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stract

introduce here a generalization of the Mittag-Leffler Lévy process (with parameter α), obtained by

its Lévy measure through the Prabhakar function (which is a Mittag-Leffler with the additional para

d γ). We prove that this so-called Prabhakar process, in the special case β = 1, can be represe

-stable process subordinated by an independent generalized gamma subordinator; thus it can

red as an extension of the geometric stable process, to which it reduces for γ = 1. On the othe

α = β = 1, it coincides with the generalized gamma process itself. Therefore, by suitably specify

e parameters, the Prabhakar process turns out to represent an interpolation among various well

widely applied stochastic models.

words: Mittag-Leffler distribution, subordinated, stochastic processes, Lévy density.
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ntroduction

The widespread of fractional (non-integer order) calculus [1, 2, 3] in many areas of probability

act for the development of new stochastic models: many new processes have been defined and inves

xample, in the context of anomalous diffusion ([4, 5, 6, 7, 8] and references therein), relaxation phen

, point processes ([10, 11, 12]), time-changed Brownian motion ([13], [14]). In particular, the relat

een Lévy stable processes (as well as their inverses) and fractional differential equations have been

ied and extended to more general settings (see, among the others, [15, 16]).

ery important tool, in this context, is the well-known Mittag-Leffler (ML) function ([17, 18, 19

vance is confirmed by numerous generalizations ([19, 20]): recently the three parameter ML functio

d Prabhakar function) has been attracting more and more attention (see [21, 22]). Let us defi

tion, for any z ∈ C, via the following infinite series representation

Eγα,β (z) =
1

Γ(γ)

∞∑

k=0

Γ(γ + k)zk

k!Γ(αk + β)
, z ∈ C, α, β, γ ∈ C, <(α) > 0,

re Γ(·) is the Euler gamma function. It is well-known that Eγα,β (x) is an entire function of ord

) ([23]) and it is a special case of more general Fox-Wright function pΨq[.] (see [24, 3]). When γ
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in the two parameters ML function, while, for β = 1 and γ = 1, we recover the classical ML funct

her properties, see [3, 19]).

The Prabhakar function is mostly known for its usefulness in the description of dielectric rel

nomena, i.e. the so called Havriliak-Negami model (see [25, 26]). Moreover, we recall also its appl

actional viscoelasticity (in [27]) or to systems with anisotropy (in [28]). In mathematics, one can m

ability distributions based on Prabhakar function (in [29, 30]) and some related stochastic pr

, 32]), while, for various other applications and historical remarks, the interested reader is referred

The wide interest in the ML functions (in particular in the Prabhakar case) is the main mo

he present paper. Here, however, instead of considering it as a tool for expressing distribution fun

apply the ML function as a building block for defining a new class of stochastic processes via the

sure ([34]). It is well-known that the ML process is defined as an α-stable subordinator Sα := Sα(t)

-changed by an independent gamma subordinator,and hence it is also called geometric stable in

[37], G := G(t), t ≥ 0, i.e. as Xα(t) := Sα(G(t)), t ≥ 0 (see [38] for further properties). Its Lévy m

the following density:

πXα (x) =
α

x
Eα,1 (−λxα) , λ > 0, x ≥ 0, α ∈ (0, 1].

We define here the so-called Prabhakar process Mβ,γ
α = Mβ,γ

α (t), t ≥ 0, by considering a Lévy m

ressed by means of the function (1.1), for α ∈ (0, 1], β ∈ [1, 1+αγ] and γ > 0 (see formula (2.1) for d

We prove that, in the special case β = 1, it can be represented as an α-stable process subordin

ndependent generalized gamma subordinator, thus it can be considered as an extension of the ge

le process, to which it reduces for β = γ = 1. On the other hand, for α = β = 1, it coincides w

ralized gamma process itself. We recall that the gamma Lévy subordinator has found applications i

s ranging from finance ([37]) to physics ([39]). In particular, when it is used to subordinate the Br

ion, it allows to define the so-called variance gamma process (or Laplace motion), which is widely

on pricing, for a wider modelling of skewness and kurtosis than the Brownian motion (see [40]).

Therefore the Prabhakar Lévy process (PL) studied here turns out to represent an interpolation

ous well-known and widely applied stochastic models, by suitably specifying its three parameters.

The rest of the paper has the following structure. In Section 2 we provide the definition a

n properties of the PL process. In Section 3 we investigate its subordination representation, togeth

overning differential equation (at least in a special case). Indeed, when α = β = 1, we prove t

sition density of the PL process (also called, in this case, generalized gamma subordinator) is gove

rtial differential equation with convolution-type space derivative: the latter is defined, in the Ri

ville sense, by means of a fractional counterpart of the exponential integral. Section 4 provid

rmations on the simulation procedure of the PL process’ sample paths, for further investigatio

avior and for an interpretation of the parameters’ role.

ain results

We start by giving the definition of the generalization of the ML process which we call Pra

y (PL) process.

nition 2.1 (PL process). Let α ∈ (0, 1], γ > 0 and β ∈ [1, 1 + αγ) then the PL process M
,γ(t), t ≥ 0 is defined as a Lévy process with triplet (0, 0, tπMβ,γ

α
), where πMβ,γ

α
(·) is the following
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évy measure

πMβ,γ
α

(x) =
αΓ (γ)

Γ
(
γ + 1−β

α

)xβ−2Eγα,β (−λxα) , λ > 0, x ≥ 0.

We note that the parameter α belongs to the interval (0, 1], as in the stable subordinator case, w

parameter β is assumed to vary in the interval [1, 1 + αγ) so that Γ
(
γ + 1−β

α

)
is positive and fi

γ > 0.

ark 2.1. In the special case where β = γ = 1, formula (2.1) reduces to the well-known density

y measure of the ML process. Adding the further condition α = 1 we obtain the gamma subordinato

ig. 1 we present a comparison of the Lévy measures for gamma, ML and PL processes. We can

PL process, for certain parameters, occupies some intermediate place between gamma and ML pr

ig. 2 we further provide a description of the influence of α on the Lévy measure, which can be heur

marized as follows: that greater the parameter α the less bulky the Lévy measure.
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re 1: Behavior of the Lévy density of the PL process (for α = 0.9, β = 1, γ = 0.4, λ = 10), Mittag-Leffler pro

0.9, β = 1, γ = 1, λ = 10) and gamma process (for α = 1, β = 1, γ = 1, λ = 10)

Let us now show that (2.1) defines a proper Lévy density.

position 2.1. The density defined in Eq.(2.1) is a proper Lévy density.

of. We need to check that the following condition holds

∞∫

0

x

1 + x
πMβ,γ

α
(x) dx < +∞.Jo
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re 2: Behavior of the Lévy density of the PL process, for β = 1, γ = 1, λ = 10. The right colorbar represents the p

nging from 0 to 1.

[34]). We have

x

+ x
πMβ,γ

α
(x) dx =

αΓ(γ)

Γ
(
γ + 1−β

α

)
∞∫

0

xβ−1

1 + x
Eγα,β (−λxα) dx =

αΓ(γ)

Γ
(
γ + 1−β

α

)
∞∑

j=0

(γ)j(−λ)j

j!Γ (αj + β)

∞∫

0

xβ+α

1 +

αΓ(γ)

Γ
(
γ + 1−β

α

)
∞∑

j=0

(γ)j(−λ)j

j!Γ (αj + β)

∞∫

0

xβ+αj−1



∞∫

0

e−v(1+x)dv


 dx

αΓ(γ)

Γ
(
γ + 1−β

α

)
∞∑

j=0

(γ)j(−λ)j

j!Γ (αj + β)

∞∫

0

e−v



∞∫

0

e−vxxβ+αj−1dx


 dv

αΓ(γ)

Γ
(
γ + 1−β

α

)
∞∑

j=0

(γ)j(−λ)j

j!

∞∫

0

e−vv−β−αjdv =
α

Γ
(
γ + 1−β

α

)
∞∑

j=0

Γ(γ + j)(−λ)j

j!
Γ(1− αj − β)

α

Γ
(
γ + 1−β

α

) 2Ψ1

[
(γ,1)(1−β,−α)

∣∣∣− λ
]

pΨq is the generalised Fox-Wright function which is absolutely convergent, by applying Theorem

since δ = α− 1 > −1).

Now we provide the expression of the Laplace exponent of the PL process, in terms of gen

-Wright function.

orem 2.1. The Laplace exponent of the Prabhakar process reads

ψMβ,γ
α

(u) =
uαγ−β+1

Γ
(
γ + 1−β

α

)
λγ

2Ψ1

[
(γ,1) (γ+ 1−β

α ,1)
(γ+ 1−β

α +1,1)

∣∣∣− uα

λ

]
, u ≥ 0,
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re pΨq is the Fox-Wright function (see [3] for its definition).

of.

ψMβ,γ
α

(u) = −1

t
log
(
E
(
e−uM

γ
α,β(t)

))
=

∞∫

0

(
1− e−ux

) αΓ (γ)

Γ
(
γ + 1−β

α

) 1

x
xβ−1Eγα,β (−λxα) dx

=
αΓ (γ)

Γ
(
γ + 1−β

α

)
∞∫

0

u∫

0

e−vxxβ−1Eγα,β (−λxα) dvdx

=
αΓ (γ)

Γ
(
γ + 1−β

α

)
u∫

0

∞∫

0

e−vxxβ−1Eγα,β (−λxα) dxdv

=
αΓ (γ)

Γ
(
γ + 1−β

α

)
u∫

0

vαγ−β

(λ+ vα)
γ dv

=
Γ(γ)

Γ
(
γ + 1−β

α

)
λγ
uαγ−β+1

1∫

0

wγ−
β
α+ 1

α−1
(

1 +
wuα

λ

)−γ
dw

=
Γ(γ)

Γ
(
γ + 1−β

α + 1
)
λγ
uαγ−β+1

2F1

(
γ, γ +

1− β
α

, γ +
1− β
α

+ 1,−u
α

λ

)
.

e 2F1 is the Gauss hypergeometric function (see [3], p.27). In the last step we used its Euler represe

[3], formula 1.6.2). By applying equation (1.11.26) in [3], we get (2.2).

It is easy to see that, in the special case where γ = β = 1, the Laplace exponent of the PL

ces to that of the ML process, i.e.

ψM1,1
α

(u) = log

(
1 +

uα

λ

)
.

In the following proposition we investigate the tail behavior of the PL process and the condit

existence of finite fractional moments.

position 2.2. The tail behavior for PL process for γ < β/α reads

lim
x→∞

x1+αγ−βP
(
Mβ,γ
α (t) > x

)
=

tΓ(γ)

Γ
(
γ + 1−β

α + 1
)

Γ (β − αγ)λγ
.

eover the PL process has finite p-th order moments iff 0 < p < 1 + αγ − β.

of. The tail behavior can be obtained from the Tauberian theorems (see [41], Theorem XIII, p.

ws

∞∫

0

e−uxP
(
Mβ,γ
α (t) > x

)
dx =

1− E
[
e−uM

β,γ
α (t)

]

u
=

1− e−tψMβ,γα
(u)

u

≈
u→0

tψMβ,γ
α

(u)

u
=

tΓ(γ)uαγ−β

Γ
(
γ + 1−β

α + 1
)
λγ
,
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e 2F1

(
γ, γ + 1−β

α , γ + 1−β
α + 1; 0

)
= 1. Under the restriction γ < β/α from Theorem XIII 5.4 in

in the desired result. Based on the tail behavior and considering that EXp =
∞∫
0

P (Xp > x)dx,

ediately derive the result on the finiteness of the p-th order moments.

For β = γ = 1 formula (2.3) reduces to the well known tail behavior of the ML process (see

inhomogeneous case).

We should mention here that the p-th order fractional moment (for p ∈ (0, 1)) can be der

tional differentiation of the Laplace transform of Mβ,γ
α (as proved in Lemma 1.1. in [43]), via the fo

ula

E
([
Mβ,γ
α (t)

]p)
= − 1

Γ(1− p)

∞∫

0

w−p
d

dw
E
[
e−wM

β,γ
α (t)

]
dw

=
t

Γ(1− p)

∞∫

0

w−pe
−tψ

M
β,γ
α

(w) d

dw
ψMβ,γ

α
(w)dw.

ever, due to this complicated form, it is hard to obtain explicit formulas. We provide instead the fra

terpart of the cumulants, which we define as follows. For a Lévy process X(t), t ≥ 0, with a Lévy m

n analogy to the integer order case, see [44]), let

Cp (X(t)) := t

+∞∫

−∞

xpν(dx),

any p such that the integral converges. In our case we can obtain

Cp
(
Mβ,γ
α (t)

)
=

αΓ(γ)t

Γ
(
γ + 1−β

α

)
∞∫

0

xp+β−2Eγα,β (−λxα) dx

[by (1.137) in [23] ]

=
αt

Γ
(
γ + 1−β

α

)
∞∫

0

xp+β−2H1,1
1,2

[
λxα

∣∣∣∣∣
(1− γ, 1)

(0, 1), (1− β, α)

]
dx

=
t

Γ
(
γ + 1−β

α

)
∞∫

0

z
p+β−1
α −1H1,1

1,2

[
λz

∣∣∣∣∣
(1− γ, 1)

(0, 1), (1− β, α)

]
dz

=
tλ

1−β−p
α

Γ
(
γ + 1−β

α

)
Γ
(
p−1+β
α

)
Γ
(
γ − p−1+β

α

)

Γ(1− p)

ided that p ∈ (1 − β,min{αγ + 1 − β, 1}). Since we restrict ourselves to γ < β/α, we can wr

β, αγ + 1− β).

We now provide some results on the path behavior of the PL process.

position 2.3. Almost all the paths of the PL process have finite variation.Jo
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of. We can write

1∫

0

xπMβ,γ
α

(x) dx =
αΓ (γ)

Γ
(
γ + 1−β

α

)
1∫

0

xβ−1Eγα,β (−λxα) dx

=
αΓ (γ)

Γ
(
γ + 1−β

α

)Eγα,β+1 (−λ) ,

re we have applied formula (5.1.19) of [19], in the last step. Then by Theorem 21.9 in [45], the

tion Mβ,γ
α (t, ω) has almost surely finite variation on (0, t] for any t ∈ (0,∞).

ubordination representation and fractional equations

We recall that the ordinary ML process can be represented as an α-stable subordinator S

ility parameter α ∈ (0, 1), time-changed by an independent gamma subordinator. Analogously, w

the process Mβ,γ
α can be conveniently defined as a subordinated process. Let us recall that the

sform of Sα is given by

E
(
e−uSα(t)

)
= e−tu

α

thus the Laplace exponent of Sα is ψSα(u) = uα, u ∈ R+.

orem 3.1. The PL process can be defined through the subordination of an α-stable subordinator as

Mβ,γ
α (t)

d
= Sα

(
M

1−( 1−β
α ),γ

1 (t)

)
,

re
d
= indicates equality of finite dimensional distributions and the process M

1−( 1−β
α ),γ

1 is assume

pendent of Sα.

of. First it is easy to check, from Theorem 2.1, that

ψ
M

1−( 1−β
α ),γ

1

(u) =
uγ+

1−β
α

Γ
(
γ + 1−β

α

)
λγ

2Ψ1

[
(γ,1) (γ+ 1−β

α ,1)
(γ+ 1−β

α +1,1)

∣∣∣− u

λ

]
.

, by considering Eq. (3.5) together with Eq. (3.7) and using a conditioning argument (see als

27 in [34]), we have

ψ
Sα

(
M

1−( 1−β
α ),γ

1

)(u) = −1

t
log


E


e
−uSα

(
M

1−( 1−β
α ),γ

1 (t)

)




= −1

t
log


E


E


e
−uSα

(
M

1−( 1−β
α ),γ

1 (t)

)∣∣∣∣∣M
1−( 1−β

α ),γ
1 (t)








= −1

t
log

(
E

(
e−u

αM
1−( 1−β

α ),γ
1 (t)

))

=
uαγ−β+1

Γ
(
γ + 1−β

α

)
λγ

2Ψ1

[
(γ,1) (γ+ 1−β

α ,1)
(γ+ 1−β

α +1,1)

∣∣∣− uα

λ
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Representation (3.6) is particularly interesting in the special case β = 1. Indeed, in this ca

r process is independent of the parameter α and reduces to a generalized gamma subordinator.

ote M1,γ
1 as Gγ for simplicity, then we have that

πGγ (x) =
1

x
Eγ1,1 (−λx) , x ≥ 0.

immediate to check that the previous expression coincides with the Lévy measure of the gamma

tor, for γ = 1. Therefore, for β = 1, formula (3.6) reduces to M1,γ
α = Sα(Gγ(t)) and thus the Pra

ess is, in this case, obtained by subordinating a stable Lévy process by an independent generalized

ordinator.

We are able to write explicitly the generator of the generalized gamma subordinator Gγ wit

sity (3.8), by defining a fractional counterpart of the exponential integral, as follows. Let us re

dard exponential integral, i.e. E1(x) :=
+∞∫
x

z−1e−zdz. Then we consider the following function, for

Eγ1 (x) :=

+∞∫

x

z−1Eγ1,1(−z)dz,

ch reduces to E1(·), in the special case γ = 1. Another fractional generalization of the exponential i

ned via the one-parameter ML function, has been already introduced and studied in [46].

We first check that the integral in (3.9) is convergent, by recalling the following asymptotic

he Prabhakar function

Eγα,β(−ctν) ' c−γt−αγ

Γ (β − αγ)
, t→ +∞, c > 0,

[47]). Moreover, we can evaluate the Laplace transform of (3.9) as follows:

∫ +∞

0

e−ηxEγ1 (x)dx =

∫ +∞

0

z−1Eγ1,1(−z)
∫ z

0

e−ηxdxdz

=
1

η

∫ +∞

0

(1− e−ηx)z−1Eγ1,1(−z)dz

=
ψGγ (η)

η

=
ηγ−1

Γ(γ)
2Ψ1

[
(γ, 1) (γ, 1)

(γ + 1, 1)

∣∣∣∣∣− η
]
,

re, in the last step, we have applied formula (3.7), for α = β = 1 and λ = 1. It is easy to check t

1, the previous expression coincides with the Laplace transform of the exponential integral, i.e.

∫ +∞

0

e−ηxE1(x)dx =
1

η
log (1 + η)

[46]). We now define the following convolution-type derivative (in the sense of Riemann-Liouville

Dγxf(x) =
d

dx

∫ x

0

f(x− y)Eγ1 (y)dy,

n absolutely continuous function f (see [48] and [16] for details on the convolution-type operators)

Theorem 4.1 in [16], we can conclude that the transition density fγ(x, t), x, t ≥ 0 of Gγ satis
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Journal Pre-proof
H. J. Haubold, A. M. Mathai, R. K. Saxena, Mittag-Leffler Functions and Their Applications, J

Math. 2011 (2011) 1–51.

E. M. Wright, The Asymptotic Expansion of the Generalized Hypergeometric Function, Proc.

Math. Soc. s2-46 (1940) 389–408.

R. Garrappa, F. Mainardi, M. Guido, Models of dielectric relaxation based on completely mo

functions, Fract. Calc. Appl. Anal. 19 (2016).

A. Stanislavsky, K. Weron, Atypical Case of the Dielectric Relaxation Responses and its Fra

Kinetic Equation, Fract. Calc. Appl. Anal. 19 (2016).

A. Giusti, I. Colombaro, Prabhakar-like fractional viscoelasticity, Commun. Nonlinear Sci. Numer

56 (2018) 138–143.

H. Chamati, N. S. Tonchev, Generalized Mittag–Leffler functions in the theory of finite-size sca

systems with strong anisotropy and/or long-range interaction, J. Phys. A. Math. Gen. 39 (2005) 4

L. F. James, Lamperti-type laws, Ann. Appl. Probab. 20 (2010) 1303–1340.
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