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Abstract

We introduce here a generalization of the Mittag-Leffler Lévy process (with parameter «), obtained by extend-
ing its Lévy measure through the Prabhakar function (which is a Mittag-Leffler with the additional parameters
B and «). We prove that this so-called Prabhakar process, in the special case 8 = 1, can be represented as
an a-stable process subordinated by an independent generalized gamma subordinator; thus it can be con-
sidered as an extension of the geometric stable process, to which it reduces for v = 1. On the other hand,
for « = B = 1, it coincides with the generalized gamma process itself. Therefore, by suitably specifying the
three parameters, the Prabhakar process turns out to represent an interpolation among various well-known

and widely applied stochastic models.

Keywords: Mittag-Leffler distribution, subordinated, stochastic processes, Lévy density.
2010 MSC: 33E12, 26A33, 60G51, 60G52

1. Introduction

The widespread of fractional (non-integer order) calculus [1, 2, 3] in many areas of probability gave an

impact for the development of new stochastic models: many new processes have been defined and investigated,
for example, in the context of anomalous diffusion ([4, 5, 6, 7, 8] and references therein), relaxation phenomena
([9]), point processes ([10, 11, 12]), time-changed Brownian motion ([13], [14]). In particular, the relationship
between Lévy stable processes (as well as their inverses) and fractional differential equations have been largely
studied and extended to more general settings (see, among the others, [15, 16]).
A very important tool, in this context, is the well-known Mittag-Leffler (ML) function ([17, 18, 19]). Its
relevance is confirmed by numerous generalizations ([19, 20]): recently the three parameter ML function (also
called Prabhakar function) has been attracting more and more attention (see [21, 22]). Let us define this
function, for any z € C, via the following infinite series representation

oo

1 D(y+k)2*
I'(v) P kT (ak + B)’

EZ_S (2) = 2€C,a,8,7v€C, R(a) >0, (1.1)

where T'(-) is the Euler gamma function. It is well-known that E] ,; () is an entire function of order p =
ﬁ([%]) and it is a special case of more general Fox-Wright function ,%,[.] (see [24, 3]). When v = 1 we
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obtain the two parameters ML function, while, for 8 = 1 and v = 1, we recover the classical ML function (for
further properties, see [3, 19]).

The Prabhakar function is mostly known for its usefulness in the description of dielectric relaxation
phenomena, i.e. the so called Havriliak-Negami model (see [25, 26]). Moreover, we recall also its applications
to fractional viscoelasticity (in [27]) or to systems with anisotropy (in [28]). In mathematics, one can mention
probability distributions based on Prabhakar function (in [29, 30]) and some related stochastic processes
([31, 32]), while, for various other applications and historical remarks, the interested reader is referred to [33].

The wide interest in the ML functions (in particular in the Prabhakar case) is the main motivation
of the present paper. Here, however, instead of considering it as a tool for expressing distribution functions,
we apply the ML function as a building block for defining a new class of stochastic processes via their Lévy
measure ([34]). It is well-known that the ML process is defined as an a-stable subordinator S, := S, (¢), t > 0,
time-changed by an independent gamma subordinator,and hence it is also called geometric stable in [35, 36]
and [37], G :=G(t), t > 0, i.e. as Xy (t) := Sa(G(t)), t > 0 (see [38] for further properties). Its Lévy measure
has the following density:

mx. () = %Eml (=Az®), A>0, 2 >0, a € (0, 1]. (1.2)

We define here the so-called Prabhakar process M27 = Mf7(t), t > 0, by considering a Lévy measure
expressed by means of the function (1.1), for « € (0,1], 8 € [1,1+ay] and v > 0 (see formula (2.1) for details).

We prove that, in the special case § = 1, it can be represented as an a-stable process subordinated by
an independent generalized gamma subordinator, thus it can be considered as an extension of the geometric
stable process, to which it reduces for § = v = 1. On the other hand, for « = 8 = 1, it coincides with the
generalized gamma process itself. We recall that the gamma Lévy subordinator has found applications in many
areas ranging from finance ([37]) to physics ([39]). In particular, when it is used to subordinate the Brownian
motion, it allows to define the so-called variance gamma process (or Laplace motion), which is widely used in
option pricing, for a wider modelling of skewness and kurtosis than the Brownian motion (see [40]).

Therefore the Prabhakar Lévy process (PL) studied here turns out to represent an interpolation among
various well-known and widely applied stochastic models, by suitably specifying its three parameters.

The rest of the paper has the following structure. In Section 2 we provide the definition and the
main properties of the PL process. In Section 3 we investigate its subordination representation, together with
its governing differential equation (at least in a special case). Indeed, when o = 8 = 1, we prove that the
transition density of the PL process (also called, in this case, generalized gamma subordinator) is governed by
a partial differential equation with convolution-type space derivative: the latter is defined, in the Riemann-
Liouville sense, by means of a fractional counterpart of the exponential integral. Section 4 provides brief
informations on the simulation procedure of the PL process’ sample paths, for further investigation of its
behavior and for an interpretation of the parameters’ role.

2. Main results

We start by giving the definition of the generalization of the ML process which we call Prabhakar
Lévy (PL) process.

Definition 2.1 (PL process). Let a € (0,1],7 > 0 and 8 € [1,1 + av) then the PL process M7 =
MEP(t), t > 0 is defined as a Lévy process with triplet (0,0,tm,,s.~), where 7,5~ () is the following density
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of Lévy measure
r
aimxﬁ—zEg 5 (=A%), A>0, z>0. (2.1)
r (7 + 158 ) ’
We note that the parameter « belongs to the interval (0, 1], as in the stable subordinator case, whereas

the parameter § is assumed to vary in the interval [1,1 + ay) so that T’ (fy + %) is positive and finite for
any v > 0.

Ty (T) =

Remark 2.1. In the special case where § = v = 1, formula (2.1) reduces to the well-known density of the
Lévy measure of the ML process. Adding the further condition a = 1 we obtain the gamma subordinator case.
In Fig. 1 we present a comparison of the Lévy measures for gamma, ML and PL processes. We can see that
the PL process, for certain parameters, occupies some intermediate place between gamma and ML processes.
In Fig. 2 we further provide a description of the influence of a on the Lévy measure, which can be heuristically

summarized as follows: that greater the parameter o the less bulky the Lévy measure.

——— Prabhakar Lévy process
—— Gamma process
= Classical Mittag-Leffler process
4004
300+
2004
1004
0.00 0.01 0.02 0.03 0.04 0.05

Figure 1: Behavior of the Lévy density of the PL process (for a = 0.9,8 = 1,7 = 0.4,\ = 10), Mittag-Leffler process (for
a=0.9,8=1,v=1,A=10) and gamma process (fora =1,8=1,y =1, = 10)

Let us now show that (2.1) defines a proper Lévy density.
Proposition 2.1. The density defined in Eq.(2.1) is a proper Lévy density.

Proof. We need to check that the following condition holds

o0

xT
/mﬂ'Mg,'y (l‘) dI < +00.
0
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Figure 2: Behavior of the Lévy density of the PL process, for § = 1,y = 1, A = 10. The right colorbar represents the parameter
« ranging from 0 to 1.

(see [34]). We have

- T b L ap( ) & T pBrai— L
/1+x7TM5”(x)dx: 15 / 1+z Eop (—Ar%) do = 16 Z 'Pa +ﬁ/ 1+
0 7+ 0 7+ ) J 0

— Z ( )‘) ﬁ+o¢j71 7v(1+a:)d,u dr
F(%L 1- ﬁ) =T (i +5))

= OZF S ()\)j Ji 7@90 B+aj—1
F(’y 1ﬁ)z a]-l—ﬂ)oe e I

0
00 )\JOC7U7 N OOF’Y+.] 7)\3 ‘
= - Z ( ) / B=ai gy = - Z ,3( )F(1—ag—5)
F(W+ ﬁ)j:o i F<7+%ﬁ)j:0 I
- {(ml)(kﬂ,—a) _ A}
)
here ,¥, is the generalised Fox-Wright function which is absolutely convergent, by applying Theorem 1.5 in
[3] (since 6 =a—1> —1). O

Now we provide the expression of the Laplace exponent of the PL process, in terms of generalized

Fox-Wright function.
Theorem 2.1. The Laplace exponent of the Prabhakar process reads

u At {(v,l) (w+%,1)‘ u®
2

Py () = ————c— s
MS r <7 N %) 7 (v+152+1,1)

} ,u>0, (2.2)
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where , ¥, is the Fox-Wright function (see [3] for its definition).
Proof.

1 , T r 1
Pyea (u) = 5 log (E (e_“Mavﬁ‘(t) / (1—e ) ol (v) i DA 5 (=AzY)dz
0

| (e

= - // v f YEY 5 (—Ax®) dvdzx
(v+ " i

= //e_”xﬁ_lE7 (—Az®) dzdv
1- 5 o.p
’Y+ s
/ V=8
,Y+ 1— ﬁ 4 )\+’Ua
; g
= F(V) u® B+l/w77 +1-1 <1+ pru > dw
r (’y + = ) A7 A
r 1-p 1-— u®
- ry) ua’y A+l Fl (7374_/’7—’_6—’_17_)\)
F(y+52+1) 0 o

Here 5 F} is the Gauss hypergeometric function (see [3], p.27). In the last step we used its Euler representation
(see [3], formula 1.6.2). By applying equation (1.11.26) in [3], we get (2.2). O

It is easy to see that, in the special case where v = 8 = 1, the Laplace exponent of the PL process

reduces to that of the ML process, i.e.

Ypypa(u) = log (1 + u)\> :

In the following proposition we investigate the tail behavior of the PL process and the conditions for

the existence of finite fractional moments.

Proposition 2.2. The tail behavior for PL process for v < 3/« reads

h tI'
lim ' P (ME7(t) > ) = ©) .
Freo F(’7+%+1)F(ﬁ70¢’y))\7

Moreover the PL process has finite p-th order moments iff 0 < p <14 ay — B.

Proof. The tail behavior can be obtained from the Tauberian theorems (see [41], Theorem XIII, p.446) as
follows

oo 1—E [e—quj”Y(t)} 1— eftd)Mg,.y(u)
/e”“””P (MEA(t) > ) do = =
u u
0
) (e
u—0 u F(’V-’-%—Q—l))\’}/’
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o0

obtain the desired result. Based on the tail behavior and considering that EX? = [ P(X? > z)dz, we can
0

immediately derive the result on the finiteness of the p-th order moments. O

For 8 = v = 1 formula (2.3) reduces to the well known tail behavior of the ML process (see [42], in
the inhomogeneous case).

We should mention here that the p-th order fractional moment (for p € (0,1)) can be derived by
fractional differentiation of the Laplace transform of M?7 (as proved in Lemma 1.1. in [43]), via the following
formula

E ([Mg”(t)]p) =_ F(; /w_P%E |:e—w]VI(’3"*(t)} duw

—p —t, s w) d
= m/w P "Vl %’z/)z\yff,w(w)dw.
0

However, due to this complicated form, it is hard to obtain explicit formulas. We provide instead the fractional
counterpart of the cumulants, which we define as follows. For a Lévy process X (¢), t > 0, with a Lévy measure
v (in analogy to the integer order case, see [44]), let

o0

Cp(X(t) =t / zPv(dz), (2.4)

— 00
for any p such that the integral converges. In our case we can obtain
o0
_ ot /:I,‘p+ﬁ72Eg 5 (—Az®) da
r <7 + %) 0 7
[by (1.137) in [23] ]

= /xp+ﬁ 2H1 ! |:>\.Z'a
0
o0

Cp (ME(1) =

(1_’771) T
0.1, (1-p.a) ]d

(Y

) phm (1=1)

_r(~,+ - 0/ g [M (03), (1-B8,a) ]dz
pte T(EE)r (s - )

_1“(74_%) F(lfp)

provided that p € (1 — 8, min{ay + 1 — 8,1}). Since we restrict ourselves to v < f/a, we can write p €
1-B,ay+1=07).
We now provide some results on the path behavior of the PL process.

Proposition 2.3. Almost all the paths of the PL process have finite variation.
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Proof. We can write

1 1

B—-1 7 a N
/367TM£,7 (:r)dx— . 6 /x B 5 (=Az%) dx
0 7+ 0

@

__ ') (=)

1-8 a,B+1
o)

where we have applied formula (5.1.19) of [19], in the last step. Then by Theorem 21.9 in [45], the sample
function M£ (t,w) has almost surely finite variation on (0, ] for any ¢ € (0, 00). O

3. Subordination representation and fractional equations

We recall that the ordinary ML process can be represented as an a-stable subordinator S,, with
stability parameter a € (0, 1), time-changed by an independent gamma subordinator. Analogously, we prove
that the process M2 can be conveniently defined as a subordinated process. Let us recall that the Laplace
transform of S, is given by

E (equa(t)) — eftu“ (35)
and thus the Laplace exponent of S, is ¥g_(u) = u®, u € R™.

Theorem 3.1. The PL process can be defined through the subordination of an a-stable subordinator as follows

M (1)L s, (Mf(lf“ (t)) | (3.6)
- (55)

where £ indicates equality of finite dimensional distributions and the process M, is assumed to be

independent of S, .

Proof. First it is easy to check, from Theorem 2.1, that

wrt S (1,1) (v+128.1) u
¢M117(¥),w (u) = mz\h {(v-%l;ﬁﬂ,l) ‘ - )\} . (3.7)

Now, by considering Eq. (3.5) together with Eq. (3.7) and using a conditioning argument (see also Prop.
1.3.27 in [34]), we have

-(152)
—uSa | M, (t) 1_(17[3 5
=—-log|E|[E|[e M, 7 (b)
1 (1=8
= ——log (IE (e_”aMl (=5 (t)>>
4
_ u A (1) (v +1551)
= o ey
r (’y + ;6) A7
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Representation (3.6) is particularly interesting in the special case § = 1. Indeed, in this case, the
inner process is independent of the parameter o and reduces to a generalized gamma subordinator. Let us

denote M 11 "7 as G for simplicity, then we have that
1y
na,(x) = —E),; (=\z), © > 0. (3.8)
2L

It is immediate to check that the previous expression coincides with the Lévy measure of the gamma subor-
dinator, for v = 1. Therefore, for 3 = 1, formula (3.6) reduces to M} = S, (G, (¢)) and thus the Prabhakar
process is, in this case, obtained by subordinating a stable Lévy process by an independent generalized gamma,
subordinator.

We are able to write explicitly the generator of the generalized gamma subordinator G, with Levy
density (3.8), by defining a fractional counterpart of the exponential integral, as follows. Let us recall the

+oo
standard exponential integral, i.e. & (z) := [ z7'e *dz. Then we consider the following function, for v > 0,
xr

+o00
&l () == /zflEiy,l(fz)dz, (3.9)

x

which reduces to £ (-), in the special case v = 1. Another fractional generalization of the exponential integral,
defined via the one-parameter ML function, has been already introduced and studied in [46].
We first check that the integral in (3.9) is convergent, by recalling the following asymptotic formula

of the Prabhakar function
T

I(B—ay)

(see [47]). Moreover, we can evaluate the Laplace transform of (3.9) as follows:

E] p(—ct”) ~ t — 400, ¢ >0,

400 00 z
/ e " (x)dy = / zilEﬁl(—z)/ e "dxdz (3.10)
0 Jo 0
1 [T e 1
= 7/ (1—e ™)z E] | (—2)dz
nJo '
_ Yo, ()
n
! i1 i1
_ o, | (0D e 0l
r0) 2" | (L)

where, in the last step, we have applied formula (3.7), for « = § =1 and A = 1. It is easy to check that, for
~v =1, the previous expression coincides with the Laplace transform of the exponential integral, i.e.

+oo 1
/ e & (x)dx = —log (1+1)
0 n
(see [46]). We now define the following convolution-type derivative (in the sense of Riemann-Liouville): let
v d [* ¥
Z Jo

for an absolutely continuous function f (see [48] and [16] for details on the convolution-type operators). Then,
by Theorem 4.1 in [16], we can conclude that the transition density f,(z,t), z,t > 0 of G, satisfies the



following problem
%f'v(xvt) = _'D;f’Y(xvt)
f'y(ovt) =0 )
fr(@,0) = é(x)

s where 0(+) is the Dirac’s delta function.

4. Simulation of sample paths

Simulation of the PL process can’t be obtained by classical methods through generation of increments
from some known distributions, due to its complicated representation. Thus, in this paper, we employ the
procedure proposed in [49]. By numerical inversion of the Laplace transform we are able to generate the

10 sample paths of the PL process. Sample trajectories are presented in Fig. 3, for a € {0.5,0.6,0.7,0.8,0.9,1}.
In Fig. 4, we show the influence of the parameter 3, which, as can be inferred, is responsible for the amplitude
of the jumps. The last Fig. 5 depicts the influence of the parameter «, which, on the contrary, seems to have

more effect on the jumps’ frequency.

800+

200+

Figure 3: Sample paths for the PL process for a € {0.5,0.6,0.7,0.8,0.9,1} and 3 =1,y =0.8, A\ = 1.

References

s [1] K. B. Oldham, J. Spanier, The fractional calculus. Theory and applications of differentiation and inte-

gration to arbitrary order., volume 111, Elsevier, Amsterdam, 1974.

[2] 1. Podlubny, Fractional differential equations: an introduction to fractional derivatives, fractional differ-
ential equations, to methods of their solution and some of their applications, Mathematics in Science and
Engineering, Academic Press, London, 1999.



130

135

140

145

3]

[12]

12004

10001

800+

600+

ME-Y(t)

4001

200

Figure 4: Sample paths for the PL process for g € {1,1.2,1.4} and « =0.9,7 = 0.8, A = 1.

A. A Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations,
Volume 204 (North-Holland Mathematics Studies), Elsevier Science Inc., USA, 2006.

R. Metzler, J. Klafter, The random walk’s guide to anomalous diffusion: a fractional dynamics approach,
Phys. Rep. 339 (2000) 1-77.

R. Metzler, J. Klafter, The restaurant at the end of the random walk: recent developments in the
description of anomalous transport by fractional dynamics, J. Phys. A. Math. Gen. 37 (2004) R161—
R208.

R. Metzler, J.-H. Jeon, A. G. Cherstvy, E. Barkai, Anomalous diffusion models and their properties:
non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking, Phys. Chem.
Chem. Phys. 16 (2014) 24128-24164.

F. Mainardi, Y. Luchko, G. Pagnini, D. T. R. Gorenflo, The fundamental solution of the space-time
fractional diffusion equation, Fract. Calc. Appl. Anal. (2001) 153-192.

A. Mura, G. Pagnini, Characterizations and simulations of a class of stochastic processes to model
anomalous diffusion, J. Phys. A Math. Theor. 41 (2008) 285003.

E. C. de Oliveira, F. Mainardi, J. Vaz, Models based on Mittag-Leffler functions for anomalous relaxation
in dielectrics, Eur. Phys. J. Spec. Top. 193 (2011) 161-171.

N. Laskin, Fractional Poisson process, Commun. Nonlinear Sci. Numer. Simul. 8 (2003) 201-213.

M. Meerschaert, . Nane, P. Vellaisamy, The Fractional Poisson Process and the Inverse Stable Subordi-
nator, Electron. J. Probab. 16 (2011) 1600-1620.

E. Orsingher, F. Polito, Fractional pure birth processes, Bernoulli 16 (2010) 858-881.

10



150

155

160

165

[13]

[14]

[15]

[17]

[18]

[19]

140

120

100

801

MEY(t)

601

401

201

Figure 5: Sample paths for the PL process for v € {1,1.5,2,3} and « = 0.9, =1,A = 1.

P. Kim, R. Song, Z. Vondracek, Two-sided Green function estimates for killed subordinate Brownian
motions, Proc. London Math. Soc. 104 (2012) 927-958.

A. Kumar, N. S. Upadhye, A. Wylomarska, J. Gajda, Tempered Mittag-Leffler Lévy processes, Commun.
Stat. - Theory Methods 48 (2017) 396-411.

M. M. Meerschaert, A. Sikorskii, Stochastic Models for Fractional Calculus, DE GRUYTER, 2011. doi:10.
1515/9783110258165.

B. Toaldo, Convolution-Type Derivatives, Hitting-Times of Subordinators and Time-Changed C 0-
semigroups, Potential Anal. 42 (2014) 115-140.

G. M. Mittag-Leffler, Sur la nouvelle fonction F,(X)., Comptes Rendus 1’Academie des Sci. Paris Ser.
IT 137 (1903) 554-558.

M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Math-
ematical Tables, ninth dover printing ed., Dover, New York, 1964.

R. Gorenflo, A. A. Kilbas, F. Mainardi, S. V. Rogosin, Mittag-Leffler Functions, Related Topics and
Applications, Springer Berlin Heidelberg, 2014. doi:10.1007/978-3-662-43930-2.

V. S. Kiryakova, Multiple (multiindex) Mittag—Leffler functions and relations to generalized fractional
calculus, J. Comput. Appl. Math. 118 (2000) 241-259.

T. R. Prabhakar, A singular integral equation with a generalized mittag leffler function in the kernel,
Yokohama Math. J. 19 (1971) 7-15.

R. Garra, R. Garrappa, The Prabhakar or three parameter Mittag—Leffler function: Theory and applica-
tion, Commun. Nonlinear Sci. Numer. Simul. 56 (2018) 314-329.

11



170

175

180

185

190

195

200

23]

[24]

[25]

[26]

H. J. Haubold, A. M. Mathai, R. K. Saxena, Mittag-Leffler Functions and Their Applications, J. Appl.
Math. 2011 (2011) 1-51.

E. M. Wright, The Asymptotic Expansion of the Generalized Hypergeometric Function, Proc. London
Math. Soc. s2-46 (1940) 389-408.

R. Garrappa, F. Mainardi, M. Guido, Models of dielectric relaxation based on completely monotone
functions, Fract. Calc. Appl. Anal. 19 (2016).

A. Stanislavsky, K. Weron, Atypical Case of the Dielectric Relaxation Responses and its Fractional
Kinetic Equation, Fract. Calc. Appl. Anal. 19 (2016).

A. Giusti, I. Colombaro, Prabhakar-like fractional viscoelasticity, Commun. Nonlinear Sci. Numer. Simul.
56 (2018) 138-143.

H. Chamati, N. S. Tonchev, Generalized Mittag—Leffler functions in the theory of finite-size scaling for
systems with strong anisotropy and/or long-range interaction, J. Phys. A. Math. Gen. 39 (2005) 469-478.

L. F. James, Lamperti-type laws, Ann. Appl. Probab. 20 (2010) 1303-1340.

T. K. Pogény, Z. Tomovski, Probability distribution built by Prabhakar function. Related Turan and
Laguerre inequalities, Integr. Transform. Spec. Funct. 27 (2016) 783-793.

F. Polito, E. Scalas, A generalization of the space-fractional Poisson process and its connection to some
Lévy processes, Electron. Commun. Probab. 21 (2016).

M. D'Ovidio, F. Polito, Fractional Diffusion—Telegraph Equations and Their Associated Stochastic Solu-
tions, Theory Probab. Its Appl. 62 (2018) 552-574.

A. Giusti, I. Colombaro, R. Garra, R. Garrappa, F. Polito, M. Popolizio, F. Mainardi, A practical guide
to Prabhakar fractional calculus, Fract. Calc. Appl. Anal. 23 (2020) 9-54.

D. Applebaum, Lévy Processes and Stochastic Calculus, Cambridge University Press, 2009. doi:10.1017/
cbo9780511809781.

T. J. Kozubowski, S. T. Rachev, Univariate Geometric Stable Laws, J. Comput. Anal. Appl. 1 (1999)
177-217.

L. Beghin, Geometric stable processes and related fractional differential equations, Electron. Commun.
Probab. 19 (2014).

D. B. Madan, E. Seneta, The Variance Gamma (V.G.) Model for Share Market Returns, J. Bus. 63
(1990) 511-524.

O. E. Barndorff-Nielsen, Probability densities and Lévy densities, University of Aarhus. Centre for Math-
ematical Physics and Stochastics, 2000.

J. Janczura, A. Wylomanska, Anomalous Diffusion Models: Different Types of Subordinator Distribution,
Acta Phys. Pol. B 43 (2012) 1001-1016.

S. Kotz, T. J. Kozubowski, K. Podgoérski, The Laplace Distribution and Generalizations, Birkhauser
Boston, 2001. doi:10.1007/978-1-4612-0173-1.

12



205

210

215

220

[41]

[42]

[43]

[44]
[45]

[46]

W. Feller, An introduction to probability theory and its applications, John Wiley & Sons, Inc, New York,
1957.

L. Beghin, Fractional diffusion-type equations with exponential and logarithmic differential operators,
Stoch. Process. their Appl. 128 (2018) 2427-2447.

M. Matsui, Z. Pawlas, Fractional absolute moments of heavy tailed distributions, Brazilian J. Probab.
Stat. 30 (2016) 272-298.

N. Shephard, O. Barndorff-Nielsen, Basics of Lévy processes, in: Lévy driven Volatility Models, 2012.
K.-1. Sato, Levy Processes and Infinitely Divisible Distributions, Cambridge University Press, 2007.

F. Mainardi, E. Masina, On modifications of the exponential integral with the Mittag-Leffler function,
Fract. Calc. Appl. Anal. 21 (2018) 1156-1169.

L. Beghin, Random-time processes governed by differential equations of fractional distributed order,
Chaos, Solitons & Fractals 45 (2012) 1314-1327.

A. N. Kochubei, General Fractional Calculus, Evolution Equations, and Renewal Processes, Integr.
Equations Oper. Theory 71 (2011) 583-600.

M. S. Ridout, Generating random numbers from a distribution specified by its laplace transform, Stat.
Comput. 19 (2008) 439-450.

13



	Prabhakar Levy processes

