicates cu

whether the node u is in the p-th path or not.
We use also P in a graph notation as follows: if u ∈ V is a node,

then P(u) identifies the set of all paths touching u, in other words the set P(u)

{p ∈ P = [m] : P[p, u] = 1}. If U ⊆ V is a set of nodes, P(U) denotes the set P(U)

of paths in P = [m] touching at least a node in U , i.e. P(U) =
⋃
u∈U P(u).

Now let P be a set of m paths over n nodes. Notice that in terms of
the column-vector notation, the definition of k-identifiability says that for
all distinct sets U,W ⊆ V of size at most k,

∨
u∈U

cu ⊕
∨
w∈W

cw 6= 0.

The definition of k-identifiability can be equivalently given for nodes
u ∈ V as follows (see also [37]).

Definition 5.1.1 (k-identifiable nodes). A node u ∈ V is k-identifiable k-identifiable
nodeswith respect to P, if for all U,W ⊆ V of size at most k and such that

U ∩ {u} 6= W ∩ {u}, it holds that P(U) 6= P(W ).

IDk(P) denotes the set of k-identifiable nodes in P. As we already know IDk(P)

k-identifiability implies k′-identifiability for k′ < k. Hence,

Lemma 5.1.2. Let P be a set of m paths over n nodes. Then IDk(P) ⊆
IDk′(P) for k′ ≤ k ≤ n.

Furthermore scaling to identifiability of nodes does not affect the main
property of k-identifiability (which we see below). Next theorem is proved
in [37] (Theorem 4).

Theorem 5.1.3. ( [37]) Let P be a set of m paths over n nodes. P is
k-identifiable if and only if every node in V is k-identifiable with respect to
P.

5.2 Union-Free Families and Upper Bounds on
µ(P)

In this section we show that under what bounds on the number of paths
m in P, we have that µ(P) < k. We start by showing under what conditions
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on m, µ(P) < 1.

Notice that to prove that µ(P) < 1, by Definition 2.4.1 it is sufficient
to find two distinct nodes u,w ∈ V such that cu ⊕ cw = 0, that is for all
p ∈ P = [m] : cu[p] = cw[p]. µ(P) < 1 will follow from an easy information,
theoretic bound on sets of m-vectors.

Lemma 5.2.1. Let P be a set of m paths built on n nodes. If m <

log2(n+ 1), then µ(P) < 1.

Proof. P is a collection of n m-bit strings. There are at most 2m−1 different
such strings (0 6∈ P). Hence whenever n > 2m − 1 there are two elements
u 6= w ∈ V such that cu = cw, which means cu ⊕ cw = 0.

Corollary IV.1 in [4] can be obtained by previous observation immedi-
ately.

Theorem 5.2.2. ( [4]) Let P be a set of m paths over n nodes. Then
| ID1(P)| ≤ min{n, 2m − 1}.

Proof. | ID1(P)| ≤ n since it is a set of nodes. Assume that n > 2m − 1,
hence by previous Lemma 5.2.1 µ(P) = 0, hence there are at least two
nodes u1 6= u2 not 1-identifiable. Hence | ID1(P)| ≤ 2m − 1.

We will prove similar results for µ(P) < k for a generic k ≤ n. In
order to obtain the desired results we first need to become familiar with
union-free families.

A hypergraph F on the set [m] is a family of distinct subsets of [m], Hypergraph and r-
regularcalled edges of F . If each edge is of fixed size r ≤ m, then F is said to be

r-regular, i.e., F ⊂
([m]
r

)
.

Definition 5.2.3 (Union-free families). For a positive integer k, F is Union-free
familiescalled k-union-free if for any two distinct subsets of edges A,B ⊆ F , with

1 ≤ |A|, |B| ≤ k, it holds that ∪A∈AA 6= ∪B∈BB.

Union-free regular hypergraphs are investigated in extremal combina-
torics [22]. It is immediate to see that a set P of m paths over n nodes
defines a hypergraph FP on the set [m] in the following way: for i ∈ V let
Ai = {j ∈ [m]|ci[j] = 1} and define FP = {A1, . . . , An}. Given a U ⊆ V ,
consider the subset of FP, U = {Ai ∈ FP|i ∈ U}. Observe that then
P(U) =

⋃
A∈U A. Hence immediately by definition of k-identifiability and

that of k-union-freeness it follows that:
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Lemma 5.2.4. If P is a set of m paths over n nodes and µ(P) ≥ k, then
FP is k-union free.

FP is not necessary a regular hypergraph. For r ∈ [m] let FP(r) =
{A ∈ FP||A| = r}. Notice that each FP(r) is now an r-regular hypergraph
on [m]. Moreover the family of the FP(r)’s partitions FP and hence
|FP| =

∑
r∈[m] |FP(r)|. Since |FP| = n, it follows that:

Lemma 5.2.5.
∑
r∈[m] |FP(r)| = n.

Furthermore notice that if FP is k-union free then so will be FP(r) for
each r ∈ [m].

Let m > r, k ∈ [m] with k ≥ 2, and let f(k, r,m) denote the maximum
cardinality of a k-union-free r-regular hypergraph over [m].

Theorem 5.2.6 ( [22,46]). Ω(m
r

k−1 ) ≤ f(k, r,m) ≤ O(md
r

k−1 e).

Letm0 ∈ N and C be the constant such that for allm ≥ m0, f(k, r,m) ≤
Cmd

r
k−1 e.

Theorem 5.2.7. Let m be an integer such that m ≥ m0. Let P be a set
of m paths over n nodes. If n >

∑
r∈[m]Cm

d r
k−1 e, then µ(P) < k.

Proof. Assume by contradiction that n >
∑
r∈[m]Cm

d r
k−1 e and µ(P) ≥ k.

By Lemma 5.2.4 FP is k-union free. Hence (see observation after Lemma
5.2.5) for each r ∈ [m], FP(r) is an r-regular k-union free hypergraph and
hence by previous theorem |FP(r)| ≤ Cmd

r
k−1 e. The FP(r) partition FP

and by Lemma 5.2.5 we have

n =
∑
r∈[m]

|FP(r)| ≤
∑
r∈[m]

Cmd
r

k−1 e

.

Corollary 5.2.8. Let P be a set of m paths over n nodes and 2 ≤ k ≤ m.
If m < 1+ε

√
(k−1)
k (log2 n−D)−(k−1), for some ε > 0 and where D = logC,

then µ(P) < k.

Proof. Assume for the moment that m divides k − 1. We prove that if
m < 1+ε

√
(k−1)
k (log2 n−D), then

n > Cmm
m
k−1 . (5.1)
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This immediately implies

n >
∑
r∈[m]

Cmd
r

k−1 e (5.2)

since
∑
r∈[m]Cm

d r
k−1 e ≤ Cmm

m
k−1 . Equation 5.1 follows by the follow-

ing implications:

m <
1+ε

√
k − 1
k

(log2 n−D) (5.3)

m1+ε <
k − 1
k

(log2 n−D) (5.4)

k

k − 1m
1+ε < log2 n−D (5.5)

logC + k

k − 1m logm < logn (5.6)

logC + logm+ m

k − 1 logm < logn (5.7)

Cmm
m
k−1 < n (5.8)

Equation 5.7 follows from Equation 5.6 since K = k
k−1 > 1 and

Km logm > logm+ m logm
k−1 for all m.

If m does not divide (k − 1), let a < (k − 1) be the smallest non-
negative integer such that m + a divides k − 1. Hence m + a < m +
(k − 1). Let m̂ = m + a. Since m < 1+ε

√
(k−1)
k (log2 n−D) − (k − 1),

then m̂ < 1+ε
√

(k−1)
k (log2 n−D). Hence the previous argument proves that

n > Cm̂m̂
m̂
k−1 . Since m < m̂, then n > Cmm

m
k−1 . Now by Theorem 5.2.7,

this implies that µ(P) < k.

Theorem 5.2.9. Let P be a set of m paths over n nodes. Then for all

k ≤ n, | IDk(P)| ≤ min{n, 2
k(m+k−1))(1+ε)

k−1 }.

Proof. Notice that if n ≥ 2
k(m+k−1)(1+ε)

k−1 , then m < 1+ε
√

(k−1)
k (log2 n−D)−

(k − 1). Hence Corollary 5.2.8 and the same proof of Theorem 5.2.2 imply
the claim.



5.3 Refining Identifiability: Separability and Distinguishability 69

5.3 Refining Identifiability: Separability and Dis-
tinguishability

We introduce two new definitions approximating identifiability from
above and from below. Moreover we are going to use them to prove upper
and lower bounds on the number of k-identifiable nodes.

Definition 5.3.1 (k-separable nodes). A node u ∈ V is k-separable in P, k-separable nodes

if for all U ⊆ V of size at most k and such that u 6∈ U , it holds that there
is a path p ∈ P(u) \ P(U), i.e. there is at least a path passing though u but
not touching any node of U .

We say that P is k-separable if each node u ∈ V is k-separable. k-
separability is a stronger notion than k-identifiability as captured by the
following lemma.

Lemma 5.3.2. If u is k-separable in P, then u is k-identifiable in P.

Proof. Let u be k-separable and U and W be distinct subset of V of size at
most k such that U ∩{u} 6= W ∩{u}. Then either u ∈ U \W or u ∈W \U .
Assume wlog the former. Then u 6∈ W . u is k-separable in P, there is
a path p ∈ P(u) \ P(W ). Since u ∈ U , then p ∈ P(U) \ P(W ) and then
P(U) 6= P(W ).

Notice that opposite direction is not true as we argue: assume that
P is k-identifiable and that u 6∈ W for W a set of at most k nodes. The
k-identifiability of P implies that P(u) 6= P(W ), yet this condition alone
does not guarantee that the path separating {u} from W , pass through u
and not touching W .

Definition 5.3.3 (k-distinguishable nodes). A node u ∈ V is k- distin- k-distinguishable
nodesguishable in P, if for all U ⊆ V of size at most k and such that u 6∈ U , it

holds P(u) 6= P(U).

We say that P is k-distinguishable if each node u ∈ V is k-distinguishable.

Lemma 5.3.4. If u is a k-identifiable node in P, then u is k-distinguishable
in P.

Proof. Assume that u ∈ V is k-ID in P. Let W ⊆ V be of size at most
k such that u 6∈ W . We want to prove that P(u) 6= P(W ). By k-ID
of u we know that for all U ′ and W ′ in V of size at most k such that
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U ′ ∩ {u} 6= W ′ ∩ {u}, it holds that P(U ′) 6= P(W ′). Fix U ′ = {u} and
W ′ = W . Since u 6∈W , then U ′ ∩ {u} 6= W ′ ∩ {u}, hence P(u) 6= P(W ), as
required.

Notice that the opposite direction is not necessary true: indeed if
u ∈ U \W , knowing that P(u) 6= P(W ) it is not sufficient to conclude
P(U) 6= P(W ), exactly in those case when P(u) 6= P(W ) is witnessed by a
path in P(W ) \ P(u), which can touch other nodes in U but not u.

We denote by IDk(P),SEPk(P),DISk(P) the sets of nodes which are IDk(P), SEPk(P)
and DISk(P)respectively k-identifiable, k-separable and k-distinguishable in P and we

use to say respectively that u is k-ID, k-SEP and k-DIS in P.

By previous lemmas it holds that,

Lemma 5.3.5. For all k ∈ [n], |SEPk(P)| ≤ | IDk(P)| ≤ |DISk(P)|.

Furthermore since the three properties are clearly anti-monotone, it
holds that:

Lemma 5.3.6. For all k ∈ [n], IDk(P) ⊆ IDk−1(P), SEPk(P) ⊆ SEPk−1(P),
DISk(P) ⊆ DISk−1(P).

We denote by σ(P) (respectively δ(P)) the maximal k ≤ n such σ(P) and δ(P)

that P is k-separable (respectively k-distinguishable). Hence we have
σ(P) ≤ µ(P) ≤ δ(P).

5.4 Lower Bounds on µ(P) by A Random Model

To study lower bounds on IDk(P) (or on µ(P)) for real set of paths we
introduce a simple random model. We are given m and n natural numbers
and n real numbers λi ∈ [0, 1]. The random set of P of m paths over n
nodes is obtained by taking independently n binary strings of length m such
that the i-th string is distributed according to the binomial distribution
Bin(m,λi). That means that node i ∈ V will be present on each path with
probability λi and absent with probability (1− λi).

Our approach to estimate | IDk(P)| is the following:

1. by Lemma 5.3.5, |SEPk(P)| ≤ | IDk(P)|;

2. For u ∈ V we obtain νn,m,λ(u) = Pr[u ∈ SEPk(P)];
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3. Given a real set P̂ of M paths on N nodes, we assume P̂ to be a
random experiment and from P̂ we compute a maximum likelihood
estimate (MLE) λ̂i for each of the λi;

4. We estimate |SEPk(P̂)| =
∑

u∈V=[N ]
νN,M,λ̂(u).

Let u ∈ V and W ∈
(V \{u}
≤k

)
. Let us say that (u,W ) is GOOD if there

is a path p ∈ P = [m] such that p ∈ P(u) \P(W ). (u,W ) is BAD if it is not
GOOD.

Lemma 5.4.1. Let u ∈ V and W ⊆ V \ {u} of size at most k.

Pr[(u,W ) BAD] =
(

1− λu
∏
w∈W

(1− λw)
)m

.

Proof. (u,W ) is BAD if and only if for all p ∈ P = [m] : (p(u) →
p(W )). This means that if p touches u which happens with probabil-
ity λu (Pr[p(u)] = λu), then (for (u,W ) to be BAD) p must touch at least
one node of W which happens with probability 1−

∏
w∈W (1− λw) since

the probability of a path not touching any nodes of W is
∏
w∈W (1− λw)

(Pr[¬p(w)] = (1 − λw)). Notice that if p does not touch u, which hap-
pens with probability (1 − λu), then u is separated from any W . Then
Pr[(u,W ) BAD] = (Pr[(p(u)→ p(W ))])m. We thus have Pr[(u,W ) BAD] =
(1− λu + λu(1−

∏
w∈W (1− λw)))m = (1− λu

∏
w∈W (1− λw))m.

The condition p(u) → p(W ) is also the same as ¬p(u) ∨
∨
w∈W p(w)

which is the same as ¬ (p(u) ∧
∧
w∈W ¬p(w)). Hence the claim.

Let k ≤ n. and let S(k) =
([n−1]
≤k

)
.

Theorem 5.4.2. Let n,m, k ∈ N, u ∈ V , and k ≤ n.

Pr[u ∈ SEPk(P)] =
∏

W∈S(k)

(
1− (1− λu

∏
w∈W

(1− λw))m
)
.

Proof. Observe that Pr[u ∈ SEPk(P)] = Pr[ u is k-SEP in P] = Pr[∀W,u 6∈
W, |W | ≤ k : (u,W ) GOOD]. By previous lemma Pr[(u,W ) GOOD] =
1− (1− λu

∏
w∈W (1− λw))m. Hence the theorem follows.
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Assume we have a set P̂ of m paths over n nodes. We consider P̂ as a
random experiment. The standard approach to compute an MLE estimate
λ̂i of the λi in the case of binomial distribution is to compute λ̂i as the
zero of the polynomial obtained by the prime derivative of the function
expressing the probability that the node i touches Ni paths in P̂.

Let pi = Pr[ node i touches Ni paths in P̂]. Since in P̂ the column i is
distributed accordingly to the Bin(m,λi), then pi =

(m
Ni

)
λNii (1− λi)m−Ni .

We study d
dλi
pi and compute λ̂i by setting d

dλi
pi = 0. It is easy to see that

this happen for λ̂i = Ni
m .

5.5 Localizing Failure Nodes in Real Networks

In this section we study some heuristics to compute as more precisely as
possible the number of k-identifiable nodes in a set of measurement paths
defined on concrete networks, that is the set of all paths between monitor
nodes. According to Section 5.3, we study upper bounds on the number of
k-distinguishable nodes.

To upper bound |DISk | we lower bound the number of nodes which are
not distinguishable in P. In fact we will localize specific set of nodes which
we can guarantee to be not k-distinguishable.

Let P be given and let u ∈ V . We let Wk(u) be a subset of
(V \{u}
≤k

)
.

This should be meant as (a method to generate) a collection of subsets of
at most k nodes in V \ {u} based on a function of the node u. An example
can be: the subsets of V made by at most k nodes which are at distance at
most d from u. For any v ∈ V , let P(u, v) ⊆ P(u) ∩ P(v). This should be
meant as (a method to generate) a subset of all paths touching both nodes
u and v.

Definition 5.5.1 (k-equal modulo P). Let W and P be given for P. We k-equal modulo P

say that u ∈ V and W ∈ Wk(u) are k-equal modulo P in P if

1. ∃w,w′ ∈W such that P(u) \ P(u,w) ⊆ P(w′), and

2. ∀w ∈W , P(w) \ P(u,w) ⊆ P(u).

Let

EV,k[W,P] := {u ∈ V : there is a W ∈ Wk(u)
s.t. u and W are k-equal modulo P}.
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Lemma 5.5.2. For all V ⊆ [n], EV,k[W,P] ⊆ DISk(P).

Proof. Let u ∈ EV,k[W,P]. We have to find a W ∈
( V
≤k
)
with u 6∈W such

that P(u) = P(W ). Fix W as the one in Wk(u) given by the the definition
of EV,k[W,P]. We first argue that P(u) ⊆ P(W ). By Definition 5.5.1 case
(1) we know that there exist w,w′ ∈W such that P(u)− P(u,w) ⊆ P(w′).
Consider p ∈ P(u). If p ∈ P(u,w), then p ∈ P(w) and hence p ∈ P(W ). If
p 6∈ P(u,w), then p ∈ P(u) \ P(u,w) and then by Definition 5.5.1 case (1)
p is in P(w′) and hence in P(W ).

Let q ∈ P(W ), then q ∈ P(w) for some w ∈ W . If q ∈ P(u,w), then
q ∈ P(u). If q 6∈ P(u,w), then q ∈ P(w) \ P(u,w) and then, by Definition
5.5.1 case (2), q ∈ P(u).

By Lemma 5.5.2, nodes in EV,k[W,P ] are not k-distinguishable and, by
the anti-monotonicity, are not (k + 1)-,(k + 2)-,. . ., n-distinguishable.

We now study how to upper bound the number of k-distinguishable
nodes in P given the specific definition of W and P . Consider the following
family of vertices in V :

{
V1 = V

Vk = V −
⋃
j<k EVj ,j [W,P] k > 1

Definition 5.5.3. Let k ≤ n. τk := |EVk,k[W,P]|. Definition of τk

Theorem 5.5.4. |DISk(P)| ≤ n−
∑k
j=1 τj.

Proof. We abbreviate EVj ,j [W,P ] with EVj ,j . First we claim that
∣∣∣⋃j≤k EVj ,j∣∣∣ ≤∑k

j=1 τj . This is because for all k ≤ n, if u ∈ EVk,k, then u 6∈
⋃
j≤k−1EVj ,j ,

by definition of EVk,k.

Further we claim that

EVk,k ⊆ DISk(P) \
⋃

j≤k−1
EVj ,j .

Indeed by Lemma 5.5.2 EVk,k ⊆ DISk(P) and again by definition of
EVk,k, if u ∈ EVk,k, then u 6∈

⋃
j≤k−1EVj ,j . Therefore:

|DISk(P)| ≥ |EVk,k|+

∣∣∣∣∣∣
⋃

j≤k−1
EVj ,j

∣∣∣∣∣∣ .
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By definition of τk it follows that |DISk(P)| ≥ τk +
∑k−1
j=1 τj , and hence

that |DISk(P)| ≤ n−
∑k
j=1 τj .

Notice that the proof of the theorem is constructive and is counting
well-defined nodes in the network, so that nodes can also be precisely
localized.



75

Chapter 6

Algorithms, Data and
Experiments

Algorithms are one of the most important aspects of Computing and
are a very important topic in Computer Science because they help software
developers create efficient and error free programs. With the best algorithm,
a computer programme will be able to produce very accurate results.
Algorithms give us the most ideal option of accomplishing a task.

On the other hand, experiments play fundamental roles in science. One
of its important roles is to test theories and to provide the basis for scientific
knowledge. It can also acquire new knowledge. Experiment can provide
hints toward the structure or mathematical form of a theory and it can
provide evidence for the existence of the entities involved in our theories.
The role of experimentation in Informatics in order to understand the
nature of information processes is highly essential. Experiments must be
sound and verifiable.

Here in this chapter we provide algorithms and experiments for the
results we have proven in previous chapters. We get some results as
applications of the main results of the previous chapters.

In Sections 6.1 and 6.2 we first present a heuristic, Agrid (Algorithm
1) to boost maximal identifiability increasing the minimal degree of the
network. Then we run some experiments and using several Tables we
comment on the performance of Agrid on concrete examples of networks.
We end by discussing feasibility of Agrid on real networks.

Section 6.3 includes experiments on how to count k-separable nodes
on real networks through a maximum likelihood estimate method on the
random model.
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In Sections 6.4 and 6.5, respectively first we study the combinatorics and
the complexity of the theoretical problem of k-identifiability, cf. Theorems
6.4.1 and 6.4.3 and then we present some algorithms and heuristics to count
failure nodes in networks as more accurately as possible.

6.1 Agrid (Adding Edges to Increase µ)

In this section we discuss how Theorem 4.2.1 suggests the design of
a network on N nodes potentially reaching a maximal identifiability of
O(logN). We describe a heuristic, Agrid, to boost maximal identifiability
in a network by adding random edges to increase the original minimal
degree and simulate a d-hypergrid.

Assume we have to design a network over N ≥ 4 nodes and we aim to
have maximal identifiability of failure nodes. Theorem 4.2.1 suggests how
to set edges between the nodes in the network and how to place monitors
in such a way to reach an identifiability of at most log3N . Let n ≥ 3 and
set a dimension d in such a way N = nd. Since n ≥ 3, then N ≥ 3d. Hence
as long as d ≤ log3N , Theorem 4.2.1 applies. Assume that all values are
integers. Assign an address to each node as a d-dimensional vector in [n]
and place edges between nodes following Hn,d.

Now assume to have a network with very low maximal identifiability.
We explore the idea to add edges to the network to get better maximal
identifiability. The following algorithm modifies a graph G to approximate
a d-grid (d will be a parameter), adding random edges to the topology,
to increase the minimal degree to d (and choosing d input and d output
monitors).

Algorithm 1 AGrid

Data: G = (V,E), d
Result: GA = (V,EA), IS ⊆ V , IT ⊆ V

/* Boost minimal degree as close to d as possible */
1: for all v ∈ V : deg(v) < d do
2: W = choose at random d− |N(v)| nodes in V \N(v)
3: for all w ∈W do
4: E = E ∪ (v, w)

/* Select input and output nodes*/
5: for i = 1, . . . , d do
6: Select x, y ∈ V according to heuristic MDMP
7: S = S ∪ {x};T = T ∪ {y};
8: V = V − {x, y}
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Given a network G, Agrid adds a number of random edges so that
the minimal degree of the network increases to some suitable d = d(N), a
slow-growing function of the number of nodes N in the network. Agrid
assumes to work with a network where monitors are not placed. To place
monitors we follow the heuristic of placing monitors on the nodes of minimal
degree. We call this heuristic MDMP. Agrid gets in input the graph G

and the value d = d(N) and release in output a graph GA whose minimal
degree is d. The addition of edges is performed between Lines 1 and 4. For
each node v with degree smaller than d, we choose at random a number
of neighbours w, namely d − |N(v)|, and we add an edge in the network
between v and w, keeping updated the set of edges (Line 4). In Line 5
we choose 2d nodes according to MDMP to be linked to input and output
monitors in GA. We use the same monitor placement on G.

Algorithm Complexity. Algorithmic complexity is a measure of how
long an algorithm would take to complete given an input of size n. If an
algorithm has to scale, it should compute the result within a finite and
practical time bound even for large values of n. While complexity is usually
in terms of time, sometimes complexity is also analyzed in terms of space,
which translates to the algorithm’s memory requirements. Analysis of an
algorithm’s complexity is helpful when comparing algorithms or seeking
improvements. The Agrid algorithm has the complexity of O(N2) since
the size of the input graph G (the number of nodes) is N and also we have
the dimension d = d(N). So we have O(Nd) as the complexity of the Agrid.

6.2 Experimental Data and Feasibility of Agrid

For any topology G on N nodes and for the parameter d that we set d
as either logN or

√
logN , Agrid generates GA, the super graph of G that

simulates a d-hypergrid. After computing the monitor placements χ and
χA, we proceed to compute µ(GA|χA) and µ(G|χ). We generate all possible
paths, and hence the number of paths tends to highly grow. That is the
reason why our examples are with less than 30 nodes.

Real networks

We test examples of real internet networks whose topologies are on the
data set Internet Topology Zoo ( [33]). We compute maximal identifiability,
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number of paths, minimal degree and number of edges for eight networks
for the both cases d = logN and d =

√
logN (Tables 6.1, 6.2, 6.3, 6.4,

6.5, 6.6, 6.7 and 6.8). d is the dimension of simulated hypergrid. In some
examples (such as Table 6.3), when the number of nodes is so small that
d ≤ δ(G) (so GA would not change with respect to G) we decide to add
one dimension to d. The examples show an increment of the maximal
identifiability more evident in the case when d = logN . For example in
Tables 6.2 on a network of 16 edges, adding 6 monitors and 9 links, we pass
from not having identifiability at all (using the same number of monitors)
to detect uniquely in GA any two node-failures.

d =
√

log |V | d = log |V |
G GA G GA

µ 0 1 1 2
|P| 18 247 39 16528
|E| 18 22 18 29
δ 1 2 1 3

d, |S|, |T | = 2 d, |S|, |T | = 3

Table 6.1. Claranet, |V | = 15.

d =
√

log |V | d = log |V |
G GA G GA

µ 0 1 0 2
|P| 20 40 46 4917
|E| 16 17 16 25
δ 1 2 1 3

d, |S|, |T | = 2 d, |S|, |T | = 3

Table 6.2. EuNetworks, |V | = 14.
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d =
√

log |V | d = log |V |
G GA G GA

µ 1 1 1 2
|P| 64 108 129 291
|E| 11 12 11 13
δ 1 2 1 3

d, |S|, |T | = 2 d, |S|, |T | = 3

Table 6.3. DataXchange, |V | = 6.

d =
√

log |V | d = log |V |
G GA G GA

µ 1 2 1 2
|P| 73 3050 242 10110
|E| 30 39 30 60
δ 1 2 1 4

d, |S|, |T | = 2 d, |S|, |T | = 4

Table 6.4. AGIS, |V | = 25.

d =
√

log |V | d = log |V |
G GA G GA

µ 1 1 1 2
|P| 12 52 24 181
|E| 8 11 8 12
δ 1 2 1 3

d, |S|, |T | = 2 d, |S|, |T | = 3

Table 6.5. GetNet, |V | = 7.
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d =
√

log |V | d = log |V |
G GA G GA

µ 1 1 1 2
|P| 14 110 41 112
|E| 7 10 7 10
δ 2 2 2 3

d, |S|, |T | = 2 d, |S|, |T | = 3

Table 6.6. Epoch, |V | = 6.

d =
√

log |V | d = log |V |
G GA G GA

µ 1 2 1 2
|P| 292 541 1222 2264
|E| 25 26 25 41
δ 1 2 1 3

d, |S|, |T | = 2 d, |S|, |T | = 3

Table 6.7. ANS, |V | = 18.

d =
√

log |V | d = log |V |
G GA G GA

µ 0 1 0 1
|P| 12 13 25 104
|E| 20 23 20 40
δ 1 2 1 3

d, |S|, |T | = 2 d, |S|, |T | = 3

Table 6.8. Peer1, |V | = 16.
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Random graphs

We run measurements on random graphs on few nodes (5, 8 and 10).
After generating the graphs G and then computing GA with Agrid for 50,
100 or 500 times, we count the fraction of cases where µ in the case of GA is
increasing or remaining the same (it is never strictly less) and what is the
maximal increment of µ reached in a pair (G,GA). Monitors on G and GA

are again placed according to MDMP heuristic. On the rows of Tables 6.9
and 6.10 there are the numbers of generated graphs, while on the columns,
for each of the three cases of 5, 8 and 10 nodes, we separate cases where
µ(GA) > µ(G), from where µ(GA) = µ(G). In the square bracket there
is the information of the maximal value of µ(GA)− µ(G) obtained in the
tested pairs (G,GA).

5 8 10
> = > = > =

50 [2]8% 92% [2]40% 60% [1]16% 84%
100 [2]18% 82% [2]39% 61% [2]18% 82%
500 [2]14% 86% [2]34% 66%

Table 6.9. Case d = logn.

5 8 10
> = > = > =

50 [2]8% 92% [2]40% 60% [1]16% 84%
100 [2]18% 82% [2]39% 61% [2]18% 82%
500 [2]14% 86% [2]34% 66%

Table 6.10. Case d = logn.

Random monitors

MDMP is a simple heuristic for monitor placement. However the lower
bound of Theorem 4.2.1 holds for any monitor placement. We try to
give some evidence that Agrid is a good strategy for boosting maximal
identifiability independently of where monitors are placed. In the fol-
lowing Tables, we collect results for percentage of values of µ(G) on 20
random placements of monitors both in G and GA. Tables 6.11, 6.12, 6.13,
6.14, 6.15 and 6.16 show that moving to GA gives an improvement in the
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maximal identifiability, independently of the monitor placement. Also in
these cases the data are computed only for the most significant case of logN .

G \µ 0 1 2
G 20% 80% 0%
GA 0% 0% 100%

G \µ 0 1 2
G 100% 0% 0%
GA 0% 80% 20%

Table 6.11. Claranet, |V | = 15,
S, T, d = 3.

Table 6.12. EuNetworks, |V | = 14,
S, T, d = 3.

G \µ 0 1 2
G 0% 100% 0%
GA 0% 10% 90%

G \µ 0 1 2
G 0% 90% 30%
GA 0% 35% 65%

Table 6.13. GetNet, |V | = 7,
S, T, d = 3.

Table 6.14. Epoch, |V | = 6,
m,M, d = 3.

G \µ 0 1 2
G 0% 85% 15%
GA 0% 5% 95%

Table 6.15. DataXchange, |V | = 6, m,M, d = 3.

G \µ 0 1 2
G 0% 100% 0%
GA 0% 10% 90%

Table 6.16. GridNet, |V | = 9, S, T, d = 3.

Feasibility of Agrid. Adding a link in some cases may require local or
physical access to nodes, access which might not be feasible. However
there are examples of networks where adding links may not require a
local intervention (or requires a limited one) and hence our approach is
reasonable. we consider two cases of static networks and dynamic networks.
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Static networks. Static networks are grounded on a fixed topology which
does not change in the time. In such cases it makes sense to analyze the
economical feasibility of running Agrid. A way to reduce both the costs
and the physical access to nodes and links of the network is an approach
suggested for nodes in [32].

On-demand link placement. Similarly to what is done for nodes in [32],
we can think to employ as additional links in GA temporary links, which
only participate in taking measurements (hence built upon very simple
hardware and protocols to transmit simple data packet) and not in other
more complex functions. This would reduce the cost of adding links and it
might simplify the type of physical access to the network.

Dynamic networks. In dynamic networks the topology is changing in the
time according to some rules (but they can be even unpredictable). They
are specified by a sequence of graphs {Gt}t∈T where T is a set of times.
For example some cases of wireless networks are dynamical networks where
the underlying topology changes at each given time. Nodes are supposed
to have a built-in mechanismM to set new links among the nodes in-sight.
In such cases we can think to modify Agrid in such a way that links to
one node u are added randomly choosing the other nodes among the nodes
reachable from u according to mechanismM. The approach of temporary
links would be particularly suited in the case of dynamic networks, where
we can think of adding new edges at each time for each network Gt.

6.3 MLE Method and Experiments

Let ν
n,m,~λ

(u) = Pr[u ∈ SEPk(P)]. Assume to have a real set of M paths
P̂ over N nodes. We extract from P̂ the λ̂i for all i ∈ V = [N ] and we
then estimate |SEPk(P̂)| as χ(P̂, k, λ̂) =

∑
u∈[N ]

νN,M,λ̂(u), using the closed

formula in Theorem 5.4.2.

In figures 6.1, 6.2 and 6.3 we consider three graphs from the Internet
Topology Zoo (ClaraNet, BTEurope and Bridge Networks) and we consider
set of measurement paths P̂ obtained from these networks by taking all the
different paths starting from a source node and ending at a target node
(green nodes are sources and red nodes are targets). In the second table
in each Figure we compare the real values of | SEPk(P̂)| with the values of
χ(P̂, k, λ̂) for all these paths, obtaining results very tight to the real values.
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Notice that to compute νN,M,λ̂(u) we need to compute Pr[(u,W ) GOOD]
for all W ∈ S(k)1. We consider another estimate of |SEPk(P̂)| obtained
from χ(P̂, k, λ̂) by having only one value for all the λi’s. We consider the
significant case χ2(P̂, k, λ̂max), where λ̂max = maxi λi2. Notice that in these
cases we do not have to have available all the λw for all W ⊆ V = [N ]
of size at most k and the computation can be made much less expensive
since χ2(P̂, k, λ̂max) =

∏
j∈[k](1 − (1 − λu(1 − λmax)j)m)(

n−1
j ) and we can

use methods to approximate
(n−1
j

)
. Notice that the estimate χ2 is already

very good in all these examples.

In each table we also scatter the estimates λ̂i coming from the MLE
method.

Figure 6.1. Data on the net-
work ClaraNet.

1This is because we need to use the λw for all w ∈W .
2It is easy to see that χ(P̂, k, λ̂) ≥ χ2(P̂, k, λ̂max).
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Figure 6.2. Data on the net-
work BTEurope.
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Figure 6.3. Data on the net-
work Bridge.

6.4 Complexity of k-Identifiability and The Min-
imum Hitting Set

Consider the optimization problem Minimum Hitting Set, MHS, that Minimum hitting
set problemgiven a hypergraph (a set-system) H = (V,E), where E ∈

(V
2
)
, asks to find

the smallest V ′ ⊆ V such that for all e ∈ E, V ′∩ e 6= ∅. MHS is a notorious
NP-complete problem [2,28] extending vertex cover.

We show how to use MHS to find the minimal k such that u is not
k-ID in P, i.e. there exits a set of nodes W of size |W | ≤ k , such that
P(u) ⊆ P(W ).

Theorem 6.4.1. Assume MHS is solvable in polynomial time, then deciding
whether u is not k-SEP in P is solvable in polynomial time.



6.4 Complexity of k-Identifiability and The Minimum Hitting Set 87

Proof. Consider the subset T (u) of V = [n] of those nodes touching at least
a path in P(u). Let Y be the vector of dimension |P(u)| defined in the j-th
coordinate as following:

Y [j] =
∨

v∈T (u)
P[j, v] j ∈ P(u)

Y has no 0-coordinate for otherwise there is a path in P only touching
u. Hence Y has all 1-coordinates. We consider the set-system H obtained
from P by restricting the columns to T (u) and the rows to P(u). Let W be
the smallest subset of T (u) provided by MHS and covering all P(u). Hence
u is not |W |-SEP, since P(u) ⊆ P(W ).

The optimality of the bound is an immediate consequence of the op-
timality of MHS. There is no subset Z of V = [n] smaller than W such
that P(u) ⊆ P(Z), since of course Z ⊆ T (u) and, by optimality of MHS, Z
cannot be smaller than W .

The problem of finding a minimal transversal in a hypergraph is a
simplification of MHS (see below) which can be decided efficiently. Our
reduction hence suggests to implement an algorithm on concrete examples
of paths where we find the minimal transversal instead of the minimum
hitting set.

Let us recall the following definitions from hypergraph transversal
problem [20].

Definition 6.4.2 (Transversal). Let H = (V,E) be a hypergraph. A set Transversal

T ⊆ V is called a transversal of H if it meets all the edges of H, i.e. if
∀e ∈ E : T ∩ e 6= ∅. A transversal T is called minimal if no proper subset
T ′ of T is a transversal.

It is possible to find in time O(|V ||E|) a minimal transversal of H by
the following algorithm (see also [20]). If E = ∅, then every subset of V is a
transversal of H, hence the minimal one is ∅. If E 6= ∅, let V = {v1, . . . , vn}.
Then define:

V0 = V

Vi+1 =
{
Vi Vi \ {vi} is not a transversal of H
Vi \ {vi} Vi \ {vi} is a transversal of H

0 ≤ i < n

Hence Vn is a minimal transversal of H. However notice that Vn is not
necessarily the smallest (by cardinality) transversal of H. In fact this last
problem is the MHS problem which is NP-hard.
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Let us call HT be a procedure that implements the previous algorithm on
a given H(V,E), and a given order on V , and outputs a minimal transversal
of H.

The proof of Theorem 6.4.1 suggests an algorithm to compute an upper
bound on the k-separability of a node u in P, where instead of computing
the minimum hitting set we compute a minimal transversal using HT on
any order of the variables.

Algorithm 2 Algorithm Simple-SEP
Data: P, u
Result: (W, s) s.t. P(u) ⊆ P(W ) and |W | = s

1: W = HT([n],P(u))
2: return (W, |W |);

However we can think of a slightly different algorithm which is com-
puting HT not only once on ([n],P(u)) but several times on a sequence of
hypergraphs of decreasing complexity.

Consider the following sets: for all i ∈ P(u), let Z(v) = {i ∈ P | P[i, v] =
0} for all v ∈ [n] and Vi = {v ∈ [n] | |P(u) ∩ Z(v)| = i}. Let I =
{i1, . . . iN} ⊆ P(u) be the set of indices of the Vij 6= ∅. We say that
ViN , . . . , Vi1 is a 0-decreasing sequence since, by definition, Z(v) > Z(w)
whenever v ∈ Vi, w ∈ Vj and i < j.

Algorithm 3 Decr-SEP
Data: P, u
Result: (W, s) s.t. P(u) ⊆ P(W ) and |W | = s

Compute all Vi’s
Compute I

1: for l = 0, . . . , N do
2: k = N − l
3: for j ∈ P(u) do
4: if j ∈ Pl[u] then
5: ~Yik [j] =

∨
v∈Vik

Pl[j, v]
6: else
7: ~Yik [j] = 0
8: V̂ik = HT(Vik ,Pl[u])
9: Zik = 0-coordinates of Yik

10: Pl+1(u) = Pl(u) ∩ Zik
11: Y = HT(I,

⋃
i∈I

~Yi)
12: W =

⋃
i∈Y V̂i

13: return (W, |W |)
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The algorithm starts by computing the set Vi and the set of indices I
of such sets which are not empty. The main observations on the algorithm
are the following:

• that ViN , . . . , Vi1 is a 0-decreasing sequence. At each step we try to
cover only the paths in P(u) not already covered before. This is the
reason why in line 9 we restrict only to 0-coordinates in Zik . The
vectors Yi are also defined accordingly. Only the coordinates in Pl(u)
are important since the rest are already covered by some previous Vi.
That is the reason why in line 7 we define the Yi vector to be 0 in all
the coordinates not in Pl(u).

• another observation is that at each step l we want to save the minimal
set of nodes V̂iN−l sufficient to cover all the 1’s in Pl[u]. This is the
meaning of the call HT in line 8.

• finally, when we are done with analyzing the family of all the sets Vi’s,
P(u) is covered by the union of the Yi vectors (this is by an argument
similar to that of Theorem 6.4.1). However it is sufficient to have the
minimal subset of this family for covering all P(u). To this end we
perform a final call HT on the input set-system, (I,

⋃
i∈I

~Yi) in line 11.

NP-Completeness Consider the following optimization problem MIN-
NOT-SEP (MNS):
Input: A Boolean m× n matrix P, an element u ∈ V ;
Output: k such that u is not k-SEP and u is k′-SEP for all k′ < k.

Theorem 6.4.3. MNS is NP-complete.

Proof. To see that MNS is in NP we can use the reduction in Theorem 6.4.1
which is in fact proving that MNS ≤p MHS. Since MHS ∈ NP [2], then
MNS ∈ NP.

To prove the NP-hardness of MNS we show the opposite reduction,
i.e. that MHS ≤p MNS. Hence the result follows by the NP-hardenss of
MHS [2]. Let H = (V,E) be an instance of MHS. We define an instance of
MNS as following:

• The set of nodes of P is V ∪ {u};

• The set of paths of P is E;

• P(u) = E;
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Since a minimal hitting set W is touching all edges in E, that means that
P(W ) = E = P(u). Hence u is not |W |-SEP. Moreover since it is minimal,
then for any subset W ′of V of size smaller than |W |, there is an edge e ∈ E
not in W ′. That means that e ∈ P(u) \ P(W ′), that is u is k′-SEP in P for
any k′ < |W |.

On the opposite direction, assume that W ⊆ V \ {u} is witnessing that
u is not |W |-SEP but it is k′-SEP for any k′ < |W |, then W is clearly a
minimal hitting set in H.

6.5 Algorithm for Counting k-SEP Nodes

We show how to use previous results to localize and upper bound the
number of k-identifiable nodes on real sets of measurement paths. The
estimate will depend on what set W(u) we consider for any node u and also
on what set of paths P we are going to test the path not distinguishability.
However once we have fixed W and P, the algorithm we run is always the
same and reflects the discussions in the previous chapter (See Algorithm
lb-DISk).

Algorithm 4 lb-DISk: Counting k-SEP nodes

Data: P
Result: number of k-SEP nodes

1: for u ∈ [n] do
2: Compute W(u)
3: for w ∈ W(u) do
4: Compute P(u,w)
5: V = [n], i = 1, τ = 0
6: while i ≤ k do
7: Compute EV,i[W,P]
8: τ = τ + |EV,i[W,P]|
9: V = V − EV,i[W,P]

10: i = i+ 1
11: return n− τ

Algorithm Complexity. This is straightforward to see that the above
algorithm has the complexity of O(n2) (it has quadratic complexity).

Our method can be applied to a network given as a graph once we have
decided the set of measurement paths. Every possible way of choosing W,
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and P is giving a way to count nodes which are not distinguishable. We
can therefore think of applying the method restricting for each node u the
nodes we are checking to be not distinguishable and the effective paths we
are going to consider. For instance we can consider here the following three
potential examples:

Neighbours For any given u ∈ V = [n], let Wk(u) =
(N(u)
≤k
)
, where N(u)

is the set of neighbours of u and consider for all v ∈ N(u), the PN(u) of
the paths touching both u and its neighbours v.

Nodes at a fixed distance d For any given u ∈ V = [n], let Nd(u) =
{v ∈ V : d(u, v) = d, d ≥ 1} and Wk(u) =

(Nd(u)
≤k

)
. For all v ∈ Nd(u),

consider the Pd of the paths touching both u and v.

Shortest paths In this case we consider set Wk(u) =
(V \{u}
≤k

)
, and for all

v ∈ V \ {u}, P is the set of shortest paths from u to v or vice versa.
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Appendix A

A.1 Proof of The Theorem 4.1.4

First we prove that Tn is not 2-identifiable. Notice that we assume the
tree to be line-free (LF) otherwise µ(Tn|χ) = 0. Now we have to find two
sets W and U of cardinality at most two such that P(U)4P(W ) = ∅. Let
u be a node in Tn. Since Tn is monitor-balanced under χ, there exists a
neighbour of u, w ∈ N(u) such that T (u,w)(w) is an input tree. There also
exists another neighbour of u, z ∈ N(u), with z 6= w such that T (u,z)(z) is
an output tree. Fix U = {w}, W = {u,w}. P(U) ⊆ P(W ). Moreover each
path passing through u and z is also touching w, hence P({u}) ⊆ P({w}).
Therefore P(W ) ⊆ P(U). Hence P(U) = P(W ) and P(U)4P(W ) = ∅. Thus
µ(Tn|χ) ≤ 1.

Now for the lower bound let u and w be two distinct nodes in Tn. Fix
U = {u} and W = {w}. If w and u lie on different (end-to-end) paths,
the claim is trivially proved. If w and u lie on the same path p and say
that p meets w before u. Let pw be the subpath of p truncated at node
w. Since Tn is LF, then deg(w) ≥ 3. Let w1 ∈ No(w) be the neighbour of
w lying on p. T (w,w1)(w1) is obviously an output tree. It is easy to argue
that by monitor-balanced assumption there is necessarily another node
w2 6= w1, w2 ∈ No(w) and T (w,w2)(w2) is also an output tree. Therefore
in Tn there is a path q from w2 to an output monitor. This implies that
from each node there are at least two different (end-to-end) paths passing
through. In other words, the concatenation of pw with q is a path touching
w but not u. Hence P(U)4P(W ) 6= ∅ and µ(Tn|χ) ≥ 1.
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A.2 Proof of The Theorem 4.2.1

Here we prove the Theorem 4.2.1 for the general case d > 2. The upper
bound follows from Lemma 3.2.1.

For the lower bound we first consider the following claim:

Claim A.2.1. Let z1 = (i1, . . . , id), z2 = (j1, . . . , jd), z3 = (k3, . . . , kd) be
three nodes in Hn,d such that z1 and z3 are distinct nodes. There exists a
simple path from z1 to z3 touching z2.

Proof. First we consider a d-dimensional hypercube (d-cube) in Hn,d such
that all these three nodes are lying on some edges of this d-cube. Then we
start from the node that we want to be the origin of our path and move
along the edges towards our second node that we want to be touched by our
path. After reaching the second node we continue moving along the edges
which will lead to the third node that our path terminates at. We then
build a path from z1 to z3 touching z2. (Notice that there may exist more
than one such path since we have d directions for each node in the corners
and more directions for other nodes. Therefore when we are starting our
path from the origin node, we can pick any direction and move along the
edges towards the second node and then the same to reach the third node.
We just need to pick the best direction which would lead to a short simple
path).

Now we have to prove that independently of what nodes form S and
T , for any U,W ⊆ V with U4W 6= ∅ such that |U |, |W | ≤ d − 1, then
P(U)4P(W ) 6= ∅. Since U 6= W , |U |, |W | ≤ d − 1 and |S|, |T | = d, then
there is at least one S 6∈W , at least one T 6∈W and wlog there exists at
least one node u ∈ U \W . By Claim A.2.1 we get a simple path p from S to
T passing through u. If this path touches W (say it is touching the nodes
w1, . . . , wi), then we can avoid it. If the nodes w1, . . . , wi are all internal
nodes (not on the borders), in order to avoid them we remove these nodes
and all the edges linked to them. Then we have some holes in our grid. By
previous observation, after removing w1, . . . , wi, at least one node in S and
one node in T are in the remaining network and they must be different
since we we do not have loops or DLP. By previous claim applied to S, T
and u we have an S − T path in Hn,d touching U but not W . Notice that
if some parts of the d-cube that we are considering in Claim A.2.1 intersect
with our holes then we can move along the borders of our holes as you have
seen in the case d = 2 (Figure 4.4). If all or some of the nodes w1, . . . , wi
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are on the borders but u and all other nodes in U are internal nodes, then
by the same argument as above we can touch W and avoid U . If w1, . . . , wi

and u (maybe some other nodes of U as well) are on the same borders and
one of them say u is isolated by W , S and T (for example the node u is
at the corner), then we remove u and the edges linked to it and again by
the same argument as above we have a path S − T touching W but not
U (Notice here that W can not be isolated by the rest of the elements
of U since we have at least d directions for each node and |U | ≤ d − 1.
Moreover one node u is already isolated. So for each node in W , S 6∈ U
and T 6∈ U we have at least 2 directions free and not touched by U . For a
better understanding refer to the case d = 2 (Figure 4.5)).


	Introduction
	What Is Network Tomography?
	Main Results
	Organization of The Thesis

	Preliminaries
	Sets, Graphs, Paths and Connectivity
	Grids and LoS Networks
	Embeddings
	Monitors, Measurement Paths and Maximal Identifiability 
	Bounds on  and Unique Localization of Failure Nodes

	Tight Bounds on Maximal Identifiability by Structural Results
	Number of Input and Output Nodes
	Degree
	Lines
	Embeddings
	Vertex Connectivity and Menger’s Theorem
	Open Problems

	Bounds on Identifiability for Some Network Topologies
	Trees
	Grids
	Augmented Hypergrids
	Random Networks

	Counting and Localizing Failure Nodes in Networks
	Preliminary Definitions
	Union-Free Families and Upper Bounds on (P)
	Refining Identifiability: Separability and Distinguishability
	Lower Bounds on (P) by A Random Model 
	Localizing Failure Nodes in Real Networks

	Algorithms, Data and Experiments
	Agrid (Adding Edges to Increase )
	Experimental Data and Feasibility of Agrid
	MLE Method and Experiments
	Complexity of k-Identifiability and The Minimum Hitting Set
	Algorithm for Counting k-`39`42`"613A``45`47`"603ASEP Nodes

	Bibliography
	Appendix 
	Proof of The Theorem 4.1.4
	Proof of The Theorem 4.2.1


